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ABSTRACT

Sparsity has recently been introduced in cosmology for weak-lensing and cosmic microwave background (CMB) data analysis for
different applications such as denoising, component separation, or inpainting (i.e., filling the missing data or the mask). Although it
gives very nice numerical results, CMB sparse inpainting has been severely criticized by top researchers in cosmology using arguments
derived from a Bayesian perspective. In an attempt to understand their point of view, we realize that interpreting a regularization
penalty term as a prior in a Bayesian framework can lead to erroneous conclusions. This paper is by no means against the Bayesian
approach, which has proven to be very useful for many applications, but warns against a Bayesian-only interpretation in data analysis,
which can be misleading in some cases.
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1. Introduction

Bayesian methodology is extremely popular in cosmology. It
proposes a very elegant framework for dealing with uncertain-
ties and for using our knowledge under the form of priors in
order to solve a given inverse problem (Hobson et al. 2010;
Mielczarek et al. 2009). The huge success of Bayesian meth-
ods in cosmology is well illustrated in Trotta (2008) with a fig-
ure on the number of papers with the word “Bayesian” in the
title as a function of the publication year. Bayesian techniques
have been used for many applications such as model selection
(Kilbinger et al. 2010; Trotta 2012), primordial power spec-
trum analysis (Kawasaki & Sekiguchi 2010), galactic surveys
design (Watkinson et al. 2012), or cosmological parameters es-
timations (March et al. 2011). Bayesian methods are now com-
monly used at almost every step in the cosmic microwave back-
ground (CMB) pipeline experiments, for point source removal
(Argüeso et al. 2011; Carvalho et al. 2012), noise level esti-
mation (Wehus et al. 2012), component separation (Dickinson
et al. 2009), cosmological parameter estimation (Efstathiou et al.
2010), non-Gaussianity studies (Elsner & Wandelt 2010; Feeney
et al. 2012), or inpainting (Bucher & Louis 2012; Kim et al.
2012).

Sparsity has recently been proposed for CMB data analy-
sis for component separation (Bobin et al. 2013) and inpaint-
ing (Abrial et al. 2007; Abrial et al. 2008; Starck et al. 2013).
The sparsity-based inpainting approach has been successfully
used for two different CMB studies, the CMB weak-lensing on
Planck simulated data (Perotto et al. 2010; Plaszczynski et al.
2012), and the analysis of the integrated Sachs-Wolfe effect
(ISW) on WMAP data (Dupé et al. 2011; Rassat et al. 2012).
In both cases, the authors showed using Monte-Carlo simula-
tions that the statistics derived from the inpainted maps can be

trusted at a high confidence level, and that sparsity-based in-
painting can indeed provide an easy and effective solution to the
problem of large Galactic mask. However, even if these simula-
tions have shown that sparsity-based inpainting does not destroy
CMB weak-lensing, ISW signals, or large-scale anomalies in the
CMB, the CMB community is very reluctant to use this concept.

This has lead to very animated discussions in conferences.
During these discussions it has come up that cosmologists of-
ten resort to a Bayesian interpretation of sparsity. Hence, they
summarize the sparse regularization to the maximum a posteri-
ori (MAP) estimator assuming the solution follows a Laplacian
distribution. From this perspective, several strong arguments
against the use of sparsity for CMB analysis were raised:

1. Sparsity consists in assuming an anisotropic and a non-
Gaussian prior, which is unsuitable for the CMB, which is
Gaussian and isotropic.

2. Sparsity violates rotational invariance.
3. The �1 norm that is used for sparse inpainting arose purely

out of expediency because under certain circumstances it re-
produces the results of the �0 pseudo-norm (which arises nat-
urally in the context of strict, as opposed to weak, sparsity)
without requiring combinatorial optimization.

4. There is no mathematical proof that sparse regularization
preserves/recovers the original statistics.

The above arguments result from a Bayesian point of view of
the sparsity concept. In this paper we explain in detail why the
above arguments are not rigorously valid and why sparsity is not
in contradiction with a Bayesian interpretation.
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2. Sparse regularization of inverse problems

2.1. Inverse problem regularization

Many data processing problems can be formalized as a linear
inverse problem,

y = Ax + ε, (1)

where y ∈ Fm is a vector of noisy measurements (real with
F = R, or complex F = C), ε is an m-dimensional vector of
additive noise, x is the perfect n-dimensional unobserved vector
of interest, and A:Fn → Fm is a linear operator. For example,
the inpainting problem corresponds to the case where we want
to recover some missing data, in which case A is a binary matrix
with fewer rows than columns (m < n), and contains only one
value equal to 1 per row, with all other values equal to 0.

Finding x when the values of y and A are known is a linear
inverse problem. When it does not have a unique and stable so-
lution, it is ill-posed and a regularization is necessary to reduce
the space of candidate solutions.

A very popular regularization in astronomy is the well-
known Bayesian maximum entropy method (MEM), which is
based on the principle that we want to select the simplest solu-
tion which fits the data. Sparsity has recently emerged as very
powerful approach for regularization (Starck et al. 2010).

2.2. Strict and weak sparsity

A signal x considered as a vector in Fn is said to be sparse if
most of its entries are equal to zero. If k numbers of the n sam-
ples are equal to zero, where k < n, then the signal is said to
be k-sparse. Generally, signals are not sparse in direct space, but
can be sparsified by transforming them to another domain. Think
for instance of a purely sinusoidal signal which is 1-sparse in
the Fourier domain, while it is clearly dense in the original one.
In the so-called sparsity synthesis model, a signal can be repre-
sented as the linear expansion

x = Φα =
t�

i=1

φiαi, (2)

where α are the synthesis coefficients of x, Φ = (φ1, . . . , φt)
is the dictionary whose columns are t elementary waveforms φi
also called atoms. In the language of linear algebra, the dic-
tionary Φ is a b × t matrix whose columns are the normalized
atoms, supposed here to be normalized to a unit �2-norm, i.e.,
∀i ∈ [1, t], �φi�22 =

�n
n=1 |φi[n]|2 = 1.

A signal can be decomposed in many dictionaries, but the
best one is the one with the sparsest (most economical) represen-
tation of the signal. In practice, it is convenient to use dictionar-
ies with fast implicit transforms (such as the Fourier transform,
wavelet transforms, etc.) which allow us to directly obtain the
coefficients and reconstruct the signal from these coefficients us-
ing fast algorithms running in linear or almost linear time (unlike
matrix-vector multiplications). The Fourier, wavelet, and dis-
crete cosine transforms are among the most popular dictionaries.

Most natural signals however are not exactly sparse but
rather concentrated near a small set. Such signals are termed
compressible or weakly sparse in the sense that the sorted mag-
nitudes

���α(i)
���, i.e.,

���α(1)
��� >

���α(2)
��� , ..., >

���α(t)
���, of the sequence

of coefficients α decay quickly according to a power law, i.e.,���α(i)
��� � Ci−1/r , i = 1, . . . , t, where C is a constant. The larger r

is, the faster the amplitudes of coefficients decay, and the more

compressible the signal is. In turn, the non-linear �2 approxima-
tion error of α (and x) from its M largest entries in magnitude
also decrease quickly. One can think, for instance, of the wavelet
coefficients of a smooth signal away from isotropic singularities,
or the curvelet coefficients of a piecewise regular image away
from smooth contours. A comprehensive account on sparsity of
signals and images can be found in Starck et al. (2010).

2.3. Sparse regularization for inverse problems

In the following, for a vector z we denote �z�pp =
�

i |zi|p for
p ≥ 0. In particular, for p ≥ 1, this is the pth power of the �p
norm, and for p = 0, we get the �0 pseudo-norm which counts
the number of non-zero entries in z. The �0 regularized problem
amounts to minimizing

α̃ ∈ argmin
α
�y − AΦα�22 + λ�α�0, (3)

where λ is a regularization parameter. A solution x̃ is recon-
structed as x̃ = Φα̃. Clearly, the goal of Eq. (3) is to minimize
the number of non-zero coefficients describing the sought after
signal while ensuring that the forward model is faithful to the
observations.

Solving Eq. (3) is however known to be NP-hard. The �1
norm has been proposed as a tight convex relaxation of Eq. (3)
leading to the minimization problem

α̃ ∈ argmin
α
�y − AΦα�22 + λ�α�1, (4)

where λ is again a regularization parameter different from that of
Eq. (3). There has been a tremendous amount of work where re-
searchers spanning a wide range of disciplines have studied the
structural properties of minimizers of Eq. (4) and its equivalence
with Eq. (3). Equation (4) is computationally appealing and can
be efficiently solved, and it has also been proved that under ap-
propriate circumstances, Eq. (4) produces exactly the same so-
lutions as Eq. (3), see e.g., Donoho (2006b) and the overview in
the monograph (Starck et al. 2010).

3. Sparsity prior and Bayesian prior

3.1. Bayesian framework

In the Bayesian framework, a prior is imposed on the object of
interest through a probability distribution. For instance, assume
that coefficients α are i.i.d. Laplacian with the scale parameter
τ, i.e., the density Pα(α) ∝ e−τ�α�1 , and the noise ε is zero-mean
white Gaussian with variance σ2, i.e., the conditional density
PY |α(y) = (2πσ2)−m/2e−�y−AΦα�22/(2σ2). By traditional Bayesian
arguments, the MAP estimator is obtained by maximizing the
conditional posterior density Pα|Y (α) ∝ PY |α(y)Pα(α), or equiv-
alently by minimizing its anti-log version

min
α

1
2σ2 �y − AΦα�22 + τ �α�1 . (5)

This is exactly Eq. (4) by identifying λ = 2σ2τ. This resem-
blance has led Bayesian cosmologists to raise the four criticisms
mentioned in the introduction. But as we will discuss shortly,
their central argument is not used in the right sense, which can
yield misleading conclusions.
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Fig. 1. Left: amplitude (absolute value) of the spherical harmonic coefficients versus their index, when the coefficients are sorted from the largest
amplitude to the smallest. Right: same plot with the y-axis in log.

3.2. Should �1 regularization be the MAP?

In Bayesian cosmology, the following shortcut is often made:
if a prior is at the basis of an algorithm, then to use this algo-
rithm, the resulting coefficients must be distributed according to
this prior. But it is a false logical chain in general, and high-
dimensional phenomena completely invalidate it.

For instance, Bayesian cosmologists claim that �1 regular-
ization is equivalent to assuming that the solution is Laplacian
and not Gaussian, which would be unsuitable for the case of
CMB analysis. This argument however assumes that a MAP es-
timate follows the distribution of the prior. But it is now well-
established that MAP solutions substantially deviate from the
prior model, and that the disparity between the prior and the ef-
fective distribution obtained from the true MAP estimate is a
permanent contradiction in Bayesian MAP estimation (Nikolova
2007). Even the supposedly correct �2 prior would yield an esti-
mate (Wiener, which coincides with the MAP and posterior con-
ditional mean) whose covariance is not that of the prior.

In addition, rigorously speaking, this MAP interpretation of
�1 regularization is not the only possible interpretation. More
precisely, it was shown in Gribonval et al. (2011a) and Baraniuk
et al. (2010) that solving a penalized least squares regression
problem with penalty ψ(α) (e.g. the �1 norm) should not neces-
sarily be interpreted as assuming a Gibbsian prior C exp(−ψ(α))
and using the MAP estimator. In particular, for any prior Pα, the
conditional mean can also be interpreted as a MAP with some
prior C exp(−ψ(α)). Conversely, for certain penalties ψ(α), the
solution of the penalized least squares problem is indeed the
conditional posterior mean, with a certain prior Pα(α) which is
generally different from C exp(−ψ(α)).

In summary, the MAP interpretation of such penalized least-
squares regression can be misleading, and using a MAP estima-
tion, the solution does not necessarily follow the prior distribu-
tion, and an incorrect prior does not necessarily lead to a wrong
solution. What we are claiming here are facts that were stated
and proved as rigorous theorems in the literature.

3.3. Compressed sensing: the Bayesian interpretation
inadequacy

A beautiful example to illustrate this is the compressed sens-
ing scenario (Donoho 2006a; Candès & Tao 2006), which tells
us that a k-sparse, or compressible n-dimensional signal x can
be recovered either exactly, or to a good approximation, from

much less random measurements m than the ambient dimen-
sion n, if m is sufficiently larger than the intrinsic dimension of x.
Clearly, the underdetermined linear problem, y = Ax, where A is
drawn from an appropriate random ensemble, with fewer equa-
tions than unknown, can be solved exactly or approximately, if
the underlying object x is sparse or compressible. This can be
achieved by solving a computationally tractable �1-regularized
convex optimization program.

If the underlying signal is exactly sparse, in a Bayesian
framework, this would be a completely absurd way to solve the
problem, since the Laplacian prior is very different from the ac-
tual properties of the original signal (i.e., k coefficients different
from zero). In particular, what compressed sensing shows is that
we can have prior A be completely true, but utterly impossible
to use for computation time or any other reason, and we can
use prior B instead and get the correct results. Therefore, from
a Bayesian point of view, it is rather difficult to understand not
only that the �1 norm is adequate, but also that it leads to the
exact solution.

3.4. The prior misunderstanding

Considering the chosen dictionary Φ as the spherical harmonic
transform, the coefficients α are now α =

�
al,m
�
l=0,...,lmax,m=−l,...,l.

The standard CMB theory assumes that the values of al,m are
the realizations of a collection of heteroscedastic complex zero-
mean Gaussian random variables with variances Cl/2, where Cl
is the true power spectrum. Using a �1 norm is then interpreted
in the Bayesian framework as having a Laplacian prior on each
al,m which contradicts the underlying CMB theory. However, as
argued above, from the regularization point of view, the �1 norm
merely promotes a solution x such that its spherical harmonic
coefficients are (nearly) sparse. There is no assumption at all on
the properties related to a specific al,m. In fact, there is no ran-
domness here and the al,m values do not even have to be inter-
preted as a realization of a random variable. Therefore, whatever
the underlying distribution for a given al,m (if its exists), it need
not be interpreted as Laplacian under the �1 regularization. The
CMB can be Gaussian or not, isotropic or not, and there will be
no contradiction with the principle of using the �1 norm to solve
the reconstruction problem (e.g., inpainting). What is important
is that the sorted absolute values of the CMB spherical harmon-
ics coefficients presents a fast decay. This is easily verified using
a CMB map, data, or simulation. This is well illustrated by Fig. 1
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which shows this decay for the nine-year WMAP data set. As we
can see, the compressibility assumption is completely valid.

4. Discussion of the Bayesian criticisms

• Sparsity consists in assuming an anisotropy and a non-
Gaussian prior, which is unsuitable for the CMB, which is
Gaussian and isotropic. We have explained in the previous
section that this MAP interpretation of �1 regularization is
misleading, and also that there is no assumption at all on
the underlying stochastic process. The CMB sparsity-based
recovery is a purely data-driven regularization approach; the
sorted absolute values of the spherical harmonic coefficients
presents a fast decay, as seen on real data or simulations, and
this motivates the sparse regularizations.
There is no assumption that the CMB is Gaussian or
isotropic, but there is also no assumption that it is
non-Gaussian or anisotropic. In this sense, using the
�1-regularized inpainting to test if the CMB is indeed
Gaussian and isotropic may be better than other methods, in-
cluding Wiener filtering, which in the Bayesian framework
assumes Gaussianity and isotropy. Furthermore, the Wiener
estimator will also require knowing the underlying power
spectrum (i.e., the theoretical Cl) which is an even stronger
prior.
• Sparsity violates rotational invariance. The criticicism here

is that linear combinations of independent exponentials are
not independent exponentials; therefore, isotropy is neces-
sarily violated, unless the alm are Gaussian. But again, our
arguments for �1 regularization are borrowed from approxi-
mation theory and harmonic analysis, and this does not con-
tradict the idea that the alm coefficients can be realizations
of a sequence of heteroscedastic Gaussian variables. The �1
norm regularization will be adequate if the sorted coefficients
amplitudes follow a fast decay, which is always verified with
CMB data. Indeed, as we already mentioned, a set of pa-
rameters xi, where each xi is a realization of a Gaussian
process of mean 0 and variance Vi, can present a fast de-
cay when we plot the sorted absolute values of xi. In the
case of CMB spherical harmonic coefficients verifying this
is straightforward.
• The �1 norm that is used for sparse inpainting arose purely

out of expediency because under certain circumstances it re-
produces the results of the �0 pseudo-norm. First, we would
like to correct a possible misunderstanding: �1 regulariza-
tion can provably recover both strictly and weakly sparse
signals, while being stable to noise. In the strictly sparse
case, �1 norm minimization can recover the right solution
although the prior is not correct from a Bayesian point of
view. In the compressible case, the recovery is up to a
good approximation, as good as an oracle that would give
the best M-term approximation of the unknown signal (i.e.,
�0-solution). What is criticized as an “expedient” prior is ba-
sically at the heart of regularization theory, for instance here
�1 provides strong theoretical recovery guarantees under ap-
propriate conditions. A closer look at the literature of inverse
problems shows that these guarantees are possible beyond
the compressed sensing scenario.
• There is no mathematical proof that sparse regularization

preserves/recovers the original statistics. This is true, but this
argument is not specific to �1 regularized inpainting. Even
worse, as detailed and argued in the previous section, the
posterior distribution generally deviates from the prior, and
even if one uses the MAP with the correct Gaussian prior,

the MAP estimate (Wiener) will not have the covariance of
the prior.
Another point to mention is that the CMB is never a pure
Gaussian random field, even if the standard ΛCDM cosmo-
logical model is truly valid. We know that the CMB is at
least contaminated by non-Gaussian secondary anisotropies
such as weak-lensing or kinetic Sunyaev-Zel’dovich (SZ)
effects. Therefore the original CMB statistics are likely to
be better preserved by an inpainting method that does not
assume Gaussianity (but nonetheless allows it), rather than
by a method which has an explicit Gaussian assumption.
Moreover, if the CMB is not Gaussian, then one can clearly
anticipate that the Wiener estimate does not preserve the
original statistics.
Finally, it appears unfair to criticize sparsity-regularised in-
verse problems on the mathematical side. A quick look at the
literature shows the vitality of the mathematics community,
both pure and applied, and the large amount of theoretical
guarantees (deterministic and frequentist statistical settings)
that have been devoted to �1 regularization. In particular, the-
oretical guarantees of �1-based inpainting can be found in
King et al. (2013) on the Cartesian grid, and of sparse recov-
ery on the sphere in Rauhut & Ward (2012).

5. Conclusions

We have shown that Bayesian cosmologists’ criticisms about
sparse inpainting are based on a false logical chain, which con-
sists in assuming that if a prior is at the basis of an algorithm,
then to use this algorithm, the resulting coefficients must be dis-
tributed according to this prior. Compressed sensing theory is
a nice counter-example, where it is mathematically proved that
other prior, than the true one can lead, under some conditions,
to the correct solution. Therefore, we cannot understand how a
regularization penalty has an impact on a solution of an inverse
problem just by expressing the prior which derives this penalty.
To understand this we also need to take into account the operator
involved in the inverse problem, and this requires much deeper
mathematical developments than a simple Bayesian interpreta-
tion. Compressed sensing theory shows that for some operators,
beautiful geometrical phenomena allow us to recover perfectly
the solution of an underdetermined inverse problem. Similar re-
sults were derived for a random sampling on the sphere (Rauhut
& Ward 2012).

We do not claim in this paper that sparse inpainting is the
best solution for inpainting, but we have showed that the ar-
guments raised against it are incorrect, and that if Bayesian
methodology offers a very elegant framework that is extremely
useful for many applications, we should be careful not to be
monolithic in the way we address a problem. In practice, it may
be useful to use several inpainting methods to better understand
the CMB statistics, and it is clear that sparsity based inpainting
does not require making any assumptions about the Gaussianity
nor about the isotropy, nor does it need to have a theoretical C�
as an input.
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