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Gray and Color Image Contrast Enhancement
by the Curvelet Transform

Jean-Luc Starck, Fionn Murtagh, Emmanuel J. Candès, and David L. Donoho

Abstract—We present in this paper a new method for contrast
enhancement based on the curvelet transform. The curvelet
transform represents edges better than wavelets, and is therefore
well-suited for multiscale edge enhancement. We compare this
approach with enhancement based on the wavelet transform,
and the Multiscale Retinex. In a range of examples, we use edge
detection and segmentation, among other processing applications,
to provide for quantitative comparative evaluation. Our findings
are that curvelet based enhancement out-performs other enhance-
ment methods on noisy images, but on noiseless or near noiseless
images curvelet based enhancement is not remarkably better than
wavelet based enhancement.

Index Terms—Contrast enhancement, curvelets, ridgelets,
wavelets.

I. INTRODUCTION

BECAUSE some features are hardly detectable by eye in
an image, we often transform images before display. His-

togram equalization is one the most well-known methods for
contrast enhancement. Such an approach is generally useful for
images with poor intensity distribution. Since edges play a fun-
damental role in image understanding, one good way to enhance
the contrast is to enhance the edges. For example, we can add
to the original image its Laplacian ( , where

is the enhanced image andis a parameter). Only features at
the finest scale are enhanced (linearly). For a highvalue, only
the high frequencies are visible. Multiscale edge enhancement
[15] can be seen as a generalization of this approach, taking all
resolution levels into account.

In color images, objects can exhibit variations in color satu-
ration with little or no correspondence in luminance variation.
Several methods have been proposed in the past for color image
enhancement [14]. The retinex concept was introduced by Land
[7] as a model for human color constancy. The single scale
retinex (SSR) method [6] consists of applying the following
transform to each bandof the color image:

(1)
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where is the retinex output, is the image dis-
tribution in the th spectral band, is a Gaussian function, and

is convolution. A gain/offset is applied to the retinex output
which clips the highest and lowest signal excursions. This can
be done by k-sigma clipping. The retinex method is efficient for
dynamic range compression, but does not provide good tonal
rendition [10]. The Multiscale Retinex (MSR) combines several
SSR outputs to produce a single output image which has both
good dynamic range compression and color constancy (color
constancy may be defined as the independence of the perceived
color from the color of the light source [8], [9]), and good tonal
rendition [5]. The MSR can be defined by

(2)

with

(3)

is the number of scales, is the th spectral component of
the MSR output, and is the weight associated with the scale
. The Gaussian is given by

(4)

where defines the width of the Gaussian. In [5], three scales
were recommended with values equal respectively to 15, 80,
250, and all weights fixed to . These parameters may
however be image dependent, and automatic parameter estima-
tion by a genetic algorithm was proposed in [9].

The Multiscale Retinex introduces the concept of multires-
olution for contrast enhancement. It performs dynamic range
compression and can be used for different image processing
goals. Improvements of the algorithm have been presented in
[1], leading to better color fidelity.

MSR softens the strongest edges and keeps the faint edges al-
most untouched. The opposite approach was proposed by Velde
[15] in using the wavelet transform for enhancing the faintest
edges and keeping untouched the strongest. The strategies are
different, but both methods allow the user to see details which
were hardly distinguishable in the original image, by reducing
the ratio of strong features to faint features.

The wavelet approach [15] consists of first transforming the
image using the dyadic wavelet transform (two directions per
scale). The gradient at scale and at pixel location is
calculated at each scalefrom the wavelet coefficients

and relative to the horizontal and vertical wavelet bands:
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Fig. 1. Enhanced coefficients versus original coefficients. Parameters arem =

30, c = 3, andp = 0:5.

. Then the two wavelet coeffi-
cients at scale and at pixel position [i.e., ] are
multiplied by , where is defined by

if

if

if (5)

Three parameters are needed:, and . determines the
degree of nonlinearity in the nonlinear rescaling of the lumi-
nance, and must be in . Coefficients larger than are
not modified by the algorithm. Theparameter corresponds to
the noise level. Fig. 1 shows the modified wavelet coefficients
versus the original wavelet coefficients for a given set of param-
eters ( , and ). Finally, the enhanced image
is obtained by the inverse wavelet transform from the modified
wavelet coefficients. For color images, a similar method can
be used, but by calculating the overall multiscale gradient
from the multiscale gradient of the three, , components:

. All wavelet coeffi-

cients at scale and at position are multiplied by , the
enhanced , , components are reconstructed from the modi-
fied wavelet coefficients, and the (, , ) image is transformed
into an RGB image. More details can be found in [15].

Wavelet bases present some limitations, because they are not
well adapted to the detectionofhighlyanisotropic elements, such
as alignments in an image, or sheets in a cube. Recently, other
multiscale systems have been developed, which include in par-
ticular ridgelets [2] and curvelets [3], [12], and these are very dif-
ferent fromwavelet-likesystems.Curveletsandridgelets take the
form of basis elements which exhibit very high directional sensi-
tivity and are highly anisotropic. The curvelet transform uses the
ridgelet transform in its digital implementation. We first describe
the ridgelet and the curvelet transforms, and then we show how
contrast enhancement can be obtained from the curvelet coef-
ficients. Following that, we present a number of evaluations of
the use of wavelet- and curvelet-based enhancement.

II. CONTRAST ENHANCEMENT USING THE

CURVELET TRANSFORM

A. Ridgelet Transform

The two-dimensional continuous ridgelet transform in
can be defined as follows [2]. We pick a smooth univariate func-

tion with sufficient decay and satisfying the admis-
sibility condition

(6)

where denotes the Fourier transform of. Equation (6) holds
if, say, has a vanishing mean . We will suppose
a special normalization aboutso that .

For each , each and each , we define
the bivariateridgelet by

(7)

A ridgelet is constant along lines .
Transverse to these ridges it is a wavelet.

Fig. 2 graphs a few ridgelets with different parameter values.
The top right, bottom left and right panels are obtained after
simple geometric manipulations of the upper left ridgelet,
namely rotation, rescaling, and shifting.

Given an integrable bivariate function , we define its
ridgelet coefficients by

where denotes the conjugate of. We have the exact recon-
struction formula

(8)

valid a.e. for functions which are both integrable and square
integrable.

Ridgelet analysis may be construed as wavelet analysis in the
Radon domain. Recall that the Radon transform of an objectis
the collection of line integrals indexed by
given by

(9)
where is the Dirac function. Then the ridgelet transform is
precisely the application of a 1-D wavelet transform to the slices
of the Radon transform where the angular variableis constant
and is varying.

This viewpoint strongly suggests developing approximate
Radon transforms for digital data. This subject has received
considerable attention over the past decades since the Radon
transform naturally appears as a fundamental tool in many
fields of scientific investigation. Our implementation follows a
widely used approach in the literature of medical imaging and
is based on fast Fourier transforms. The key component is to
obtain approximate digital samples from the Fourier transform
on a polar grid, i.e., along lines going through the origin in
the frequency plane. Fig. 3 (left) represents the flowgraph of
the ridgelet transform. We will not detail this approach further
here, and instead refer the reader to [12].

The ridgelet transform of a digital array of size is an
array of size and hence introduces a redundancy factor
equal to 4.

Local Ridgelet Transforms

Speaking in engineering terms, one might say that the ridgelet
transform is well-adapted for picking linear structures of about



708 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 12, NO. 6, JUNE 2003

Fig. 2. A few ridgelets.

the size of the image. However, interesting linear structures,
e.g., line segments, may occur at a wide range of scales. Fol-
lowing a well-established tradition in time-frequency analysis,
the opportunity arises of developing a pyramid of ridgelet trans-
forms. We may indeed apply classical ideas such as recursive
dyadic partitioning, and thereby construct dictionaries of win-
dowed ridgelets, renormalized and transported to a wide range
of scales and locations.

To make things more explicit we consider the situation at a
fixed scale. The image is decomposed into smoothly overlap-
ping blocks of side lengthpixels in such a way that the overlap
between two vertically adjacent blocks is a rectangular array of
size by ; we use overlap to avoid blocking artifacts. For
an by image, we count such blocks in each direction.
The partitioning introduces redundancy, since a pixel belongs to
4 neighboring blocks. More details on a possible implementa-
tion of the digital ridgelet transform can be found in [12]. Taking
the ridgelet transform of these smoothly localized data is what
we call the local ridgelet transform.

B. Curvelet Transform

The idea of curvelets [3] is to represent a curve as a super-
position of functions of various lengths and widths obeying the
scaling law . This can be done by first decom-
posing the image into subbands, i.e., separating the object into
a series of disjoint scales. Each scale is then analyzed by means
of a local ridgelet transform.

Curvelets are based on multiscale ridgelets combined with a
spatial bandpass filtering operation to isolate different scales.

This spatial bandpass filter nearly kills all multiscale ridgelets
which are not in the frequency range of the filter. In other words,
a curvelet is a multiscale ridgelet which lives in a prescribed
frequency band. The bandpass is set so that the curvelet length
and width at fine scales are related by a scaling law

and so the anisotropy increases with decreasing scale
like a power law. There is a very special relationship between
the depth of the multiscale pyramid and the index of the dyadic
subbands; the side length of the localizing windows is doubled
at every otherdyadic subband, hence maintaining the funda-
mental property of the curvelet transform which says that ele-
ments of length about serve for the analysis and synthesis
of the th subband . While multiscale ridgelets have
arbitrary dyadic length and arbitrary dyadic widths, curvelets
have a scaling obeying . Loosely speaking,
the curvelet dictionary is a subset of the multiscale ridgelet dic-
tionary, but which allows reconstruction.

In our opinion the “à trous” subband filtering algorithm is es-
pecially well-adapted to the needs of the digital curvelet trans-
form. The algorithm decomposes anby image as a super-
position of the form

where is a coarse or smooth version of the original image
and represents “the details of” at scale . See [13] for
more information. Thus, the algorithm outputs subband
arrays of size . (The indexing is such that, here,
corresponds to the finest scale, i.e., high frequencies.)
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Fig. 3. Top, ridgelet transform flowgraph. Each of the2n radial lines in the
Fourier domain is processed separately. The 1-D inverse FFT is calculated
along each radial line followed by a 1-D nonorthogonal wavelet transform. In
practice, the one-dimensional wavelet coefficients are directly calculated in
the Fourier space. Bottom, curvelet transform flowgraph. The figure illustrates
the decomposition of the original image into subbands followed by the spatial
partitioning of each subband (i.e., each subband is decomposed into blocks).
The ridgelet transform is then applied to each block.

As a side comment, we note that the coarse description of the
image is not processed. We used the default value
pixels in our implementation. Fig. 3 (right) gives an overview
of the organization of the algorithm.

This implementation of the curvelet transform is redundant.
The redundancy factor is equal to whenever scales are
employed. Finally, the method enjoys exact reconstruction and
stability, because each step of the transform is both invertible
and stable.

III. CONTRAST ENHANCEMENT USING THE

CURVELET TRANSFORM

Since the curvelet transform is well-adapted to represent im-
ages containing edges, it is a good candidate for edge enhance-
ment. Curvelet coefficients can be modified in order to enhance
edges in an image. A function must be defined which modi-
fies the values of the curvelet coefficients. It could be a function
similar to the one defined for the wavelet coefficients [15] [see
(5)]. This function however gives rise to the drawback ampli-
fying the noise (linearly) as well as the signal of interest. We
introduce explicitly the noise standard deviationin the equa-
tion

if

if

if

if (10)

Here, determines the degree of nonlinearity andintro-
duces dynamic range compression. Using a nonzerowill en-
hance the faintest edges and soften the strongest edges at the
same time. becomes a normalization parameter, and avalue
larger than 3 guaranties that the noise will not be amplified. The

parameter is the value under which coefficients are ampli-
fied. This value depends obviously on the pixel values inside
the curvelet scale. Therefore, we found it necessary to derive
the value from the data. Two options are possible:

• can be derived from the noise standard deviation (
) using an additional parameter . The advantage is that

is now independent of the curvelet coefficient values, and
therefore much easier for a user to set. For instance, using
and amplifies all coefficients with a SNR between 3
and 10.

• can also be derived from the maximum curvelet coeffi-
cient of the relative band ( , with ). In this
case, choosing for instance and , we amplify
all coefficients with an absolute value betweenand half the
maximum absolute value of the band.

The first choice allows the user to define the coefficients to
be amplified as a function of their signal to noise ratio, while the
second one gives an easy and general way to fix theparameter
independently of the range of the pixel values. Fig. 4 shows the
curve representing the enhanced coefficients versus the original
coefficients for two sets of parameters.

The curvelet enhancement method for grayscale images con-
sists of the following steps.

1) Estimate the noise standard deviationin the input
image .
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Fig. 4. Enhanced coefficients versus original coefficients. Left, parameters arem = 30, c = 3, s = 0, andp = 0:5. Right, parameters arem = 30, c = 3,
s = 0:6, andp = 0:5.

Fig. 5. Top: part of Lena image and its histogram equalization. Bottom: enhanced image by the wavelet transform and the curvelet transform.

2) Calculate the curvelet transform of the input image. We
get a set of bands , each band contains coefficients
and corresponds to a given resolution level.

3) Calculate the noise standard deviationfor each band
of the curvelet transform (see [12] for more details on this step).

4) For each band do

• Calculate the maximum of the band.
• Multiply each curvelet coefficient by .

5) Reconstruct the enhanced image from the modified
curvelet coefficients.
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Fig. 6. Top, grayscale image, and bottom, curvelet enhanced image.

For color images, we apply first the curvelet transform to
the three components . For each curvelet coefficient,
we calculate , where are, re-
spectively, the curvelet coefficients of the three components,
and the modified coefficients are obtained by:

.
Values in the enhanced components can be larger than the au-

thorized upper limit (in general 255), and we found it necessary

to add a final step to our method, which is a gain/offset selection
applied uniformly to the three color subimages, as described in
[6].

Examples

Fig. 5 shows the results of, respectively, histogram equaliza-
tion, wavelet and curvelet enhancement, using the standard Lena
test image. No noise was added to the image used, implying
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Fig. 7. Top, color image (Kodak picture of the day 14/05/02) and retinex method. Bottom, multiscale retinex method and curvelet edge enhancement.

small levels only of quantization noise present. The better result
seen here for the curvelet enhancement (Fig. 5 bottom right) is
in part due to the Velde method [15] used in the wavelet-based
method over-enhancing small noise levels.

Fig. 6 shows the results for the enhancement of a grayscale
satellite image (parameters were , and ).

Fig. 7 shows the results for the enhancement of a color image
(Kodak image of the day 14/05/01) by the retinex (same param-
eters), the multiscale retinex and the curvelet multiscale edge
enhancement methods. Fig. 8 shows the results for the enhance-
ment of a color image (Kodak image of the day 11/12/01). These
examples present some evidence for the benefits of curvelet
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Fig. 8. Top, color image (Kodak picture of the day 11/12/01), and bottom, curvelet enhanced image.

enhancement. Small, aligned features are preserved well. Note
however that better color fidelity can be obtained for the MSR
image by using the color restoration algorithm described in [1].

In summary, the results of these three figures indicate that
the curvelet based enhancement approach works well. In the
next section, we will evaluate it relative to other enhancement
approaches, and in particular wavelet based enhancement.

IV. EVALUATION

A. Evaluation Methodology

Image enhancement quality is difficult to assess. Consider-
able literature exists relative to image quality estimation [11],
[4]. However, this is most often in the context of image com-
pression where the problem is to estimate the distortion or the

loss of information, with criteria other than PSNR (peak signal
to noise ratio), because PSNR does not reflect errors in the way
that the human vision system does. For image enhancement, the
goal is to introduce distortion, in such a way that some low level
or low contrast features can easily be seen by a human operator.
A subjective assessment approach is simply to present images
enhanced by different methods, as we did in the previous sec-
tion, and to let a domain expert judge the best result.

In order to have an object quality criterion, we will make
the following assumption: between two edge enhancement tech-
niques, the better one will be that which produces the best re-
sults for standard vision processing tasks, such as segmenta-
tion or edge detection. We do not claim that image enhance-
ment should be applied before carrying out a segmentation or
an edge detection (other pre-processing steps such as filtering
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Fig. 9. Left, image containing a number of bars, and right, bar edge image.

Fig. 10. Percentage of detected edge pixels versus the edge SNR using a Canny edge detector on the wavelet enhanced image (dashed line), the curvelet enhanced
image using Velde’s function enhancement (dotted line), and the curvelet enhanced image using the new function enhancement (continuous line).

are certainly more appropriate), but we consider that if an image
enhancement method improves the human performance for ana-
lyzing a scene, it should do the same for a machine-based vision
approach. We describe two experiments in the following, pro-
viding some measure of objectivity for comparison of results,
using edge detection and segmentation. Finally, we return to the
issue of the limits of curvelet versus wavelet enhancement.

B. Edge Detection

Fig. 9 consists of an artificial image containing a number of
bars. The intensity is constant along each individual bar; from
left to right, the intensities of the six vertical bars (these are in
fact thin rectangles which are 20 pixels wide and 150 pixels
long, having a 30angle with the -axis) are respectively equal
to 1, 2, 3, 4, 5, 8. The noise standard deviation is 1.

We ran the wavelet and the curvelet methods on this simu-
lated image. The curvelet method was applied twice, once with
Velde’s enhancement function and once with the proposed en-
hancement function. Then we applied a Canny edge detector
on the three enhanced images. We estimated the noise in the
three edge images from pixels outside the bars, and consid-
ered as edges all pixels with a value larger than five times the
noise standard deviation. Knowing the right edges (they were
extracted by applying the Canny edge detector to the original
noise free image; see Fig. 9 right), we derived the percentage

of recovered edge pixels: this is 54.77% for the wavelet-based
image, 64.66% for the curvelet enhanced image using Velde’s
function enhancement, and 73.91% for the curvelet enhanced
image using the new function enhancement. As each bar has a
different intensity level, we can also derive the percentage of re-
covered edge pixels as a function of the edge signal to noise ratio
(SNR). Fig. 10 shows such a curve. This gives the percentage of
detected edge pixels versus the edge SNR using a Canny edge
detector on i) the wavelet enhanced image (dashed line), ii) the
curvelet enhanced image using Velde’s function enhancement,
and iii) the curvelet enhanced image using the new function en-
hancement (continuous line).

These results are clearly in favor of the curvelet transform.

C. Segmentation

Contrast enhancement can facilitate user interpretation of an
image, or it can help in automated interpretation. Here, we will
use segmentation as an important processing goal. We will use
a grayscale 512 512 Lena test image on account of its smooth
and edge regions.

The alternative contrast enhancement approaches used are: i)
histogram equalization, using the algorithm in the IDL image
processing package, ii) wavelet coefficient enhancement, as de-
scribed in Section I above, and iii) curvelet transform based en-
hancement, as described in Section II-B above.
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Fig. 11. Marginal density histograms (binsize= 3) of original Lena image (top left), histogram equalized image (top right), wavelet enhanced (bottom left), and
curvelet enhanced (bottom right).

Fig. 12. A five-segment result, using a Markov Potts model, of the original
image.

Fig. 11 shows the marginal densities of these images. His-
togram equalization essentially destroys information relative to
pixel classification through marginal density fitting. With his-
togram equalization, image quantization remains feasible, of
course, but it is clear from Fig. 12 that possibly useful informa-
tion is lost. Wavelet enhancement (bottom left panel in Fig. 12)
also smooths out information. Only the curvelet enhancement
(bottom right panel in Fig. 12) retains marginal density fidelity
to the original image marginal density (upper left panel).

To investigate the quality of segmentations carried out on
these images, we used a five-component Gaussian fit, based on a
Markov random field model with neighborhood 33, and with
a Potts/Ising spatial model. The spatial influence parameter,,
did not differ greatly among these results. We found, for the

Fig. 13. A five-segment result, using a Markov Potts model, of the histogram
equalized image.

original and histogram-equalized images, and the wavelet- and
curvelet-enhanced images, respective values of: 0.72, 0.72,
0.63, and 0.73. We also determined, as measures of model fit,
pseudo-likelihood information criterion values, with limited
explanatory capability in this instance.

The segmentation results are shown in Figs. 12–15. In the
histogram equalized result (Fig. 13) edge information is de-
stroyed: cf. details of the big cap feather. The wavelet-enhanced
result (Fig. 14) does very well in edge regions: cf. details of
the cap feather, and hair. However some injustice is done to the
smooth regions. The curvelet enhancement (Fig. 15) performs
well in edge regions (feather, background) while simultaneously
respecting smooth areas. Overall, from the points of view of
marginal density, and also spatial segmentation, we find the
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Fig. 14. A five-segment result, using a Markov Potts model, of the wavelet-
enhanced image.

Fig. 15. A five-segment result, using a Markov Potts model, of the curvelet-
enhanced image.

curvelet transform enhancement method to provide a better re-
sult which is simultaneously “close” to the original input image.

V. CONCLUSION

A number of properties, respected by the curvelet filtering
described here, are important for contrast stretching.

1) Reconstruct the enhanced image from the modified
curvelet coefficients.Noise must not be amplified in enhancing
edges.

2) Reconstruct the enhanced image from the modified
curvelet coefficients.Colors should not be unduly modified.
In the multiscale retinex, for example, a tendency toward
increased grayness is seen. This is not the case using curvelets.

However color restoration could also be carried out in a final
step, as proposed for the multiscale retinex [1]. This should
improve the final image quality.

3) Reconstruct the enhanced image from the modified
curvelet coefficients. It is very advantageous if block effects
do not occur. Block overlapping is usually not necessary in
curvelet-based contrast enhancement, unlike in the case of
noise filtering.

A range of further examples can be seen at http://www-
stat.stanford.edu/~jstarck/contrast.html.

Our conclusions are as follows.
1) The curvelet and wavelet enhancement functions take ac-

count very well of image noise.
2) As evidenced by the experiments with the curvelet trans-

form, there is better detection of noisy contours than with other
methods.

3) For noise-free images, there is not a great deal to be gained
by curvelet enhancement over wavelet enhancement since the
enhancement function tends toward Velde’s approach in such
weak noise cases. Contours and edges are detected quite ade-
quately by wavelets in such situations.
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