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Sparsity and 3D Weak Lensing
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Where M is the mask: M(i,j) = 0  ==> missing data
                                    M(i,j) = 1  ==> good data

Interpolation of Missing Data: Sparse Inpainting

min
α

�α�1 subject to Y = MΦα

J.-L. Starck, A. Rassat, and M.J. Fadili, "Low-l CMB Analysis and Inpainting", Astronomy and Astrophysics , in press.

Y = MX

X = Φα Φ = Spherical Harmonics

�α�1 =
�

k

| αk |
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Large CMB Scale Analysis

J.-L. Starck, A. Rassat, and M.J. Fadili, "Low-l CMB Analysis and Inpainting", Astronomy and Astrophysics , in press.



Inpainting



Inpainting  & CMB ANOMALIES

 

=> Low power no longer significant after subtraction of ISW signal

=> Subtracting the ISW effect removes CMB quad/oct anomaly

 

A. Rassat, J-L. Starck, and F.X. Dupe, "Removal of two large scale Cosmic Microwave Background anomalies 
after subtraction of the Integrated Sachs Wolfe effect", Astronomy and Astrophysics , submitted.

A. Rassat



P (α) = e−λ�α�1

P (α|Y ) = P (Y |α)P (α)

Y = MX = MΦα with �α�1 minimum

P (Y/α) = e−�Y−AΦα�22

min
α
−log (P (α|Y )) =� Y −AΦα �2

2 +λ � α �1,

Bayesian Perspective

Bayes:

Maximum a Posteriori (MAP)

Gaussian noise prior:

Prior on the solution:



1- Sparsity consists in assuming an anisotropy and a non Gaussian prior, which does 
not make sense for the CMB, which is Gaussian and isotropic.

2- Sparsity violates the rotational invariance: The critic here is that a linear combinations of inde- 
pendent exponentials are not independent exponentials.

3- The l1 norm that is used for sparse inpainting arose purely out of expediency 
because under certain circumstances it reproduces the results of the l0 norm,
(which arises naturally in the context of strict as opposed to weak sparsity) without 
necessitating combinatorial optimization. 

4- There is no mathematical proof that sparse regularization preserves/recovers the 
original statistics.

P (α) = e−λ�α�1

Bayesian Perspective

Severe Critics from Bayesian Cosmologists against CMB Sparse Inpainting 

Prior:
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What is Sparsity?
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A signal s (n samples) can be represented as sum of weighted elements of a given dictionary  

Ex: Haar wavelet

Sorted index k’

Many small coefficients

Few large
 coefficients

Atoms
coefficients

Dictionary 
(basis, frame)

• Fast calculation of the coefficients 

• Analyze the signal through the statistical properties of the coefficients

• Approximation theory  uses  the sparsity of the coefficients
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Strict Sparsity: k-sparse signals
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Minimizing the l0 norm









Local DCT

Wavelet transform

Curvelet transform Piecewise smooth, 
edge

Piecewise smooth

Isotropic structures

Stationary textures

Locally oscillatory

Sparsity Model 1: we consider a dictionary 
 which has a fast transform/reconstruction operator:



Compressed  Sensing
* E. Candès and T. Tao, “Near Optimal Signal Recovery From Random Projections: Universal 
Encoding Strategies? “,  IEEE Trans. on Information Theory, 52, pp 5406-5425, 2006.
* D. Donoho, “Compressed Sensing”, IEEE Trans. on Information Theory, 52(4), pp. 1289-1306, April 2006.
* E. Candès, J. Romberg and T. Tao, “Robust Uncertainty Principles: Exact Signal Reconstruction 
from Highly Incomplete Frequency Information”,  IEEE Trans. on Information Theory, 52(2) pp. 489 - 509, Feb. 2006.

“Signals with exactly K components different from zero can be recovered 
perfectly from ~ K log N incoherent measurements”

A non linear sampling theorem

Reconstruction via non linear processing: 



A Surprising Experiment*

FT
↓

Randomly throw 
away 83% of samples

* E.J. Candes, J. Romberg and T. Tao.



A Surprising Result*

Minimum - norm 
conventional linear 

reconstruction

FT

↓

* E.J. Candes, J. Romberg and T. Tao.



A Surprising Result

FT

↓

Minimum - norm 
conventional linear 

reconstruction

l1 minimization

E.J. Candes 



Compressed sensing and the Bayesian interpretation failure

==> The MAP solution verifies the distribution of the prior. 

The first critic  is that the l1 regularization is equivalent to assume that the solution is 
Laplacian and not Gaussian, which does not make sense in case  of CMB analysis. 

but x does NOT follow a Laplacian distribution

The beautiful Compressed Sensing counter-example 

(Nikolova, 2007; Gribonval, 2011, Gribonval, 2012, Unser, 2012) 



What Bayesian Perspective Cannot See !!!

For most Bayesian cosmologists, if a prior derives an algorithm, therefore to use this 
algorithm, we must have the coefficients distributed according to this prior.

But this is simply a false logical chain. 

What compressed sensing shows is that:

we can have prior A be completely true, but impossible to use for computation time 
or any other reason,  and can use prior B instead, and get the correct results! 



But what is exactly the prior in the sparse analysis ?
Bayesian: each (spherical harmonic) coefficient is a realization of a stochastic 
process.

Sparsity: we see the data as a function, and the coefficients follows a given 
distribution. Even if each spherical harmonic coefficient is a realization of 
Gaussian variable, the distribution of all coefficients is not necessary Gaussian.



INVERSE PROBLEM TOUR  and SPARSE RECOVERY

power-law decay

sorted index

|α|

Measurement System

Not 
Random !

H Φ

•Denoising  
•Deconvolution
•Component Separation
•Inpainting
•Blind Source Separation  
•Minimization algorithms 
•Compressed Sensing  

, and       is sparseα

min
α
�α�p

p subject to �Y −HΦα�2 ≤ �



DECONVOLUTION  SIMULATION

PIXON

LUCY

Wavelet



- E. Pantin, J.-L. Starck, and F. Murtagh,  "Deconvolution and Blind Deconvolution in Astronomy", 
in  Blind image deconvolution: theory and applications, pp 277--317, 2007.

- J.-L. Starck, F. Murtagh, and M. Bertero, "The Starlet Transform in Astronomical Data Processing: 
Application to Source Detection and Image Deconvolution", Springer, Handbook of Mathematical 
Methods in Imaging, in press, 2010.

DECONVOLUTION



Radio-Interferometry 

 ==> See  (McEwen  et al, 2011; Wenger  et al, 2010; Wiaux et al, 2009; Cornwell et 
al, 2009; Suskimo, 2009; Feng et al, 2011).

Measurement System

  
FOURIER  

{
H



Australian Square Kilometer Array Pathfinder (ASKAP) radio telescope.

   CEA - Irfu  

CS-Radio Astronomy
The Applications of Compressive Sensing to Radio Astronomy: I Deconvolution
Feng Li, Tim J. Cornwell and Frank De hoog,   ArXiv:1106.1711, Volume 528, A31,2011.



   CEA - Irfu  

CS-Radio Astronomy

Hogbom CLEAN MEM residual



Gamma Ray Instruments (Integral) - Acquisition with coded masks

INTEGRAL/IBIS Coded Mask

Measurement System

  CODED 
Mask  

Crab Nebula  Integral Observation
Courtesy I. Caballero, J. Rodriguez (AIM/Saclay)

H



SVOM (future French-Chinese Gamma-Ray Burst mission)

 

Physical mask pattern 
(46 x 46 pixels of 11.7 mm)
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- ECLAIRs  france-chinese satellite ‘SVOM’ (launch in 2014-2015)
  Gamma-ray detection in energy range  4 - 120 keV
  Coded mask imaging (at 460 mm of the detector plane)

ECLAIR could become the first CS-Designed Astronomical Instrument 



Period detection in temporal series

COROT: HD170987

Measurement System
Observation Mask

FOURIER

Missing Data

Measurement System

H



arXiv:1003.5178





PB:  a given transform does not necessary provide a good dictionary for 
all features contained in the data.



Morphological Diversity

  

€ 

φ = φ1,K,φL[ ], α = α1,K,αL{ }, s = φα = φkk=1

L
∑ αk

•J.-L. Starck, M. Elad, and D.L. Donoho, Redundant Multiscale Transforms and their Application for Morphological Component Analysis, Advances in Imaging and 
Electron Physics, 132, 2004.
•J.-L. Starck, M. Elad, and D.L. Donoho, Image Decomposition Via the Combination of Sparse Representation and a Variational Approach, IEEE Trans. on 
Image Proces.,  14, 10,  pp 1570--1582, 2005.

•J.Bobin et al, Morphological Component Analysis: an adaptive thresholding strategy, IEEE Trans. on Image Processing, Vol 16, No 11, pp 2675--2681, 2007.

Sparsity Model 2:  we consider a signal as a sum of K 
components sk,                    ,  each of them being sparse in 
a given dictionary :



Galaxy SBS 0335-052

Curvelet IsotropicWT

Ridgelet



Galaxy SBS 0335-052
10 micron
GEMINI-OSCIR 



 

3D Morphological Component Analysis
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Original (3D shells + Gaussians)

Shells Gaussians

Dictionary
RidCurvelets + 3D UDWT.

- A . Woiselle, J.L. Starck, M.J. Fadili, "3D Data Denoising and Inpainting with the Fast Curvelet transform", JMIV, 39, 2, pp 121-139, 2011.
- A. Woiselle, J.L. Starck, M.J. Fadili, "3D curvelet transforms and astronomical data restoration", Applied and Computational Harmonic 
Analysis, Vol. 28, No. 2, pp. 171-188, 2010.

A. Woiselle



Revealing the structure of one of the nearest
infrared dark clouds (Aquila Main: d ~ 260 pc)



 A. Menshchikov, Ph.André.  P. Didelon, et al, “Filamentary structures and compact objects in the Aquila and Polaris clouds observed by 
Herschel”,  A&A, 518, id.L103, 2010.



Simulated Cosmic String Map 
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Dictionary Learning







S. Beckouche

Astronomical Image Denoising Using Dictionary Learning, S. Beckouche, J.L. Starck, 
and J. Fadili, A&A, submitted.



Local DCT Wavelet transform Curvelet transform

Sparsity Model 1: we consider a dictionary 
 which has a fast transform/reconstruction operator:

Piecewise smooth

Isotropic structures

Piecewise smooth, 
edge

Stationary textures

Locally oscillatory

Sparsity Model 2:  Morphological Diversity: 
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φ = φ1,K,φL[ ], α = α1,K,αL{ }, s = φα = φkk=1

L
∑ αk

Sparsity Model 3:   we adapt/learn the dictionary directly from the data

G. Peyre, M.J. Fadili and J.L. Starck, , "Learning the Morphological Diversity", SIAM Journal of Imaging Science, 3 (3) , pp.646-669, 2010.

Model 3 can be also combined with model 2:



Advantages of model 1: extremely fast.  

Advantages of model 3:  
atoms can be obtained which are well adapted to the data, and which could 
never be obtained with a fixed dictionary.
Drawback of model 3 versus model 1,2:
We pay the price of dictionary learning by being less sensitive to detect very 
faint features.
Complexity: Computation time,  parameters, etc

Advantages of model  2: 
- more flexible to model 1. 
- The coupling of local DCT+curvelet is well adapted to a relatively large 
class of images.



   CEA - Irfu  

3D Weak Lensing 



   CEA - Irfu  

The reconstruction problem



   CEA - Irfu  

3D Weak Lensing

Qi� =
3H2

0ΩM

2c2

� w�+1

w�

dw
W

(i)
(w)fK(w)

a(w)
,

δ(r) ≡ ρ(r)/ρ− 1κ = Qδ +N

where H0 is the hubble parameter, ΩM is the matter density parameter, c is
the speed of light, a(w) is the scale parameter evaluated at comoving distance
w, and

fK(w) =






K
−1/2 sin(K1/2

w), K > 0

w, K = 0

(−K)−1/2sinh([−K]1/2w) K < 0

,

gives the comoving angular diameter distance as a function of the comoving
distance and the curvature, K, of the Universe.

with

W
(i)
(w) =

� w(i)

0
dw� fK(w − w�)

fK(w�)

�
p(z)

dz

dw

�

z=z(w�)

The convergence κ, as seen in sources of a given redshift bin, is the linear
transformation of the matter density contrast, δ, along the line-of-sight (Simon
et al 2009):



   CEA - Irfu  

The reconstruction problem



   CEA - Irfu  3D Dark Matter Map Reconstruction 

  Lensing
Efficiency  

  Shear 
Measurements 

M  measurements:: number of bins in the source plane 
N  redshift bin for the density contrast

CS-Weak Lensing  

A. Leonard F.X. Dupe

Q



   CEA - Irfu  

3D Weak Lensing



   CEA - Irfu  

3D Weak Lensing

=

κ δQ

M  measurements:

number of bins in the source plane

M x N  (M > N)

N  redshift bin for the density contrast

+

N

δ is sparse.
Q spreads out the information in    along      bins.
More unkown than measurements

δ κ



   CEA - Irfu  

  3D Weak Lensing

Reconstructions of two clusters along the line of sight, located at a redshift  0.2 and 1.0 (data 
binned into Nsp = 20 redshift bins, but aim to reconstruct onto Nlp = 25 redshift bins).

 A. Leonard, F.-X. Dupe, J.-L. Starck, "A compressed sensing approach to 3D weak lensing", 
Astronomy and Astrophysics,  arXiv:1111.6478,  A&A, 539, A85, 2012.

min
δ
� δ �1 s.t.

1
2
� γ −Qδ �2Σ−1≤ � (1)



2-

  Full 3D Weak Lensing

min
α

� α �1 s.t.
1
2
� γ −QΦα �2Σ−1≤ � (1)

δ = Φα Φ = 2D Wavelet Transform on each redshift bin

56



Sparsity in Astrophysics Conclusions
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Sparsity is very efficient for

Inverse problems (denoising, deconvolution, etc).

Inpainting

Component Separation (LOFAR, WMAP, PLANCK).

Be very careful with Bayesian interpretation.

Perspectives

CMB

Weak lensing

– Test the 3D reconstruction algorithm on a simulated weak lensing survey
from nbody simulations.

– Apply the algorithm to real data (COSMOS, CFHTLS) with all the added
fun (non-Gaussian noise, photometric redshift errors, missing data...)




