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IRFU, SEDI-SAP, Service d’Astrophysique, Centre de Saclay, F-91191 Gif-Sur-Yvette cedex, France

b GREYC CNRS-ENSICAEN-Université de Caen, 14050 Caen France.

ABSTRACT
Sparsity constraints are now very popular to regularize in-
verse problems. We review several approaches which have
been proposed in the last ten years to solve inverse problems
such as inpainting, deconvolution or blind source separation.
We will focus especially on optimization methods based on
iterative thresholding methods to derive the solution.

Index Terms— Sparsity, Deconvolution, Blind Source
Separation, inpainting, Compressed Sensing, iterative thresh-
olding.

1. INTRODUCTION TO SPARSITY

The new sampling theory, compressed sensing (also called
compressive sensing or compressive sampling), provides an
alternative to the well-known Shannon sampling theory [1, 2,
3]. Compressed sensing uses the prior knowledge that sig-
nals are sparse, while Shannon theory was designed for fre-
quency band-limited signals. By establishing a direct link be-
tween sampling and sparsity, compressed sensing had a huge
impact in many scientific fields. A further aspect which has
contributed to the success of compressed sensing is that some
traditional inverse problems like tomographic image recon-
struction can be understood as a compressed sensing problem
[3, 4]. Such ill-posed problems need to be regularized, and
many different approaches have been proposed in the last 30
years (Tikhonov regularization, Markov random fields, partial
differential equations, total variation, wavelets, and so on).
But compressed sensing gives a strong theoretical support for
methods which seek a sparse solution, since such a solution
may be (under appropriate conditions) the exact one. Similar
results are hardly accessible with other regularization meth-
ods.

By emphazing so rigorously the importance of sparsity,
compressed sensing has also shed light on all work related
to sparse data representation (such as the wavelet transform,
curvelet transform, etc.). Indeed, a signal is generally not
sparse in direct space (i.e. pixel space), but it can be very
sparse after being decomposed on a specific set of functions.
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1.1. What is Sparsity?

A signal x, x = [x1, · · · , xN ], is sparse if most of its entries
are equal to zero. For instance, a k-sparse signal is a signal
where only k samples have a non-zero value. A less strict def-
inition is to consider a signal as weakly sparse or compress-
ible when only a few of its entries have a large magnitude,
while most of them are close to zero.

If a signal is not sparse, it may be sparsified using a
given data representation. For instance, if x is a sine, it
is clearly not sparse but its Fourier transform is extremely
sparse (i.e. 1-sparse). Hence we say that a signal x is
sparse in the Fourier domain if its Fourier coefficients x̂[u],
x̂[u] = 1

N

∑+∞
k=−∞ x[k]e2iπ uk

N , is sparse. More generally,
we can model a vector signal x ∈ RN as the linear com-
bination of T elementary waveforms, also called signal
atoms: x = Φα =

∑T
i=1 α[i]φi ,, where α[i] = 〈x, φi〉

are called the decomposition coefficients of x in the dic-
tionary Φ = [φ1, · · · , φT ]T (the N × T matrix whose
columns are the atoms normalized to a unit `2-norm, i.e.
∀i ∈ [1, T ], ‖φi‖`2 = 1).

Therefore to get a sparse representation of our data we
need first to define the dictionary Φ and then to compute the
coefficients α. x is sparse in Φ if the sorted coefficients in de-
creasing magnitude have a fast decay; i.e. most of coefficients
α vanish but a few.

1.2. What is the Best Dictionary?

Obviously, the best dictionary is the one which leads to the
sparsest representation. Hence we could imagine having a
huge overcomplete dictionary (i.e. T � N ), but we would be
faced with prohibitive computation time cost for calculating
the α coefficients. Therefore there is a trade-off between the
complexity of our analysis step (i.e. the size of the dictionary)
and the computation time. Some specific dictionaries have
the advantage of having fast operators and are very good can-
didates for analyzing the data. The Fourier dictionary is cer-
tainly the most famous, but many others have been proposed
in the literature such as wavelets [5], ridgelets [6], curvelets
[7, 8], bandlets [9], to name only a few.



Toward Morphological Diversity

The morpholocal diversity concept was introduced in [10, 11]
in order to model a signal as a a finite linear mixture, each
component of the mixture being sparse in a given dictionary.
The idea is that a single transformation may not always repre-
sent an image well, especially if the image contains structures
with different spatial morphologies. For instance, if an image
is composed of edges and a locally oscillating texture, we
can consider edges to be sparse in the curvelet domain while
the oscillating texture is better sparsified in the local DCT
domain. It has been shown by several authors that choosing a
dictionary as a combination of several sub-dictionaries, each
sub-dictionary having a fast transformation/reconstruction,
allows us to enjoy the advantages of all sub-dictionaries, still
having fast and efficient algorithms.

Adaptive representations

Different approaches have also been recently proposed in or-
der to build a dictionary directly from the data. This is the
case in learned dictionaries [12], for instance using e.g. the
KSVD algorithm [13], the grouplet decomposition [14] or the
GMCA method for multichannel/hyperspectral data [15].

2. INVERSE PROBLEMS AND SPARSITY

2.1. The Sparsity Prior

Many image processing problems can be formalized as a lin-
ear inverse problem,

Y = AX + ε , (1)

, where Y are a set of noisy measurements, ε is an additive
noise, X is the solution of our problem, and A is a linear
operator. Finding X knowing the data Y and A is an in-
verse problem. When it has not a unique and stable solution,
it is an ill-posed problem, and a regularization is necessary
to reduce the space of candidate solutions. Once the dictio-
nary Φ is chosen, inverse problems can be regularized using a
sparsity penalty. Between all possible solutions, we want the
one which has the sparsest representation in the dictionary Φ.
Noting α the representation coefficients in Φ, the solution X
can be reconstructed as X = Φα, the sparsity can be mea-
sured through the ‖α‖`0 norm, which indicates the limit of `p

when p → 0. This counts in fact the number of non-zero el-
ements in the sequence. This approach leads to the following
minimization problem :

min
α
‖α‖`0 s.t. ‖Y −AΦα‖`2 ≤ σ . (2)

It was proposed to convexify the constraint by substituting the
convex `1 norm for the `0 norm leading to [16] :

min
α
‖α‖`1 s.t. ‖Y −AΦα‖`2 ≤ σ . (3)

This equation can also be recast in its Lagrangian form:

min
α

λ‖α‖`1 +
1
2
‖Y −AΦα‖2

`2 . (4)

Depending on the A operator, there are several ways to obtain
the solution of this equation.

2.2. Denoising

The denoising problem corresponds to the case where A is the
identity (i.e. Y = X + N ). Many sparse denoising methods
have been proposed in the last ten years based on i) a decom-
position of the data on a given dictionary, ii) a thresholding
of the coefficients, and iii) a reconstruction of the denoised
data. There are also several ways to threshold the coeffi-
cients. Hard thresholding consists of setting to 0 all coeffi-
cients which have an absolute value lower than a threshold λ.
Soft thresholding kills or shrinks toward zero the significant
coefficients. The most efficient sparse denoising methods do
not consider each coefficients independently of his neighbor-
hood, but rather take into account the values of the neighbor-
ing coefficients. When the chosen dictionary is the one asso-
ciated to an orthogonal transform, it is interesting to note that
the hard and soft thresholded estimators are the closed-form
solutions to the following minimization problems:

α̃ = arg minα

1
2
‖Y − Φα‖2

`2 + λ‖α‖2
`0 hard threshold ,

α̃ = arg minα

1
2
‖Y − Φα‖2

`2 + λ‖α‖2
`1 soft threshold .

Therefore, hard and soft thresholding have been used as build-
ing blocks to derive fast and efficient iterative thresholding
techniques to minimize more complex inverse problems with
sparsity constraints, such as inpainting and deconvolution.

2.3. Inpainting

The classical image inpainting problem can be defined as fol-
lows. Let X be the ideal complete image, Y the observed
incomplete image and M the binary mask (i.e. Mi = 1 if
we have information at pixel i, Mi = 0 otherwise). In short,
we have: Y = MX . Inpainting consists in recovering X
knowing Y and M . We thus want to minimize:

min
X

‖ΦT X‖0 subject to Y = MX . (5)

Note that we now switch to an analysis-type prior in (5). It
was shown in [17] that this optimization problem can be ef-
ficiently solved through an iterative thresholding algorithm
called MCA:

X(n+1) = ∆Φ,λn(X(n) + Y −MX(n)) . (6)

where the nonlinear operator ∆Φ,λ(Z) consists in i) decom-
posing the signal Z in the dictionary Φ to derive the coef-
ficients α = ΦT Z, ii) thresholding the coefficients: α̃ =



ρ(α, λ), where the thresholding operator ρ can either be a
hard thresholding or a soft thresholding, and iii) reconstruct-
ing Z̃ from the thresholded coefficients α̃.

The threshold parameter λn decreases with the iteration
number and it plays a role similar to the cooling parameter of
the simulated annealing techniques, i.e. it allows the solution
to escape from local minima. More details on optimization in
inpainting with sparsity can be found in [18]. The case where
the dictionary is a union of subdictionaries Φ = {Φ1, ...,ΦK}
where each Φi has a fast operator has also been investigated
in [17, 18].

2.4. Deconvolution

In a deconvolution problem, when the sensor is linear, A is
the block Toeplitz matrix. A first iterative thresholding de-
convolution method was proposed in [19] which consists in
the fowollowing iterative scheme:

X(n+1) = X(n) + AT
(
WDenΩ(n)

(
Y −AX(n)

))
(7)

where WDen is an operator which performs a wavelet
thresholding, i.e. applies the wavelet transform of the resid-
ual R(n) (i.e. R(n) = Y − AX(n)), threshold some wavelet
coefficients, and applies the inverse wavelet transform. Only
coefficients that belong to the so called multiresolution sup-
port Ω(n) [19] are kept, while the others are set to zero. At
each iteration, the multiresolution support Ω(n) is updated by
selecting new coefficients in wavelet transform of the residual
which have an absolute value larger than a given threshold.
The threshold is automatically derived assuming a given noise
distribution such as Gaussian or Poisson noise.

More recently, it was shown [20, 21, 22] that a solution
of (4) can be obtained through a thresholded Landweber iter-
ation

X(n+1) = WDenλ

(
X(n) + AT

(
Y −AX(n)

))
, (8)

with ‖A‖ = 1. In the framework of monotone operator
splitting theory, it was shown that for frame dictionaries, a
slight modification of this algorithm converges to the solution
[22]. Extension to constrained non-linear deconvolution is
proposed in [23].

Constraints in the object or image domains

Let us define the object domain O as the space to which the
solution belongs, and the image domain I as the space to
which the observed data belongs (i.e. if X ∈ O then AX ∈
I). The constraint in (7) was applied in the image domain,
while in (8) we have considered constraints on the solution.
Hence, two different wavelet based strategies can be chosen
in order to regularize the deconvolution problem. The con-
straint in the image domain through the multiresolution sup-
port leads to a very robust way to control the noise. Indeed,

whatever the nature of the noise, we can always derive robust
detection levels in the wavelet space and determine scales and
positions of the important coefficients. A drawback of the im-
age constraints is that there is no guarantee that the solution
is free of artifacts such as ringing around point sources. A
second drawback is that image constraints can be used only if
the point spread function is relatively compact, i.e. does not
smear the information over the whole image.

The property of introducing a robust noise modeling is
lost when applying the constraint in the object domain. For
example, in the case of Poisson noise, there is no way (except
using time consuming Monte Carlo techniques) to estimate
the level of the noise in the solution and to adjust properly the
thresholds. The second problem with this approach is that,
in fact, we try to solve two problems simultaneously (noise
amplification and artifact control in the solution) with one pa-
rameter (i.e. λ). The choice of this parameter is crucial, while
such a parameter is implicit when using the multiresolution
support.

Ideally, constraints should be added in both the object and
image domains in order to better control the noise by using
the multiresolution support and avoid artifact such ringing.

2.5. Sparse Blind Source Separation

In the blind source separation (BSS) setting, the instantaneous
linear mixture model assumes that we are given m observa-
tions {y1, · · · , ym} where each {yi}i=1,··· ,m is a row-vector
of size t; each measurement is the linear mixture of n source
processes . As the measurements are m different mixtures,
source separation techniques aim at recovering the original
sources S = [sT

1 , · · · , sT
n ]T by taking advantage of some in-

formation contained in the way the signals are mixed in the
observed data. The linear mixture model is rewritten in ma-
trix form, Y = AS + N, where Y is the m× t measurement
matrix (i.e. observed data), S is the n×t source matrix and A
is the m×n mixing matrix. A defines the contribution of each
source to each measurement. An m× t matrix N is added to
account for instrumental noise or model imperfections.

It has been shown that sparsity is a very robust regular-
ization to solve BSS for both underdetermined (i.e. we have
less observations than unknown, m < n) [24] and overde-
termined mixtures (m ≥ n) [25, 15]. The GMCA algorithm
[25, 26] finds the sparsest solution through the following iter-
ative scheme:

S(k+1) = ∆Φ,λk
(A+(k)

Y ) ,

A(k+1) = Y S(k+1)T
(S(k+1)S(k+1)T

)−1 , (9)

where A+(k) is the pseudo-inverse of the estimated mixing
matrix A(k) at iteration k, λk is a decreasing threshold and
∆Φ,λk

is the nonlinear operator which consists in decompos-
ing each source si on the dictionary Φ, threshold its coeffi-
cients and reconstruct it. Finally, for hyperspectral data, it



was advocated to impose sparsity constraints on the columns
of the mixing matrix to enhance source recovery [15].
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