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What is a good sparse representation for data?

2

A signal s (n samples) can be represented as sum of weighted elements of a given dictionary  

Ex: Haar wavelet

Sorted index k’

Many small coefficients

Few large
 coefficients

Atoms
coefficients

Dictionary 
(basis, frame)

• Fast calculation of the coefficients 

• Analyze the signal through the statistical properties of the coefficients

• Approximation theory  uses  the sparsity of the coefficients



Local DCT Wavelet transform Curvelet transform

Piecewise smooth

Isotropic structures

Piecewise smooth, 
edge

Stationary textures

Locally oscillatory



Critical Sampling                            Redundant Transforms

               Pyramidal decomposition (Burt and Adelson)
   (bi-) Orthogonal WT                                 Undecimated Wavelet Transform
   Lifting scheme construction                      Isotropic Undecimated Wavelet Transform
   Wavelet Packets                                        Complex Wavelet Transform
    Mirror Basis                                             Steerable Wavelet Transform
                                                                     Dyadic Wavelet Transform
                                                                     Nonlinear Pyramidal decomposition (Median)

 Sparsity Model 1: Multiscale Transforms

New Multiscale Construction

Contourlet                                               Ridgelet
Bandelet                                                  Curvelet (Several implementations)
Finite Ridgelet Transform                       Wave Atom
Platelet
(W-)Edgelet                                                  
Adaptive Wavelet    
Groupelet      



Morphological Diversity

  

€ 

φ = φ1,K,φL[ ], α = α1,K,αL{ }, s = φα = φkk=1

L
∑ αk

•J.-L. Starck, M. Elad, and D.L. Donoho, Redundant Multiscale Transforms and their Application for 
Morphological Component Analysis, Advances in Imaging and Electron Physics, 132, 2004.

•J.-L. Starck, M. Elad, and D.L. Donoho, Image Decomposition Via the Combination of Sparse 
Representation and a Variational Approach, IEEE Trans. on Image Proces.,  14, 10,  pp 1570--1582, 
2005.

Sparsity Model 2:  we consider a signal as a sum of K 
components sk,                    ,  each of them being sparse in 
a given dictionary :



Local DCT Wavelet transform Curvelet transform

Sparsity Model 1: we consider a dictionary 
 which has a fast transform/reconstruction operator:

Piecewise smooth

Isotropic structures

Piecewise smooth, 
edge

Stationary textures

Locally oscillatory

Sparsity Model 2:  Morphological Diversity: 

  

€ 

φ = φ1,K,φL[ ], α = α1,K,αL{ }, s = φα = φkk=1

L
∑ αk

Sparsity Model 3:   we adapt/learn the dictionary directly from the data

G. Peyre, M.J. Fadili and J.L. Starck, , "Learning the Morphological Diversity", SIAM Journal of Imaging Science, 3 (3) , pp.646-669, 2010.

Model 3 can be also combined with model 2:



	  	  Training	  basis.
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Sparsity Model 3: Dictionary Learning







- Wavelets 2D

- Ridgelet 2D

- Cuvelet 2D

- BeamCurvelet 3D

- RidCurvelet 3D

- FastCurvelet 3D

- 3D Morphological Diversity

2D and 3D Multiscale Geometric Transforms



NGC2997 NGC2997  WT



Problems related to the WT

" 1) Edges representation:
  if the WT performs better than the FFT to 
  represent edges in an image, it is still not optimal.

"2) There is only a fixed number of directional elements
  independent of scales.

" 3) Limitation of existing scale concepts: 
  there is no highly anisotropic elements. 



Wavelets and edges

• many wavelet coefficients are  
needed to account for edges  i.e. 
singularities along lines or 
curves :

• need dictionaries of strongly 
anisotropic atoms  :

 ridgelets, curvelets, contourlets, bandelettes, etc. 



SNR = 0.1





Undecimated Wavelet Filtering (3 sigma)



Ridgelet Filtering (5sigma)



Continuous Ridgelet Transform

Ridgelet function:

 The function is constant along lines. Transverse to these ridges, it is a wavelet. 

Ridgelet Transform (Candes, 1998):

€ 

Rf a,b,θ( ) = ψa,b,θ∫ x( ) f x( )dx

€ 

ψa,b,θ x( ) = a
1
2ψ

x1 cos(θ) + x2 sin(θ) − b
a

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 



The ridgelet coefficients of an object f are given by analysis 

of the Radon transform via:

€ 

Rf (a,b,θ) = Rf (θ,t)ψ( t − b
a∫ )dt



Slant Stack Radon Transform (Averbuch et al, 2001)    CUR01-SSR

2Nx2N



Linogram Slant Stack Radon 

Backprojection

Backprojection



● Ridgelet transform: Radon + 1D Wavelet

d0

  Ridgelet Transform

θ

d
θ0

image Radon domain

θ0

1D UWT
Rad. Tr.

1.     Rad. Tr.
2.     For each line, apply the same denoising 
     scheme  as before

d0



The partitioning introduces a redundancy, as a pixel belongs to 4 neighboring
blocks. 

Smooth partitioning

Image

Ridgelet
transform

LOCAL RIDGELET TRANSFORM



Poisson Noise and Line-Like Sources Restoration 
(MS-VST + Ridgelet)

Max Intensity
background = 0.01
vertical bar = 0.03
inclined bar = 0.04

simulated image of counts restored image 
from the left image of counts

underlying intensity image

 B. Zhang, M.J. Fadili and J.-L. Starck,  "Wavelets, Ridgelets and Curvelets for Poisson Noise 
Removal" ,ITIP,   Vol 17, No 7, pp 1093--1108, 2008.



J.-L. Starck, E. Candes, D.L. Donoho  The Curvelet Transform 
for Image Denoising,  IEEE Transaction on  Image Processing, 11, 6, 2002.

Width = Length^2 The Curvelet Transform (CUR01)

Redundancy 16J + 1 for J wavelet scales.
Complexity O(N2(log N)2) for N ×N images.



NGC2997



Undecimated Isotropic WT:

€ 

I(k, l) = cJ ,k,l + w j,k,lj=1

J
∑



PARTITIONING



The Fast Curvelet Transform, Candes et al, 2005

  CUR03 - Fast Curvelet Transform using the USFFT
  CUR04 - Fast Curvelet Transform using the Wrapping and 2DFFT



•J.L. Starck, E. Candes, and D.L. Donoho, "The Curvelet Transform for Image Denoising", IEEE Transactions on Image Processing , 11, 6, pp 670 -684, 
2002. 
•J.-L. Starck, M.K. Nguyen and F. Murtagh,  "Wavelets and Curvelets for Image Deconvolution: a Combined Approach",  Signal Processing, 83, 10, pp 
2279-2283, 2003.
•J.-L. Starck, E. Candes, and D.L. Donoho, "Astronomical Image Representation by the Curvelet Tansform" , Astronomy and Astrophysics, 398, 
785--800, 2003.
• J.-L. Starck, F. Murtagh, E. Candes, and D.L. Donoho, "Gray and Color Image Contrast Enhancement by the Curvelet Transform", IEEE Transaction on 
Image Processing, 12, 6, pp 706--717, 2003.



CONTRAST ENHANCEMENT USING THE CURVELET TRANSFORM

Curvelet coefficient

Modified
curvelet 
coefficient

€ 

˜ I = CR yc CT I( )( )

€ 

{
J.-L Starck, F. Murtagh, E. Candes and D.L. Donoho,  “Gray and Color Image Contrast Enhancement by the Curvelet Transform”,

IEEE Transaction on  Image Processing,  12, 6, 2003.
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x < cσ
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2cσ ≤ x < m
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x > m



Contrast Enhancement 





- E. Pantin, J.-L. Starck, and F. Murtagh,  "Deconvolution and Blind Deconvolution in Astronomy", 
in  Blind image deconvolution: theory and applications, pp 277--317, 2007.

- J.-L. Starck, F. Murtagh, and M. Bertero, "The Starlet Transform in Astronomical Data Processing: 
Application to Source Detection and Image Deconvolution", Springer, Handbook of Mathematical Methods 
in Imaging, in press, 2011.

DECONVOLUTION



 3D Multiscale Geometric Transforms

A. Woiselle, J.L. Starck and M.J. Fadili, "3D curvelet transforms and astronomical data restoration", Applied and Computational Harmonic 
Analysis, Vol. 28, No. 2, pp. 171-188, 2010.

A. Woiselle, J.L. Starck, M.J. Fadili, "3D Data Denoising and Inpainting with the Fast Curvelet transform", JMIV, 39, 2, pp 121-139, 2011.

Software:  http://jstarck.free.fr/cur3d.html

Curvelet 01  2D ==> 3D    
FastCurvelet 3D



 3D Wavelets

Orthogonal Wavelets Meyer Wavelets



3D extension of Curvelet

37

As in 2D, the 3D first generation curvelet transform we 
develop is based on the 3D ridgelet transform applied to 
localized blocks of the output of a  3D wavelet transform.

The essential ingredient is the projection slice theorem: the 
m-D FT of the projection of a d-D function onto an m-D 
linear submanifold is equal to an m-D central slice of the d-D 
FT parallel to the submanifold.

Two 3D extensions of the ridgelet transform:

Projections along  lines (3D partial Radon transform, 
d=3, m=2): BeamCurvelets.

Projecting along  planes (3D Radon transform, d=3, 
m=1): RidCurvelets.
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3D beamlet transform

38

γ ∈ L2(R2) with zero-mean and has sufficient decay (2D wavelet).

For each scale s > 0, position (b1, b2) ∈ R2 and orientation (θ1, θ2) ∈ [0, 2π) × [0, π), define the 2D
beamlet ψB

s,b1,b2,θ1,θ2
: R3 → R by

ψB
s,b1,b2,θ1,θ2

(x) = s−1/2 · γ((−x sin θ1 + y cos θ1 − b1)/s,

(x cos θ1 sin θ2 + y sin θ1 sin θ2 − z cos θ2 − b2)/s) .

The 3D beamlet transform of f(x), x ∈ R3 is the set of coefficients
�
f, ψB

s,b1,b2,θ1,θ2

�
.



 

Discrete 3D Beamlet transform

39

A. Woiselle, J.L. Starck and M.J. Fadili, "3D curvelet transforms and astronomical data restoration", Applied and Computational Harmonic 
Analysis, Vol. 28, No. 2, pp. 171-188, 2010.



 

Discrete 3D BeamCurvelet transform

40

Redundancy ≈ 3ρ3B, ρ ∈ [1, 2].
Complexity O(N3(log N)2) for N ×N ×N volume.

Algorithm: Fourier-based implementation.

Data: A data cube and a block size B.
Result: BeamCurvelet transform.
begin

Apply a 3D isotropic wavelet transform.
for j = 1 to J do

Smooth partition of the subband into block cubes
of size B.
for each block do

Apply a 3D FFT.
Extract planes passing through the origin at
every angle (θ1, θ2).
for each plane (θ1, θ2) do

Apply an inverse 2D FFT.
Apply a 2D wavelet transform to get the
BeamCurvelet coefficients.

if j is odd then according to the parabolic scal-
ing: B← 2B.

end



 

3D BeamCurvelets

41

It is constant along segments of direction (θ1, θ2), and a 2D wavelet function
transverse to this direction.

Adapted to filamentary structures in 3D.



 

3D BeamCurvelets
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Simulation Noise Data

Wavelet  
Thresholding

BeamCurvelet  
Thresholding



 

3D ridgelet transform
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ψ ∈ L2(R) with zero-mean and has sufficient decay.

For each scale s > 0, position b ∈ R and orientation (θ1, θ2) ∈ [0, 2π) × [0, π), define the 2D ridgelet
ψR

s,b,θ1,θ2
: R3 → R by

ψR
s,b,θ1,θ2

(x) = s−1/2 · ψ((x cos θ1 cos θ2 + y sin θ1 cos θ2 + z sin θ2 − b)/s) .

The 3D ridgelet transform of f(x), x ∈ R3 is the set of coefficients
�
f, ψR

s,b,θ1,θ2

�
.



 

3D Discrete ridgelet transform
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A. Woiselle, J.L. Starck and M.J. Fadili, "3D curvelet transforms and astronomical data restoration", Applied and Computational Harmonic 
Analysis, Vol. 28, No. 2, pp. 171-188, 2010.



 

Discrete 3D RidCurvelet transform
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Algorithm: Fourier-based implementation.

Data: A data cube and a block size B.
Result: RidCurvelet transform.
begin

Apply a 3D isotropic wavelet transform.
for j = 1 to J do

Smooth partition of the subband into block cubes
of size B.
for each block do

Apply a 3D FFT.
Extract lines passing through the origin at ev-
ery angle (θ1, θ2).
for each line (θ1, θ2) do

Apply an inverse 1D FFT.
Apply a 1D wavelet transform to get the
RidCurvelet coefficients.

if j is odd then according to the parabolic scal-
ing: B← 2B.

end

Redundancy ≈ 6ρ3, ρ ∈ [1, 2].
Complexity O(N3(log N)2) for N ×N ×N volume.



 

3D RidCurvelets 
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Denoising
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Denoised with BeamCurveletsDenoised with RidCurveletsNoisy data



 

3D Plane detection level
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3D Line detection level

49



 

Combined denoising

50

Amalgamate several transforms in a single dictionary Φ = [Φ1, · · · ,ΦK ] to
benefit from the best of each transform.

More flexbility to represent complex geometrical content: the blessing of over-
completness.

We have to solve

min
α

�α�p
p s.t. �g −Φα�2 ≤ �(σ) , 0 ≤ p ≤ 1.

Solutions by e.g.:

Convex optimization (monotone operator splitting).

Greedy pursuit.



 

Combined denoising results  

51

Cold Dark Matter simulations: clusters and filamentary structures with 
density of the filaments 3 orders of magnitude lower than the clusters.



 

Combined denoising results
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3D UDWT BeamCurvelets Combined denoising
BeamCurvelets+3D UDWT



 

Fast second generation 3D curvelets
3D Fast curvelet transform (Candes et al, 2005)
Curvelab, a C++/Matlab toolbox available at www.curvelet.org..

53

Redundancy:                               7.11 in 2D  and 24.38 in 3D
with walevets at the finest scale: 3.56 in 2D and 5.42 in 3D 



 

Fast second generation 3D curvelets

3D Fast curvelet transform.
Main differences with Candès et al. CurveLab :

Implementation: e.g. wavelet transform, overlapping angular windows.
Much less redundant than Candès et al. (2.3-10.3 instead of 5.4-24.4).
Faster in practice. 

54
. Woiselle, J.L. Starck, M.J. Fadili, "3D Data Denoising and Inpainting with the Fast Curvelet transform", JMIV, 39, 2, pp 121-139, 2011.



 

Fast second generation 3D curvelets
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Fast second generation 3D curvelets
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Meyer wavelets functions in Fourier domain. In the discrete case, we only have access to the Fourier samples inside the Shannon band 
[−1/2, 1/2], while the wavelet corresponding to the finest scale (solid red line) exceeds the Shannon frequency band to 2/3. Top : In the 
Curvelab implementation, the Meyer wavelet basis is periodized in Fourier, so that the exceeding end of the finest scale wavelet is 
replaced with the mirrored dashed line on the plot. Bottom : In our implementation, the wavelets are shrunk so that they fit in the [−1/2, 
1/2] Shannon band, and the decreasing tail of the finest scale wavelet is replaced by a constant (dashed red line) to ensure a uniform 
partition of the unity.



 

Example: denoising 
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Mean denoising PSNR versus noise level  using different FCT implementations. The denoising PSNR was averaged over ten noise 
realizations and several datasets. The LR-FCT is in blue. Original FCT implementation of Curvelab using curvelets (red) and wavelets 
(orange) at the finest scale.



 

Example: video denoising 
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Output PSNR as a function of the input PSNR for three video sequences. (a) mobile, (b) tempete, and (c) coastguard CIF sequence.  

Videos available at: www.cipr.rpi.edu



 

 

59

Top row : Mars Express observations at two different wavelengths. Bottom-left : two spectra at two distinct pixels. 
Bottom-right : output PSNR as a function of the input PSNR for different transforms 

Example: hyperspectral data denoising 
DATA: OMEGA spectrometer on Mars Express (www.esa.int/marsexpress) with 128 wavelength from 0.93μm to 2.73μm. 



 

Sparse component separation

60

Separate an image into its morphological components from g =
�K

k=1 fk+ε =
�K

k=1 Φkαk + ε, each αk is sparse in Φk but not (or less) sparse in Φk� �=k.

A sparse decomposition problem solved by MCA [Starck et al. 2004-2009].
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Results
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Original (3D shells + Gaussians)

Shells Gaussians

Dictionary
RidCurvelets + 3D UDWT.



 

Inpainting
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Restore an image from its degraded version with missing samples:

g = MΦα + ε ,

An instance of CS reconstruction.

Solve
min

α
�α�p

p s.t. �g −MΦα�2 ≤ � .

Can be solved by several algorithms, here we use an adaptation of MCA.



Original

Mask Inpainted

Dictionary
BeamCurvelets  



Masked (20%) Masked (50%) Masked (80%)

Central slice of the masked CDM data with 20, 50, and 80% missing voxels,
and the inpainted maps. The missing voxels are dark red.



First row : original central frame of the CDM data cube, and degraded version with missing voxels in red. 
Bottom row : the filtered results using the RidCurvelets (left) and the BeamCurvelets (right).



A sagittal ((y; z)) slice of the original synthetic 
MRI volume from BrainWeb. 
 

 
 random 80% missing voxels,

 10% missing z slices. 
 

 inpainting results with a  FCT
+UDWT dictionary.



 

Conclusions

Several 3D multiscale oriented representations.

Adapted to sparsify several geometrical structures: 
filamentary and planar segments.

Fast analysis and synthesis algorithms (FFT-based): 
parallel implementations.

 A wide variety of applications.
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