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The notion of a multiresolution support is introduced. This
is a sequence of Boolean images related to significant pixels at
each of a number of resolution levels. The multiresolution sup-
port is then used for noise suppression, in the context of image
filtering, or iterative image restoration. Algorithmic details, and
a range of practical examples, illustrate this approach. 9
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1. INTRODUCTION

1.1. General Ideas and Plan of Paper

The human visuai system picks out objects of inlerest
at different scales. In recent years, thercfore, image pro-
cessing has sought to make use of multiscale or multiresolu-
tion representafions. A range of theories are available such
as quadtrees and pyramid representations, scale-space fil-
tering, and the wavelet transform. For the first two of these,
reference may be made to Lindeberg [20].

In this paper, a computationally efficient wavelet trans-
form algorithm is used to generate a sequence of multireso-
lution views of the image. Following this, in each of the
wavelet planes, a support is defined, i.e., a Boolean image
where significant pixels have a 1 or true value, and ail other
. pixelsa O or false value. Contiguous areas of 1-valued pixels
are associated with objects in the image being analyzed, at
the given resolution or scale. The set of support images, at
each resolution level, is cailed the multiresolution support.

* Affilialed with Astrophysics Division, Space Science Depariment,
European Space Agency,

The multiresolution support is an important data struc-
ture, which provides a powerflul framework {or noise filter-
ing and for restoration with noise suppression. The proce-
dure used is to determine statistically significant wavelet
coefficients, and frorm this to specify the support. Thus a
statistical image model is used as an integral part of the
image processing. The support is used subsequently to
handcraft the filtering or restoration (or, although not
treated in this paper, object detection). Statistical image
models are available in astronomical image processing, and
our examples are based on images from this field. We will
discuss implementation strategics and experimental re-
sults.

This paper is structured as lollows. Section 2 introduces
the muitiresolution support and discusses how it can be
used to determine noise in the image, Section 3 deals with
noise filtering, and we find that use of the multiresolution
support offers a powerful and versatile way to handle noise
of different distributions. Section 4 covers image restora-
tion methods. Two appendices provide fusther detail on
some central aspects of the paper. A list of the principal
notation used precedes the references.

1.2. Related Work

Astronomical images—especially when relating to
scenes and objects outside our solar system—have proper-
ties which make them quite different frem images in indus-
trial vision or remote sensing, Astronomical images for the
most part contain point sources (stars and other approxi-
mately point symmeiric objects) and extended objects (gal-
axies, nebulae, etc. which are often faint). These cbjects
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may be superimposed. Edges and alignments rarely play a
role. For astronomical image restoration issues, the reader
may consult the articles in [14, 44].

An established and successful approach to image resto-
ration and filtering on nonastronomical imagery is to use
regularization with a smoothness constraint [17, 21]. This
leads to definition of a functional to be optimized, with
consideration given to important image properties such as
edges. Adaptive choice of the regularization has been used
in [13, 16]. As mentioned, astronomical images contain
“edges with no extension” (point sources) and diffuse ob-
jects. A Tikhonov optimization criterion does not do justice
to such objects. Instead we propose an effective heuristic
restoration and filtering approach in this field.

“Regularization™ as used in this paper involves use of
a multiresclution support. A support constraint in the
space of wavelet coefficients is in keeping with our vision
of the image: superimposed and variably sized point
sources and extended objects. The optimization prablem
is formulated in algorithmic terms, and the greedy solution
method is reminiscent of another widely used astronomical
restoration method, termed CLEAN (predominent in ra-
dio astronomy; it consists of iteratively fitting a point
spread function and moving flux from the given “dirty”
image to the output “cleaned” image). Similar to CLEAN
and to [45], we can argue that our adaptive approach is
straightforward, easy to implement, and robust.

Smoothing without reference to astronomical content is
used in [26, 35]. Filtering as described in this paper aims at
proteciion of the objects in the image, so that photometric
(intensity-related), astrometric (position-related), and
morphological information remains faithful (by design) to
the input image data.

Previous work of ours has dealt with the choice of effec-
tive wavelet transform (see [3, 4]) and a discussion of
commeoen noise models [32, 41]. This paper will deal with
the adaptive, local regularization implied by constraining
the operations of restoration and filtering to respect the
multiresolution constraint data structure.

2. MULTIRESOLUTION SUPPORT

2.1. Definition

We wili say that a multiresolution support of an image
describes in a logical or Boolean way if an image I contains
information at a given scale j and at a given position
(x, ¥). It M(j, x, y) = 1 (or = true), then I contains
information at scale j and at the position (x, y).

Such a support results from the data, the treatment
(noise estimation, etc.), and knowledge on our part of the
objects contained in the data (size of objects, linearity, etc.).

The multiresolution support of an image is computed in
several steps: compute the wavelet transform of the image,
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booleanize each scale which yields the multiresolution sup-
port, and introduce a priori knowledge by modifying the
support.

The last step depends on the knowledge we have of our
images. For instance, if we know there is no interesting
obiect smaller or larger than a given size in our image, we
can suppress, in the support, anything which is due to that
kind of object. This can often be done conveniently by
the use of mathematical morphology. In the most general
setting, we naturally have no informaticn to add to the
multiresolution support.

2.2, Multiresolution Support from the
Wavelet Transform

There are mere than 10 widely used wavelet transform
algorithms [3, 7, 11, 25, 29, 31, 40]. We chose the d trous
algorithm [15, 37, 41] for the following reasons:

1. The transform is carried out in direct space. No arti-
facts arise due to periodization.

2. The computational requirement is reasonable, as are
memory and storage requirements. One property influenc-
ing the computational requirement is that the scaling func-
tions are compact.

3. In two dimensions, the transform is practically iso-
tropic (point symmetric}.

4, The transform is known at each pixel, allowing recon-
struction without any error and without interpolation. We
can follow the evolution of the transform from one scale
to the next.

5. Invariance under translation is completely verified.

Details of the algorithm are given in Appendix 1. The
wavelet transform of an image by this algorithm produces
at each scale j, a set {w;} which we will call a wavelet plane
throughout the following discussion. This has the same
number of pixels as the image. The original image ¢y can
be expressed as the sum of all the wavelet planes and the
smoothed array ¢,

)

i
o= cp Wy,
=1

and a pixel at position x, y can be expressed also as the
sum of all the wavelet coeflicients at this position, plus the
smoothed array

P
colx, ¥} = cplx, ¥) + )Z] wi(x, y). @

The multiresolution support will be obtained by de-
tecting at each scale the significant coefficients. We will
see in the next section how to find these coefficients. The
multiresolution support is defined by



422

1 if w;(x, y) is significant

M(f,x,y)={ 3)

0 ifw{x, y}is not significant

2.3.  Significant Coefficients

2.3.1. Statistically Significanr Level. Images generally
contain noise. Hence the wavelet coefficients are noisy too.
In most applications, it is necessary to know if a coefficient
is due to signal or to noise. Generally noise in astronomical
images follows a Gaussian or a Poisson distribution,

The wavelet transform yields a set of resolution-related
views of the input image. A wavelet image plane at level
j has coefficients given by w/{(x, y). If we obtain the distribu-
tion of the coefficient w{x, y) for each plane, based on the
noise, we can introduce a statistical significance test for
this coefficient. The procedure is the classical significance-
testing one. Let ¥y be the hypothesis that the image is
locally censtant at scale j. Consider first the case of
Gaussian noise. The distribution of w/(x, y) is Gaussian,
with zero mean and standard deviation g;, We have the
probability density

wix = 1 exp(—w; 2262
pwix,¥)) Vne, xp(—wj(x, yy/2a7). (4)

Rejection of hypothesis ¥, depends (for a positive coeffi-
cient value) on

1 oo
P=Prob(w{x,y) <W)=——
ro ( }( y) ) 1/2170}[%-():.)') (5)
exp(—W‘z/zO'jz} aw,

and if the coefficient value is negative, we reject if

_ _ 1 e
P = Prob(wix,y) > W) = Voe j "t ©

exp(—W2/202) dW,

Given a threshold, &, if P > ¢ the null hypothesis is not
excluded. Although nonnuil, the value of the coefficient
could be due to neise, On the other hand, if P > g, the
coefficient value cannot be due only to the noise alone, and
so the null hypothesis is rejected. In this case, a significant
cocfficient has been detected.

Given stationary, (Gaussian noise, it suffices to compare
w;(x, y) to ko;. Often k is chosen as 3. If wix, y) is small,
it is not significant and could be due to noise. If wi(x, y)
is large, it is significant:

if [w| = ka; then w;is significant

()

if|wj < ka; then w;is not significant.

If the noise in the data I is Poisson, the transform 2]
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8)

T(1(x, ) = 2,15 3) + 3

acts as if the data arose from the (Gaussian white noise
model, with unit standard deviation. In this case, we will
take the wavelet transform of T(7), and w{?{x, y) will be
significant if w{7)(x, y) is above a given threshold. (Here
the superscript on the wavelet coefficients indicates the
image on which the wavelet transform was carried out.)
Generalization of transform (8) for combined Poisson and
(Gaussian noise is discussed in [32], leading to the transform

T{I(x,y)) = i—\/al(x,y) + %az + o? — ag, (9

where the Gaussian noise has mean g and standard devia-
tion o, and where « is the gain (in the case of widely used
CCD detectors).

Thus we need to estimate, in the case of Gaussian, Pois-
son, or additive Poisson and Gaussian noise models, the
noise standard deviation at each scale.

2.3.2. Noise Standard Deviation Estimation at Each
Scale. The appropriate value of o} in the succession of
wavelet planes is assessed from the standard deviation of
the noise gy in the original image and from study of the
noise in the wavelet space. This study consists of simulating
an image containing Gaussian noise with a standard devia-
tion equal to 1 and taking the wavelet transform of this
image. Then we compute the standard deviation o7 at each
scale. We get a curve of as a function of . giving the
behavior of the noise in the wavelet space. (Note that if
we had used an orthogonal wavelet transform, this curve
would be linear.) Due to the properties of the wavelet
transform, we have o; = o;0¢. The standard deviation of
the noise at a scale j of the image is equal to the standard
deviation of the noise of the image multiplied by the stan-
dard deviation of the noise of the scale j of the wavelet
transform.

An alternative, here, would be to estimate the standard
deviation of the noise oy of the first plane from the histo-
gram of w;. The values of the wavelet image w, are due
mainly to the noise. A histogram shows a Gaussian peak

- around 0. A 3o clipping is then used to reject pixels where

the signal is significantly large. The standard deviation of
the noise g; is estimated from o;. This is done from the
study of noise variation between two scales, as described
above.

A final alternative to be mentioned here relates to multi-
ple images of the same scene. In this case, a pixel-depen-
dent specification of the ncise threshold is used, rather
than just level-dependent. A wavelet transform of each of
the NV images is determined. Thus, we have N wavelet
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FIG. 1.

coefficients at each position, (x, v), and at each scale, j.
From the N values, w;(x, y). the standard deviation, o(x, y),
is calculated. The significance threshold is then defined by

kay(x, )/ VN (10)
(the denominator is explained by the error of the mean of
N Gaussian values varying as 1/\/]_\f').

2.4. Conclusion

In order to visualize the support, we can create an image
S defined by

P

SCe, ) =2 2M(jx, p).

i=1

(11

Figure 1 shows such a multiresolution support visualization
of an image of galaxy NGC 2997,

The multiresolution support allows us to integrate, in a
visualizable manner, and in a way which is very suitable
for ancillary image alteration, information coming from

Multiresolution support representation of a spiral galaxy.

data, knowledge, and processing. We will see below how
we can use it in image filtering and in image restoration.

3. FILTERING

3.1. Fltering from Significant Coefficients

It has been seen in Section 2.3.1 how significant wavelet
coefficients are detected in an image. Reconstruction, after
setting nonsignificant coefficients to zero, at full resolution
leads to adaptive filtering [40]. The restored image is

T0x, ) = ¢ ) + E g(a wxy)w(ey)  (12)

with g defined by

1 if|w] = ko, (significant)
HER wf-)={ Vo (13)

0 if|w] < ko; (nonsignificant).
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3.2, [Iterative Filtering from Significant Coefficients

In the method just described, we obtain an image T by
reconstructing the thresholded coefficients. A satisfactory
filtering implies that the error image E = I — 7, obtained as
the difference between the original image and the filtered
image, contains only noise and no “structure.” Such is not
the case in practice with the approach described. However,
we can easily arrive at this objective by iterating a few
times:

1. n < 0.

2. Initialize the solution, I, to zero.

3. Estimate the significance level (e.g., 30) at each
scale. .

4. Determine the error, E™ = [ — [*) (where [ is the
input image, to be filtered).

5. Determine the wavelet transform of E™,

6. Threshold: only retain the significant coefficients.

7. Reconstruct the thresholded error image. This yields
the image E™ containing the significant residuals of the
error image.

8. Add this residual to the solution: [ « F) + E(m),

9. If [(agtn-1 — ool ogin] > & then n «— 1 + 1 and go
to 4.

10, I™ contains the filtered image, and I — I is our
estimation of the noise.

At each iteration, we extract the residual image of sig-
nificant structures and we introduce them into the solution.
We generally used between 6 and 10 iterations. On termi-
nation, we are certain that there are no further significant
structures in the residual images.

If the noise associated with image 7 is Poisson, or Poisson
and Gaussian, the sigpificant structures are extracted as
described in Appendix 2.

3.3. lIterative Filtering from a Multiresolution Support

From the iterative algorithm described in the preceding
section, we reconstruct a filtered image 7 such that, for all
pixels, we have

[1(x, y) — Ix, y)| < kay, (14)
where o is the standard deviation of the noise contained
in the image. This filtering is effective, but does not always
correspond to what is wanted. In astronomy, for example,
we would prefer not 10 touch a pixel if it generates a
significant coefficient at all scaies. In general, we say that
if a multiresolution coefficient of the original image is sig-
nificant (i.e., |[w{(x, y)| > K, where K is the significance
threshold), then the multiresolution coefficient of the errox
image (i.e., w{E"™") must satisfy the following exactly:

w X,y) = if (wi(x, > K.
N, y) =0 if [wiO(x, ) (15)
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To arrive at this objective, we use the multiresolution sup-
port of the image, and the algorithm becomes:

1. n<0.

2. Initialize the solution, 19, to zero.

3. Determine the multiresolution support of the image.

4. Estimate the significance level {e.g., 3¢} at each
scale,

5. Determing the error, E = | — %) (where [ is the
input image, to be filtered).

6. Determine the multiresolution transform of E,

7. Threshold: only retain the coefficients which belong
to the support.

8. Reconstruct the thresholded error image. This yields
the image E® containing the significant residuals of the
error image.

9. Add this residual to the solution: J¢*) « J©) + E0=),

10, If [{ogtn-n — getm)/ogml > e then n < n + 1 and go
to 4.

Thus the regions of the image which contain significant
structures at al! levels are not modified by the filtering.
The residual will contain the value zero over all of these
regions. The support can also be enriched by any available
a priori knowledge. For example, if artifacts exist around
objects, a simple morphological dilation of the support can
be used to eliminate them. |

34. Example

Figure 2 shows a noisy spectrum (upper left, repeated
lower right). For the astronomer, the spectral lines—here
mainly absorption lines extending downward—-are of in-
terest. The continuum may also be of interest, ie., the
overall spectral tendency. The spectral lines are unchanged
in the filtered version (upper center and upper right). To
illustrate the damage that can result from another wavelet
transform, and another noise suppression policy, the lower
center (and lower right) version shows the resuit of
applying Daubechies’ [9] coefficient 8, a compactly sup-
ported orthonormal wavelet. This was followed by thresh-
olding based on estimated variance of the coefficients [10],
but not taking inte account the image’s noise properties
as we have done (see [33]). One sees immediately that a
problem- (or imnage-}driven choice of wavelet and filtering
strategy is indispensible,

4, DECONVOLUTION

4.1. lterative Restoration Algorithms

Consider an image characterized by its intensity distribu-
tion (the “data”) I{x, y), corresponding to the observation
of a “real image” Ofx, y) through an optical system. If
the imaging system is linear and shift-invariant, the relation
between the object and the image in the same coordinate
frame is a convolution:
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FIG.2. (Top row) Original noisy spectrum; filtered spectrum; both superimposed. (Bottom row) Original; filtered (using Daubechies coefficient

8, and Donoho and Johnstone “universal” thresholding); both superimposed.
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I(x,y) = (O P)(x,y) + N(x. ). (16)
P(x, y) is the point spread function (PSF) of the imaging
system, and N(x, y) is an additive noise. In practice O =
P is subject to nonstationary noise which one can tackle
by simultaneous object estimation and restoration [18].
The issue of more extensive statistical modeling will not
be further addressed here (see [22, 23, 30]), beyond noting
that multiresolution frequently represents a useful frame-
work, allowing the user to introduce a priori knowledge
of objects of interest.

Equation (16) is always an ill-posed problem. If the noise
is modeled as a Gaussian or Poisson process, then an itera-
tive approach for computing maximum likelihood esti-
mates may be used. The Richardson-Lucy method ([24,
34]; see also [1, 18}) uses such an iterative approach,

Ol OM[(1/ 1) * P*]

17

e Px OO, )

where P* is the transpose of the PSF, and O" is the
current estimate of the desired real image.

4.2. Noise Suppression Based on the Wavelet
Transform Decomposition

In using an iterative deconvolution algorithm such as
Van Cittert or Richardson-Lucy, we define R"Yx, y), the
residual at iteration n:

R™(x,y) = I(x,y) = P(x,y) » O"™(x,y).  (18)

By using the 4 trous wavelet transform algorithm [40-
42], R™ can be defined by the sum of its p wavelet planes
and the last smooth plane

RO(5y) = ay) + Swixy),  (19)

where the first term on the right-hand side is the last
smoothed plane, and w denotes a wavelet plane.

The wavelet coefficients provide a mechanism to extract
only the significant structures from the residuals at each
iteration. Normally, a large part of these residuals are sta-
tistically nonsignificant. The significant residual is then

RO x,y) = cy(n.y) + E gw(xn ). o) wixy). (20)

ag; is the standard deviation of the noise at scale j, and g
is a function which is defined by
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1 ifla| = ke (a significant)

g(a,0) = { 1)

0 if|al < ko (@ nonsignificant).

The standard deviation of the noise ¢} is estimated from
the standard deviation of the noise in the image as dis-
cussed above in Section 2.3.2.

4.3. Noise Suppression Based on the
Multiresolution Support

In the approach presented in the preceding section, a
wavelet coefficient is significant if it is above a threshold.
Therefore, a coefficient which is less than this threshold is
not considered, even if a significant coefficient had been
found at the same scale as this coefficient, during previous
iterations; and consequently we were justified in thinking
that we had found signal at this scale, and at this position.
Arising out of this approach, it follows that the wavelet
coefficients of the residual image could contain signal,
above the set threshold, which is ignored.

In order to conserve such signal, we use the notion of
muitiresolution support. Whenever we find signal at a scale
jand at a position (x, y), we will consider that this position
in the wavelet space belongs to the multiresolution support
of the image.

Equation (20} becomes

RO,7) = 650 + 3 MU0 50). (22)

An alternative approach was outlined in [32]: the support
was initialized 10 zero and built up at each iteration of the
restoration algorithm. Thus in Eq. (22) above, M(j, x, y)
was additionally indexed by n, the iteration number. In
this case, the support was specified in terms of significant
pixels at each scale, j, and in addition pixels could become
significant as the iterations proceeded, but could not be
made nonsignificant. In practice, we have found both of
these strategies to be equally acceptable.

4.4  Regularization of the Richardson-Lucy Algorithm

From Eq. (18), we seek I (x, y) = P(x, ¥) = O")(x,
¥). Then R™(x, y) = I{x, y) — I™)(x, y), and hence
Ix, ) = I“%x, ) + R“(x, y). The Richardson-Lucy
equation is

I, y) + R™(x, y)
I"(x, y)

0 (x,y) = 0‘”)(&}’)[
(23)

* P(—x, —y)]

and regularization leads to
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10(x, y) + RO(x, y)
I"(x,y)

0r=(x,y) = om(x,y){
(24)

* P(—x, —y)]-

l
The standard deviation of the residual decreases until
no more significant structures are found. Convergence can
be estimated from the residual. The algorithm stops when
a user-specified threshold is reached:

(o1 — apem) (o) < e (25)

Regularization of other iterative restoration methods,
e.g., Van Cittert or One-Step Gradient, can be carried out
in an analogous fashion.

4.5. Example 1

A simulated Hubble Space Telescope Wide Field Cam-
era image of a distant cluster of galaxies was used to assess
how well the suppression of noise, inherent in the wavelet-
based method, aids object detection. The image used was
one of a number described in [5, 12]. A spatially invariant
PSF was used; the approximation to the known spatial
variance which was involved in doing this was mitigated
by use of a 256 X 256 subimage for test purposes. The
simulated image allowed us to bypass certain problems,
such as cosmic ray hits and CCD detector faults, and to
concentrate on the general benefits of regularization of the
type described in this article.

The procedure followed was to detect objects in the
simulated image, and also in the images restored by the
wavelet-based (or regularized) Richardson-Lucy method
and the basic Richardson-Lucy method. The Inventory
package in MIDAS (Munich Image Data Analysis System,
a large image processing system, developed at the Euro-
pean Southern QObservatory) was used for this. Inventory
detects objects by means of a local background threshold,
which was varied. Various other parameters were not
used.

A set of 122 objects was found, using Inventory, in the
original, unaberrated, noise-free image (Fig. 3, upper left).
This agrees well with the fact that 124 objects were used in
the simulation (121 galaxies, three stars). With a somewhat
different threshold in the case of the wavelet-based Rich-
ardson-Lucy method, 165 objects were obtained. With a
very much raised threshold (to exclude noise peaks) in the
case of the basic Richardson—-Lucy method, 159 objects
were obtained.

Detections of spurious objects were made in the case of
both restorations. Given that we have “ground truth” in
this case, we simply selected the real objects among them.
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FIG. 3. Simulated HST wide field camera image of a distant cluster
of galaxies, Four quadrants. (Upper Left) Original, unaberrated, and
noise-free. (Upper Right) Input, aberrated, noise added. (Lower Left)
Restoration, Richardson-Lucy method without noise suppression, 60
iterations, (Lower Right) Restoration, Richardson-Lucy method with
noise suppression, 60 iterations. Intensities logarithmically transformed.

This was done by seeking good matches {less than 1 pixel
separation) between objects found in the restored images,
and the objects found in the original, unaberrated noise-
free image. This led to 69 close matches, in the case of
the wavelet-based Richardson-Lucy method, and to 53
close matches, in the case of the basic Richardson-Lucy
method.

There was thus a greater number of object detections,
obtained with the wavelet-based Richardson—Lucy
method. These were also more accurate: the mean square
error was (1.349 pixel units versus (.379 for the smaller
number of detections obtained from the basic Richardson—
Lucy method. For bright objects, photometric plots using
aperture magnitudes were relatively similar in both cases,
and for fainter objects neither were good. While the wave-
let-based Richardson—Lucy method acquitted itself well in
these respects, its regularization property is clearly advan-
tageous for object detection.

4.6. Example 2

We used the simulated elliptical galaxy available in the
test image suite at anonymous ftp address stsci.edu: /
software/stsdas/testdata/restore. It is briefly
described in [14]. This image is referred to there as “Galaxy
Number 2.7 It has a simple elliptical shape. The brightness
profile includes both bulge and exponential disk compo-
nents. It has additional distortions introduced in isophote
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FIG. 4. Isophotal contours corresponding to (left) “truth image” and regularized Richardson-Lucy restoration; and (right} “truth image’ and

unregularized Richard-Lucy restoration.

center, ellipticity, and position angle. This image was con-
volved with a Hubble Space Telescope Wide Field Camera
{(WE/PC-1) PSF, and Poisson and readout noise (Gaussian)
were added.

Under the assumption that the readout noise was small,
we used a Poisson model for all noise in the image. We
set negative values in the blurred, noisy input image to
zero. This was the case in the background only and was
necessitated by the Anscombe transformation used.

Figure 4 (left) shows contours formed in the truth image,
overplotted with contours yielded by the regularized Rich-
ardson-Lucy method. Note that the truth image was not
the one used as input for restoration; rather, it was the
image on the basis of which the blurred, noisy input image
was created. All contours in Fig. 4 relate to identical inten-
sity values (4, 8,12, 16, 20, 24). For the regularized restora-
tion, a Poisson model was used for clipping wavelet coeffi-
cients. A 4 othreshold was chosen, above which (in wavelet
space) a value was taken as significant. The multiresolution
support algorithm was used, in order to prevent any unto-
ward alteration to the galaxy. The plot shown in Fig. 4
(left) corresponds to just five iterations (unaccelerated)
of the regularized Richardsen-Lucy restoration method.
Figure 4 (right) shows the same isophotes for the truth
image, and those obtained by restoration following five
iterations of the unregularized Richardson—-Lucy method.
Allowing further iterations (to convergence in the case of
the regularized Richardson—Lucy method) vielded rela-
tively similar results in the case of the regularized restora-
tion, but in the case of the unregularized restoration, the
fitting of a PSF to every noise spike made for a very un-
smooth image.

5. CONCLUSION

The wavelet transform, and noise suppression strategies,
must take properties of the input image into account, It
may even be necessary to take into account aspects related
to the physical nature of that which is imaged. We have
studied the case of astronomical images and have proposed
an effective framework for tackling problems related to
restoration and filtering. As a byproduct, this framework
also helps in object detection {(and this is now the topic of
ongoing work). The multiresolution support data structure
is an important image processing tool.

The wavelet transform used could be replaced with some
other multiresolution algorithm. However the d trous algo-
rithm has acquitted itself well. The experimental results
demonstrate the usefulness of this broad framework.

APPENDIX 1: THE “A TROUS” WAVELET
TRANSFORM ALGORITHM

In a wavelet transform, a series of transformations of
an image is generated, providing a resolution-related set
of “views” of the image. The properties satisfied by a
wavelet transform, and in particular the & #rous wavelet
transform (“‘with holes,” so called because of the interlaced
convolution used in successive levels: see step 2 of the
algorithm below), are further discussed in [4]. Extensive
literature exists on the wavelet transform and its applica-
tions [6, 9, 27, 28, 36]. The discrete 4 trous algorithm is
described in [15, 37].

For the scaling function, the B-spline of degree 3 was
used in our calculations. See [38, 39] for discussion of linear
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and other scaling functions. We have derived a simple
algorithm in order to compute the asscciated wavelet
transform:

1. We initialize j to 0 and we start with the data c;(k).

2. We increment j, and we carry out a discrete convolu-
tion of the data ¢;.1(k) using the filter h. The distance
between the ceniral pixel and those adjacent is 2771,

3. After this smoothing, we obtain the discrete wavelet
transform from the difference ¢;_((k) — ¢;(k).

4. If j is less than the number p of resolutions we want
to compute, then go to step 2.

5. The set W = {wy, ..., w,, c,f represents the wavelet
transform of the data.

The above 4 trous algorithm has been discussed in terms
of a single index, x, but is easily extendable to two-dimen-
sional space. The use of the By spline leads to a convolution
with a mask of 5 X §:

Q_!_ 1 3. L 1
5 B4 128 B4 156
103 31 1
éi 16 3 16 84
3 8 3 3
ﬁ@ 32 B84 32 128
1 3 1 1
GIE i§ 32 16 B4
_% 1.8 1 1
256 84 128 ©®i 256

In one dimension, this mask is (3, 1, £, 1, %)-

To facilitate computation, a simplification of this wavelet
is to assume separability in the 2-dimensional case. In the
case of the B; spline, this leads to a row by row convolution
with (i, 1. §, 1. 7¢), followed by column by column convo-
lution.

The most general way to handle the boundaries is to
consider that ¢(k + N} = ¢(N — k). But other methods
can be used such as periodicity (c(k + N) = c(k)), or
continuity (¢c(k + N) = c(N)). Cheosing one of these
methods has little influence on our general restoration
strategy. We used continuity.

A serics expansion of the original image. ¢y, in terms of
the wavelet coefficients is now given as follows. The final
smoothed array ¢,(x) is added to all the differences w;:

cofk) =c, + 2 wi(k). (26)

This equation provides a reconstruction formula for the
original image.

At each scale j, we obtain a set {w;} which we call a
wavelet plane. This has the same number of pixels as the
image (which therefore is a limitation on the use of this
particular wavelet transform approach for image com-
pression).
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APPENDIX 2: FILTERING BASED ON POISSON NOISE

If the noise associaied with image [ is Poisson, the follow-
ing transformation acts as if the data came from a Gaussian
process with a noise of standard deviation 1, subject to a
sufficiently large mean value of image [:

T(I(x,y)) = 2VI(x,y) +§ (27

Therefore the noise contained in e = T(I) ~ T{I*)
can be suppressed using the same priaciple as the suppres-
sion of noise in E = I — I Image ¢ is decomposed
into multiresolution coefficients (in the case of the muiti-
resolution strategy), and only the significant coefficients,
or the coefficients associated with the multiresolution sup-
port, are retained. The support is, of course, determined
from T(I) and not from /. Reconstruction then gives .
We have the relations

e“x,y) = T(I(x,y)) — T (x, y}) (28)
E@(x,y) = H{x,y) = 1"(x, ¥}, (29}

Hence we have
[T(H{x, y)F = [e"(x, y) + T (x, y))P (30)

= (e)(x, y))* + 4 (x, y) + §)
+ 4PN x, VIO x, ¥) + 3 (31)
and

[Ty NP = 4(I(x,y) + 3 (32)

From these two equations, we deduce that I(x, y) can
be expressed by

I(x, y} = (e (x, y))* + 4(I"(x,y) + §)

(33)
+4e®(x, yIVITx, y) + 3 - 4

Now, replacing I by its expression in E® = [(x, y) —
I x, v), we have

E®(x,y) = ew(x,y)[ﬂlw + VP y) +‘%]. (34)

Filtering ¢!”? by thresholding nonsignificant coefficients,
or coefficients which are not contained in the support, we
obtain 2*), and we then have

EC(x,y) = a‘")(x,y)[z—“”%’ﬁ VITEH T 69
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In image restoration with a Poisson model, a similar
analysis can be carried out. In this case, the right-hand
side of Eq. (29) defines the residual image, R"(x, y). The
right-hand side of Eq. {28) provides the image from which
noise is suppressed.

While this appendix deals with Poisson noise, the case
of combined Poisson and Gaussian noise (see Eq. (9)) is
handled in a similar way.

APPENDIX 3: NOMENCLATURE

(x, y)

J
M, x, ¥)

¢

wy, wilx, y)

g

ax, y)

—~ 0

 A(x, y)

by

=~

Pixel; position in image (integers).

Multiresolution level or scale (integer).

Multiresolution support. Sequence of Bool-
ean images. Boolean image at each scale
or level j is of same dimensions as input
image, with which the multiresolution
support is associated. When nonambigu-
ous, the superscript is not used.

Result of convolving wavelet with image at
level j.

Wavelet coefficient. We have w; = ¢ —
1 — ¢;. Wavelet coefficients at level j de-
fine a wavelet plane. A superscript on w
is used to indicate the image with which
the wavelet plane is associated, e.g.,
wi(x, y)-

For a given image, proportional to the stan-
dard deviation of wavelet coefficients at
scale J. See Section 2.3.2,

Standard deviation of wavelet coefficients
at scale j and at location (x, y) in the case
of multiple images.

Standard deviation of values in the image, L.

A filtering function. See, e.g., Section 3.1.

Image.

Filtered image.

Error image. Difference between image
and its filtered version.

An element-wise image transformation, de-
fined in Eq. (8) or (9).

Small convergence threshold constant.

Constants.

Observed, degraded image.

Point spread function.

Convergence parameter.

Residual image at iteration n. See, e.g.,
Eq. (18).

““Significant residual.” See Egs. (20) and
(22).

Low pass filter.

10.

11

12.

13.

14.

15.

16.

17.

18.

20.
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