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1.1 Introduction

Deconvolution is a key area in signal and image processing. It can include deblur-
ring of an observed signal to remove atmospheric effects. More generally, it means
correcting for instrumental effects or observing conditions.

Research in image deconvolution has recently seen considerable work, partly trig-
gered by the HST optical aberration problem at the beginning of its mission that
motivated astronomers to improve current algorithms or develop new and more ef-
fective ones. Since then, deconvolution of astronomical images has proven in some
cases to be crucial for extracting scientific content. For instance, IRAS images can be
effectively reconstructed thanks to a new pyramidal maximum entropy algorithm [8].
Io volcanism can be studied with a lower resolution of 0.15 arcsec, or 570 km on Io
[58]. Deconvolved mid-infrared images at 20 µm revealed the innermost structure of
the AGN in NGC1068 surrounding the giant blackhole, some of which enshrouded
emission regions unobservable at lower wavelength because of higher dust extinction
[3]: see Fig. 1.1. Research on gravitational lenses is easier and more effective when
applying deconvolution methods [26].

Deconvolution will be even more crucial in the future in order to fully take ad-
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2 Blind image deconvolution: theory and applications

vantage of increasing numbers of high-quality ground-based telescopes, for which
images are strongly limited in resolution by the seeing.

FIGURE 1.1
The active galaxy nucleus of NGC1068 observed at 20 µm. Upper left: the raw
image is highly blurred by telescope diffraction (1.4 arcsec resolution on a 3.6m
telescope) and seeing. Right: the restored image using the multiscale entropy
method reveals the inner structure in the vicinity of the nucleus. Lower left:
the same object observed later on a larger telescope (VLT, 8m-class telescope)
whose sharper resolution confirms the structures found previously by image
deconvolution.

HST provided a leading example of the need for deconvolution, in the period be-
fore the detector system was refurbished. Two proceedings [98, 43] provide useful
overviews of this work, and a later reference is [2]. While an atmospheric seeing
point spread function (PSF) may be relatively tightly distributed around the mode,
this was not the case for the spherically aberrated HST PSF. Whenever the PSF
“wings” are extended and irregular, deconvolution offers a straightforward way to
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mitigate the effects of this and to upgrade the core region of a point source. One
usage of deconvolution of continuing importance is in information fusion from dif-
ferent detectors. For example, Faure et al. [33] deconvolve HST images when cor-
relating with ground-based observations. In Radomski et al. [75], Keck data are
deconvolved, for study with HST data. VLT (Very Large Telescope) data are de-
convolved in [12], with other ESO and HST data used as well. In planetary work,
Coustenis et al. [27] discuss CFHT data as well as HST and other observations.

What emerges very clearly from this small sample – which is in no way atypical –
is that a major use of deconvolution is to help in cross-correlating image and signal
information.

An observed signal is never in pristine condition, and improving it involves in-
verting the spoiling conditions, i.e. finding a solution to an inverse equation. The
problem is usually an ill-conditioned one, which leads to the need for constraints on
what is to be an acceptable solution. Constraints related to the type of signal we are
dealing with play an important role in the development of effective and efficient al-
gorithms. The use of constraints to provide for a stable and unique solution is termed
regularization.

Our review opens in section 1.2 with a formalization of the problem. Section 1.3
considers the issue of regularization. In section 1.4, the CLEAN method which is
central to radio astronomy is described. Bayesian modeling and inference in decon-
volution is reviewed in section 1.5.

Section 1.6 further considers regularization, surveying more complex and power-
ful regularization methods. Section 1.7 introduces wavelet-based methods as used in
deconvolution. These methods are based on multiple resolution or scale. In sections
1.8 and 1.9, important issues related to resolution of the output result image are dis-
cussed. Section 1.8 is based on the fact that it is normally not worthwhile to target an
output result with better resolution than some limit, for instance a pixel size. Section
1.9 investigates when, where and how missing information can be inferred to provide
a super-resolution output image.

1.2 The Deconvolution Problem

Consider an image characterized by its intensity distribution (the “data”) I, corre-
sponding to the observation of a “real image” O through an optical system. If the
imaging system is linear and shift-invariant, the relation between the data and the
image in the same coordinate frame is a convolution:

I(x,y) =

∫ +∞

x1=−∞

∫ +∞

y1=−∞
P(x− x1,y− y1)O(x1,y1)dx1dy1

+N(x,y)

= (P∗O)(x,y)+N(x,y) (1.1)
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P is the point spread function, PSF, of the imaging system, and N is additive noise.
In Fourier space we have:

Î(u,v) = Ô(u,v)P̂(u,v)+ N̂(u,v) (1.2)

We want to determine O(x,y) knowing I and P. This inverse problem has led to
a large amount of work, the main difficulties being the existence of: (i) a cut-off
frequency of the point spread function, and (ii) the additive noise. See for example
[25, 52, 6, 63].

A solution can be obtained by computing the Fourier transform of the deconvolved
object Ô by a simple division between the image Î and the PSF P̂

ˆ̃O(u,v) =
Î(u,v)

P̂(u,v)
= Ô(u,v)+

N̂(u,v)

P̂(u,v)
(1.3)

This method, sometimes called the Fourier-quotient method is very fast. We only
need to do a Fourier transform and an inverse Fourier transform. For frequencies
close to the frequency cut-off, the noise term becomes important, and the noise is
amplified. Therefore in the presence of noise, this method cannot be used.

Eqn. 1.1 is usually in practice an ill-posed problem. This means that there is no
unique and stable solution.

Other topics related to deconvolution are:

• Super-resolution: object spatial frequency information outside the spatial band-
width of the image formation system is recovered.

• Blind deconvolution: the PSF P is unknown.

• Myopic deconvolution: the PSF P is partially known.

• Image reconstruction: an image is formed from a series of projections (com-
puted tomography, positron emission tomography or PET, and so on).

We will discuss the first three points in this chapter.
In the deconvolution problem, the PSF is assumed to be known. In practice, we

have to construct a PSF from the data, or from an optical model of the imaging
telescope. In astronomy, the data may contain stars, or one can point towards a
reference star in order to reconstruct a PSF. The drawback is the “degradation” of this
PSF because of unavoidable noise or spurious instrument signatures in the data. So,
when reconstructing a PSF from experimental data, one has to reduce very carefully
the images used (background removal for instance) or otherwise any spurious feature
in the PSF would be repeated around each object in the deconvolved image. Another
problem arises when the PSF is highly variable with time, as is the case for adaptive
optics images. This means usually that the PSF estimated when observing a reference
star, after or before the observation of the scientific target, has small differences from
the perfect one. In this particular case, one has to turn towards myopic deconvolution
methods [20] in which the PSF is also estimated in the iterative algorithm using a first
guess deduced from observations of reference stars.
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Another approach consists of constructing a synthetic PSF. Several studies [10,
59, 31, 64] have suggested a radially symmetric approximation to the PSF:

P(r) ∝
(

1+
r2

R2

)−β

(1.4)

The parameters β and R are obtained by fitting the model with stars contained in the
data.

1.3 Linear Regularized Methods

1.3.1 Least Squares Solution

It is easy to verify that the minimization of ‖ I(x,y)−P(x,y)∗O(x,y) ‖2 leads to the
solution:

ˆ̃O(u,v) =
P̂∗(u,v)Î(u,v)

| P̂(u,v) |2
(1.5)

which is defined only if P̂(u,v) is different from zero. Here P̂∗ is the complex conju-
gate of P̂. The problem is generally ill-posed and we need to introduce regularization
in order to find a unique and stable solution.

1.3.2 Tikhonov Regularization

Tikhonov regularization [94] consists of minimizing the term:

JT (O) =‖ I(x,y)− (P∗O)(x,y) ‖2 +λ ‖ H ∗O ‖2 (1.6)

where H corresponds to a high-pass filter, and ‖ . ‖2 is norm squared. This criterion
contains two terms. The first, ‖ I(x,y)−(P∗O)(x,y) ‖2, expresses fidelity to the data
I(x,y), and the second, λ ‖ H ∗O ‖2, expresses smoothness of the restored image.
λ is the regularization parameter and represents the trade-off between fidelity to the
data and the smoothness of the restored image.

The solution is obtained directly in Fourier space:

ˆ̃O(u,v) =
P̂∗(u,v)Î(u,v)

| P̂(u,v) |2 +λ | Ĥ(u,v) |2
(1.7)

Finding the optimal value λ necessitates use of numerical techniques such as
cross-validation [40, 38]. This method works well, but computationally it is rela-
tively lengthy and produces smoothed images. This second point can be a real prob-
lem when we seek compact structures such as is the case in astronomical imaging.
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This method can be generalized such that

ˆ̃O(u,v) = Ŵ (u,v)
Î(u,v)

P̂(u,v)
(1.8)

W being a window function satisfying some conditions [6]. These window function
can be for instance the usual Gaussian, Blackmann, Hamming or Hanning functions.
The window function can also be derived directly from the PSF [72].

Linear regularized methods have the advantage of being very attractive from a
computation point of view. Furthermore, the noise in the solution can easily be
derived from the noise in the data and the window function. For example, if the
noise in the data is Gaussian with a standard deviation σd , the noise in the solution
is σ 2

s = σ 2
d ∑W 2

k . But this noise estimation does not take into account errors relative
to inaccurate knowledge of the PSF, which limits its interest in practice.

Linear regularized methods present also a number of severe drawbacks:

• Creation of Gibbs oscillations in the neighborhood of the discontinuities con-
tained in the data. The visual quality is therefore degraded.

• No a priori information can be used. For example, negative values can exist in
the solution, while in most cases we know that the solution must be positive.

• Since the window function is a low-pass filter, the resolution is degraded.
There is trade-off between the resolution we want to achieve and the noise
level in the solution. Other methods such as wavelet-based methods do not
have such a constraint.

1.4 CLEAN

The CLEAN method [45] is a mainstream one in radio astronomy. This approach
assumes the object is only composed of point sources. It tries to decompose the
image (called the dirty map) into a set of δ -functions. This is done iteratively by
finding the point with the largest absolute brightness and subtracting the PSF (dirty
beam) scaled with the product of the loop gain and the intensity at that point. The
resulting residual map is then used to repeat the process. The process is stopped
when some prespecified limit is reached. The convolution of the δ -functions with an
ideal PSF (clean beam) plus the residual equals the restored image (clean map). This
solution is only possible if the image does not contain large-scale structures.

In the work of [16] and [51], the restoration of an object composed of peaks, called
sparse spike trains, has been treated in a rigorous way.



Deconvolution and Blind Deconvolution in Astronomy 7

1.5 Bayesian Methodology

A Bayesian formulation may well be just another way of describing the classical min-
imization problem with constraints, as seen in section 1.3. However it is important
for the following reasons: it incorporates procedures for the estimation of parame-
ters; and prior information on the values of such parameters can also be incorporated
easily.

1.5.1 Definition

The Bayesian approach consists of constructing the conditional probability density
relationship:

p(O | I) =
p(I | O)p(O)

p(I)
(1.9)

The Bayes solution is found by maximizing the right part of the equation. Now since
we are maximizing p(O | I), the image I is always the same for the maximization,
and so p(I) is constant here. The maximum likelihood solution (ML) maximizes
only the density p(I | O) over O:

ML(O) = max
O

p(I | O) (1.10)

The maximum a posteriori solution (MAP) maximizes over O the product p(I |
O)p(O) of the ML and a prior:

MAP(O) = max
O

p(I | O)p(O) (1.11)

p(I) is considered as a constant value which has no effect in the maximization
process, and is ignored. The ML solution is equivalent to the MAP solution assuming
a uniform probability density for p(O).

1.5.2 Maximum Likelihood with Gaussian Noise

The probability p(I | O) is

p(I | O) =
1√

2πσI
exp− (I−P∗O)2

2σ 2
I

(1.12)

where σ 2
I is image variance and, assuming that p(O) is a constant, maximizing p(O |

I) is equivalent to minimizing

J(O) =
‖ I−P∗O ‖2

2σ 2
I

(1.13)
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where the denominator is unimportant for the optimum value of J. Using the steepest
descent minimization method, a typical iteration is

On+1 = On + γP∗ ∗ (I−P∗On) (1.14)

where P∗(x,y) = P(−x,−y). P∗ is the transpose of the PSF, and On is the current
estimate of the desired “real image”. This method is usually called the Landweber
method [53], but sometimes also the successive approximations or Jacobi method
[6].

The solution can also be found directly using the FFT by

Ô(u,v) =
P̂∗(u,v)Î(u,v)

P̂∗(u,v)P̂(u,v)
(1.15)

which amounts to the same as equation 1.3. Such a straightforward approach unfor-
tunately amplifies noise.

1.5.3 Gaussian Bayes Model

If the object and the noise are assumed to follow Gaussian distributions with zero
mean and variance respectively equal to σ 2

O and σ 2
N , then a Bayes solution leads to

the Wiener filter:

Ô(u,v) =
P̂∗(u,v)Î(u,v)

| P̂(u,v) |2 +
σ 2

N(u,v)

σ 2
O(u,v)

(1.16)

Wiener filtering has serious drawbacks (artifact creation such as ringing effects), and
needs spectral noise estimation. Its advantage is that it is very fast.

1.5.4 Maximum Likelihood with Poisson Noise

The probability p(I | O) is

p(I | O) = ∏
x,y

((P∗O)(x,y))I(x,y) exp{−(P∗O)(x,y)}
I(x,y)!

(1.17)

The maximum can be computed by taking the derivative of the logarithm:

∂ ln p(I | O)(x,y)
∂O(x,y)

= 0 (1.18)

which leads to the result (assuming the PSF is normalized to unity)

[

I
P∗O

∗P∗
]

(x,y) = 1 (1.19)
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Multiplying both sides by O(x,y)

O(x,y) =

[

I
(P∗O)

∗P∗
]

(x,y)O(x,y) (1.20)

and using Picard iteration [47] leads to

On+1(x,y) =

[

I
(P∗On)

∗P∗
]

(x,y)On(x,y) (1.21)

which is the Richardson-Lucy algorithm [76, 55, 80], also sometimes called the
expectation maximization or EM method [29]. This method is commonly used in
astronomy. Flux is preserved and the solution is always positive. The positivity of
the solution can be obtained too with Van Cittert’s and the one-step gradient methods
by thresholding negative values in On at each iteration.

1.5.5 Maximum A Posteriori with Poisson Noise

We formulate the object PDF (probability density function) as

p(O) = ∏
x,y

M(x,y)O(x,y) exp{−M(x,y)}
O(x,y)!

(1.22)

The MAP solution is

O(x,y) = M(x,y)exp

{[

I(x,y)
(P∗O)(x,y)

−1

]

∗P∗(x,y)

}

(1.23)

and choosing M = On and using Picard iteration leads to

On+1(x,y) = On(x,y)exp

{[

I(x,y)
(P∗On)(x,y)

−1

]

∗P∗(x,y)

}

(1.24)

1.5.6 Maximum Entropy Method

In the absence of any information on the solution O except its positivity, a possible
course of action is to derive the probability of O from its entropy, which is defined
from information theory. Then if we know the entropy H of the solution, we derive
its probability as

p(O) = exp(−αH(O)) (1.25)

The most commonly used entropy functions are:

• Burg [11]: Hb(O) =−∑x ∑y ln(O(x,y))

• Frieden [37]: H f (O) =−∑x ∑y O(x,y) ln(O(x,y))
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• Gull and Skilling [42]:

Hg(O) = ∑
x

∑
y

O(x,y)−M(x,y)−O(x,y) ln(O(x,y)/M(x,y))

The last definition of the entropy has the advantage of having a zero maximum when
O equals the model M, usually taken as a flat image.

1.5.7 Other Regularization Models

Molina et al. [63] present an excellent review of taking the spatial context of image
restoration into account. Some appropriate prior is used for this. One such regular-
ization constraint is:

‖CI‖2 = ∑
x

∑
y

I(x,y)− 1
4
(I(x,y+1)+ I(x,y−1)+ I(x+1,y)+ I(x−1,y)) (1.26)

which is equivalent to defining the prior

p(O) ∝ exp
{

−α
2
‖CI‖2

}

(1.27)

α is the inverse of the prior variance and it controls the smoothness of the final
solution.

Given the form of equation (1.26), such regularization can be viewed as setting a
constraint on the Laplacian of the restoration. In statistics this model is a simultane-
ous autoregressive model, SAR [77].

Alternative prior models can be defined, related to the SAR model of equation
(1.26):

p(O) ∝ exp

{

−α
2 ∑

x
∑
y

(I(x,y)− I(x,y+1))2 +
(

I(x,y)− I(x+1,y))2)
}

(1.28)

where constraints are set on first derivatives. This is a conditional autoregressive, or
CAR, model, discussed further below.

Blanc-Feraud and Barlaud [7], and Charbonnier et al. [17] consider the following
prior:

p(O) ∝ exp

{

−α ∑
x

∑
y

φ(‖ ∇I ‖)(x,y)
}

(1.29)

∝ exp

{

−α ∑
x

∑
y

φ(I(x,y)− I(x,y+1))2 +φ(I(x,y)− I(x+1,y))2

}

(1.30)

The function φ , called potential function, is an edge preserving function.
Generally, φ functions are chosen with a quadratic part which ensures good smooth-

ing of small gradients [41], and a linear behavior which cancels the penalization of
large gradients [9]:
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1. limt→0
φ ′

(t)
2t = M < +∞ to smooth faint gradients.

2. limt→∞
φ
′
(t)

2t = 0 to preserve strong gradients.

3. φ ′
(t)

2t is continuous and strictly decreasing.

Such functions are often called L2-L1 functions. Examples of φ functions:

1. φq(x) = x2: quadratic function.

2. φTV (x) =| x |: Total Variation.

3. φ2(x) = 2
√

1+ x2−2: Hyper-Surface [18].

4. φ3(x) = x2/(1+ x2) [39].

5. φ4(x) = 1− e−x2
[71].

6. φ5(x) = log(1+ x2) [44].

The ARTUR method [17], which has been used for helioseismic inversion [24],
uses the function φ(t) = log(1+ t2). Anisotropic diffusion [71, 4] uses similar func-
tions, but in this case the solution is computed using partial differential equations.

The function φ(t) = t leads to the total variation method [78, 1], the constraints
are on first derivatives, and the model is a special case of a conditional autoregres-
sive or CAR model. Molina et al. [63] discuss the applicability of CAR models to
image restoration involving galaxies. They argue that such models are particularly
appropriate for the modeling of luminosity exponential and r1/4 laws.

The priors reviewed above can be extended to more complex models. In Molina et
al. [61, 62], a compound Gauss Markov random field (CGMRF) model is used, one
of the main properties of which is to target the preservation and improvement of line
processes.

Another prior again was used in Molina and Cortijo [60] for the case of planetary
images.

1.6 Iterative Regularized Methods

1.6.1 Constraints

We assume now that there exists a general operator, PC (.), which enforces a set of
constraints on a given object O, such that if O satisfies all the constraints, we have:
O = PC (O). Commonly used constraints are positivity, spatial support constraint,
band-limitation in Fourier space. These constraints can be incorporated easily in the
basic iterative scheme.
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1.6.2 Jansson-Van Cittert Method

Van Cittert [21] restoration is relatively easy to write. We start with n = 0 and O(0) =
I and we iterate:

On+1 = On +α(I−P∗On) (1.31)

where α is a convergence parameter generally taken as 1. When n tends to infinity,
we have O = O+ I−P∗O, so I = P∗O. In Fourier space, the convolution product
becomes a product

Ôn+1 = Ôn +α(Î− P̂Ôn) (1.32)

In this equation, the object distribution is modified by adding a term proportional
to the residual. The algorithm converges quickly, often after only 5 or 6 iterations.
But the algorithm generally diverges in the presence of noise. Jansson [49] modified
this technique in order to give it more robustness by considering constraints on the
solution. If we wish that A ≤ Ok ≤ B, the iteration becomes

On+1(x,y) = On(x,y)+ r(x,y) [I− (P∗On)] (x,y) (1.33)

with:
r(x,y) = C

[

1−2(B−A)−1 | On(x,y)−2−1(A+B) |
]

and with C constant.
More generally the constrained Van-Cittert method is written as:

On+1 = PC [On +α(I−P∗On)] (1.34)

1.6.3 Other Iterative Methods

Other iterative methods can be constrained in the same way:

• Landweber:

On+1 = PC [On + γP∗(I−P∗On)] (1.35)

• Richardson-Lucy method:

On+1(x,y) = PC

[

On(x,y)

[

I
(P∗On)

∗P∗
]

(x,y)

]

(1.36)

• Tikhonov: the Tikhonov solution can be obtained iteratively by computing the
gradient of equation (1.6):

∇(JT (O)) = [P∗ ∗P+ µH∗ ∗H]∗O−P∗∗ I (1.37)
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and applying the following iteration:

On+1(x,y) = On(x,y)− γ∇(JT (O))(x,y) (1.38)

The constrained Tikhonov solution is therefore obtained by:

On+1(x,y) = PC [On(x,y)− γ∇(JT (O))(x,y)] (1.39)

The number of iterations plays an important role in these iterative methods. In-
deed, the number of iterations can be discussed in relation to regularization. When
the number of iterations increases, the iterates first approach the unknown object,
and then potentially go away from it [6]. Landweber and Richardson-Lucy methods
converge to useless solutions due to noise amplification. The main problem is that
the space of solutions of these methods is almost infinite. Regularized methods force
the solution obtained at convergence to be constrained to images having the desirable
properties of the original (unknown) image, i.e. being non-noisy.

1.7 Wavelet-Based Deconvolution

1.7.1 Introduction

Deconvolution and Fourier domain.

The Fourier domain diagonalizes the convolution operator, and we can identify and
reduce the noise which is amplified during the inversion. When the signal can be
modeled as stationary and Gaussian, the Wiener filter is optimal. But when the signal
presents spatially localized features such as singularities or edges, these features
cannot be well-represented with Fourier basis functions, which extend over the entire
spatial domain. Other basis functions, such as wavelets, are better-suited to represent
a large class of signals.

Towards multiresolution.

The concept of multiresolution was first introduced for deconvolution by Wakker
and Schwarz [96] when they proposed the Multiresolution CLEAN algorithm for
interferometric image deconvolution. During the last ten years, many developments
have taken place in order to improve the existing methods (CLEAN, Landweber,
Lucy, MEM, and so on), and these results have led to the use of different levels of
resolution.

The Lucy algorithm was modified [56] in order to take into account a priori infor-
mation about stars in the field where both position and brightness are known. This
is done by using a two-channel restoration algorithm, one channel representing the
contribution relative to the stars, and the second to the background. A smoothness
constraint is added on the background channel. This method was then refined firstly
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(and called CPLUCY) for considering subpixel positions [46], and a second time [73]
(and called GIRA) for modifying the smoothness constraint.

A similar approach has been followed by Magain [57], but more in the spirit of
the CLEAN algorithm. Again, the data are modeled as a set of point sources on top
of spatially varying background, leading to a two-channel algorithm.

The MEM method has also been modified by several authors [97, 8, 70, 69, 90].
First, Weir proposed the Multi-channel MEM method, in which an object is mod-
eled as the sum of objects at different levels of resolution. The method was then
improved by Bontekoe et al. [8] with the Pyramid MEM. In particular, many reg-
ularization parameters were fixed by the introduction of the dyadic pyramid. The
link between Pyramid MEM and wavelets was underlined in [70, 90], and it was
shown that all the regularization parameters can be derived from the noise model-
ing. Wavelets were also used in [69] in order to create a segmentation of the image,
each region being then restored with a different smoothness constraint, depending on
the resolution level where the region was found. This last method has however the
drawback of requiring user interaction for deriving the segmentation threshold in the
wavelet space.

The Pixon method [30, 74] is relatively different to the previously described meth-
ods. This time, an object is modeled as the sum of pseudo-images smoothed locally
by a function with position-dependent scale, called the pixon shape function. The
set of pseudo-images defines a dictionary, and the image is supposed to contain only
features included in this dictionary. But the main problem lies in the fact that fea-
tures which cannot be detected directly in the data, nor in the data after a few Lucy
iterations, will not be modeled with the pixon functions, and will be strongly regular-
ized as background. The result is that the faintest objects are over-regularized while
strong objects are well restored. This is striking in the example shown in Fig. 1.2.

The total variation method has a close relation with the Haar transform [22, 92],
and more generally, it has been shown that potential functions, used in Markov Ran-
dom Field and PDE methods, can be applied on the wavelet coefficients as well. This
leads to multiscale regularization, and the original method becomes a specific case
where only one decomposition level is used in the wavelet transform.

Wavelets offer a mathematical framework for the multiresolution processing. Fur-
thermore, they furnish an ideal way to include noise modeling in the deconvolution
methods. Since the noise is the main problem in deconvolution, wavelets are very
well adapted to the regularization task.

1.7.2 Regularization from the Multiresolution Support

1.7.2.1 Noise suppression based on the wavelet transform

We have noted how, in using an iterative deconvolution algorithm such as Van Cittert
or Richardson-Lucy, we define R(n)(x,y), the residual at iteration n:

Rn(x,y) = I(x,y)− (P∗On)(x,y) (1.40)
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By using the à trous wavelet transform algorithm, Rn can be defined as the sum of
its J wavelet scales and the last smooth array:

Rn(x,y) = cJ(x,y)+
J

∑
j=1

w j,x,y (1.41)

where the first term on the right is the last smoothed array, and w denotes a wavelet
scale.

The wavelet coefficients provide a mechanism to extract only the significant struc-
tures from the residuals at each iteration. Normally, a large part of these residuals is
statistically non-significant. The significant residual [67, 85] is then:

R̄n(x,y) = cJ,x,y +
J

∑
j=1

M( j,x,y)w j,x,y (1.42)

where M( j,x,y) is the multiresolution support, and is defined by:

M( j,x,y) =

{

1 if w j,x,y is significant
0 if w j,x,y is non-significant

(1.43)

This describes in a logical or Boolean way if the data contains information at a given
scale j and at a given position (x,y).

An alternative approach was outlined in [68] and [83]: the support was initialized
to zero, and built up at each iteration of the restoration algorithm. Thus in equation
(1.42) above, M( j,x,y) was additionally indexed by n, the iteration number. In this
case, the support was specified in terms of significant pixels at each scale, j; and in
addition pixels could become significant as the iterations proceeded, but could not
be made non-significant.

1.7.2.2 Regularization of Van Cittert’s algorithm

Van Cittert’s iteration [21] is:

On+1(x,y) = On(x,y)+αRn(x,y) (1.44)

with Rn(x,y) = In(x,y)− (P ∗On)(x,y). Regularization using significant structures
leads to:

On+1(x,y) = On(x,y)+αR̄n(x,y) (1.45)

The basic idea of this regularization method consists of detecting, at each scale,
structures of a given size in the residual Rn(x,y) and putting them in the restored
image On(x,y). The process finishes when no more structures are detected. Then,
we have separated the image I(x,y) into two images Õ(x,y) and R(x,y). Õ is the
restored image, which ought not to contain any noise, and R(x,y) is the final residual
which ought not to contain any structure. R is our estimate of the noise N(x,y).
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1.7.2.3 Regularization of the one-step gradient method

The one-step gradient iteration is:

On+1(x,y) = On(x,y)+(P∗ ∗Rn) (x,y) (1.46)

with Rn(x,y) = I(x,y)− (P∗On)(x,y). Regularization by significant structures leads
to:

On+1(x,y) = On(x,y)+(P∗ ∗ R̄n) (x,y) (1.47)

1.7.2.4 Regularization of the Richardson-Lucy algorithm

From equation (1.1), we have In(x,y) = (P ∗On)(x,y). Then Rn(x,y) = I(x,y)−
In(x,y), and hence I(x,y) = In(x,y)+Rn(x,y).
The Richardson-Lucy equation is:

On+1(x,y) = On(x,y)

[

In +Rn

In ∗P∗
]

(x,y)

and regularization leads to:

On+1(x,y) = On(x,y)

[

In + R̄n

In ∗P∗
]

(x,y)

1.7.2.5 Convergence

The standard deviation of the residual decreases until no more significant structures
are found. Convergence can be estimated from the residual. The algorithm stops
when a user-specified threshold is reached:

(σRn−1 −σRn)/(σRn) < ε (1.48)

1.7.2.6 Examples

A simulated Hubble Space Telescope Wide Field Camera image of a distant cluster
of galaxies is shown in Fig. 1.2, upper left. The image used was one of a number
described in [15, 36]. The simulated data are shown in Fig. 1.2, upper right. Four
deconvolution methods were tested: Richardson-Lucy, Pixon, wavelet-vaguelette,
Wavelet-Lucy. Deconvolved images are presented respectively in Fig. 1.2 middle
left, middle right, bottom left and right. The Richardson-Lucy method amplifies the
noise, which implies that the faintest objects disappear in the deconvolved image.
The Pixon method introduces regularization, and the noise is under control, while
objects where “pixons” have been detected are relatively well-protected from the
regularization effect. Since the “pixon” features are detected from noisy partially
deconvolved data, the faintest objects are not in the pixon map and are strongly
regularized. The wavelet-vaguelette method is very fast and produces relatively high
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quality results when compared to Pixon or Richardson-Lucy, but the Wavelet-Lucy
method seems clearly the best of the four methods. There are fewer spurious objects
than in the wavelet-vaguelette method, it is stable for any kind of PSF, and any kind
of noise modeling can be considered.

1.7.3 Multiresolution CLEAN

The CLEAN solution is only available if the image does not contain large-scale struc-
tures. [96] introduced the concept of Multiresolution Clean (MRC) in order to alle-
viate the difficulties occurring in CLEAN for extended sources. The MRC approach
consists of building two intermediate images, the first one (called the smooth map)
by smoothing the data to a lower resolution with a Gaussian function, and the second
one (called the difference map) by subtracting the smoothed image from the original
data. Both these images are then processed separately. By using a standard CLEAN
algorithm on them, the smoothed clean map and difference clean map are obtained.
The recombination of these two maps gives the clean map at the full resolution. This
algorithm may be viewed as an artificial recipe, but it has been shown [82, 81, 88]
that it is linked to multiresolution analysis. Wavelet analysis leads to a generalization
of MRC from a set of scales. The Wavelet Clean Method (WCLEAN) consists of the
following steps:

• Apply the wavelet transform to the image: we get WI .

• Apply the wavelet transform to the PSF: we get WP.

• Apply the wavelet transform to the Clean Beam: we get WC .

• For each scale j of the wavelet transform, apply the CLEAN algorithm using
the wavelet scale j of both WI and WP.

• Apply an iterative reconstruction algorithm using WC.

More details can be found in [82, 88].

1.7.4 The Wavelet Constraint

We have seen previously that many regularized deconvolution methods (MEM, Tikhonov,
total variation, etc.) can be expressed by two terms (i.e. ‖ I−P∗O ‖2 +λC (O)), the
first representing the fidelity to the data and the second (i.e. C (O)) the smoothness
constraint on the solution. The parameter λ fixes the trade-off between the fit to the
data and the smoothness. Using a wavelet based penalizing term Cw, we want to
minimize

J(O) = ‖ I−P∗O ‖2 +λCw(O) (1.49)

If φ is a potential function which was applied on the gradients (see section 1.5.7), it
can also be applied to the wavelet coefficients and the constraint on the solution is
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now expressed in the wavelet domain by [48]:

J(O) = ‖ I−P∗O ‖2 +λ ∑
j,k,l

φ(‖ (W O) j,k,l ‖p) (1.50)

When φ(x) = x and p = 1, it corresponds to the l1 norm of the wavelet coefficients.
In this framework, the multiscale entropy deconvolution method (see below) is only
one special case of the wavelet constraint deconvolution method.

1.7.4.1 Multiscale Entropy

In [89, 86, 90], the benchmark properties for a good “physical” definition of entropy
were discussed. The multiscale entropy, which fulfils these properties, consists of
considering that the entropy of a signal is the sum of the information at each scale of
its wavelet transform [89], and the information of a wavelet coefficient is related to
the probability of it being due to noise.

For Gaussian noise, the multiscale entropy penalization function is:

hn(w j,k) =
1

σ2
j

∫ |w j,k|

0
u erfc

(

| w j,k | −u√
2σ j

)

du (1.51)

where erfc is the complementary error function. A complete description of this
method is given in [87]. Fig. 1.3 shows the multiscale entropy penalization func-
tion. The dashed line corresponds to a l1 penalization (i.e. φ(w) =| w |), the dotted

line to a l2 penalization φ(w) = w2

2 , and the continuous line to the multiscale en-
tropy function. We can immediately see that the multiscale entropy function presents
quadratic behavior for small values, and is closer to the l1 penalization function for
large values. Penalization functions with a l2-l1 behavior are generally a good choice
for image restoration.

The Beta Pictoris image [70] was obtained by integrating 5 hours on-source using
a mid-infrared camera, TIMMI, placed on the 3.6 ESO telescope (La Silla, Chile).
The raw image has a peak signal-to-noise ratio of 80. It is strongly blurred by a
combination of seeing, diffraction (0.7 arcsec on a 3m class telescope) and additive
Gaussian noise. The initial disk shape in the original image has been lost after the
convolution with the PSF (see Fig. 1.3). Thus we need to deconvolve such an image
to get the best information on this object i.e. the exact profile and thickness of the
disk, and subsequently to compare the results to models of thermal dust emission.

After filtering (see Fig. 1.3, lower left), the disk appears clearly. For detection
of faint structures (the disk here), one can calculate that the application of such a
filtering method to this image provides a gain of observing time of a factor of around
60. The deconvolved image (Fig. 1.3, lower right) shows that the disk is relatively
flat at 10 µm and asymmetrical.

1.7.4.2 TV and Undecimated Haar Transform

A link between the TV and the undecimated Haar wavelet soft thresholding has been
studied in [22, 92], arguing that in the 1D case the TV and the undecimated single
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resolution Haar are equivalent. When going to 2D, this relation does not hold any-
more, but the two approaches share some similarities. Whereas the TV introduces
translation- and rotation-invariance, the undecimated 2D Haar presents translation-
and scale-invariance (being multi-scale).

1.7.4.3 Minimization algorithm

Recent works [34, 28, 23] show that the solution of eqn. 1.50 can be obtained in a
very efficient way, by applying a wavelet denoising on the solution at each step of
the Landweber iteration.

O(n+1) = WDenλ

(

O(n) +P∗ ∗
(

I−P∗O(n)
))

(1.52)

where WDen is the operator which performs wavelet denoising, i.e. applies the
wavelet transform, corrects the wavelet coefficients from the noise, and applies the
inverse wavelet transform.

If φ(x) = x and p = 1 (i.e. l1 norm), the solution is obtained by the following
iteration:

O(n+1) = softλ (O(n) +P∗ ∗ (I−P∗O(n))) (1.53)

where soft is the soft thresholding. (A hard threshold retains wavelet coefficients
whose absolute value is above the threshold, whereas a soft threshold attenuates the
wavelet coefficient, using the absolute value minus the threshold so long as this is
> 0.) If the Haar wavelet transform is chosen, this algorithm is a fast method for
minimizing the total variation.

The penalty function needs to be continuous in order to guarantee the convergence.
Therefore, a hard threshold cannot be used but a soft threshold as well as many other
shrinkage techniques can be used. If the penalty function is strictly convex (as in soft
thresholding), then it converges to a global minimum [34].

1.7.4.4 Constraints in the object or image domains

Let us define the object domain O as the space to which the solution belongs, and
the image domain I as the space to which the data belongs (i.e. if X ∈ O then
P ∗X ∈ I ). In section 1.7.2, it was shown that the multiresolution support con-
straint leads to a powerful regularization method. In this case, the constraint was
applied in the image domain. Here, we have considered constraints on the solution.
Hence, two different wavelet based strategies can be chosen in order to regularize
the deconvolution problem.

The constraint in the image domain through the multiresolution support leads a
very robust way to control the noise. Indeed, whatever the nature of the noise, we
can always derive robust detection levels in the wavelet space and determine scales
and positions of the important coefficients. A drawback of the image constraints is
that there is no guarantee that the solution is free of artifacts such as ringing around
point sources. A second drawback is that image constraints can be used only if the
point spread function is relatively compact, i.e. does not smear the information over



20 Blind image deconvolution: theory and applications

the whole image. If it does do so, the concept of localization of information does not
make sense any more.

The property of introducing a robust noise modeling is lost when applying the
constraint in the object domain. For example, in the case of Poisson noise, there is
no way (except using time consuming Monte Carlo techniques) to estimate the level
of the noise in the solution and to adjust properly the thresholds. The second prob-
lem with this approach is that we try to solve two problems (noise amplification and
artifact control in the solution) with one parameter (i.e. λ ). The choice of this param-
eter is crucial, while such a parameter does not exist when using the multiresolution
support.

Constraints can be added in both the object and image domains in order to better
control the noise by using the multiresolution support. This gives us a guarantee
that the solution is free of artifacts when using the wavelet constraint on the solution
[70, 90, 91]. This leads to the following equation to be minimized:

J(O) = ‖ M.W1 (I−P∗O) ‖2 +λ ∑
j,k,l

φ(‖ (W2O) j,k,l ‖p) (1.54)

where M is the multiresolution support derived from I and W1. W1 and W2 are the
wavelet transforms used in the object and image domains. We may want to use
two different wavelet decompositions: W1 for detecting the significant coefficients
and W2 for removing the artifacts in the solution. Since the noise is controlled by
the multiscale transforms, the regularization parameter λ does not have the same
importance as in standard deconvolution methods. A much lower value is enough to
remove the artifacts relative to the use of the wavelets. The positivity constraint can
be applied at each iteration. The iterative scheme is now:

O(n+1) = WDenλ (
(

O(n) +P∗ ∗ R̄n
)

(1.55)

where R̄n is the significant residual, i.e. R̄n = W
−1

1 M[W1(I−P∗O(n))] (see eqn. 1.42)).

1.7.4.5 The Combined Deconvolution Method

One may want to benefit from the advantages of both the wavelet and the curvelet
transforms for detecting the significant features contained in the data. More gener-
ally, we assume we use K transforms T1, . . . ,TK , and we derive K multiresolution
supports M1, . . . ,MK from the input image I using noise modeling. Following deter-
mination of a set of multiresolution supports, we can solve the following optimiza-
tion problem [91]:

min
Õ

C (Õ), subject to MkTk[P∗ Õ] = MkTkI for all k, (1.56)

where C is the smoothness constraint.
The constraint imposes fidelity on the data, or more exactly, on the significant

coefficients of the data, obtained by the different transforms. Non-significant (i.e.
noisy) coefficients are not taken into account, preventing any noise amplification in
the final algorithm.
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A solution for this problem could be obtained by relaxing the constraint to become
an approximate one:

min
Õ

∑
k

‖MkTkI−MkTk[P∗ Õ]‖2 +λC (Õ) (1.57)

The solution is computed by using the projected Landweber method [6]:

Õn+1 = Õn +α
(

P∗ ∗ R̄n−λ
∂C

∂O
(Õn)

)

(1.58)

where R̄n is the significant residual which is obtained using the following algorithm:

• Set In
0 = In = P∗ Õn.

• For k = 1, . . . ,K do In
k = In

k−1 +Rk
[

Mk(TkI−TkIn
k−1)

]

• The significant residual R̄n is obtained by: R̄n = In
K − In.

This can be interpreted as a generalization of the multiresolution support constraint
to the case where several transforms are used. The order in which the transforms are
applied has no effect on the solution. We extract in the residual the information at
scales and pixel indices where significant coefficients have been detected.

α is a convergence parameter, chosen either by a line-search minimizing the over-
all penalty function or as a fixed step-size of moderate value that guarantees conver-
gence.

If the C is a wavelet based penalization function, then the minimization can again
be done using the previous wavelet denoising approach:

Õn+1 = WDen
(

Õn +(P∗ ∗ R̄n)
)

(1.59)

The positivity is introduced in the following way:

On+1 = Pc
[

WDen
(

Õn +(P∗ ∗ R̄n)
)]

(1.60)

1.8 Deconvolution and Resolution

In many cases, there is no sense in trying to deconvolve an image at the resolution
of the pixel (especially when the PSF is very large). The idea to limit the resolution
is relatively old, because it is already this concept which is used in the CLEAN
algorithm [45]. Indeed the clean beam fixes the resolution in the final solution. This
principle was also developed by Lannes [54] in a different form. This concept was
re-invented, first by Gull and Skilling [42] who called the clean beam the Intrinsic
Correlation Function (ICF), and more recently by Magain [57] and Pijpers [72].
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The ICF is usually a Gaussian, but in some cases it may be useful to take another
function. For example, if we want to compare two images I1 and I2 which are ob-
tained with two wavelengths or with two different instruments, their PSFs P1 and P2

will certainly be different. The classic approach would be to deconvolve I1 with P2

and I2 with P1, so we are sure that both are at the same resolution. But unfortunately
we lose some resolution in doing this. Deconvolving both images is generally not
possible because we can never be sure that both solutions O1 and O2 will have the
same resolution.

A solution would be to deconvolve only the image which has the worse resolution
(say I1), and to limit the deconvolution to the second image resolution (I2). Then,
we just have to take P2 for the ICF. The deconvolution problem is to find Õ (hidden
solution) such that:

I1 = P1 ∗P2 ∗ Õ (1.61)

and our real solution O1 at the same resolution as I2 is obtained by convolving Õ
with P2. O1 and I2 can then be compared.

Introducing an ICF G in the deconvolution equation leads to just considering a new
PSF P′ which is the convolution of P and G. The deconvolution is carried out using
P′, and the solution must be reconvolved with G at the end. In this way, the solution
has a constrained resolution, but aliasing may occur during the iterative process, and
it is not sure that the artifacts will disappear after the re-convolution with G. Magain
[57] proposed an innovative alternative to this problem, by assuming that the PSF can
be considered as the convolution product of two terms, the ICF G and an unknown
S, P = G ∗ S. Using S instead of P in the deconvolution process, and a sufficiently
large FWHM value for G, implies that the Shannon sampling theorem [79] is never
violated. But the problem is now to calculate S, knowing P and G, which is again a
deconvolution problem. Unfortunately, this delicate point was not discussed in the
original paper. Propagation of the error on the S estimation in the final solution has
also until now not been investigated, even if this issue seems to be quite important.

1.9 Myopic and Blind Deconvolution

In the field of astronomy the PSF is, in many cases, variable with time or within the
observed field. For instance, when observing in the visible or near-infrared range
from the ground, the atmospheric turbulence produces images with seeing-limited
spatial resolution, that are much lower than the theoretical diffraction limit. This
resolution ranges typically for the visible radiations between 0.4 and 1 arcsec in
the best sites for astronomical observations. Because of the stochastic nature of the
seeing (due to random changes of the optical index of the different layers of the at-
mosphere), several timescales are involved. First, the PSF is highly unstable over a
timescale of several tens of milliseconds in the visible, but its time averaged value
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over typically a few seconds can remain stable over a much longer time (several min-
utes). Depending on the site, the average seeing can vary significantly with typical
timescales of a few tens of minutes. Long exposures, seeing averaged, would usually
provide an estimate of the PSF for long exposures on scientific targets.

For a given observation, one can define a parameter, called the Fried parameter,
r0. Its value defines the equivalent diameter of a telescope that would produce a
diffraction-limited image with the same resolution as the seeing limited one. This
parameter varies as a function of the wavelength such that r0 ∝ (λ )5/6cm; a typical
value of this parameter is 20 cm at 0.5 µm. The image resolution is then of the order
of r0/λ in the case of seeing-limited data, instead of a value around D/λ (D being
the telescope diameter) for diffraction limited observations. If visible/near-infrared
data are always seeing-limited, one can note that mid-infrared data around 10 µm
are mainly diffraction limited on a 4m-class telescope. However, for one 8m-class
telescope such as the Very Large Telescope in Chile and given the seeing conditions
at this site, one is just at the transition regime between purely diffraction-limited and
seeing limited. Hence mid-infrared data on 8m-class telescopes require now the use
of myopic deconvolution methods.

The principle of adaptive optics (AO) observations was developed in order to try
to get rid of the seeing limitation and recover diffraction limited images. However,
this is true to a certain extent. First, only a small field of view (typically, a few arcsec
in the visible range), around the AO reference (a sufficiently bright object; typically
a bright star with magnitude V lower than ), currently benefits from the best image
correction which degrades as exp(−∆θ )5/3 (∆θ is the distance to the center-field).
This field extent is defined by the isoplanatic angle, in which the wavefront distor-
sion is corrected accurately. In order to reach larger fields of view, multi-conjugated
adaptive optics (MCAO) systems are under development in parallel with laser guide
stars which will allow one to synthetically produce AO references at any place in the
sky. The Strehl ratio, which is defined as the ratio of the central intensity of the cur-
rently observed image to the central intensity of a perfect diffraction limited image,
can achieve typical values around 30–50% for K band observations, 2.2 µm). As one
observes an object far from the AO reference, this correction assessment parameter
degrades, reaching a value being half its value at the center-field (the location of the
AO reference), at a distance of 40 arcsec from it. Since AO performances are inti-
mately linked to the seeing (or r0) value, the AO correction will also strongly vary
with time. In summary, AO observations deal with quite significantly varying PSFs:
varying in time because of seeing time variations, and varying in space because of
the isoplanatic patch. As a consequence, AO astronomical observations do require
also myopic deconvolution methods. Much effort in astronomical blind deconvolu-
tion have been thus naturally devoted to this type of data.

Astronomical short exposures, or speckle images, have usually unknown PSF be-
cause of strong and random changes of the image phase. Although it is essentially
the phase of the object which is affected, while its amplitude is barely modified, some
specific methods of blind deconvolution in which the PSF is assumed unknown, have
to be used. The challenge that faces any method is that it should be able to incorpo-
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rate as much as possible by way of constraints and a priori knowledge on the solution
in order to avoid being trapped in trivial solutions such as {O,P}={I,δ} where δ is
the Dirac function.

1.9.1 Myopic Deconvolution

Myopic deconvolution assumes that an estimate of the PSF, which is not too “far”
from the true one, is known. A measure of this PSF is usually performed by ob-
serving an object supposed to be point-like, in the same observational conditions
(same telescope/instrument configuration, and weather conditions as close as possi-
ble). This is achieved by observing frequently, before and after any scientific target,
some unresolved star, at an airmass close to that of the science target, and if possible,
not too far in the sky from it. Astronomical data usually deal then with multi-frame
data: multiple records of the blurred object, multiple records of estimates of the PSF
Pi. Within this framework some new methods have emerged in the last decade and
are presented in the following.

IDAC is a myopic, Bayesian deconvolution method derived from a blind decon-
volution method ([19], see section 1.9.2 below for the details), and applied mainly to
adaptive optics data. It is a multi-frame deconvolution method in which loose con-
straints are put on the solution.

The MISTRAL method was developed by [65] in order to deconvolve AO partially
corrected data. An estimate of the PSF Pest can be derived from observations of an
unresolved star shortly before and/or after observing the object of interest. Using the
usual Bayesian framework, and the MAP approach, one ends up with the following
functional to minimize, to find O and P simultaneously:

J(O,P) = Jres + JP(P)+ JO(O) (1.62)

where Jres is the “fidelity to the data” term such that:

Jres(O,P) =
1

2σ 2 ‖ (I−P∗O) ‖2 in the case of Gaussian noise (1.63)

and

Jres(O,P) = ∑
pixels

(P∗O− I ln[P∗O]) in the case of Poisson noise (1.64)

JP(P) is the penalty term expressing that solution P should not be “too different”
from the estimate of the PSF Pest :

Jp(P) = ∑
u,v

|P̂(u,v)− P̂est(u,v)|2
Sp(u,v)

(1.65)



Deconvolution and Blind Deconvolution in Astronomy 25

where Sp(u,v) = E[|P̂(u,v)− P̂est(u,v)|] is the spatial power spectral density. Pest is
computed as E[Pi], Pi being the different estimates of the PSF.

In addition, a reparametrization (O = ψ2) ensures the positivity of the solution.
Some very nice results obtained with this method applied to images of the satellite
of Jupiter, Io, are shown in Fig. 1.4 allowing us to study Io volcanism with ground-
based AO data.

The deconvolution from wave-front sensing was originally proposed by [35] in
1985. The idea behind it is that in AO observations wave-front data are simulta-
neously recorded in the wave-front sensor (WFS); these data contain information
about the PSF but in an unusual form (often projected onto a base of Zernike poly-
nomials). Since we deal with short exposure images (less than 10 ms typically), the
atmospheric turbulence is assumed to be frozen, so that the PSF at a time t can be
fully characterized by the turbulent phase φ(t) in the pupil plane:

PSF(t) = F
−1(Pe jφ(t)) (1.66)

where P is the pupil function.
The usual techniques consist of firstly estimating the wave-fronts from the WFS,

and then obtaining the deconvolved image by maximum a posteriori (MAP) estima-
tion [5]. Since wave-front estimates are inevitably noisy, Mugnier et al. [66] pro-
posed a robust joint estimator within a Bayesian framework to reconstruct the true
wave-front data and the restored object simultaneously. This estimator uses all sta-
tistical information that one has either on the noise, or on the stochastic processes
that control the turbulent phase (Kolmogorov statistics). A functional containing
constraints on φ(t) (complying with Kolmogorov statistics) and on the object O is
minimized. This method is more efficient than speckle interferometry because it is
not limited by speckle noise at high photon flux and the signal-to-noise ratio is better
for extended objects. Fig. 1.5 shows how spectacular the result can be on experimen-
tal data of the binary star Capella.

1.9.2 Blind Deconvolution

In 1994, [95] proposed a simple method for blind deconvolution based on Lucy’s
algorithm. The idea is to alternatively perform a Lucy iteration on the object O
and then on the PSF P. However, although attractive because of its simplicity, this
process (i) can be highly unstable, and (ii) puts no constraint on the PSF making it
difficult to prevent it tending towards the trivial solution {I,δ}.

Jefferies and Christou [50] have proposed an iterative blind deconvolution method
of multi-frame data based on the minimization of a penalty functional putting phys-
ical and “reasonable” loose constraints on the solution (O,Pi). Assuming that one
deals with i = 1, . . . frames, this method minimizes the functional:

J(O,P) = Eim +Econv +Ebl +EFm (1.67)
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where:

1. Eim = ∑n∈γO
O(n)2 +∑m∈γP

P(m)2 is the image domain error which penalizes
negative values (γO and γP sets) in the solution O or in the PSF P.

2. Econv = ∑i ∑u,v |Î(u,v)− P̂(u,v)Ô(u,v)|2M(u,v) is called the convolution error
and expresses the fidelity of the reconvolved image to the data in Fourier space,
M being a mask excluding spatial frequencies higher than the physical cut-
off frequency (by diffraction (D/λ ) or seeing (r0/λ ) of the instrumental set.
Depending on the conventions on the Fourier transform, one has to normalize
this term by the number of pixels in the image.

3. Ebl is the band-limit error defined by Ebl = ∑i ∑u,v |P̂i(u,v)|2M′
i(u,v) where M′

is a spatial frequencies mask greater than 1.39 of the cut-off frequency. The
same normalization rule applies as above.

4. EFm is the Fourier modulus error, such that EFm = ∑i ∑u,v |Ô(u,v)−Ôest(u,v)|2Φ(u,v)
where Oest(u,v) is a crude estimate of the object’s Fourier modulus given by:

|Ôest |=
√

〈|Î|2〉−〈|N̂|2〉
〈|P̂|2〉

(1.68)

Thiebaut and Conan [93] compared the application of loose (similar to some ex-
tent to [50]) and of strict a priori constraints on the solution when maximizing the
likehood. They found that much better solutions can be achieved when applying the
second option. Strict a priori constraints are applied in this case by a reparametriza-
tion ensuring the sought physical properties of the solution e.g.:

1. Positivity of the object O making the change of variable:

O = ψ2
O (1.69)

2. Positivity and normalization of the PSF P by setting:

P =
ψ2

h

∑pixels ψ2
h

(1.70)

The gradients of the functional are then recomputed, and depend now on the new
unknowns ψP (representing P) and ψO (representing O). This method has been
shown to give very good results in the case of speckle data on the Capella binary
system [93].

In summary, several methods are currently available to carry out myopic or blind
deconvolution. For best results we recommend the Bayesian formalism because it
offers a nice way to incorporate any type of constraint on the solution. These methods
offer much better results than any other algebraic method, but at some computational
cost (the minimization of the functional requires intensive computing and efficient
minimization schemes).
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1.10 Conclusions and Chapter Summary

As in many fields, simple methods can be availed of – for example the solution
provided by equation (1.16) – but at the expense of quality in the solution and a full
understanding of one’s data. Often a simple solution can be fully justified. However,
if our data or our problems are important enough, then appropriate problem solving
approaches have to be adopted. The panoply of methods presented in this review
provide options for high quality image and signal restoration.

We have noted how the wavelet transform offers a powerful mathematical and al-
gorithmic framework for multiple resolution analysis. Furthermore noise modeling
is very advantageously carried out in wavelet space. Finally, and of crucial impor-
tance in this chapter, noise is the main problem in deconvolution.

Progress has been significant in a wide range of areas related to deconvolution.
One thinks of Bayesian methods, the use of entropy, and issues relating to super-
resolution, for example.

We will conclude with a short look at how multiscale methods used in deconvolu-
tion are evolving and maturing.

We have seen that the recent improvement in deconvolution methods has led to
use of a multiscale approach. Finally, wavelet based constraints can be added in
both domains [90]. This allows us to separate the deconvolution problem into two
separate problems: noise control from one side, and solution smoothness control on
the other side. The advantage is that noise control is better carried out in the image
domain, while smoothness control can only be carried out in the object domain.

The reason for the success of wavelets is due to the fact that wavelet bases rep-
resent well a large class of signals, especially astronomical data where most of the
objects are more or less isotropic. When the data contains anisotropic features (solar,
planetary images, etc.), other multiscale methods, such as the ridgelet or the curvelet
transform [14, 13, 32, 84], are good candidates for replacing the wavelet transform.
The ultimate step is the combination of the different multiscale decompositions.

Very nice results have been obtained based on myopic or blind deconvolution.
However, there is currently no algorithm based on multiscale methods in the field of
myopic or blind deconvolution for the regularization. New methods taking advantage
of these tools, as was already done for standard image deconvolution, should appear
soon.
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FIGURE 1.2
Simulated Hubble Space Telescope Wide Field Camera image of a distant
cluster of galaxies. Six quadrants. Upper left: original, unaberrated and
noise-free. Upper right: input, aberrated, noise added. Middle left: restora-
tion, Richardson-Lucy. Middle right: restoration, Pixon method. Lower left,
restoration wavelet-vaguelette. Lower right, restoration wavelet-Lucy.
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FIGURE 1.3
Upper left: penalization functions: dashed, l1 norm (i.e. φ(w) =| w |); dotted l2
norm φ(w) = w2

2 ; continuous, multiscale entropy function. Upper right: Beta
Pictoris raw data. Lower left: filtered image using. Lower right: deconvolved
one.
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FIGURE 1.4
Jupiter-facing of Io observed with the Keck AO system in J,H, and K bands. The
second row shows the former images deconvolved with the MISTRAL method,
and are compared to Galileo probe images in which a precursor to a volcanic
burst is detected. The last row shows deconvolved images 2 days later in which
a major outburst, seen also on Galileo images but fainter (Galileo observes in
the visible range and is less sensitive to “thermal” events), is also detected from
Earth.
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FIGURE 1.5
Experimental short exposure of the binary system Capella taken at the 4.2m
William Herschel telescope, La Palma, Canarias islands (upper left) and corre-
sponding long-exposure, 10 times longer, showing the loss of resolution due to
atmospheric turbulence blurring (upper right). Restored image using a MAP
estimate of the wave-front followed by a quadratic restoration with positivity
constraint (lower left). Image restored by the myopic deconvolution method
developed by Mugnier et al. [66] (lower right).


