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ABSTRACT then a noisy linear mixture df. components:

It is a recurrent issue in astronomical data analysis that ob Ne
servations are incomplete maps with missing patches or in- x4(9,9) = Z Agjsi(3,9) +na(d,9) (1)
tentionally masked parts. In addition, many astrophysical =il
emissions are non stationary processes over the sky. All
these effects impair data processing techniques which workheres; is the emission template for thigh astrophysical
in the Fourier domain. Spectral matching ICA (SMICA) is process, herein referred to asaurceor acomponent The
a source separation method based on spectral matching ¢oefficientsAq; reflect emission laws whiley accounts for
Fourier space designed for the separation of diffuse astraoise. WherNy detectors provide independent observations,
physical emissions in Cosmic Microwave Background ob-his equation can be put in vector-matrix form:
servations. This paper proposes an extension of SMICA to
the waveletdomain and demonstrates the effectiveness of X(8,9)=AS3,0)+N(9,¢) (2
wavelet-based statistics for dealing with gaps in the data.

Keywords : blind source separation, cosmic microwave back- where X andN are vectors of lengtiNy, Sis a vector of

ground, wavelets, data analysis, missing data lengthNg, and A is theNg x N mixing matrix.
Given the observations of such a set of independent de-
1. INTRODUCTION tectors, component separation consists in recovering esti

) . ) mates of the maps of the sourcg$3,¢). Explicit com-
The detection of Cosmic Microwave Background (CMB) honent separation has been investigated first in CMB appli-
anisotropies on the sky has been over the past three deca¢ggions by [8], [7], and [9]. In these applications, recingr
a subject of intense activity in the cosmology community.component maps is the primary target, and all the parame-
The CMB, discovered in 1965 by Penzias and Wilson, is gers of the model (mixing matridg;, noise levels, statistics
relic radiation emitted some 13 billion years ago, when they the components, including the spatial power spectra) are
Universe was about 370 000 years old. Small fluctuationgssymed to be known and are used to invert the linear system.
of this emission, tracing the seeds of the primordial inho-  Recent research has addressed the case of an imperfectly
mogeneities which gave rise to present large scale stegturynqyn mixing matrix. It is then necessary, to estimate it (or
as galaxies and clusters of galaxies, were first discovered by |east some of its entries) directly from the data. For in-
the observations made.by COBE [1] and fprther |nvest|gategtance’ Tegmarkt al. assume power law emission spectra
by a number of experiments among which Archeops [2]or all components except CMB and SZ, and fit spectral in-
Boomerang [3], Maxima [4] and WMAP [5]. dices to the observations [10].

The precise measurement of these fluctuations is of ut-  More recently, blind source separation or independent
most importance to Cosmology. Their statistical propsrtie component analysis (ICA) methods have been implemented
(spatial power spectrum, Gaussianity) strongly depentient specifically for CMB studies. The work of Baccigalugi
cosmological scenarios describing the properties andievol g, [11], further extended by Mainet al. [12] implements
tion of our Universe as a whole, and thus permit to constraigy plind source separation method exploiting the non Gaus-
these models as well as to measure the cosmological paramganity of the sources for their separation, which pernuits t
ters describing the matter content, the geometry, and the evrecover the mixing matriA and the maps of the sources.
lution of our Universe [6]. Accounting for spatially varying instrumental noise in the

Accessing this information, however, requires disentanebservation model is investigated by Kuruoglual in [13],
gling in the data the contributions of several distinct@str as well as the possible inclusion of prior information about
physical sources, all of which emit radiation in the frequien  the distributions of the components using a generic Gauissia
range used for CMB observations [7]. This problem of com-mixture model.
ponent separation, in the field of CMB studies, has thus been Snoussi et al. [14] propose a Bayesian approach in the
the object of many dedicated studies in the past. Fourier domain assuming known spectra for the components

To first order, the total sky emission can be modeled aas well as possibly non-Gaussian priors for the Fourier-coef
a linear superposition of a few independent processes. THieients of the components. A fully blind, maximum likeli-
observation of the sky in directioff, ¢) with detectord is  hood approach is developed in [15] and [16], with the new



point of view that spatial power spectra are actually theomai ods, is able to recover Gaussian sources in noisy contexts.
unknown parameters of interest for CMB observations. At operates in the spectral domain and is basedmectral
key benefit is that parameter estimation can then be based diversity it is able to separate sources provided they have
a set of band-averaged spectral covariance matrices,dconsdifferent power spectra. This section gives a brief accofint
erably compressing the data size. SMICA. More details can be found in [16]; first applications
Working in the frequency domain offers several benefitso CMB analysis are in [16, 21].
but the non locality of the Fourier transform creates some
difficulties. In particular, one may wish to avoid the averag 2.1 Model and cost function
ing induced by the non locality of the Fourier transform whengq, 5 second-order stationaly-dimensional process, we
dealing with strongly non-stationary components or ndise. - yengte hyRy (v) the Ng x Ng spectral covariance matrix at
addition, in many experiments, only an incomplete sky COVirequencyv, that is, the(i, i)-th entry ofRx(v) is the power
erage is available. Either the instrument observes onlga fr pectrum of thé-th coorainate ofX while the off-diagonal
tion of the sky or, some regions of the sky must be maskeantries ofRy(v) contain the cross-spectra between the en-
due to localized strong astrophysical sources of contamingjes ofX. If X follows the linear model of equation (2) with

tion: compact radio-sources or galaxies, strong emitt&ig I jnjependent additive noise, then its spectral covariaree m
gions in the galactic plane. These effects can be mitigategiy is structured as

in a simple manner thanks to the localization properties o

wavelets. Rx(v) = ARs(V)AT+ Ry (V) 3)
Blind component separation (and in particular estimation ) ) _

of the mixing matrix), as discussed by Cardoso [17], carwith Rs(v) andRn(v) being the spectral covariance matrices

be achieved in several different ways. The first of these exof SandN respectively. The assumption of independence

ploits non-Gaussianity of all, but possibly one, composent between the underlying components implies Rgtv) is a

The component Separation method of Bacciga|upi [1]_] an@llqgonal matrix. We shall also assume Ind_ependen(_:e of the

Maino [12] belongs to this set of techniques. In CMB datanoise processes between detectors: magikv) also is a

analysis, however, the main component of interest (the CMBliagonal matrix. o ]

itself) has a Gaussian distribution and the observed mastur  In the definition ofRx (v), we have not explicitly defined

suffer from additive gaussian noise, so that better perforthe frequency. This is because SMICA can be applied for

mance can be expected from methods based on Gaussiél¢ separation of components in many contexts: each ob-

models. A second set of techniques exploits spectral diveservationXy can be a time series (one-dimensional), an im-

sity and works in the Fourier domain. It has the advantag@ge (two-dimensional random fields), a random field on the

that detector—dependent beams can be handled easily, sirghere (as in full-sky CMB studies). In each case, the appro-

the convolution with a point spread function in direct spacePriate notions of frequency, stationarity and power spewstr

becomes a simple product in Fourier space. SMICA followsshould be used.

this approach in the context of noisy observations. Finally ~ SMICA estimates all (or a subset of) the model parame-

third set of methods exploits non-stationarity. It is agaidp ~ ters

situations where components are strongly non-statiomary i 0 = {Rs(vg), Ru(vq), A}

real space. by minimizing a measure of ‘spectral mismatch’ between

It is natural to investigate the possible benefits of ex- . = .
ploiting both non-stationarity and spectral diversity ktind  Sample estimateBy (v) (defined below) of the spectral co-

component separation using wavelets. Indeed wavelets ao%r[[?]gce;?:ggte;:ggégf;ﬁni’grzbhea%\(’)?]r?g)es I‘\’Avg'r‘;hsdee%?fr_‘d
powerful tools in revealing the spectral content of non- P 9 q : P

stationary data. Although blind source separation in thdcally, an estimated = {Rs(vq),Ru(vq),A} is obtained as
wavelet domain has been previously examined, the setting = argmirp ¢(0) where the measure of spectral mismatch
here is different. We should mention, for instance, the sepap(0) is defined by

ration method in [19] which is based on the non-Gaussianity

of the source signals but aftesparsifyingwavelet transform Q R

and the Bayesian approach in [20] which adopts a similar ~ @(6) = ) aq@(Rx(Vq),ARs(vq)AT+RN(Vq)) (4)
point of view although with a richer source model account- g=1

ing for correlations in the wavelet representation.

The paper is organized as follows. In section 2, we firs
reca]l the prmuple of Spectral Mgtchlng ICA. Then, after ichatch between two positive matrices.
a brief reminder of some properties of thetrous wavelet This approach is a particular instance of moment match-
transform, we discuss in section 3 the extension of SMICA to hif . S fh ral
component separation in wavelet space in order to deal with'd: As such, If consistent estlma}ltﬁl(vq) 0 it r? Spec r?_
non-stationary data. Considering the problem of incorﬁpletpovar]"ancle r’r;]atrlcel?.x(vq) are a}valhab € a?dh' t e.mode IS
data as a model case of practical significance for the comp<';1'|qemI iable, then any reasonable choice of the weighnd

ison of SMICA and its extension wSMICA, numerical exper- 2! the divergence measute(-,) should lead taconsistent
iments and results are reported in section 4. estimates of the parameters. However, this does not mean

that these choices should be arbitrary: in our standardampl

2 SMICA mentation, we make specific choices (described next) in such
' a way that minimizingp(0) is identical to maximizing the

Spectral matching ICA, or SMICA for short, is a blind sourcelikelihood of 8 in a model of Gaussian stationary processes.

separation technique which, unlike most standard ICA methHence, these choices guarantee a good statistical effyjcienc

Here, {vq]1 < q < Q} is a set of frequenciegaq|l < q <
b} is a set of positive weights, and(-,-) is a measure of



when the underlying processes are well modeled as Gauspatially white noiseée. Ry(v) actually not depending ow.

sian stationary processes. When this is not the case, thoughctually, this latter algorithm was slightly modified in ad

the performance of SMICA may not be as good as (but noto deal with the case of colored noidkin (2). Another
necessarily worse than) the performance of other methodsseful enhancement was to allow for constraints to be set
designed to capture other aspects of the statistical lolistri on the model parameters so that prior information such as
tion of the data, such as non Gaussian features, for instancbounds on some entries of the mixing matfxcould be

Given a data set, deno¥(v) its discrete Fourier trans- included. Details are given in appendix A.
form at frequency and denotgFq|1 < g < Q} a set ofQ

frequency domains witlrq centered around frequenay,. The EM algorithm is straightforwardly implemented and
Spectral covariance matrices are estimated non parametfloes not require any tuning. It can quickly drive the spec-
cally by tral mismatch down to small values but is often unable to
~ 1 ST complete the optimization. Slow EM finishing is inherent to
Rx(vq) = g Z: X(V)X(v) () noisy models [22] and we have found it necessary to imple-
Vekq

ment a mixedad hocstrategy based on alternating EM steps

. Lo and BFGS steps [16].

Wherten? éjenot_?Fs th\?vnurrber of Fourier PO{?‘@&) in the We have also found that initialization is critical: criteni

tsr?:zer%seotmftl i) ueﬁ a‘t’)\’;ﬁ u:?Ols:yr;f]n;re]drlgnlor;;faﬂr:}s N (4) is probably multi-modal for many data sets. This issue
quencty 9 a y is not addressed in this paper though, since our prime inter-

also does. This symmetry guarantees Ratvg) is always a st is in the study of the statistical performances of dffier

real valued matrix wheiX itself is a real valued process.  estimators of the model parametéksin the simulations re-
Inits standard form, the SMICA technique uses positiveported below, the minimization af(6) is initialized at the
weightsaq = ng and a divergenc& defined as true mixing matrix and with spectral covariance matrices es

1 timated from the initial separate source and noise maps.
Ik (Re,Re) = 5 (trace{Rle’l) —logdefRiR, 1) — m)

6 . .
which is the Kullback-Leibler divergence between t\(n'E)) When running SMICA, power spectral densities for the
variate zero-mean Gaussian distributions with covariance®Urces and detector noise are obtained along with the es-
matricesR; andR,. These choices stem from the Whittle ap_t|mated mixing matrix. They are used_ln reconstructing the
proximation according to which eack(v) has a zero-mean SOUTce mapsia Wiener filtering in Fourier space: a Fourier
normal distribution with covariance matri (v) and is un-  MdeX(v) in frequency band € Fy is used to reconstruct
correlated withX (V') for v # v'. In this case, it is easily the maps according to
checked that-¢(0) evaluated withag = nq and 2 = Zk. A D P P
is (up to a constant) the log-likelihood fdr data samples. (V) = (A'Ru(V) A+ Rs(v) ) "A'R(v) " X(v) (7)

This is actually true when the spectral domains are shrunk to o o )

just one DFT pointifg=1 for all g); when the spectral do- In the limiting case where noise is small compared to signal

mainsF, are chosen to contain several (usually many) DFTCOmponents, the Wiener filter reduces to

points, then—@(0) is the log-likelihood, in the Whittle ap- . . N

proximation, of the Gaussian stationary model with cortstan S(v) = (A"Ru(v) 1A TATRN(v) TIX (V) (8)

power spectrum over each dom&p This approximation is ) o )

at small statistical loss when the spectrum is smooth enougNote however that the above Wiener filter is optimal only

to show little variation over each spectral domain. In front of stationary Gaussian processes. For weak, point-
The major gain of assuming constant spectrum over eadike sources such as galaxy clusters seenthe Sunyaev—

Fq is the resulting reduction of the data set to a small numZel'dovich effect (defined in section 4.1), much better reco

ber of covariance matrices. This may be a crucial benefit igtruction can be expected from non linear methods.

applications like astronomical imaging where very largeda

sets are frequent. 3. SPECTRAL MATCHING IN WAVELET SPACE

Regarding our application to CMB analysis, the hyIOOthe‘I'he SMICA method for spectral matching in Fourier space

S|rzetd |s\;)t£opy o{rthle ddlémizml\/c\)/ﬂho;:he scr)rurcesr:g?ndstenlqnm has already shown significant success for CMB spectral esti-
grate over spectral domains € correspo 9 SYMM&;ation in multidetector experiments. It is in particulateab

try. For sky maps small enough to be considered as flat, th[% identify and remove residuals of poorly known correlated

spectral decomposition is the two-dimensional FourieTsdfa o e mafics and astrophysical foreground emissions renta
form and the ‘natural’ spectral domains are rings centereﬁ]ating CMB maps. However, SMICA suffers from several
on the null frequency. For larger maps where curvature Cagiractical difficulties when deaiing with real data.

:

e e e o o Ideed, actial components are ko t depar sighty
the modes associated to a set of scales [21] om the ideal linear mixture model (2). The mixing ma-

: trix (in particular those columns & which correspond to
galactic emissions) is known to depend somewhat on the di-
rection of observation or on spatial frequency. Measutireg t
Minimizing the spectral mismatckp(6) can be achieved dependencé(d,¢) is of interest for future experiments as
using any optimization technique. Howevep, being a Planck, and can not be achieved directly with SMICA. Fur-
likelihood criterion in disguise, one can also resort tother, the components are known to be both correlated and non
the EM algorithm. This is detailed in [16] in the case of stationary. For instance, galactic dust emissions araglyo

2.3 Component map estimation

2.2 Parameter optimization



peaked towards the galactic plane. A non local spectral repA/e note that the lowest resolutidpay is obviously limited
resentation\ia Fourier coefficients ovia spherical harmon- by the data map size. The transform is readily inverted by
ics) mixes contributions from high galactic sky, nearlyefre

of foreground contamination, and contributions from withi J

the galactic plane. Noise levels themselves may be quite non co(k,l) =ca(k 1)+ .ZWi (k1) 9)
stationary, with high SNR regions observed for a long time =

and low SNR regions poorly observed. which is a simple addition of the smooth array with the detail

When there are sharp edges on the maps or gaps in tlﬂ@aps_
data, corresponding to unobserved or masked regions, spec-
tral estimation using the smooth periodogram of equatipn (53.2 Spectral matching in wavelet space: wSMICA

is not the most satisfactory procedure. Although apodizin ' . :
windows may help cope with edge effects in Fourier anal?.n order to define a sensible wavelet version of SMICA, we

ysis, they are not very straightforward to use in the case df'St rewrite the SMICA criterion (4) in terms of covariance
arbitrarily shaped maps with arbitrarily shaped gaps, ssch Matrices in the initial domain, where for instance the gaps
those encountered in the Archeops experiment [2] ’ are best described, rather than in the Fourier domain.

Clearly, the spectral analysis of gapped data require Consider_a batch of dgta samplext_:LT w_heret Is an
tools different from those used to process full data sets, i ppropriate index depending on the dimension of the data,

only because the hypothesized stationarity of the data i nd the set o) ideal band pass filters7q associated with

greatly disturbed by the missing samples. Common suc e non-overlapping frequency domaffigused in SMICA.

methods often amount to using standard spectral estimatogaenqg}g]go?lgﬁ(;(;)céhrﬁa?ﬁéaegltered througl#q, we define

after the gaps were filled with estimates of the missing sam-
ples. However, the data interpolation stage is criticalcard 1T
not be completed without prior assumptions on the data. An- Ry x(q) == qu(t)xq(t)T (10)
other idea, applicable to CMB analysis, is to process gapped ’ T &

data as if they were complete but to correct afterwards the o o ) ]

spectral estimates from the bias induced by the gaps [23pbtained by averaging in the original domain. Owing to the
We preferred to rely on methods intrinsically dedicated toUnitary property of the discrete Fourier transform, one has
the analysis of non-stationary data such as the wavelet-tran R o

form, widely used to reveal variations in the spectral cotite Rrx(0) = = Rx(vq) (11)

of time series or images, as they permit to single out regions T

in direct space while retaining localization in the freqogn \heren, was defined as the number of Fourier modes in
domain. We see next how to reformulate (4) in the wavelegpectral band;. These matrices are estimatesRafx (q) =

domain in order to deal with missing data. Note that, in th t - . :
. . g ' (Xg(t)Xy(t)"), the covariance matrix ofy(t). Again, ac-
following, the locations of the missing samples are assum:gordmg to model (3), the covariance matrices are agaig-stru

to be known. tured as
Rrx(0) = ARp s(q)A" + Re n(0) (12)

whereRr s(q) andRr n(q) are defined similarly t&r x (q).

The experiments described further down make use of the udence, minimizing the SMICA objective function (4) is then
decimatedh trousalgorithm with the 2D cubic B3 spline [24] equivalent to minimizing
as scaling function, for implementing a wavelet transform.
Although, depending on the data analysis problem, it is pos- Q - +
sible that a different choice can lead to better resultspfor ~ ®(6) = ) NqZkL (RT,X(Q), ARr s(Q)A" + RT,N(Q)) (13)
specific application, tha trouswavelet transform has several g=1
favorable properties. First, it is a shift invariant traorsh, .
the wavelet coefficient maps on each scale are the same sggh respect to the new set of parametefs =
as the initial image, and the wavelet and scaling function ,Rr.s(0), Re.n(a)).
have small compact supports on the data map. Hence missing Let us now consider using another set of filters in place
patches in the observed maps are easily handled. Second, #tehe ideal band pass filters used by SMICA. In dealing with
2D wavelet and scaling functions are nearly isotropic whichhon stationary data or, as a special case, with gapped data,
is best for the analysis of an isotropic gaussian field such is especially attractive to consider finite impulse rasge®
as the CMB, or of data sets such as maps of galaxy clugFIR) filters. Indeed, provided the response of such a fitter i
ters, which contain only isotropic features. The undecgtdat short enough compared to data sizand gap widths, most
isotropica trouswavelet transform has been shown to be wellof the samples in the filtered signal will be unaffected by
suited to the analysis of astrophysical data where trdoslat the presence of gaps. Using exclusively these samplesyield
invariance is desirable and where the emphasis is seldom @stimated covariance matrices which are not biased by the
data compression [24]. Further, with this choice of scalingmissing data, at the cost of a slight increase of variance due
function, the so called scaling equation is satisfied anethe to discarding some data samples_ In the following, we use
fore fast implementations of the decomposition and reconfilters g, Y, ..., Y3, @ (see figure 1) and the wavebetrous
struction steps of tha troustransform are available [24]. algorithm.

Given a 2D data sety(k,!), thea trousalgorithm pro- Consider again a batch df regularly spaced data sam-
duces recursively a set of detail mapgk,|) on a dyadic plesX-17. Possible gaps in the data are simply described
resolution scale and a smooth approximatem(k,|) [24].  with a masky i.e. an array of zeroes and ones of the same

3.1 Wavelet transform



" ‘ wavelet ransfer functions ‘ in SMICA since the latter amounts to using ideal band pass
filters. In other words, when no data points are missing, the
weights for wWSMICA are taken proportional to the size of the
frequency domains covered at each scale. This is

11 1 1
{og,02,...00,0001} = {5, 7. 53 55} 17

magnitude
5

in the one-dimensional case and
3 3 31

w* ai,a ,az,a 18
{ag,az,...,05,031} = {4 16 4374J} (18)
in the two-dimensional case.
Wy ot o1 o oz o5 5 In the case of data with gaps, we must further take into
reduced frequency account that some wavelet coefficients are discardedfiLet

denote the fraction of wavelets coefficients which are unaf-
Figure 1: Magnitudes averaged over spectral rings of théected by the gaps at scdleThe number of effective points
nearly isotropic cubic spline wavelet filtexgy, 2,..., 5 is reduced by this fraction and one should use the weights:
used in the simulations described further down. The vdrtica
dotted lines forv = {0.0130.0250.0450.09,0.2} delimit B1 Bz B3 BJ+1
the five frequency bands used with SMICA in these simula- {on,02,.... 05,0011} = {5 241 b (19
tions.

in the one-dimensional case and

351 352 3BJ BJ+1

size as the dat;—, 1 with ones corresponding to samples {o1,02,...,00,05:1} = { 167 4 —5-1 (20)
outside the gaps. Denotilg , W, . .. ,\Wj andC; the wavelet

scales and the smooth approximatiorXgbbtained with the  in the two-dimensional case. The fractios B; of discarded

a troustransform andus, ..., 4341 the masks for the differ- points depends on scaildeven with thea trous algorithm)
ent scales determined from the original masknowing the  because the length of the wavelet filter itself depends. on
different filter lengths, wavelet covariances are estith@® However, it is roughly scale independent, if the missingdat

follows: are large patches of much bigger size than the length of the
LT wavelet filters used at any scale in the wavelet decomposi-
Rwx(1<i<d)=r 5 mOWOWO' tion.
't= (14) Before closing, we note that the different wavelet filter
1 outputsW(t) are correlated due to the overlap between fre-
Rwx(J+1) = ZHJH )Ca(t)Ca (1)’ quency responses (figure 1). Optimal inference should take

this correlation into account but we have chosen not to do so

wherel; is the number of non zero samplegin With source  &Nd rather to stick to a simple criterion like (16) which ig-
and noise covariancéy i ) Rw.n (i) defined in a similar nores the correlations between sample covariance matrices
way, the covariance model in wavelet space becomes No big loss is expected from this choice because the wavelet

bands do not overlap very much.
Rw.x (i) = ARw s(i)AT + Rw n(i). (15)
Our wavelet-based version of SMICA consists in minimizing

the wSMICA criterion:
31 We ha\]{e simulated observationsl, consistingl’mﬁ 6dmix- g
~ . . . tures ofn = 3 components namely CMB, galactic dust an
®(0) = Z ai ki (RW’X(')v ARw (i) AT+ RWvN(')) SZ emissions for W?]ich templates were obtained as described
= (16) in [16]. See figure 2 for typical realizations.
with respect to@ = (A, Rw (i), Rw (i) for some sensible Dust emission is the greybody emission of small dust
choice of the weights. particles in our own galaxy. The intensity of emission is
strongly concentrated towards the galactic plane, althoug
The weights in the spectral mismatch (16) should be choeirrus clouds at high galactic latitudes are present as. well
sen to reflect the variability of the estimate of the corrégpo  The dust emission law is of the foruf B, (Tgus)) Wherea ~
ing covariance matrix. Examining first equation (13), we se€..7, B, (T) is the blackbody emission law afgyst~ 17 K
weights which are proportional t,, i.e. to the number of s the typical dust temperature in the interstellar medium.
DFT points used in computing the sample covariance ma- The Sunyaev Zel'dovich effect (SZ) is a small distortion
trix, because this is in fact the number of uncorrelated valof the CMB blackbody emission law caused by inverse
ues ofX(v) entering in the estimation d(vq). Itis also  Compton scattering of CMB photons on free electrons in
proportional to the size of the frequency domain over whicthot ionized gas, present mostly in clusters of galaxies. The
Rx(vq) is evaluated. Since wSMICA uses wavelet filters withenergetic electron, in the interaction, gives a fractiorit®f
only limited overlap, we choose to use the same strategy anergy to the scattered CMB photon, shifting its frequency

4. NUMERICAL EXPERIMENTS
4.1 Simulation of realistic maps



Figure 2: Samples of simulated component maps of CMB, DUZT, S

to a higher value. As a result, the SZ effect causes a shiftin The templates, and thus the mixtures in each simulated
CMB photon energy distribution, depleting the occupationdata set, consist of 300300 pixel maps corresponding to a
of low energy levels and populating high energy levels. Thel2.5° x 12.5° field located at high galactic latitude. The six
net effect, to first order, is a small additive emission, tigga mixtures in each set mimic observations that will evenguall
at frequencies below 217 GHz, and positive at frequenciele acquired in the six frequency channels of the Planck-HFI.
above. A review on SZ effect can be found in [25].
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The entries of the mixing matri& used in these simulations
actually are estimated values of the electromagnetic emis-
sion laws of each component at 100, 143, 217, 353, 545 and
857 GHz. See table 1.

CMB DUST sz | channel
7.452x10°1  3654x1072  —8733x10 1 100 GHz
5799x10°1  7.021x1072  —4689x 101 143 GHz
3206x10°1  1449x1071  —2093x10°3 217 GHz
7435x1072  3.106x10 1 1294x 1071 353 GHz
6.009x10°3  5398x 1071 2613x 1072 545 GHz
6.115x107°  7.648x10° 1 5.268x 104 857 GHz

Table 1: Entries oA\, the mixing matrix used in our simula-
tions.

White Gaussian noise is added to the mixtures according
to model (2) in order to simulate instrumental noise. While
the relative noise standard deviations between channels ar
set according to the nominal values of the Planck HFI, we
also experiment with fivgglobal noise levels at-20, —6,

—3, 0 and+3 dB from nominal values. Table 2 gives the
typical energy fractions that are contributed by each of the
n = 3 original sources and noise, to the total energy of each of
them = 6 mixtures, considering Planck nominal noise vari-
ance. In fact, because SMICA and wSMICA actually work
on spectral bands, a much better indication of signal tomois
ratio in these simulations is given by figure 4 whch shows
how noise and source energy contributions distribute veith r
spect to frequency in the six mixtures.

CMB DUST Sz noise | channel
991x101  118x1074  7.92x10°3 253x10°6 100 GHz
997x101 7255104  379x10°3 5.17x10 7 143 GHz
998x10°1  101x1072  248x1077 134x 1077 217 GHz
555x 101 48x10°1 9.78x 1073 7.47x10°8 353 GHz
25x1073 10 275x 1074 378x 1079 545 GHz
1.29x10°7 10 556x10°8  124x1010 | 857GHz

is expected to always be below nominal noise, that CMB

and dust strongly dominate in different channels and thataple 2: Energy fraction contributed by each source to the
CMB and dust spectra, without being proportional, displaytotal energy of each mixture, for the nominal noise variance
the same general behavior dominated by low modes.

on the Planck HFI channels.



Figure 3: Simulated observation maps based on the templad@s on figure (2), the mixing matrix on table 1 for the norhina

Planck HFI noise levels.

Finally, in order to investigate the impact of gaps in the
data, and the benefits of using wSMICA in place of SMICA
to deal with these gaps, the mask shown on figure 5 was
applied onto the mixture maps. The case where no data is
missing was also considered as a reference case. Spectral
matching with wSMICA is conducted using the output of the
five wavelet filters, . . ., 5 associated to higher frequency
details. For the sake of comparison, SMICA is run using five
bands in Fourier space which are similar to the dyadic bands
imposed by the wavelet transform, as shown on figure 1. This
latter choice of frequency bands is made to ease comparison
between SMICA and wSMICA.

4.2 Experimentswith noise-free mixtures

Preliminary experiments were conducted in the case of van-
ishing instrumental noise variance. In this case, the blind
component separation problem is ‘equivariant’, entaithreg

the quality of separation on a given mixture does not depend
at all on the mixing matriXA but only on the particular real-
ization of the sources and on the algorithm used for separa-
tion. More specifically, in the case of SMICA and wSMICA,
separation performance depends on the spectral divefsity o
the components and on the ability of both objective function
to exploit this diversity. Hence, the noise-free experitaém

this section are indicative of the spectral diversity of¢tben- ~ Figure 5: Mask used to simulate a gap in the déda left),
ponents, of the ability of (w)SMICA to capture it, and of the and the modified masks at scale@dp right) through 5(bot-
robustness of the (w)SMICA with respect to missing data. tom left) The discarded pixels are in black.

Note that in a noise-free model, the spectral matching
objective boils down to an objective of joint diagonalizatti
of the covariance matrices, as shown in [18]. Hence, sfdectra

ol




matching can be implemented using an efficient dedicated
algorithm [26].

The estimated components are related to the true one ac
cording to

0.25 T T T 0.25

0.2 1 021

S=.5S (21) 1

where .# is the product of the mixing matrix used in 015 ] 015t
simulations and of the separating matrix obtained by joint
diagonalization. It also includes any normalization neede
for the components and their estimates to have total energy o ] o1}
in all bands equal to 1. With this normalization, the squdre o
any off-diagonal term#; is directly related to the residual
level of contamination by componentin the recovered 005 ] 005t
componenti. Since performance in separating noise-free
mixtures is independent of the mixing matrix, the choice
of A'in the simulations is irrelevant: it does not change the 9™ o oo, 9 om0 o o
distribution of .#. In practice, our noise-free experiments off-diagonal entry off-diagonal entry
are conducted without any mixinge. we takeA to be the
3 x 3 identity matrix. The following steps were repeatedFigure 6: Histograms of the off diagonal term.gf, defined
1000 times: in equation (21), corresponding to the residual corrupbibn
"CMB” by "Dust” while separating Gaussian maps gener-

« Randomly pick one of each component maps out of th&ted with the same power spectra as the astrophysical com-

ilable 2 VB 1 ponents, by joint diagonalization of covariance matriges i
?T:/:gg_b e200cC maps, 30 dust maps and 1500 S Fourier (left) and wavele{right) space, with(black, which

e Compute covariance matrices in the five wavelet oAPPears grey when seen through whitenil without(white)

Fourier bands, both with and without masking part of theasking part of the the data. The dark widest histogram on
maps. ' the left highlights the impact of masking on source separa-

. : tion based on Fourier covariance matrices.
e Normalize each source so that its total energy over the

five bands is equal to one.
e Estimate a separating matrix by joint diagonalization of
the covariance matrices. NM M Han

These noise-free experiments are complemented using S1p | 0097 0.0076 0.074 0.038 0.024
‘surrogate’ data in order to assess the effect of any non-
Gaussianity or non-stationarity in the source templates. W
repeat the simulations on Gaussian stationary maps gener-
ated with the same spectra as the CMB, Dust and SZ com-
ponents. The resulting distribution of then only reflects Sr1 | 0017 0.0066 0.018 0.0t 0.017
the ability of (w)SMICA to exploit the spectral diversity of
the components independently of the other aspects of their

S13 | 0.0049 0.0044 0.005 0.006 0.0094

S>3 | 0.0064 0.0077 | 0.0066 0.0096 | 0.011

distribution.
The histograms on figure 6 are for the off diagonal term
corresponding to the residual corruption of CMB Gyus- F31 | 00024 0.0026 | 0.0028 0.0037 | 0.0039
sianDust in the second set of experiments (using surrogate
data). In tables 3 and 4, the results obtained with the syn- F3p | 00054 0.0071 | 00054 0.0079 | 0.01

thetic component maps are given as well as those obtained

with the surrogate Gaussian maps, in terms of the standard

deviations of the off-diagonal entrieg; defined by (21). Table 3: Standard deviations of the off-diagonal entrigs
When working on surrogate Gaussian maps withouglefined by (21) obtained while separating realistic compo-

masks, using covariance matrices in Fourier space or iRent maps by joint diagonalization of covariance matrices i

wavelet space gives similar performances. It is also satisf Fourier space, with 1) or without masking lM) part of

tory, when covariances in wavelet space are used with surréhe data, or applying an apodizing Hanning winddwa).

gate Gaussian maps, that each computed standard deviatié@mponents 1, 2 and 3 respectively stand for CMB, Dust and

0n|y s|ight|y increases when a mask is app|ied on the dat&>Z. The numbersiitalic were obtained with Gaussian maps

Indeed, as a consequence of incomplete coverage, there @l@j the underlined numbers correspond to the histograms in

less samples from which to estimate the covariances. This idigure 6.

crease is also observed when covariance matrices in Fourier

space are used with the surrogate Gaussian maps but it can

be as high as five-fold and it does not affect all the coeffi-

cients equally. Although this can again be attributed to¢he in Fourier space by the mask, is also part of the explana-

duced data size, the lowered spectral diversity between cortion. In fact, as shown on figure 4, CMB and dust spatial

ponents, because of the correlations and smoothing induc@dwer spectra are somewhat similee. show low spectral




NM M 12 | S13 | 21 | I3 | 31 | F32

S | 0015 0.0071 | 0.018 0.0079 NM | 0021 | 025 | 0.022 | 0.02 | 031 | 0.02

S13 | 0.0025 0.0029 | 0.0028 0.0031 M | 0023 | 029 | 0025 | 0.018 | 0.34 | 0.018

21| 0016 0.0077 | 0019 0.0089 Table 5: Standard deviations of the off-diagonal entrigs
defined by (21) obtained while separating realistic compo-

3 | 00041 0.0051 | 0.0048 0.0075 nent maps using JADE, wittM) and without maskingN M)

part of the data. Components 1, 2 and 3 respectively stand
for CMB, Dust and SZ.

S31 | 0.0024 0.0029 0.003 0.0039

32 | 0.0039 0.0054 | 0.0053 0.0085

actually have on the performance of estimation using Fourie
based statistics. We move on to investigating the effect of
Table 4: Standard deviations of the off-diagonal entrigs ~ additive noise on SMICA and wSMICA.
defined by (21) obtained while separating realistic compo- Picking at random one of each component maps out of
nent maps by joint diagonalization of covariance matrices i the available 200 CMB maps, 30 dust maps and 1500 SZ
wavelet space, with 1) and without masking M) part of ~maps, 1000 sets of six synthetic mixture maps were gener-
the data. Components 1, 2 and 3 respectively stand for CMBited as previously described, for each of the 5 noise levels
Dust and SZ. The numbersitalic were obtained with Gaus- chosen. Then, component separation was conducted using
sian maps and the underlined numbers correspond to the hi§€ spectral matching algorithms SMICA and wSMICA both
tograms in figure 6. with and without part of the maps being masked. A typical
run of SMICA or wSMICA in the setting considered here
(i.e. 300 by 300 maps, 6 mixtures, 3 sources, 5 wavelet
scales, no constraints on the mixing matrix) takes only a few
diversity, and further smoothing can only degrade the perfo seconds on a 1.25 Ghz Mac G4 when coded in IDL. The same
mance of the source separation algorithm based on Fourieptimization techniques are used for SMICA and wSMICA
covariances. since the two criteria have the same form.

In the case of realistic component maps, we note first Each run of SMICA and wSMICA on the data returns
that the comparison of the performance of component separastimatesAs andAy, of the mixing matrix. These estimates
tion using wavelet-based covariance matrices with and-withare subject to the indeterminacies inherent to the instanta
out mask again agrees with the different data sizes, whicheous linear mixture model (2). Indeed, in the case where
is not the case with covariances in Fourier space. Nexgptimization is over all paramete6s any simultaneous per-
whether covariance matrices are computed in Fourier spaggutation of the columns of and of the lines ofS leaves
or in wavelet space, we note that the terms coupling CMBhe model unchanged. The same occurs when exchanging a
and Dust are again much higher than with surrogate datscalar possibly negative factor between any colun amd
even on complete maps. This is probably to be attributed tthe corresponding line i8. Therefore, columnwise compar-
the non-stationarity and/or non-Gaussianity of the Dust-co ison of A; andA,, to the original mixing matrixA requires
ponent. Another point is that the CMB and Dust templatesirst fixing these indeterminacies. This is done ‘by hand’ af-
as in figure 2 exhibit sharp edges compared to SZ and this iRer As andA,, have been normalized columnwise.

evitably disturbs spectral estimation using a simple DEI. T The results we report next focus on the statistical proper-

assess this effect, simulations were also conducted where t.ties OfAf andﬂw as estimated from the 1000 runs of the two

icnogvar;%?](i:r?s \'IciEgg&%&;ﬁgggﬁggrﬁn‘:&@%gﬁ%gttgég?aﬁgg'&)mpeting methods in the several configurations retaimed. |
. act, the correct estimation of the mixing matrix in model (2
The results reported in table 3, to be compared to table 4, Jg a relevant issue for instance when it comes to dealing with

!snedpig?;?i gnsﬂg&t:gyvsg\?let;\e/isgs:é %i;:ilgt?(?s\/v;r;)%egl:’tssggger the cross calibration of the different detectors. Figure8 7
further complete this preliminary study, we conducted sim-and 9 show the results obtained, using the quadratic norm

ilar experiments using JADE [28], an ICA algorithm based 1
on fourth order statistics. This algorithm does not use spec i ~\2
QEj = Z (/*j - ,-)

tral information at all. As discussed earlier, such a metkod (22)

not expected to work well on CMB data and the results re-
ported in table 5 do show lower performance in comparisor\}vith A— A orA, and j — CMB, DUST or SZ, to assess

fo tables 3 and 4. the residual errors on the estimated emissivities of each
- . component. The plotted curves show how the mean of
4.3 Realistic experiments the above positive error measure varies with increasing
The results of the previous section show that, in the noisgloise variance. For the particular case of CMB, table 6
less case, using wavelet-based covariance matrices pmviddives tﬁe estimated standard deviations of the relativ@err
a simple and efficient way to cancel the bad impact that gap@; — Aij)/A;j on the estimated CMB emission law in the
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Figure 7: Comparison of the mean squared errors on the esE—. 9 C . fih q h .
mation of the emission law &M B as a function of noise in —'9ure 9: Comparison of the mean squared errors on the esti-

five different configurations: WSMICA without mask, wS- mation of the emission law &Z as a function of noise in five
MICA with mask. fSMICA Without mask. fSMICA \;vith different configurations: wSMICA without mask, wSMICA

; ; e ; with mask, fSMICA without mask, fSMICA with mask, fS-
mask, fSMICA with Hanning apodizing window. MICA with Hanning apodizing window.

error on estimated DUST emission law
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5 fourier + hanning
—&— fourier + mask
03l —+ fourier + no mask 1 4 4 4 4 4
< wavelet + no mask 44410~ 50410~ 6210~ 7.3410~ 72410~
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3 12403 | 1742073 | 12¢10°% | 14:10% | 23.10°3
& 16+10°4 | 2141074 | 2141074 | 20+104 | 274104
c
g 53:0°4 | 78104 | 56:104 | 57:104 | 1041073
E ooy | 70¢1074 | 1121073 | 76:104 | 84104 | 14¢10°3
104103 | 161073 | 10+10°3 | 104103 | 214103
o1p 1 1441073 | 224103 | 15403 | 174103 | 31103
15:10°3 | 184103 | 224103 | 25103 | 23:10°3
174103 | 2141073 | 23:103 | 264103 | 29103
a3y | 214103 | 26+10°3 | 2641073 | 28:10°3 | 3741073
27103 | 304103 | 2941073 | 30:103 | 42:10°3
o051 . . . , 3303 | 46:103 | 334103 | 35:03 | 6141073
-20 -6 -3 0 3
noise level in dB relative to nominal values
181072 | 2041072 | 275102 | 304102 | 25102
. . 19102 | 214102 | 274102 | 21:10°2 | 27%10°2
Figure 8: Comparison of the mean squared errors on the es- gy | 214202 | 2402 | 2802 | 31102 | 2902
. . L . . 2741072 | 2841072 | 3141072 | 3041072 | 354102
timation of the emission law dDUST as a function of noise 3002 | 410102 | 25102 | 272102 | 49102
in five different configurations: wSMICA without mask, wS-
: ; ; -1 -1 -1 -1 -1
MICA with mask, fSMICA without mask, fSMICA with 40:2071 | 45070 | 61071 | 66:107 | 56107
. . L. R 42410~ 47410~ 6,110~ 6510 58110~
mask, fSMICA with Hanning apodizing window. oy | 4501 | 5007l | 6107t | 6741071 | 6as10l
5741071 | 5941071 | 67x10°1 | 67x10°1 | 7.5410°1
62«10°1 | 84«1071 | 50«10°1 | 55:10°1 10
. . . . . 57410 6.2+10 85+101 9.2¢10% 7.8¢10%
)
six channels of Planck’s HFI in the different configurations 5810l | 650l | s6a0l | end0t | sidol
r ined. A1 6.2¢10 6.9+10% 8.6+10% 9.4+10 8.9¢10
etained 7.9¢10 8.2x10 9.3+10L 9.2¢10 1.0+102
8.6+10 124102 6.9+10 7.7x10 144102

Closer to our source separation objective, a more signifitaple 6: Standard deviations of the relative errors on the
cant way of assessing the qualitydf andA,, as estimators  estimated emission lawss; of CMB in Planck’s HFI six
of the mixing matrixA, would be to use the following inter- channels. The column labels WNM, WM, FNM, FM, FHan
ference to signal ratio: are for the different configurations, respectively: wSMICA
5 o without mask, wSMICA with mask, fSMICA without mask,
ISR = Yizj IO (23) fSMICA with mask, fSMICA with Hanning apodizing win-
ijJ. gj2 dow. The five figures in each box are for noise variance -20,
' -6, -3, 0 and 3 dB from nominal Planck values.
where theo; are the source variances and

7 = (ATRY*A) AR A (24)
and 12 show how the mean ISR from the 1000 runs of
with Ry the noise covariance. The plots on figures 10, 1ISMICA and wSMICA in different configurations varies with
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Figure 10: Comparison of the mean ISR @B as a func- Figure 12: Comparison of the mean ISR &# as a function
tion of noise in five different configurations namely : wS- of noise in five different configurations namely : wSMICA
MICA without mask, wSMICA with mask, fSMICA without without mask, wSMICA with mask, fSMICA without mask,
mask, fSMICA with mask, fSMICA with Hanning apodizing fSMICA with mask, fSMICA with Hanning apodizing win-
window. dow.

~ residuals in DUST
10 T

tions and are non stationary. Maps with gaps are a particu-

—— wavelet + no mask

o vt mask lar instance of practical significance. Substituting c@amce
jourier + hannin . . . . . .
7 fourier + no mask matching in Fourier space by covariance matching in wavelet

—&— fourier + mask

space makes it possible to cope with gaps of any shape in a
very straightforward manner. Mainly, it is the finite length
the wavelet filters used here that allows the impact of edges
and gaps on the estimated covariances and hence on compo-
nent separation to be lowered. Optimally choosing the FIR
filter-bank regarding a particular application is a possfhr-
ther enhancement.

Our numerical experiments, based on realistic simula-
tions of the astrophysical data expected from the Planck mis
‘ ‘ ‘ ‘ ‘ sion, confirm the benefits of correctly processing existing
-2 I - L gaps. Clearly, other possible types of non-stationariti¢ise

collected data such as spatially varying noise or component

Figure 11: Comparison of the mean ISR BWST as a func- variance, etc. could be dealt with very simply in a similar
tion of noise in five different configurations namely : wS- fashion using the wavelet extension QfSMICA' )
MICA without mask, wSMICA with mask, fSMICA without Regarding future work, a few points are in order. First,

mask, fSMICA with mask, fSMICA with Hanning apodizing We note that possible correlations between the components
WindO’W. ' are not accounted for in SMICA or wSMICA as presented

here. However, it is not difficult in principle to handle such
known or suspected correlations by adding off diagonal pa-
rameters in the model spectral covariances of the sources.
increasing noise. Still, in the case of CMB analysis from high frequency obser-
We note again that the performance of wSMICA behaveyations which contain only one galactic component (Dust) as
as expected when noise increases and if part of the dataiis our simulations, spatial correlations between comptsen
missing. However this is not always the case with SMICA.should not be a problem.
Finally this set of simulations, conducted in a more reialist We note that the proposed wavelet based approach, as
setting with respect to ESA's Planck mission, again confirmsmplemented with the standa® trous wavelet transform,
the higher performance, over Fourier analysis, that weddde offers little flexibility in the spectral bands availabler f@S-
expected from the use of wavelets. The latter are able to coMICA while the Fourier approach gives complete flexibility
rectly grab the spectral content of partly masked data mags this respect. But it is possible, even straightforwamdjte

10

mean interference to signal ratio

10”

and from there allow for better component separation. other transforms such as tletrous wavelet packet trans-
form, or thecontinuousvavelet transform, or in fact any set
5 CONCLUSION of linear filters, preferably FIR filters. This in turn raises

the question of optimally choosing this set of filters, keep-
This paper has presented an extension of the Spectral Matcimg in mind that higher resolution in Fourier space requires
ing ICA algorithm to the wavelet domain, motivated by thelonger filters which is not desirable in the case of incomgplet
need to deal with components which exhibit spatial correlaer non-stationary data. In fact, the optimal selection ofdsa



Figure 13: First and second row: estimated component maiasnel with SMICA and wSMICA respectively. These esti-
mates result from applying a Wiener filter in each frequerarydbor wavelet scale based on the optimized model parameters
(see section 2.3). Third row: the initial source templafe=r applying the optimal Wiener filter obtained with SMIGA. the
same as the top row but leaving out noise and residual con#dimns. Bottom row: maps estimated using JADE [28]. The

initial source maps are shown figure 2.



is clearly a meaningful question both for SMICA and wS-  In the white noise case, Ry q = Ry, equation (26) be-
MICA. comes:
We also note that in the CMB application, the compo- 1
nents have quite different statistical properties: soneeear ®(6,6)= ——tr((A— RERSS1)RSS
pected to be very close to Gaussian (like the CMB) whereas 2
others are strongly non Gaussian (like SZ). The non Gaus- (A— R%SRSSfl)TRﬁl) +consi  (31)
sianity of some components does not affect the consistency -
of our estimator but, for a given spectrum, it does affect thavhere :
distribution of the estimates although this impact is nat-ea s s s s
ily predicted. It is clear, however, that ignoring the sgon R®= anRé and R*®= Z”qR3 (32)
non Gaussianity of some components is a loss of informa- ) g ) a
tion. Devising a method able, with reasonable complexityAgain, this can be re-written as :
to exploit jointly non gaussianity (as in traditional ICActe 1
niques) and spectral information (as in Fourier or wavelet ®(8,0) = *E(ﬁ*///)To@(ﬁ*///)JrconSA (33)

SMICA) appears as a difficult challenge.
where:

A. APPENDIX : EM ALGORITHM WITH o =vech , 2=Ry '® anRaS (34)
CONSTRAINTSON THE MIXING MATRIX T q

ConsideringQ separate frequency bands of siag with -1
Y ng = 1, the EM functional derived for the instantaneous A =vect| [ 5 ngRy| | Y noRy’ (35)
mixing model (2) with independent Gaussian stationary q q

sourcessSand noiseN is: “ N . .
Here “vect” builds a column vector with the entries of a ma-

_ trix taken along its rows. Now let us consider linear con-
®(8,0) = &{logp(X,58)|6} (25) straints on the mixing matrix, specified as follows :
with 0 = (ARs1....Rso,Rv1,....RnQ) and A —atp) =0 (36)

6 = (ARsq,---,Rs0, .- Ryo)- The maximiza- ) L .
tion s(t_epr%lf the_ERABgl’éorithﬁNg()aeks then to maximizeWherng is a matrix with as many columns as constraints, and

®(6, 0) with respect tod and the optimaP is used as the the columns pfﬁ are_the same size asg. The maximum pf
vaiue for6 at the next EM step, and so on until satisfactoryth® EM functional with respect t8 subject to the specified
convergence is reached. Explicit expressions are easil{i€ar constraints is then reached for:

derived for the optimalg in the white noise case where o =M -2 ¢ (%1971%)*1%1(%_%) (37)
an interesting decoupling occurs between the re-estigatin

equations for noise variances, source variances and ti@d

mixing matrix [15]. Rgq = diagRy) (38)

) _ ) where “diag” returns a diagonal matrix with the same diago-
Linear equality constraints nal entries as its input argument.
WhenA is subject to linear constraints, the joint maximiza- N thefreenoisecase, things are quite similar except that

tion of the EM functional with respect to all model param- the noise covariance matricBg q do not factor out as nicely.

eters is no longer easily achieved in general. In fact, ond"€ EM functional is again expressed as :

cannot simply decouple the re-estimating rules for theenois 1 N

parameters and the mixing matrix and these have to be op- ®(6,6) = —é(%—///) (o — M) +consh  (39)

timized separately. We give next the modified re-estimatin%vh i thi )

equations for the mixing matrix and the source variances i ere in this case:

the case of constant noise( 6 = (A,Rs1,...,Rsq) ). 9 Z anN.lq QRS (40)
First, let us exhibit the quadratic dependence of the EM q '

functional®(8,0) onA: and

M= e@lvect<% anNhR{;S> (41)

Then, the maximum of the EM functional with respectBto
_AR)QSTRN,lq _ R’ESATRN,%) +consh (26)  subjectto the specified linear constraints is again reaftired

A =M -2 (6276 M- )  (42)

®(6,0) = —% Z nqtr(ARESATRﬁh
q

where
and _
Cq= (ATR LA+ Rep) ™t (@7 Rgq = diagRY’) (43)
W, — ATR-IA 4L Rz IATR-L og) These expressions of the re-estimates of the mixing matrix
d (ARvaA+ Rsg) N Ria (28) can become algorithmically very simple when for instance
R{f: Rx,qWJ (29) the linear constraints to be dealt with affect separatesline

s 5t of A, or even simpler when the constraints are such that the
RE - WoRx.a\Wg +Cq (30)  entries ofA are affected separately.



Positivity constraintson the entries of A [12]

Suppose a subset of entriesffire constrained to be posi-

tive. The maximization step of the EM algorithm Aralone,

again has to be modified. We suggest dealing with such con-
straints in a combinatorial way rephrasing the problem id13]
terms of equality constraints. If the unconstrained maximu

of the EM functional is not in the specified domain, then one
has to look for a maximum on the borders of that domain{14]
on a hyperplane, on the intersection of two, or three, or more
hyperplanes. One important point is that the maximum of the
EM functional with respect té\ subject to a set of equality
constraints will necessarily be lower than the maximum of
the same functional considering any subset of these egualit
constraints. Hence, not all combinations need be exploref15]
and a Branch and Bound type algorithm is well suited [27]. A
straightforward extension allows to deal with the case wher

a set of entries of the mixing matrix are constrained by upper
and lower bounds. [16]
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