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ABSTRACT

It is a recurrent issue in astronomical data analysis that ob-
servations are incomplete maps with missing patches or in-
tentionally masked parts. In addition, many astrophysical
emissions are non stationary processes over the sky. All
these effects impair data processing techniques which work
in the Fourier domain. Spectral matching ICA (SMICA) is
a source separation method based on spectral matching in
Fourier space designed for the separation of diffuse astro-
physical emissions in Cosmic Microwave Background ob-
servations. This paper proposes an extension of SMICA to
the waveletdomain and demonstrates the effectiveness of
wavelet-based statistics for dealing with gaps in the data.

Keywords : blind source separation, cosmic microwave back-
ground, wavelets, data analysis, missing data

1. INTRODUCTION

The detection of Cosmic Microwave Background (CMB)
anisotropies on the sky has been over the past three decades
a subject of intense activity in the cosmology community.
The CMB, discovered in 1965 by Penzias and Wilson, is a
relic radiation emitted some 13 billion years ago, when the
Universe was about 370 000 years old. Small fluctuations
of this emission, tracing the seeds of the primordial inho-
mogeneities which gave rise to present large scale structures
as galaxies and clusters of galaxies, were first discovered in
the observations made by COBE [1] and further investigated
by a number of experiments among which Archeops [2],
Boomerang [3], Maxima [4] and WMAP [5].

The precise measurement of these fluctuations is of ut-
most importance to Cosmology. Their statistical properties
(spatial power spectrum, Gaussianity) strongly depend on the
cosmological scenarios describing the properties and evolu-
tion of our Universe as a whole, and thus permit to constrain
these models as well as to measure the cosmological parame-
ters describing the matter content, the geometry, and the evo-
lution of our Universe [6].

Accessing this information, however, requires disentan-
gling in the data the contributions of several distinct astro-
physical sources, all of which emit radiation in the frequency
range used for CMB observations [7]. This problem of com-
ponent separation, in the field of CMB studies, has thus been
the object of many dedicated studies in the past.

To first order, the total sky emission can be modeled as
a linear superposition of a few independent processes. The
observation of the sky in direction(θ ,ϕ) with detectord is

then a noisy linear mixture ofNc components:

xd(ϑ ,ϕ) =
Nc

∑
j=1

Ad jsj(ϑ ,ϕ)+nd(ϑ ,ϕ) (1)

wheresj is the emission template for thejth astrophysical
process, herein referred to as asourceor acomponent. The
coefficientsAd j reflect emission laws whilend accounts for
noise. WhenNd detectors provide independent observations,
this equation can be put in vector-matrix form:

X(ϑ ,ϕ) = AS(ϑ ,ϕ)+N(ϑ ,ϕ) (2)

whereX and N are vectors of lengthNd, S is a vector of
lengthNc, and A is theNd ×Nc mixing matrix.

Given the observations of such a set of independent de-
tectors, component separation consists in recovering esti-
mates of the maps of the sourcessj(ϑ ,ϕ). Explicit com-
ponent separation has been investigated first in CMB appli-
cations by [8], [7], and [9]. In these applications, recovering
component maps is the primary target, and all the parame-
ters of the model (mixing matrixAd j, noise levels, statistics
of the components, including the spatial power spectra) are
assumed to be known and are used to invert the linear system.

Recent research has addressed the case of an imperfectly
known mixing matrix. It is then necessary, to estimate it (or
at least some of its entries) directly from the data. For in-
stance, Tegmarket al. assume power law emission spectra
for all components except CMB and SZ, and fit spectral in-
dices to the observations [10].

More recently, blind source separation or independent
component analysis (ICA) methods have been implemented
specifically for CMB studies. The work of Baccigalupiet
al. [11], further extended by Mainoet al. [12] implements
a blind source separation method exploiting the non Gaus-
sianity of the sources for their separation, which permits to
recover the mixing matrixA and the maps of the sources.
Accounting for spatially varying instrumental noise in the
observation model is investigated by Kuruogluet al in [13],
as well as the possible inclusion of prior information about
the distributions of the components using a generic Gaussian
mixture model.

Snoussi et al. [14] propose a Bayesian approach in the
Fourier domain assuming known spectra for the components
as well as possibly non-Gaussian priors for the Fourier coef-
ficients of the components. A fully blind, maximum likeli-
hood approach is developed in [15] and [16], with the new



point of view that spatial power spectra are actually the main
unknown parameters of interest for CMB observations. A
key benefit is that parameter estimation can then be based on
a set of band-averaged spectral covariance matrices, consid-
erably compressing the data size.

Working in the frequency domain offers several benefits
but the non locality of the Fourier transform creates some
difficulties. In particular, one may wish to avoid the averag-
ing induced by the non locality of the Fourier transform when
dealing with strongly non-stationary components or noise.In
addition, in many experiments, only an incomplete sky cov-
erage is available. Either the instrument observes only a frac-
tion of the sky or, some regions of the sky must be masked
due to localized strong astrophysical sources of contamina-
tion: compact radio-sources or galaxies, strong emitting re-
gions in the galactic plane. These effects can be mitigated
in a simple manner thanks to the localization properties of
wavelets.

Blind component separation (and in particular estimation
of the mixing matrix), as discussed by Cardoso [17], can
be achieved in several different ways. The first of these ex-
ploits non-Gaussianity of all, but possibly one, components.
The component separation method of Baccigalupi [11] and
Maino [12] belongs to this set of techniques. In CMB data
analysis, however, the main component of interest (the CMB
itself) has a Gaussian distribution and the observed mixtures
suffer from additive gaussian noise, so that better perfor-
mance can be expected from methods based on Gaussian
models. A second set of techniques exploits spectral diver-
sity and works in the Fourier domain. It has the advantage
that detector–dependent beams can be handled easily, since
the convolution with a point spread function in direct space
becomes a simple product in Fourier space. SMICA follows
this approach in the context of noisy observations. Finally, a
third set of methods exploits non-stationarity. It is adapted to
situations where components are strongly non-stationary in
real space.

It is natural to investigate the possible benefits of ex-
ploiting both non-stationarity and spectral diversity forblind
component separation using wavelets. Indeed wavelets are
powerful tools in revealing the spectral content of non-
stationary data. Although blind source separation in the
wavelet domain has been previously examined, the setting
here is different. We should mention, for instance, the sepa-
ration method in [19] which is based on the non-Gaussianity
of the source signals but after asparsifyingwavelet transform
and the Bayesian approach in [20] which adopts a similar
point of view although with a richer source model account-
ing for correlations in the wavelet representation.

The paper is organized as follows. In section 2, we first
recall the principle of Spectral Matching ICA. Then, after
a brief reminder of some properties of theà trouswavelet
transform, we discuss in section 3 the extension of SMICA to
component separation in wavelet space in order to deal with
non-stationary data. Considering the problem of incomplete
data as a model case of practical significance for the compar-
ison of SMICA and its extension wSMICA, numerical exper-
iments and results are reported in section 4.

2. SMICA

Spectral matching ICA, or SMICA for short, is a blind source
separation technique which, unlike most standard ICA meth-

ods, is able to recover Gaussian sources in noisy contexts.
It operates in the spectral domain and is based onspectral
diversity: it is able to separate sources provided they have
different power spectra. This section gives a brief accountof
SMICA. More details can be found in [16]; first applications
to CMB analysis are in [16, 21].

2.1 Model and cost function

For a second-order stationaryNd-dimensional process, we
denote byRX(ν) the Nd ×Nd spectral covariance matrix at
frequencyν, that is, the(i, i)-th entry ofRX(ν) is the power
spectrum of thei-th coordinate ofX while the off-diagonal
entries ofRX(ν) contain the cross-spectra between the en-
tries ofX. If X follows the linear model of equation (2) with
independent additive noise, then its spectral covariance ma-
trix is structured as

RX(ν) = ARS(ν)A† +RN(ν) (3)

with RS(ν) andRN(ν) being the spectral covariance matrices
of S andN respectively. The assumption of independence
between the underlying components implies thatRS(ν) is a
diagonal matrix. We shall also assume independence of the
noise processes between detectors: matrixRN(ν) also is a
diagonal matrix.

In the definition ofRX(ν), we have not explicitly defined
the frequencyν. This is because SMICA can be applied for
the separation of components in many contexts: each ob-
servationXd can be a time series (one-dimensional), an im-
age (two-dimensional random fields), a random field on the
sphere (as in full-sky CMB studies). In each case, the appro-
priate notions of frequency, stationarity and power spectrum
should be used.

SMICA estimates all (or a subset of) the model parame-
ters

θ = {RS(νq),RN(νq),A}

by minimizing a measure of ‘spectral mismatch’ between
sample estimateŝRX(ν) (defined below) of the spectral co-
variance matrices and their ensemble averages which depend
on the parameters according to equation (3). More specif-
ically, an estimatêθ = {R̂S(νq),R̂N(νq), Â} is obtained as
θ̂ = argminθ φ(θ ) where the measure of spectral mismatch
φ(θ ) is defined by

φ(θ ) =
Q

∑
q=1

αqD

(
R̂X(νq),ARS(νq)A

† +RN(νq)
)

(4)

Here,{νq|1 ≤ q ≤ Q} is a set of frequencies,{αq|1 ≤ q ≤
Q} is a set of positive weights, andD(·, ·) is a measure of
mismatch between two positive matrices.

This approach is a particular instance of moment match-
ing. As such, if consistent estimateŝRX(νq) of the spectral
covariance matricesRX(νq) are available and if the model is
identifiable, then any reasonable choice of the weightsαq and
of the divergence measureD(·, ·) should lead toconsistent
estimates of the parameters. However, this does not mean
that these choices should be arbitrary: in our standard imple-
mentation, we make specific choices (described next) in such
a way that minimizingφ(θ ) is identical to maximizing the
likelihood of θ in a model of Gaussian stationary processes.
Hence, these choices guarantee a good statistical efficiency



when the underlying processes are well modeled as Gaus-
sian stationary processes. When this is not the case, though,
the performance of SMICA may not be as good as (but not
necessarily worse than) the performance of other methods
designed to capture other aspects of the statistical distribu-
tion of the data, such as non Gaussian features, for instance.

Given a data set, denotẽX(ν) its discrete Fourier trans-
form at frequencyν and denote{Fq|1 ≤ q ≤ Q} a set ofQ
frequency domains withFq centered around frequencyνq.
Spectral covariance matrices are estimated non parametri-
cally by

R̂X(νq) =
1
nq

∑
ν∈Fq

X̃(ν)X̃(ν)† (5)

wherenq denotes the number of Fourier pointsX̃(ν) in the
spectral domainFq. We always use symmetric domains in
the sense that frequencyν belongs toFq if and only if −ν
also does. This symmetry guarantees thatR̂X(νq) is always a
real valued matrix whenX itself is a real valued process.

In its standard form, the SMICA technique uses positive
weightsαq = nq and a divergenceD defined as

DKL(R1,R2) =
1
2

(
trace(R1R−1

2 )− logdet(R1R−1
2 )−m

)

(6)
which is the Kullback-Leibler divergence between twom-
variate zero-mean Gaussian distributions with covariance
matricesR1 andR2. These choices stem from the Whittle ap-
proximation according to which each̃X(ν) has a zero-mean
normal distribution with covariance matrixRX(ν) and is un-
correlated withX̃(ν ′) for ν 6= ν ′. In this case, it is easily
checked that−φ(θ ) evaluated withαq = nq andD = DKL
is (up to a constant) the log-likelihood forT data samples.
This is actually true when the spectral domains are shrunk to
just one DFT point (nq=1 for all q); when the spectral do-
mainsFq are chosen to contain several (usually many) DFT
points, then−φ(θ ) is the log-likelihood, in the Whittle ap-
proximation, of the Gaussian stationary model with constant
power spectrum over each domainFq. This approximation is
at small statistical loss when the spectrum is smooth enough
to show little variation over each spectral domain.

The major gain of assuming constant spectrum over each
Fq is the resulting reduction of the data set to a small num-
ber of covariance matrices. This may be a crucial benefit in
applications like astronomical imaging where very large data
sets are frequent.

Regarding our application to CMB analysis, the hypothe-
sized isotropy of the distribution of the sources leads to inte-
grate over spectral domains with the corresponding symme-
try. For sky maps small enough to be considered as flat, the
spectral decomposition is the two-dimensional Fourier trans-
form and the ‘natural’ spectral domains are rings centered
on the null frequency. For larger maps where curvature can-
not be neglected, the spectral decomposition is over spher-
ical harmonics and the natural spectral domains contain all
the modes associated to a set of scales [21].

2.2 Parameter optimization

Minimizing the spectral mismatchφ(θ ) can be achieved
using any optimization technique. However,φ being a
likelihood criterion in disguise, one can also resort to
the EM algorithm. This is detailed in [16] in the case of

spatially white noisei.e. RN(ν) actually not depending onν.
Actually, this latter algorithm was slightly modified in order
to deal with the case of colored noiseN in (2). Another
useful enhancement was to allow for constraints to be set
on the model parameters so that prior information such as
bounds on some entries of the mixing matrixA could be
included. Details are given in appendix A.

The EM algorithm is straightforwardly implemented and
does not require any tuning. It can quickly drive the spec-
tral mismatch down to small values but is often unable to
complete the optimization. Slow EM finishing is inherent to
noisy models [22] and we have found it necessary to imple-
ment a mixedad hocstrategy based on alternating EM steps
and BFGS steps [16].

We have also found that initialization is critical: criterion
(4) is probably multi-modal for many data sets. This issue
is not addressed in this paper though, since our prime inter-
est is in the study of the statistical performances of different
estimators of the model parametersθ . In the simulations re-
ported below, the minimization ofφ(θ ) is initialized at the
true mixing matrix and with spectral covariance matrices es-
timated from the initial separate source and noise maps.

2.3 Component map estimation

When running SMICA, power spectral densities for the
sources and detector noise are obtained along with the es-
timated mixing matrix. They are used in reconstructing the
source mapsvia Wiener filtering in Fourier space: a Fourier
modeX(ν) in frequency bandν ∈ Fq is used to reconstruct
the maps according to

Ŝ(ν) = (Â†R̂N(ν)−1Â+ R̂S(ν)−1)−1Â†R̂N(ν)−1X(ν) (7)

In the limiting case where noise is small compared to signal
components, the Wiener filter reduces to

Ŝ(ν) = (Â†R̂N(ν)−1Â)−1Â†R̂N(ν)−1X(ν) (8)

Note however that the above Wiener filter is optimal only
in front of stationary Gaussian processes. For weak, point-
like sources such as galaxy clusters seenvia the Sunyaev–
Zel’dovich effect (defined in section 4.1), much better recon-
struction can be expected from non linear methods.

3. SPECTRAL MATCHING IN WAVELET SPACE

The SMICA method for spectral matching in Fourier space
has already shown significant success for CMB spectral esti-
mation in multidetector experiments. It is in particular able
to identify and remove residuals of poorly known correlated
systematics and astrophysical foreground emissions contam-
inating CMB maps. However, SMICA suffers from several
practical difficulties when dealing with real data.

Indeed, actual components are known to depart slightly
from the ideal linear mixture model (2). The mixing ma-
trix (in particular those columns ofA which correspond to
galactic emissions) is known to depend somewhat on the di-
rection of observation or on spatial frequency. Measuring the
dependenceA(ϑ ,ϕ) is of interest for future experiments as
Planck, and can not be achieved directly with SMICA. Fur-
ther, the components are known to be both correlated and non
stationary. For instance, galactic dust emissions are strongly



peaked towards the galactic plane. A non local spectral rep-
resentation (via Fourier coefficients orvia spherical harmon-
ics) mixes contributions from high galactic sky, nearly free
of foreground contamination, and contributions from within
the galactic plane. Noise levels themselves may be quite non
stationary, with high SNR regions observed for a long time
and low SNR regions poorly observed.

When there are sharp edges on the maps or gaps in the
data, corresponding to unobserved or masked regions, spec-
tral estimation using the smooth periodogram of equation (5)
is not the most satisfactory procedure. Although apodizing
windows may help cope with edge effects in Fourier anal-
ysis, they are not very straightforward to use in the case of
arbitrarily shaped maps with arbitrarily shaped gaps, suchas
those encountered in the Archeops experiment [2].

Clearly, the spectral analysis of gapped data requires
tools different from those used to process full data sets, if
only because the hypothesized stationarity of the data is
greatly disturbed by the missing samples. Common such
methods often amount to using standard spectral estimators
after the gaps were filled with estimates of the missing sam-
ples. However, the data interpolation stage is critical andcan-
not be completed without prior assumptions on the data. An-
other idea, applicable to CMB analysis, is to process gapped
data as if they were complete but to correct afterwards the
spectral estimates from the bias induced by the gaps [23].
We preferred to rely on methods intrinsically dedicated to
the analysis of non-stationary data such as the wavelet trans-
form, widely used to reveal variations in the spectral content
of time series or images, as they permit to single out regions
in direct space while retaining localization in the frequency
domain. We see next how to reformulate (4) in the wavelet
domain in order to deal with missing data. Note that, in the
following, the locations of the missing samples are assumed
to be known.

3.1 Wavelet transform

The experiments described further down make use of the un-
decimated̀a trousalgorithm with the 2D cubic B3 spline [24]
as scaling function, for implementing a wavelet transform.
Although, depending on the data analysis problem, it is pos-
sible that a different choice can lead to better results, forour
specific application, thèa trouswavelet transform has several
favorable properties. First, it is a shift invariant transform,
the wavelet coefficient maps on each scale are the same size
as the initial image, and the wavelet and scaling functions
have small compact supports on the data map. Hence missing
patches in the observed maps are easily handled. Second, the
2D wavelet and scaling functions are nearly isotropic which
is best for the analysis of an isotropic gaussian field such
as the CMB, or of data sets such as maps of galaxy clus-
ters, which contain only isotropic features. The undecimated
isotropicà trouswavelet transform has been shown to be well
suited to the analysis of astrophysical data where translation
invariance is desirable and where the emphasis is seldom on
data compression [24]. Further, with this choice of scaling
function, the so called scaling equation is satisfied and there-
fore fast implementations of the decomposition and recon-
struction steps of thèa troustransform are available [24].

Given a 2D data setc0(k, l), the à trousalgorithm pro-
duces recursively a set of detail mapswi(k, l) on a dyadic
resolution scale and a smooth approximationcJ(k, l) [24].

We note that the lowest resolutionJmax is obviously limited
by the data map size. The transform is readily inverted by

c0(k, l) = cJ(k, l)+
J

∑
i=1

wi(k, l) (9)

which is a simple addition of the smooth array with the detail
maps.

3.2 Spectral matching in wavelet space: wSMICA

In order to define a sensible wavelet version of SMICA, we
first rewrite the SMICA criterion (4) in terms of covariance
matrices in the initial domain, where for instance the gaps
are best described, rather than in the Fourier domain.

Consider a batch ofT data samplesXt=1,T wheret is an
appropriate index depending on the dimension of the data,
and the set ofQ ideal band pass filtersFq associated with
the non-overlapping frequency domainsFq used in SMICA.
Denoting byXq(t) the data filtered throughFq, we define
sample covariance matrices

R̂T,X(q) =
1
T

T

∑
t=1

Xq(t)Xq(t)
† (10)

obtained by averaging in the original domain. Owing to the
unitary property of the discrete Fourier transform, one has

R̂T,X(q) =
nq

T
R̂X(νq) (11)

wherenq was defined as the number of Fourier modes in
spectral bandFq. These matrices are estimates ofRT,X(q) =

E(Xq(t)Xq(t)†), the covariance matrix ofXq(t). Again, ac-
cording to model (3), the covariance matrices are again struc-
tured as

RT,X(q) = ART,S(q)A† +RT,N(q) (12)

whereRT,S(q) andRT,N(q) are defined similarly toRT,X(q).
Hence, minimizing the SMICA objective function (4) is then
equivalent to minimizing

φ(θ ) =
Q

∑
q=1

nqDKL

(
R̂T,X(q), ART,S(q)A†+RT,N(q)

)
(13)

with respect to the new set of parametersθ =
(A,RT,S(q),RT,N(q)).

Let us now consider using another set of filters in place
of the ideal band pass filters used by SMICA. In dealing with
non stationary data or, as a special case, with gapped data,
it is especially attractive to consider finite impulse response
(FIR) filters. Indeed, provided the response of such a filter is
short enough compared to data sizeT and gap widths, most
of the samples in the filtered signal will be unaffected by
the presence of gaps. Using exclusively these samples yields
estimated covariance matrices which are not biased by the
missing data, at the cost of a slight increase of variance due
to discarding some data samples. In the following, we use
filtersψ1,ψ2, . . . ,ψJ,φJ (see figure 1) and the waveletà trous
algorithm.

Consider again a batch ofT regularly spaced data sam-
plesXt=1,T . Possible gaps in the data are simply described
with a maskµ i.e. an array of zeroes and ones of the same



0 0.05 0.1 0.15 0.2 0.25 0.3
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

wavelet transfer functions

reduced frequency

m
ag

ni
tu

de

Figure 1: Magnitudes averaged over spectral rings of the
nearly isotropic cubic spline wavelet filtersψ1,ψ2, . . . ,ψ5
used in the simulations described further down. The vertical
dotted lines forν = {0.013,0.025,0.045,0.09,0.2} delimit
the five frequency bands used with SMICA in these simula-
tions.

size as the dataXt=1,T with ones corresponding to samples
outside the gaps. DenotingW1,W2, . . . ,WJ andCJ the wavelet
scales and the smooth approximation ofX, obtained with the
à trous transform andµ1, . . . ,µJ+1 the masks for the differ-
ent scales determined from the original maskµ knowing the
different filter lengths, wavelet covariances are estimated as
follows:

R̂W,X(1≤ i ≤ J) =
1
l i

T

∑
t=1

µi(t)Wi(t)Wi(t)
†

R̂W,X(J+1) =
1

lJ+1

T

∑
t=1

µJ+1(t)CJ(t)CJ(t)
†

(14)

wherel i is the number of non zero samples inµi . With source
and noise covariancesRW,S(i),RW,N(i) defined in a similar
way, the covariance model in wavelet space becomes

RW,X(i) = ARW,S(i)A
† +RW,N(i). (15)

Our wavelet-based version of SMICA consists in minimizing
the wSMICA criterion:

φ(θ ) =
J+1

∑
i=1

αiDKL

(
R̂W,X(i), ARW,S(i)A

† +RW,N(i)
)

(16)
with respect toθ = (A,RW,S(i),RW,N(i)) for some sensible
choice of the weightsαi .

The weights in the spectral mismatch (16) should be cho-
sen to reflect the variability of the estimate of the correspond-
ing covariance matrix. Examining first equation (13), we see
weights which are proportional tonq, i.e. to the number of
DFT points used in computing the sample covariance ma-
trix, because this is in fact the number of uncorrelated val-
ues ofX̃(ν) entering in the estimation of̂RX(νq). It is also
proportional to the size of the frequency domain over which
R̂X(νq) is evaluated. Since wSMICA uses wavelet filters with
only limited overlap, we choose to use the same strategy as

in SMICA since the latter amounts to using ideal band pass
filters. In other words, when no data points are missing, the
weights for wSMICA are taken proportional to the size of the
frequency domains covered at each scale. This is

{α1,α2, . . . ,αJ,αJ+1} = {
1
2
,
1
4
, . . . ,

1
2J ,

1
2J } (17)

in the one-dimensional case and

{α1,α2, . . . ,αJ,αJ+1} = {
3
4
,

3
16

, . . . ,
3
4J ,

1
4J } (18)

in the two-dimensional case.
In the case of data with gaps, we must further take into

account that some wavelet coefficients are discarded. Letβi
denote the fraction of wavelets coefficients which are unaf-
fected by the gaps at scalei. The number of effective points
is reduced by this fraction and one should use the weights:

{α1,α2, . . . ,αJ,αJ+1} = {
β1

2
,

β2

4
, . . . ,

βJ

2J ,
βJ+1

2J } (19)

in the one-dimensional case and

{α1,α2, . . . ,αJ,αJ+1} = {
3β1

4
,
3β2

16
, . . . ,

3βJ

4J ,
βJ+1

4J } (20)

in the two-dimensional case. The fraction 1−βi of discarded
points depends on scalei (even with theà trousalgorithm)
because the length of the wavelet filter itself depends oni.
However, it is roughly scale independent, if the missing data
are large patches of much bigger size than the length of the
wavelet filters used at any scale in the wavelet decomposi-
tion.

Before closing, we note that the different wavelet filter
outputsWi(t) are correlated due to the overlap between fre-
quency responses (figure 1). Optimal inference should take
this correlation into account but we have chosen not to do so
and rather to stick to a simple criterion like (16) which ig-
nores the correlations between sample covariance matrices.
No big loss is expected from this choice because the wavelet
bands do not overlap very much.

4. NUMERICAL EXPERIMENTS

4.1 Simulation of realistic maps

We have simulated observations consisting ofm = 6 mix-
tures ofn = 3 components namely CMB, galactic dust and
SZ emissions for which templates were obtained as described
in [16]. See figure 2 for typical realizations.

Dust emission is the greybody emission of small dust
particles in our own galaxy. The intensity of emission is
strongly concentrated towards the galactic plane, although
cirrus clouds at high galactic latitudes are present as well.
The dust emission law is of the formναBν(Tdust) whereα ≃
1.7, Bν(T) is the blackbody emission law andTdust≃ 17 K
is the typical dust temperature in the interstellar medium.

The Sunyaev Zel’dovich effect (SZ) is a small distortion
of the CMB blackbody emission law caused by inverse
Compton scattering of CMB photons on free electrons in
hot ionized gas, present mostly in clusters of galaxies. The
energetic electron, in the interaction, gives a fraction ofits
energy to the scattered CMB photon, shifting its frequency



Figure 2: Samples of simulated component maps of CMB, DUST, SZ.

to a higher value. As a result, the SZ effect causes a shift in
CMB photon energy distribution, depleting the occupation
of low energy levels and populating high energy levels. The
net effect, to first order, is a small additive emission, negative
at frequencies below 217 GHz, and positive at frequencies
above. A review on SZ effect can be found in [25].
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Figure 4: Energy contributed by each source and noise in
each bolometer as a function of frequency, for the nominal
noise variance on the Planck HFI channels. Note how SZ
is expected to always be below nominal noise, that CMB
and dust strongly dominate in different channels and that
CMB and dust spectra, without being proportional, display
the same general behavior dominated by low modes.

The templates, and thus the mixtures in each simulated
data set, consist of 300×300 pixel maps corresponding to a
12.5◦×12.5◦ field located at high galactic latitude. The six
mixtures in each set mimic observations that will eventually
be acquired in the six frequency channels of the Planck-HFI.
The entries of the mixing matrixA used in these simulations
actually are estimated values of the electromagnetic emis-
sion laws of each component at 100, 143, 217, 353, 545 and
857 GHz. See table 1.

CMB DUST SZ channel

7.452×10−1 3.654×10−2 −8.733×10−1 100 GHz
5.799×10−1 7.021×10−2 −4.689×10−1 143 GHz
3.206×10−1 1.449×10−1 −2.093×10−3 217 GHz
7.435×10−2 3.106×10−1 1.294×10−1 353 GHz
6.009×10−3 5.398×10−1 2.613×10−2 545 GHz
6.115×10−5 7.648×10−1 5.268×10−4 857 GHz

Table 1: Entries ofA, the mixing matrix used in our simula-
tions.

White Gaussian noise is added to the mixtures according
to model (2) in order to simulate instrumental noise. While
the relative noise standard deviations between channels are
set according to the nominal values of the Planck HFI, we
also experiment with fiveglobal noise levels at−20, −6,
−3, 0 and+3 dB from nominal values. Table 2 gives the
typical energy fractions that are contributed by each of the
n= 3 original sources and noise, to the total energy of each of
them= 6 mixtures, considering Planck nominal noise vari-
ance. In fact, because SMICA and wSMICA actually work
on spectral bands, a much better indication of signal to noise
ratio in these simulations is given by figure 4 whch shows
how noise and source energy contributions distribute with re-
spect to frequency in the six mixtures.

CMB DUST SZ noise channel

9.91×10−1 1.18×10−4 7.92×10−3 2.53×10−6 100 GHz
9.97×10−1 7.25×10−4 3.79×10−3 5.17×10−7 143 GHz
9.98×10−1 1.01×10−2 2.48×10−7 1.34×10−7 217 GHz
5.55×10−1 4.8×10−1 9.78×10−3 7.47×10−8 353 GHz
2.5×10−3 1.0 2.75×10−4 3.78×10−9 545 GHz
1.29×10−7 1.0 5.56×10−8 1.24×10−10 857 GHz

Table 2: Energy fraction contributed by each source to the
total energy of each mixture, for the nominal noise variance
on the Planck HFI channels.



Figure 3: Simulated observation maps based on the templatesshown on figure (2), the mixing matrix on table 1 for the nominal
Planck HFI noise levels.

Finally, in order to investigate the impact of gaps in the
data, and the benefits of using wSMICA in place of SMICA
to deal with these gaps, the mask shown on figure 5 was
applied onto the mixture maps. The case where no data is
missing was also considered as a reference case. Spectral
matching with wSMICA is conducted using the output of the
five wavelet filtersψ1, . . . ,ψ5 associated to higher frequency
details. For the sake of comparison, SMICA is run using five
bands in Fourier space which are similar to the dyadic bands
imposed by the wavelet transform, as shown on figure 1. This
latter choice of frequency bands is made to ease comparison
between SMICA and wSMICA.

4.2 Experiments with noise-free mixtures

Preliminary experiments were conducted in the case of van-
ishing instrumental noise variance. In this case, the blind
component separation problem is ‘equivariant’, entailingthat
the quality of separation on a given mixture does not depend
at all on the mixing matrixA but only on the particular real-
ization of the sources and on the algorithm used for separa-
tion. More specifically, in the case of SMICA and wSMICA,
separation performance depends on the spectral diversity of
the components and on the ability of both objective functions
to exploit this diversity. Hence, the noise-free experiments in
this section are indicative of the spectral diversity of thecom-
ponents, of the ability of (w)SMICA to capture it, and of the
robustness of the (w)SMICA with respect to missing data.

Note that in a noise-free model, the spectral matching
objective boils down to an objective of joint diagonalization
of the covariance matrices, as shown in [18]. Hence, spectral

Figure 5: Mask used to simulate a gap in the data(top left),
and the modified masks at scales 1(top right) through 5(bot-
tom left). The discarded pixels are in black.



matching can be implemented using an efficient dedicated
algorithm [26].

The estimated components are related to the true one ac-
cording to

Ŝ= I S (21)

where I is the product of the mixing matrix used in
simulations and of the separating matrix obtained by joint
diagonalization. It also includes any normalization needed
for the components and their estimates to have total energy
in all bands equal to 1. With this normalization, the square of
any off-diagonal termIi j is directly related to the residual
level of contamination by componentj in the recovered
componenti. Since performance in separating noise-free
mixtures is independent of the mixing matrix, the choice
of A in the simulations is irrelevant: it does not change the
distribution ofI . In practice, our noise-free experiments
are conducted without any mixing,i.e. we takeA to be the
3× 3 identity matrix. The following steps were repeated
1000 times:

• Randomly pick one of each component maps out of the
available 200 CMB maps, 30 dust maps and 1500 SZ
maps.

• Compute covariance matrices in the five wavelet or
Fourier bands, both with and without masking part of the
maps.

• Normalize each source so that its total energy over the
five bands is equal to one.

• Estimate a separating matrix by joint diagonalization of
the covariance matrices.

These noise-free experiments are complemented using
‘surrogate’ data in order to assess the effect of any non-
Gaussianity or non-stationarity in the source templates. We
repeat the simulations on Gaussian stationary maps gener-
ated with the same spectra as the CMB, Dust and SZ com-
ponents. The resulting distribution ofI then only reflects
the ability of (w)SMICA to exploit the spectral diversity of
the components independently of the other aspects of their
distribution.

The histograms on figure 6 are for the off diagonal term
corresponding to the residual corruption of CMB byGaus-
sian Dust in the second set of experiments (using surrogate
data). In tables 3 and 4, the results obtained with the syn-
thetic component maps are given as well as those obtained
with the surrogate Gaussian maps, in terms of the standard
deviations of the off-diagonal entriesIi j defined by (21).

When working on surrogate Gaussian maps without
masks, using covariance matrices in Fourier space or in
wavelet space gives similar performances. It is also satisfac-
tory, when covariances in wavelet space are used with surro-
gate Gaussian maps, that each computed standard deviation
only slightly increases when a mask is applied on the data.
Indeed, as a consequence of incomplete coverage, there are
less samples from which to estimate the covariances. This in-
crease is also observed when covariance matrices in Fourier
space are used with the surrogate Gaussian maps but it can
be as high as five-fold and it does not affect all the coeffi-
cients equally. Although this can again be attributed to there-
duced data size, the lowered spectral diversity between com-
ponents, because of the correlations and smoothing induced

Figure 6: Histograms of the off diagonal term ofI , defined
in equation (21), corresponding to the residual corruptionof
”CMB” by ”Dust” while separating Gaussian maps gener-
ated with the same power spectra as the astrophysical com-
ponents, by joint diagonalization of covariance matrices in
Fourier (left) and wavelet(right) space, with(black, which
appears grey when seen through white )and without(white)
masking part of the the data. The dark widest histogram on
the left highlights the impact of masking on source separa-
tion based on Fourier covariance matrices.

NM M Han

I1,2 0.097 0 .0076 0.074 0 .038 0.024

I1,3 0.0049 0 .0044 0.005 0 .006 0.0094

I2,1 0.017 0 .0066 0.018 0 .01 0.017

I2,3 0.0064 0 .0077 0.0066 0 .0096 0.011

I3,1 0.0024 0 .0026 0.0028 0 .0037 0.0039

I3,2 0.0054 0 .0071 0.0054 0 .0079 0.01

Table 3: Standard deviations of the off-diagonal entriesIi j
defined by (21) obtained while separating realistic compo-
nent maps by joint diagonalization of covariance matrices in
Fourier space, with (M) or without masking (NM) part of
the data, or applying an apodizing Hanning window (Han).
Components 1, 2 and 3 respectively stand for CMB, Dust and
SZ. The numbers initalic were obtained with Gaussian maps
and the underlined numbers correspond to the histograms in
figure 6.

in Fourier space by the mask, is also part of the explana-
tion. In fact, as shown on figure 4, CMB and dust spatial
power spectra are somewhat similar,i.e. show low spectral



NM M

I1,2 0.015 0 .0071 0.018 0 .0079

I1,3 0.0025 0 .0029 0.0028 0 .0031

I2,1 0.016 0 .0077 0.019 0 .0089

I2,3 0.0041 0 .0051 0.0048 0 .0075

I3,1 0.0024 0 .0029 0.003 0 .0039

I3,2 0.0039 0 .0054 0.0053 0 .0085

Table 4: Standard deviations of the off-diagonal entriesIi j
defined by (21) obtained while separating realistic compo-
nent maps by joint diagonalization of covariance matrices in
wavelet space, with (M) and without masking (NM) part of
the data. Components 1, 2 and 3 respectively stand for CMB,
Dust and SZ. The numbers initalic were obtained with Gaus-
sian maps and the underlined numbers correspond to the his-
tograms in figure 6.

diversity, and further smoothing can only degrade the perfor-
mance of the source separation algorithm based on Fourier
covariances.

In the case of realistic component maps, we note first
that the comparison of the performance of component separa-
tion using wavelet-based covariance matrices with and with-
out mask again agrees with the different data sizes, which
is not the case with covariances in Fourier space. Next,
whether covariance matrices are computed in Fourier space
or in wavelet space, we note that the terms coupling CMB
and Dust are again much higher than with surrogate data,
even on complete maps. This is probably to be attributed to
the non-stationarity and/or non-Gaussianity of the Dust com-
ponent. Another point is that the CMB and Dust templates
as in figure 2 exhibit sharp edges compared to SZ and this in-
evitably disturbs spectral estimation using a simple DFT. To
assess this effect, simulations were also conducted where the
covariances in Fourier space were computed after an apodiz-
ing Hanning window was applied on the complete data maps.
The results reported in table 3, to be compared to table 4, do
indicate a slightly positive effect of windowing, but stillthe
separation using wavelet-based statistics appears better. To
further complete this preliminary study, we conducted sim-
ilar experiments using JADE [28], an ICA algorithm based
on fourth order statistics. This algorithm does not use spec-
tral information at all. As discussed earlier, such a methodis
not expected to work well on CMB data and the results re-
ported in table 5 do show lower performance in comparison
to tables 3 and 4.

4.3 Realistic experiments

The results of the previous section show that, in the noise-
less case, using wavelet-based covariance matrices provides
a simple and efficient way to cancel the bad impact that gaps

I1,2 I1,3 I2,1 I2,3 I3,1 I3,2

NM 0.021 0.25 0.022 0.02 0.31 0.02

M 0.023 0.29 0.025 0.018 0.34 0.018

Table 5: Standard deviations of the off-diagonal entriesIi j
defined by (21) obtained while separating realistic compo-
nent maps using JADE, with (M) and without masking (NM)
part of the data. Components 1, 2 and 3 respectively stand
for CMB, Dust and SZ.

actually have on the performance of estimation using Fourier
based statistics. We move on to investigating the effect of
additive noise on SMICA and wSMICA.

Picking at random one of each component maps out of
the available 200 CMB maps, 30 dust maps and 1500 SZ
maps, 1000 sets of six synthetic mixture maps were gener-
ated as previously described, for each of the 5 noise levels
chosen. Then, component separation was conducted using
the spectral matching algorithms SMICA and wSMICA both
with and without part of the maps being masked. A typical
run of SMICA or wSMICA in the setting considered here
(i.e. 300 by 300 maps, 6 mixtures, 3 sources, 5 wavelet
scales, no constraints on the mixing matrix) takes only a few
seconds on a 1.25 Ghz Mac G4 when coded in IDL. The same
optimization techniques are used for SMICA and wSMICA
since the two criteria have the same form.

Each run of SMICA and wSMICA on the data returns
estimateŝAf andÂw of the mixing matrix. These estimates
are subject to the indeterminacies inherent to the instanta-
neous linear mixture model (2). Indeed, in the case where
optimization is over all parametersθ , any simultaneous per-
mutation of the columns ofA and of the lines ofS leaves
the model unchanged. The same occurs when exchanging a
scalar possibly negative factor between any column inA and
the corresponding line inS. Therefore, columnwise compar-
ison of Âf andÂw to the original mixing matrixA requires
first fixing these indeterminacies. This is done ‘by hand’ af-
ter Âf andÂw have been normalized columnwise.

The results we report next focus on the statistical proper-
ties ofÂf andÂw as estimated from the 1000 runs of the two
competing methods in the several configurations retained. In
fact, the correct estimation of the mixing matrix in model (2)
is a relevant issue for instance when it comes to dealing with
the cross calibration of the different detectors. Figures 7, 8
and 9 show the results obtained, using the quadratic norm

QEj =

(
m

∑
i=1

(
Ai j − Âi j

)2
) 1

2

(22)

with Â = Âf or Âw and j = CMB, DUST or SZ, to assess
the residual errors on the estimated emissivities of each
component. The plotted curves show how the mean of
the above positive error measure varies with increasing
noise variance. For the particular case of CMB, table 6
gives the estimated standard deviations of the relative errors
(Ai j − Âi j )/Ai j on the estimated CMB emission law in the
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Figure 7: Comparison of the mean squared errors on the esti-
mation of the emission law ofCMB as a function of noise in
five different configurations: wSMICA without mask, wS-
MICA with mask, fSMICA without mask, fSMICA with
mask, fSMICA with Hanning apodizing window.
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Figure 8: Comparison of the mean squared errors on the es-
timation of the emission law ofDUST as a function of noise
in five different configurations: wSMICA without mask, wS-
MICA with mask, fSMICA without mask, fSMICA with
mask, fSMICA with Hanning apodizing window.

six channels of Planck’s HFI in the different configurations
retained.

Closer to our source separation objective, a more signifi-
cant way of assessing the quality ofÂf andÂw as estimators
of the mixing matrixA, would be to use the following inter-
ference to signal ratio:

ISRj =
∑i 6= j I

2
j ,iσ2

i

I 2
j , jσ2

j

(23)

where theσ j are the source variances and

I = (Â†R̂−1
N Â)−1Â†R̂−1

N A (24)

with RN the noise covariance. The plots on figures 10, 11
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Figure 9: Comparison of the mean squared errors on the esti-
mation of the emission law ofSZ as a function of noise in five
different configurations: wSMICA without mask, wSMICA
with mask, fSMICA without mask, fSMICA with mask, fS-
MICA with Hanning apodizing window.

WNM WM FNM FM FHan

4.4∗10−4 5.0∗10−4 6.2∗10−4 7.3∗10−4 7.2∗10−4

5.4∗10−4 7.5∗10−4 7.1∗10−4 8.5∗10−4 9.5∗10−4

A11 6.6∗10−4 9.2∗10−4 8.2∗10−4 8.9∗10−4 1.3∗10−3

9.4∗10−4 1.2∗10−3 1.0∗10−3 1.0∗10−3 1.7∗10−3

1.2∗10−3 1.7∗10−3 1.2∗10−3 1.4∗10−3 2.3∗10−3

1.6∗10−4 2.1∗10−4 2.1∗10−4 2.0∗10−4 2.7∗10−4

5.3∗10−4 7.8∗10−4 5.6∗10−4 5.7∗10−4 1.0∗10−3

A21 7.0∗10−4 1.1∗10−3 7.6∗10−4 8.4∗10−4 1.4∗10−3

1.0∗10−3 1.6∗10−3 1.0∗10−3 1.0∗10−3 2.1∗10−3

1.4∗10−3 2.2∗10−3 1.5∗10−3 1.7∗10−3 3.1∗10−3

1.5∗10−3 1.8∗10−3 2.2∗10−3 2.5∗10−3 2.3∗10−3

1.7∗10−3 2.1∗10−3 2.3∗10−3 2.6∗10−3 2.9∗10−3

A31 2.1∗10−3 2.6∗10−3 2.6∗10−3 2.8∗10−3 3.7∗10−3

2.7∗10−3 3.0∗10−3 2.9∗10−3 3.0∗10−3 4.2∗10−3

3.3∗10−3 4.6∗10−3 3.3∗10−3 3.5∗10−3 6.1∗10−3

1.8∗10−2 2.0∗10−2 2.7∗10−2 3.0∗10−2 2.5∗10−2

1.9∗10−2 2.1∗10−2 2.7∗10−2 2.1∗10−2 2.7∗10−2

A41 2.1∗10−2 2.4∗10−2 2.8∗10−2 3.1∗10−2 2.9∗10−2

2.7∗10−2 2.8∗10−2 3.1∗10−2 3.0∗10−2 3.5∗10−2

3.0∗10−2 4.1∗10−2 2.5∗10−2 2.7∗10−2 4.9∗10−2

4.0∗10−1 4.5∗10−1 6.1∗10−1 6.6∗10−1 5.6∗10−1

4.2∗10−1 4.7∗10−1 6.1∗10−1 6.5∗10−1 5.8∗10−1

A51 4.5∗10−1 5.0∗10−1 6.1∗10−1 6.7∗10−1 6.4∗10−1

5.7∗10−1 5.9∗10−1 6.7∗10−1 6.7∗10−1 7.5∗10−1

6.2∗10−1 8.4∗10−1 5.0∗10−1 5.5∗10−1 1.0

5.7∗101 6.2∗101 8.5∗101 9.2∗101 7.8∗101

5.8∗101 6.5∗101 8.6∗101 9.1∗101 8.1∗101

A61 6.2∗101 6.9∗101 8.6∗101 9.4∗101 8.9∗101

7.9∗101 8.2∗101 9.3∗101 9.2∗101 1.0∗102

8.6∗101 1.2∗102 6.9∗101 7.7∗101 1.4∗102

Table 6: Standard deviations of the relative errors on the
estimated emission lawsAi1 of CMB in Planck’s HFI six
channels. The column labels WNM, WM, FNM, FM, FHan
are for the different configurations, respectively: wSMICA
without mask, wSMICA with mask, fSMICA without mask,
fSMICA with mask, fSMICA with Hanning apodizing win-
dow. The five figures in each box are for noise variance -20,
-6, -3, 0 and 3 dB from nominal Planck values.

and 12 show how the mean ISR from the 1000 runs of
SMICA and wSMICA in different configurations varies with
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Figure 10: Comparison of the mean ISR forCMB as a func-
tion of noise in five different configurations namely : wS-
MICA without mask, wSMICA with mask, fSMICA without
mask, fSMICA with mask, fSMICA with Hanning apodizing
window.
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Figure 11: Comparison of the mean ISR forDUST as a func-
tion of noise in five different configurations namely : wS-
MICA without mask, wSMICA with mask, fSMICA without
mask, fSMICA with mask, fSMICA with Hanning apodizing
window.

increasing noise.
We note again that the performance of wSMICA behaves

as expected when noise increases and if part of the data is
missing. However this is not always the case with SMICA.
Finally this set of simulations, conducted in a more realistic
setting with respect to ESA’s Planck mission, again confirms
the higher performance, over Fourier analysis, that we indeed
expected from the use of wavelets. The latter are able to cor-
rectly grab the spectral content of partly masked data maps
and from there allow for better component separation.

5. CONCLUSION

This paper has presented an extension of the Spectral Match-
ing ICA algorithm to the wavelet domain, motivated by the
need to deal with components which exhibit spatial correla-
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Figure 12: Comparison of the mean ISR forSZ as a function
of noise in five different configurations namely : wSMICA
without mask, wSMICA with mask, fSMICA without mask,
fSMICA with mask, fSMICA with Hanning apodizing win-
dow.

tions and are non stationary. Maps with gaps are a particu-
lar instance of practical significance. Substituting covariance
matching in Fourier space by covariance matching in wavelet
space makes it possible to cope with gaps of any shape in a
very straightforward manner. Mainly, it is the finite lengthof
the wavelet filters used here that allows the impact of edges
and gaps on the estimated covariances and hence on compo-
nent separation to be lowered. Optimally choosing the FIR
filter-bank regarding a particular application is a possible fur-
ther enhancement.

Our numerical experiments, based on realistic simula-
tions of the astrophysical data expected from the Planck mis-
sion, confirm the benefits of correctly processing existing
gaps. Clearly, other possible types of non-stationaritiesin the
collected data such as spatially varying noise or component
variance, etc. could be dealt with very simply in a similar
fashion using the wavelet extension of SMICA.

Regarding future work, a few points are in order. First,
we note that possible correlations between the components
are not accounted for in SMICA or wSMICA as presented
here. However, it is not difficult in principle to handle such
known or suspected correlations by adding off diagonal pa-
rameters in the model spectral covariances of the sources.
Still, in the case of CMB analysis from high frequency obser-
vations which contain only one galactic component (Dust) as
in our simulations, spatial correlations between components
should not be a problem.

We note that the proposed wavelet based approach, as
implemented with the standard̀a trous wavelet transform,
offers little flexibility in the spectral bands available for wS-
MICA while the Fourier approach gives complete flexibility
in this respect. But it is possible, even straightforward, to use
other transforms such as theà trous wavelet packet trans-
form, or thecontinuouswavelet transform, or in fact any set
of linear filters, preferably FIR filters. This in turn raises
the question of optimally choosing this set of filters, keep-
ing in mind that higher resolution in Fourier space requires
longer filters which is not desirable in the case of incomplete
or non-stationary data. In fact, the optimal selection of bands



Figure 13: First and second row: estimated component maps obtained with SMICA and wSMICA respectively. These esti-
mates result from applying a Wiener filter in each frequency band or wavelet scale based on the optimized model parameters
(see section 2.3). Third row: the initial source templates after applying the optimal Wiener filter obtained with SMICAi.e. the
same as the top row but leaving out noise and residual contaminations. Bottom row: maps estimated using JADE [28]. The
initial source maps are shown figure 2.



is clearly a meaningful question both for SMICA and wS-
MICA.

We also note that in the CMB application, the compo-
nents have quite different statistical properties: some are ex-
pected to be very close to Gaussian (like the CMB) whereas
others are strongly non Gaussian (like SZ). The non Gaus-
sianity of some components does not affect the consistency
of our estimator but, for a given spectrum, it does affect the
distribution of the estimates although this impact is not eas-
ily predicted. It is clear, however, that ignoring the strong
non Gaussianity of some components is a loss of informa-
tion. Devising a method able, with reasonable complexity,
to exploit jointly non gaussianity (as in traditional ICA tech-
niques) and spectral information (as in Fourier or wavelet
SMICA) appears as a difficult challenge.

A. APPENDIX : EM ALGORITHM WITH
CONSTRAINTS ON THE MIXING MATRIX

ConsideringQ separate frequency bands of sizenq with
∑nq = 1, the EM functional derived for the instantaneous
mixing model (2) with independent Gaussian stationary
sourcesSand noiseN is:

Φ(θ ,θ ) = E {logp(X,S|θ)|θ} (25)

with θ = (A,RS,1, . . . ,RS,Q,RN,1, . . . ,RN,Q) and
θ = (A,RS,1, . . . ,RS,Q,RN,1, . . . ,RN,Q). The maximiza-
tion step of the EM algorithm seeks then to maximize
Φ(θ ,θ ) with respect toθ and the optimalθ is used as the
value forθ at the next EM step, and so on until satisfactory
convergence is reached. Explicit expressions are easily
derived for the optimalθ in the white noise case where
an interesting decoupling occurs between the re-estimating
equations for noise variances, source variances and the
mixing matrix [15].

Linear equality constraints

WhenA is subject to linear constraints, the joint maximiza-
tion of the EM functional with respect to all model param-
eters is no longer easily achieved in general. In fact, one
cannot simply decouple the re-estimating rules for the noise
parameters and the mixing matrix and these have to be op-
timized separately. We give next the modified re-estimating
equations for the mixing matrix and the source variances in
the case of constant noise (i.e. θ = (A,RS,1, . . . ,RS,Q) ).

First, let us exhibit the quadratic dependence of the EM
functionalΦ(θ ,θ ) onA :

Φ(θ ,θ ) = −
1
2 ∑

q
nqtr
(

ARss
q A†R−1

N,q

−ARxs†
q R−1

N,q−Rxs
q A†R−1

N,q

)
+constA (26)

where

Cq = (A†R−1
N,qA+R−1

S,q)
−1 (27)

Wq = (A†R−1
N,qA+R−1

S,q)
−1A†R−1

N,q (28)

Rxs
q = R̂X,qW

†
q (29)

Rss
q = WqR̂X,qW

†
q +Cq (30)

In the white noise case, RN,q = RN, equation (26) be-
comes:

Φ(θ ,θ ) = −
1
2

tr
(
(A−RxsRss−1)Rss

(A−RxsRss−1)†R−1
N

)
+constA (31)

where :

Rxs = ∑
q

nqRxs
q and Rss= ∑

q
nqRss

q (32)

Again, this can be re-written as :

Φ(θ ,θ ) = −
1
2
(A −M )†

Q(A −M )+constA (33)

where:

A = vectA , Q = RN
−1⊗∑

q
nqRss

q (34)

M = vect



(

∑
q

nqRxs
q

)(

∑
q

nqRss
q

)−1

 (35)

Here “vect” builds a column vector with the entries of a ma-
trix taken along its rows. Now let us consider linear con-
straints on the mixing matrix, specified as follows :

C
†(A −A0) = 0 (36)

whereC is a matrix with as many columns as constraints, and
the columns ofC are the same size asA . The maximum of
the EM functional with respect toθ subject to the specified
linear constraints is then reached for:

A = M −Q
−1

C
(
C

†
Q

−1
C
)−1

C
†(M −A0) (37)

and
RS,q = diag(Rss

q ) (38)

where “diag” returns a diagonal matrix with the same diago-
nal entries as its input argument.

In the free noise case, things are quite similar except that
the noise covariance matricesRN,q do not factor out as nicely.
The EM functional is again expressed as :

Φ(θ ,θ ) = −
1
2
(A −M )†

Q(A −M )+constA (39)

where in this case:

Q = ∑
q

nqR−1
N,q⊗Rss

q (40)

and

M = Q
−1vect

(

∑
q

nqR−1
N,qRxs

q

)
(41)

Then, the maximum of the EM functional with respect toθ
subject to the specified linear constraints is again reachedfor:

A = M −Q
−1

C
(
C

†
Q

−1
C
)−1

C
†(M −A0) (42)

and
RS,q = diag(Rss

q ) (43)

These expressions of the re-estimates of the mixing matrix
can become algorithmically very simple when for instance
the linear constraints to be dealt with affect separate lines
of A, or even simpler when the constraints are such that the
entries ofA are affected separately.



Positivity constraints on the entries of A

Suppose a subset of entries ofA are constrained to be posi-
tive. The maximization step of the EM algorithm onA alone,
again has to be modified. We suggest dealing with such con-
straints in a combinatorial way rephrasing the problem in
terms of equality constraints. If the unconstrained maximum
of the EM functional is not in the specified domain, then one
has to look for a maximum on the borders of that domain:
on a hyperplane, on the intersection of two, or three, or more
hyperplanes. One important point is that the maximum of the
EM functional with respect toA subject to a set of equality
constraints will necessarily be lower than the maximum of
the same functional considering any subset of these equality
constraints. Hence, not all combinations need be explored,
and a Branch and Bound type algorithm is well suited [27]. A
straightforward extension allows to deal with the case where
a set of entries of the mixing matrix are constrained by upper
and lower bounds.
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