


Sparsity in Astrophysics:
From Wavelets to Compressed Sensing

Sparsity and the Bayesian Controversy Story
What is Sparsity

Compressed Sensing

Inverse Problem Tour and Sparse Revovery

Sparsity and 3D Weak Lensing




Interpolation of Missing Data: Sparse Inpainting

Where M is the mask: M(i,j)) = 0 ==> missing data
M(1,j) =1 ==> good data
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J.-L. Starck, A. Rassat, and M.J. Fadili, "Low-1 CMB Analysis and Inpainting", Astronomy and Astrophysics , in press.




Masked Simulated Data (Fsky=77%)

Large CMB Scale Analysis

Simulated CMB (lmax=10)
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DR Sparse Constraint Inpainting: Mask Fsky = 77%

DR Sparse Constraint Inpainting: Mask Fsky = 87%

J.-L. Starck, A. Rassat, and M.J. Fadili, "Low-1 CMB Analysis and Inpainting", Astronomy and Astrophysics , in press.




Error (%)

Inpainting
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Inpainting & CMB ANOMALIES

CMB Masknd CUB lopasted

A. Rassat

=> Low power no longer significant after subtraction of ISW signal

=> Subtracting the ISW effect removes CMB quad/oct anomaly

A. Rassat, J-L. Starck, and F.X. Dupe, "Removal of two large scale Cosmic Microwave Background anomalies
after subtraction of the Integrated Sachs Wolfe effect", Astronomy and Astrophysics , submitted.




Bayesian Perspective

Y =MX = M®P«a with ||all; minimum

o~ Alall

Prior on the solution: P(a) —
L . 2

Gaussian noise prior:  P(Y/«)

Bayes: P(alY) = P(Y|a)P(«a)

l Maximum a Posteriori (MAP)

min —log (P(a]Y)) =[| YV — A®a [|3 +A || o 1,




Bayesian Perspective

Prior: P(CM) — 6_>\Ha”1

Severe Critics from Bayesian Cosmologists against CMB Sparse Inpainting

1- Sparsity consists in assuming an anisotropy and a non Gaussian prior, which does
not make sense for the CMB, which is Gaussian and isotropic.

2- Sparsity violates the rotational invariance: The critic here is that a linear combinations of inde-
pendent exponentials are not independent exponentials.

3- The It norm that 1s used for sparse inpainting arose purely out of expediency
because under certain circumstances it reproduces the results of the lo norm,

(which arises naturally in the context of strict as opposed to weak sparsity) without
necessitating combinatorial optimization.

4- There 1s no mathematical proof that sparse regularization preserves/recovers the
original statistics.




Dictionary
(basis, frame)

Atoms

K
S = E apdr = Pa—
k=1

What is Sparsity?

A signal s (n samples) can be represented as sum of weighted elements of a given dictionary

Ex: Haar wavelet

coefficients
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Few large
coefficients

Many small coefficients

e=—>

Sorted index k’

. Fast calculation of the coefficients
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e  Analyze the signal through the statistical properties of the coefficients

*  Approximation theory uses the sparsity of the coefficients
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Strict Sparsity: k-sparse signals

A sine wave in
real space...

...can be a Dirac
in Fourier space.

Sinusoids are
sparse in the
Fourier domain.




Minimizing the lo norm

Sine curve Truncated sine curve
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TF of a sine curve {JTF of a truncated sine curve+

with 00=0, |l allo=>) af =# {ox # 0}
k




1% largest coefficients in real space
(the others are set to 0)

The top 1% of the
coefficients concentrate
only 8.66% of the energy.

Not sparse...




1% largest coefficients in wavelet space

The wavelet
coefficients encode U (the others are set to 0)

edges and large scale
information. Wavelet transform




Reconstruction, after throwing away
1% of the wavelet coefficients 99% of the wavelet coefficients
concentrate 99.96% of the energy:
This can be used as a prior.




Sparsity Model 1: we consider a dictionary
which has a fast transform/reconstruction operator:

Local DCT Stationary textures

Locally oscillatory

Piecewise smooth

Wavelet transform Isotropic structures

Curvelet transform Piecewise smooth,
edge

D ={d1,..., 0K}
K

s = Zakqﬁk = Qq
k=1

V4




Compressed Sensing

* E. Candeés and T. Tao, “Near Optimal Signal Recovery From Random Projections: Universal

Encoding Strategies? “, |IEEE Trans. on Information Theory, 52, pp 5406-5425, 2006.

* D. Donoho, “Compressed Sensing”, IEEE Trans. on Information Theory, 52(4), pp. 1289-1306, April 2006.

* E. Candes, J. Romberg and T. Tao, “Robust Uncertainty Principles: Exact Signal Reconstruction

from Highly Incomplete Frequency Information”, IEEE Trans. on Information Theory, 52(2) pp. 489 - 509, Feb. 2006.

A non linear sampling theorem

“Signals with exactly K components different from zero can be recovered
perfectly from ~ K log N incoherent measurements”

Replace samples with few linear projections y — @ T

M x 1
measurements

M x N

N x 1

sparse y — @SL’

signal

nonzero

K < M << N entries

Reconstruction via non linear processing: 11111 | | T | | 1 S. t . y — @SB
T




Randomly throw
away 83% of samples

|

* E.J. Candes, J. Romberg and T. Tao.




Minimum - norm
conventional linear
reconstruction

* E.J. Candes, J. Romberg and T. Tao.




Minimum - norm
conventional linear
reconstruction

[, minimization

E.J. Candes




Compressed sensing and the Bayesian interpretation failure

The first critic is that the 11 regularization is equivalent to assume that the solution is
Laplacian and not Gaussian, which does not make sense in case of CMB analysis.

==> The MAP solution 1on of the prior.

(Nikolova, 2007; Gribonval, 2011, Gribonval, 2012, Unser, 2012)

The beautiful Compressed Sensing counter-example

but x does NOT follow a Laplacian distribution




What Bayesian Perspective Cannot See !!!

For most Bayesian cosmologists, if a prior derives an algorithm, therefore to use this
algorithm, we must have the coefficients distributed according to this prior.

But this is simply a false logical chain.
What compressed sensing shows is that:

we can have prior A be completely true, but impossible to use for computation time
or any other reason, and can use prior B instead, and get the correct results!




But what is exactly the prior in the sparse analysis ?

Bayesian: each (spherical harmonic) coefficient is a realization of a stochastic
process.

Sparsity: we see the data as a function, and the coefficients follows a given
distribution. Even if each spherical harmonic coefficient i1s a realization of
Gaussian variable, the distribution of all coefficients is not necessary Gaussian.

CMB Spherical Harmonic Coefficients Histogram
6X1OS T T T T T T T T T T T T T T
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INVERSE PROBLEM TOUR and SPARSE RECOVERY

eDenoising
eDeconvolution

Y —_ H X —|— N eComponent Separation
eInpainting

X = Qo ,and (Y 1s sparse *Blind Source Separation

eMinimization algorithms
eCompressed Sensing

min ||a||7  subject to ||Y — Hdall? < e
87
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power-law decay
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DECONVOLUTION

- E. Pantin, J.-L. Starck, and F. Murtagh, "Deconvolution and Blind Deconvolution in Astronomy",
in Blind image deconvolution: theory and applications, pp 277--317, 2007.
- J.-L. Starck, F. Murtagh, and M. Bertero, "The Starlet Transform in Astronomical Data Processing:
Application to Source Detection and Image Deconvolution", Springer, Handbook of Mathematical
Methods in Imaging, in press, 2010.




Radio-Interferometry
H
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Measurement System

==2> See (McEwen et al, 2011; Wenger et al, 2010; Wiaux et al, 2009; Cornwell et
al, 2009; Suskimo, 2009; Feng et al, 2011).




CS-Radio Astronomy

Feng Li, Tim J. Cornwell and Frank De hooqg, ArXiv:1106.1711, Volume 528, A31,2011.

Australian Square Kilometer Array Pathfinder (ASKAP) radio telescope.

CEA - Irfu




CS-Radio Astronomy

MEM residual

Hogbom CLEAN

CEA - Irfu




Gamma Ray Instruments (Integral) - Acquisition with coded masks
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SVOM (future French-Chinese Gamma-Ray Burst mission)

saclay
irfu
- ECLAIRs france-chinese satellite ‘'SVOM’ (launch in 2014-2015)

Gamma-ray detection in energy range 4 - 120 keV
Coded mask imaging (at 460 mm of the detector plane)

Physical mask pattern
(46 x 46 pixels of 11.7 mm)
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ECLAIR could become the first CS-Designed Astronomical Instrument




Missing Data
Period detection in temporal series
Yy H P
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Observation Mask u
Measurement System
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COROT: HD170987




COROT: HD170987 with in-
arXiv:1003.5178 pal n tl n g

Original data |

s
'M‘fl |

in-painted|data




El a a
B
</Ppainting :
S. Pires, J.-L. Starck, A. Amara, R. Teyssler, A. Refregler and J. Fadill, "FASTLens (FAst STatistics for weak
Lensing) : Fast method for Weak Lensing Statistics and map making”, MNRAS, 395, 3, pp. 1265-1279, 2009.

Original map Masked map Inpainted map




PB: a given transform does not necessary provide a good dictionary for
all features contained in the data.




Morphological Diversity

°J.-L. Starck, M. Elad, and D.L. Donoho, Redundant Multiscale Transforms and their Application for Morphological Component Analysis, Advances in Imaging and
Electron Physics, 132, 2004. -

*J.-L. Starck, M. Elad, and D.L. Donoho, Image Decomposition Via the Combination of Sparse Representation and a Variational Approach, IEEE Trans. on
Image Proces., 14, 10, pp 1570--1582, 2005.

«J.Bobin et al, Morphological Component Analysis: an adaptive thresholding strategy, IEEE Trans. on Image Processing, Vol 16, No 11, pp 2675--2681, 2007.
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Curvelets Others

avelets

O=[...0.] a={a...a,}, s=¢a= E;qbkak

Sparsity Model 2: we consider a signal as a sum of K
components Sk, § = Zle sg €ach of them being sparse in
a given dictionary :

Sk = Prag
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Galaxy SBS 0335-052
10 micron
GEMINI-OSCIR




3D Morphological Component Analysis

Original (3D shells + Gaussians)

Dictionary
RidCurvelets + 3D UDWT.

A. Woiselle
Shells

Gaussians

- A . Woiselle, J.L. Starck, M J. Fadili, "3D Data Denoising and Inpainting with the Fast Curvelet transform", JMIV, 39,2, pp 121-139,2011.
- A. Woiselle, J.L.. Starck, M.J. Fadili, "3D curvelet transforms and astronomical data restoration", Applied and Computational Harmonic
Analysis, Vol. 28, No. 2, pp. 171-188, 2010.
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Revealing the structure of one of the nearest
infrared dark clouds (Aquila Main: d ~ 260 pc)

Herschel (SPIRE+PACS)
Column density map (H,/cm?)

}

11023

1022

1021




Dense cores form primarily in filaments

Morphological Component Analysis:

(P. Didelon based on
Herschel Column density map ¢ 1 i1 2003)
Cores Filaments

Wavelet component (H,/cm?) + Curvelet component (H,/cm?) -

110°

107

A. Menshchikov, Ph.André. P. Didelon, et al, “Filamentary structures and compact objects in the Aquila and Polaris clouds observed by
Herschel”, A&A, 518,1d.L103,2010.




Simulated Cosmic String Map




Dictionary Learning

Training basis.

(lA) A) argmin(Y = DA)
acc)

xDL: Matrix Factorization problem

C,: Constraints on the Sparsifying
dictionary D
C,: Constraints on the Sparse codes
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Sparsity Model 1: we consider a dictionary ¢ ={¢1,..., 0k}
which has a fast transform/reconstruction operator: K
= Z arpor = Pa
k=1

Local DCT Stationary textures ~ Wavelet transform Curvelet transform

V4

Piecewise smooth,

edge

Locally oscillatory

se smooth

ic structures

Sparsity Model 2: Morphological Diversity:

¢=[d...0.] a={a...a,}, s=¢a= E;qbkak

Sparsity Model 3: we adapt/learn the dictionary directly from the data

Model 3 can be also combined with model 2:

G. Peyre, M J. Fadili and J.L. Starck, , "Learning the Morphological Diversity", SIAM Journal of Imaging Science, 3 (3) , pp.646-669, 2016 .




Advantages of model 1: extremely fast.

Advantages of model 2:

- more flexible to model 1.

- The coupling of local DCT+curvelet is well adapted to a relatively large
class of images.

Advantages of model 3:

atoms can be obtained which are well adapted to the data, and which could
never be obtained with a fixed dictionary.

Drawback of model 3 versus model 1,2:

We pay the price of dictionary learning by being less sensitive to detect very
faint features.

Complexity: Computation time, parameters, etc




3D Weak Lensing
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The reconstruction problem

e Along one line of sight, the convergence x can be linked to the density
contrast ¢ through:

x(0) = Q4(6)

where Q is the lensing efficiency matrix. Depends on cosmology and binning
of the data.

Still Unknown: Convergence x Even less known: Density contrast ¢
(in orange) (in white)

CEA - Irfu




3D Weak Lensing

The convergence k, as seen in sources of a given redshift bin, is the linear

transformation of the matter density contrast, §, along the line-of-sight (Simon
et al 2009):

K=Q0+ N| with o)=pr/p—1

; w® ,
o 3HgQM W1 W(Z)(’w)fK(w) —(7) _ / d /fK (w —w ) ( %)
Qir = 502 / dw () . W (w) i w Fre () p(2) o o

We

where Hj is the hubble parameter, {25, is the matter density parameter, c is
the speed of light, a(w) is the scale parameter evaluated at comoving distance
w, and
K12 gin(K'/?w), K >0
fr(w) = < w, K=0,
(—K)~Y2sinh([-K]"?w) K <0

gives the comoving angular diameter distance as a function of the comoving
distance and the curvature, K, of the Universe.
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The reconstruction problem
Linear inversion methods

e Structures are smeared along the line of sight
e Bias in the reconstructed redshift
e Amplitude of density contrast heavily damped

e Overall noisy reconstruction

Reconstruction of a single cluster : ]
Typical response to a halo (from

[Simon et al. (2009)])

o0 s 1o
redshift

CEA - Irfu




CS-Weak Lensing

A. Leonard

Y Q) P
E B %
Shear
Measurements

M measurements:: number of bins in the source plane

T T TETETT O

N redshift bin for the density contrast

a0 3D Dark Matter Map Reconstruction

CEA - Irfu




3D Weak Lensing

Lensing efficiency
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=

3D Weak Lensing
Q 5 N

+
i r 11111

M measurements:

number of bins in the source plane

5 IS sparse.

Q spreads out the information in ) along/R, bins.

MxN (M>N)

N redshift bin for the density contrast

More unkown than measurements
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3D Weak Lensing

, 1
min | 6y st [y - Q65 e

Reconstructions of two clusters along the line of sight, located at a redshift 0.2 and 1.0 (data
binned into Nsp = 20 redshift bins, but aim to reconstruct onto Nlp = 25 redshift bins).

A. Leonard, F.-X. Dupe, J.-L. Starck, "A compressed sensing approach to 3D weak lensing",
Astronomy and Astrophysics, arXiv:1111.6478, A&A, 539, A85, 2012.
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Full 3D Weak Lensing

1
5 17— Q2 I5-1<e

6 — Py (P =2D Wavelet Transform on each redshift bin

min || « ||; s.t.
(84

Example of the reconstruction of a cluster at redshift z=0.2 using 5 times more
reconstruction bin:

2- 56




Sparsity in Astrophysics Conclusions

m Sparsity is very efficient for
Inverse problems (denoising, deconvolution, etc).
Inpainting

Component Separation (LOFAR, WMAP, PLANCK).

m Be very careful with Bayesian interpretation.

m Perspectives
CMB
Weak lensing

— Test the 3D reconstruction algorithm on a simulated weak lensing survey
from nbody simulations.

— Apply the algorithm to real data (COSMOS, CFHTLS) with all the added
fun (non-Gaussian noise, photometric redshift errors, missing data...)

57
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