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Abstract

The separation of image content into semantic parts plays a vital role in applications such as com-

pression, enhancement, restoration, and more. In recent years several pioneering works suggested such

a separation based on variational formulation, and others using independent component analysis and

sparsity. This paper presents a novel method for separating images into texture and piecewise smooth

(cartoon) parts, exploiting both the variational and the sparsity mechanisms. The method combines the

Basis Pursuit Denoising (BPDN) algorithm and the Total-Variation (TV) regularization scheme. The

basic idea presented in this paper is the use of two appropriate dictionaries, one for the representation

of textures, and the other for the natural scene parts assumed to be piecewise-smooth. Both dictionaries

are chosen such that they lead to sparse representations over one type of image-content (either texture or

piecewise smooth). The use of the BPDN with the two amalgamed dictionaries leads to the desired sep-

aration, along with noise removal as a by-product. As the need to choose proper dictionaries is generally

hard, a TV regularization is employed to better direct the separation process and reduce ringing artifacts.

We present a highly efficient numerical scheme to solve the combined optimization problem posed by our

model, and show several experimental results that validate the algorithm’s performance.

Keywords

Basis Pursuit Denoising, Total Variation, Sparse Representations, Piecewise Smooth, Texture, Wavelet,
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I. Introduction

The task of decomposing signals into their building atoms is of great interest in many applica-

tions. The typical assumption made in such problems is that the given signal is a linear mixture

of several source signals of a more coherent origin. These kinds of problems have drawn a lot

of research attention recently. Independent Component Analysis (ICA), sparsity methods, and

variational calculus, have all been used for the separation of signal mixtures with varying degrees

of success (see for example [1], [2], [3], [4], [5]). A classic example is the cocktail party problem

where a sound signal containing several concurrent speakers is to be decomposed into the sep-

arate speakers. In image processing a parallel situation is encountered in cases of photographs

containing transparent layers due to reflection.

An interesting decomposition application – separating texture from non-texture parts in images

– has been recently studied by several researchers. The importance of such separation is for

applications in image compression, image analysis, synthesis and more (see for example [6]). A
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variational-based method was proposed recently by Vese and Osher [3], and later followed by

others [7], [8], [5]. Their approach uses a recently introduced mathematical model for texture

content [9] that extends the notion of Total-Variation [10]. A different methodology towards

the same separation task is proposed in [2] and [4]. The work in [2] describes a novel image

compression algorithm based on image decomposition to cartoon and texture layers using the

wavelet-packet transform. The work presented in [4] shows a separation based on the matching

pursuit algorithm and an MRF modeling. We will return to these works and give a more detailed

description of their contribution and their relation to the work presented here.

In this paper we focus on the same decomposition problem – texture and natural (piecewise

smooth) additive ingredients. Figure 1 presents the desired behavior of the separation task at

hand for a typical example. In this work we aim at separating these two parts on a pixel-by-pixel

basis, such that if the texture appears in parts of the spatial support of the image, the separation

should succeed in finding a masking map as a by-product of the separation process.

Fig. 1. Example of a separation of texture from piecewise smooth content in an image.

The approach we take for achieving the separation starts with the Basis-Pursuit denoising

(BPDN) algorithm, extending results from previous work [11], [12]. The core idea here is to

choose two appropriate dictionaries, one for the representation of texture, and the other for

the natural scene parts. Both dictionaries are to be chosen such that each leads to sparse

representations over the images it is serving, while yielding non-sparse representations on the

other content type. Thus, when amalgamated to one dictionary, the BPDN is expected to lead to

the proper separation, as it seeks for the overall sparsest solution, and this should align with the

sparse representation for each part. We show experimentally how indeed the BPDN framework

leads to a successful separation. Further more, we show how to strengthen the BPDN paradigm,
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overcoming ringing artifacts by leaning on the Total-Variation (TV) regularization scheme.

The rest of the paper is organized as follows: Section 2 presents the separation method, how

the BPDN is used, and how TV is added to obtain a further improvement. In Section 3 we discuss

the choice of the dictionaries for the texture and the natural scene parts. Section 4 addresses the

numerical scheme for solving the separation problem efficiently. We present several experimental

results in Section 5. Relation to prior art relevant to this work is presented in Section 6, and

conclusions are drawn in Section 7. Two appendices in this paper give a detailed presentation

of a numerical algorithm that is found useful here, and a preliminary theoretical study of the

separation task.

II. Separation of Images - Basics

A. Model Assumption

Assume that the input image to be processed is of size N × N . We represent this image

as a 1D vector of length N2 by simple reordering. For such images Xt that contain only pure

texture content we propose an over-complete representation matrix Tt ∈ MN2×L (where typically

L � N2) such that solving

αopt
t = Argmin

αt

‖αt‖0 subject to: Xt = Ttαt (1)

for any texture image X t leads to a very sparse solution. The notation ‖u‖0 is the `0-norm of the

vector u, effectively counting the number of non-zeros in it. We further assume that Tt is such

that if the texture appears in parts of the image and otherwise zero, the representation is still

sparse, implying that the dictionary employs a multi-scale and local analysis of the image content.

The definition in (1) is essentially an overcomplete transform of X t, yielding a representation αt,

such that sparsity is maximized.

We further require that when this forward transform with Tt is applied to images containing no

texture and pure piecewise-smooth content, the resulting representations are non-sparse. Thus,

the dictionary Tt plays a role of a discriminant between content types, preferring the texture

over the natural part. A possible measure of fidelity of the chosen dictionary is the functional

T
opt
t = Arg min

Tt

∑

k ‖αopt
t (k)‖0

∑

j ‖αopt
n (j)‖0

(2)

where:
αopt

t (k) = Arg minαt
‖αt‖0 subject to: Xt(k) = Ttαt, k = 1, 2, . . .

αopt
n (j) = Argminαn

‖αn‖0 subject to: Xn(j) = Ttαn, j = 1, 2, . . .
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This functional of the dictionary is measuring the relative sparsity between a family of textured

images {X t(k)}k and a family of natural content images {Xn(j)}j . This, or a similar measure,

could be used for the design of the proper choice of Tt, but in this paper we take a different

approach, as will be discussed shortly.

Similar to the above, assume that for images containing piecewise smooth content, Xn, we have

a different dictionary Tn, such that their content is sparsely represented by the above definition.

Again, we assume that beyond the sparsity obtained by Tn for natural images, we can further

assume that texture images are represented very inefficiently (i.e. non-sparsely), and also assume

that the analysis applied by this dictionary is of multi-scale and local nature, enabling it to detect

pieces of the desired content.

For an arbitrary image X containing both texture and piecewise smooth content (overlayed,

side-by-side, or both), we propose to seek the sparsest of all representations over the augmented

dictionary containing both Tt and Tn. Thus we need to solve

{αopt
t , αopt

n } = Arg min
{αt, αn}

‖αt‖0 + ‖αn‖0 subject to: X = Ttαt + Tnαn. (3)

This optimization task is likely to lead to a successful separation of the image content, such that

Ttαt is mostly texture and Tnαn is mostly piecewise smooth. This expectation relies on the

assumptions made earlier about Tt and Tn being very efficient in representing one content type

and being highly non-effective in representing the other.

While sensible from the point of view of the desired solution, the problem formulated in

Equation (3) is non-convex and hard to solve. Its complexity grows exponentially with the

number of columns in the overall dictionary. The Basis Pursuit (BP) method [11] suggests the

replacement of the `0-norm with an `1-norm, thus leading to a solvable optimization problem

(Linear Programming) of the form

{αopt
t , αopt

n } = Arg min
{αt, αn}

‖αt‖1 + ‖αn‖1 subject to: X = Ttαt + Tnαn. (4)

Interestingly, recent work have shown that for sparse enough solutions, the BP simpler form is

accurate, also leading to the sparsest of all representations [13], [14], [15], [16]. More about this

relationship is given in Appendix II, where we analyze theoretically bounds on the success of

such separation.

September 15, 2004 DRAFT



6

B. Complicating Factors

The above description is sensitive in a way that may hinder the success of the overall separation

process. There are two complicating factors, both have to do with the assumptions made above:

• Assumption: The image is decomposed cleanly into texture and natural (piecewise smooth)

parts. For an arbitrary image this assumption is not true as it may also contain additive noise

that is not represented well both by Tt and Tn. Generally speaking, any deviation from this

assumption may lead to a non-sparse pair of vectors {αopt
t , αopt

n }, and with that, due to the

change from `0 to `1, to a complete failure of the separation process.

• Assumption: The chosen dictionaries are appropriate. It is very hard to propose a dictionary

that leads to sparse representations for a wide family of signals. A chosen dictionary may be

inappropriate because it does not lead to a sparse representation for the proper signals. If this is

the case, then for such images the separation will fail. More complicating scenario is obtained for

dictionaries that does not discriminate well between the two phenomena we desire to separate.

Thus, if for example, we have a dictionary Tn that indeed leads to sparse representations for

natural scenes, but also known to lead to sparse representations for some texture content, clearly,

such a dictionary could not be used for a successful separation. Put more generally we may ask

whether such dictionaries exist at all.

A solution for the first problem could be obtained by relaxing the constraint in Equation (4)

to become an approximate one. Thus, in the new form we propose solution of

{αopt
t , αopt

n } = Arg min
{αt, αn}

‖αt‖1 + ‖αn‖1 + λ ‖X − Ttαt − Tnαn‖2
2 . (5)

Thus, an additional content in the image that is not represented sparsely by both dictionaries

will be allocated to be the residual X −Ttαt −Tnαn. This way, not only we manage to separate

texture from natural scene parts, but also succeed in removing an additive noise as a by-product.

This new formulation is familiar by the name Basis Pursuit Denoising, shown in [11] to perform

well for denoising tasks. We should note here that the choice of `2 as the error norm is intimately

related to the assumption that the residual behaves like a white zero-mean Gaussian noise. Other

norms can be similarly introduced to account for different noise models, such as Laplacian (`1),

uniformly distributed noise (`∞), and others.

As for the second problem mentioned above, we propose here an underlying model to describe

image content, but we do not and cannot claim that this model is universal and will apply to
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all images. There are certainly images for which this model will fail. Still, in properly choosing

the dictionaries, the proposed model holds true for a relatively large class of images. Indeed, the

experimental results to follow support this belief.

Also, even if the above-described model is feasible, the problem of choosing the proper dictio-

naries remains open and difficult. This matter will be discussed in the next section.

Suppose we have chosen Tn and Tt, both generally well suited for the separation task. By

adding external forces that direct the images Tnαn and Ttαt to better suite their expected

content, these forces will fine-tune the process to achieve its task. As an example for such

successful external force, adding a TV penalty [10] to Equation (5) can direct the image Tnαn

to fit the piecewise smooth model. This leads to

{αopt
t , αopt

n } = Arg min
{αt, αn}

‖αt‖1 + ‖αn‖1 (6)

+λ ‖X − Ttαt −Tnαn‖2
2 + γTV {Tnαn}.

The expression TV {Tnαn} is essentially computing the image Xn = Tnαn (supposed to be

piecewise smooth), and applying the TV-norm on it (computing its absolute gradient field and

summing it with an `1-norm). Penalizing with TV, we force the image Tnαn to be closer to

a piecewise smooth image, and thus support the separation process. This idea has already

appeared in [17], [18], [19], where TV was used to damp ringing artifacts near edges, caused by

the oscillations of the curvelet atoms. We note that combining TV with wavelet has also been

done for similar reasons in [20], although in a different fashion.

C. Different Problem Formulation

Assume that each of the chosen dictionaries can be composed into a set of unitary matrices

such that

Tt = [T(1)t, T(2)t, . . . ,T(Lt)t] Tn = [T(1)n, T(2)n, . . . ,T(Ln)n]

and

T(1)Ht T(1)t = T(2)Ht T(2)t = · · · = T(Lt)
H
t T(Lt)t

= T(1)Hn T(1)n = T(2)Hn T(2)n = · · · = T(Ln)Hn T(Ln)n = I,
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where TH is the Hermite adjoint (conjugate and transpose) of T. In such a case we could slice

αt and αn into Lt and Ln parts correspondingly, and obtain a new formulation of the problem

min
{α(k)t}

Lt
k=1

, {α(j)n}
Ln
j=1

Lt
∑

k=1

‖α(k)t‖1 +
Ln
∑

j=1

‖α(j)n‖1 (7)

+λ

∥

∥

∥

∥

∥

∥

X −
Lt
∑

k=1

T(k)tα(k)t −
Ln
∑

j=1

T(j)nα(j)n

∥

∥

∥

∥

∥

∥

2

2

+γTV







Ln
∑

j=1

T(j)nα(j)n







.

In the above formulation the representation vector pieces α(j)n and α(k)t are supposed to be

sparse. Defining X(k)t = T(k)tα(k)t and similarly X(j)n = T(j)nα(j)n, we can reformulate the

problem as

min
{X(k)t}

Lt
k=1

, {X(j)n}
Ln
j=1

Lt
∑

k=1

∥

∥

∥T(k)Ht X(k)t
∥

∥

∥

1
+

Ln
∑

j=1

∥

∥

∥T(j)Hn X(j)n
∥

∥

∥

1
(8)

+λ

∥

∥

∥

∥

∥

∥

X −
Lt
∑

k=1

X(k)t −
Ln
∑

j=1

X(j)n

∥

∥

∥

∥

∥

∥

2

2

+ γTV







Ln
∑

j=1

X(j)n







and the unknowns become images, rather then representation coefficients. For this problem

structure there exist a fast numerical solver called Block-Coordinate Relaxation Method, based

on the shrinkage method [21]. This solver (see Appendix I for details) requires only the use of

matrix-vector multiplications with the unitary transforms and their adjoints. See [22] for more

details. We will return to this form of solution when we discuss numerical algorithms.

D. Summary of Method

In order to translate the above ideas into a practical algorithm we should answer three major

questions: (i) Is there a theoretical backup to the heuristic claims made here? (ii) How should

we choose the dictionaries Tt and Tn? and (iii) How should we numerically solve the obtained

optimization problem in a traceable way? These three questions are addressed in the coming

sections. The theoretical grounds for the separation is briefly discussed in Appendix II. The

choice of dictionaries in the topic of the next section, and the numerical considerations follow in

Section IV.
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III. Candidate Dictionaries

Our approach towards the choice of Tt and Tn is to pick known transforms, and not design

those optimally as we hinted earlier as a possible method. We choose transforms known for

representing well either texture or piecewise smooth behaviors. For numerical reasons, we restrict

our choices to the dictionaries Tt and Tn that have a fast forward and inverse implementation. In

making a choice for a transform, we use experience of the user applying the separation algorithm,

and the choices made may vary from one image to another. We shall start with a brief description

of our candidate dictionaries.

A. Dictionaries for Piecewise Smooth Content

A.1 Bi-Orthogonal Wavelet Transforms (OWT)

Previous work has established that the wavelet transform is well suited for the effective (sparse)

representation of natural scene [21]. The application of the OWT to image compression using

the 7-9 filters and the zero-tree coding leads to impressive results over the JPEG [23], [24], [25].

The OWT implementation requires O(n2) operations for an image with n×n pixels, both for the

forward and the inverse transforms. Represented as a matrix-vector multiplication, this transform

is a square matrix, either unitary, or non-unitary with accompanying inverse matrix of a similar

simple form. The OWT presents only a fixed number of directional elements independent of

scales, and there is no highly anisotropic elements [26]. Therefore, we expect the OWT to

be non-optimal for detection of highly anisotropic features. Moreover, the OWT is non-shift

invariance – a property that may cause difficulties in our analysis.

The undecimated version (UWT) of the OWT is certainly the most popular transform for

data filtering. It is obtained by skipping the decimation, implying that this is an overcomplete

transform represented as a matrix with more columns than rows. The redundancy factor (ratio

between number of columns to number of rows) is 3J + 1, where J is the number of resolution

layers. With this over-completeness we obtain the desired shift invariance property.

A.2 The isotropic à trous algorithm

This transform decomposes an n×n image I as a superposition of the form I(x, y) = cJ (x, y)+
∑J

j=1 wj(x, y), where cJ is a coarse or smooth version of the original image I and wj represents

‘the details of I’ at scale 2−j (see [27]). Thus, the algorithm outputs J + 1 sub-band arrays of
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size n×n. This wavelet transform is very well adapted to the detection of isotropic features, and

this explains the reason of its success for astronomical image processing, where the data contain

mostly (quasi-)isotropic objects, such stars or galaxies [28].

A.3 The Local Ridgelet Transform

The ridgelet transform is the application of a 1D-wavelet to the angular slices of the Radon

transform [26]. Such transform has been shown to be optimal for representing global lines in an

image. In order to detect line segments, a partitioning must be introduced [29], and a ridgelet

transform is to be applied per each block. In such a case, the image is decomposed into 50%-

overlapping blocks of side-length b pixels. The overlap is introduced in order to avoid blocking

artifacts. For a n×n image, we count 2n/b such blocks in each direction. The overlap introduces

more redundancy (over-completeness), as each pixel belongs to 4 neighboring blocks. The ridgelet

transform requires O(n2 log2 n) operations. More details on the implementation of the digital

ridgelet transform can be found in [30].

A.4 The Curvelet Transform

The curvelet transform, proposed in [31], [32], [30], enables the directional analysis of an image

in different scales. The idea is to first decompose the image into a set of wavelet bands, and

to analyze each band with a local ridgelet transform. The block size is changed at each scale

level, such that different levels of the multi-scale ridgelet pyramid are used to represent different

sub-bands of a filter bank output. The side-length of the localizing windows is doubled at every

other dyadic sub-band, hence maintaining the fundamental property of the curvelet transform,

which says that elements of length about 2−j/2 serve for the analysis and synthesis of the j-

th sub-band [2j , 2j+1]. The curvelet transform is also redundant, with a redundancy factor of

16J + 1 whenever J scales are employed. Its complexity is of the O(n2 log2 n), as in ridgelet.

This method is best for the detection of anisotropic structures and smooth curves and edges of

different lengths.

B. Dictionaries for texture Content

B.1 The (Local) Discrete Cosine Transform (DCT)

The DCT is a variant of the Discrete Fourier Transform, replacing the complex analysis with

real numbers by a symmetric signal extension. The DCT is an orthonormal transform, known
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to be well suited for first order Markov stationary signals. Its coefficients essentially represents

frequency content, similar to the ones obtained by Fourier analysis. When dealing with non-

stationary sources, DCT is typically applied in blocks. Such is indeed the case in the JPEG

image compression algorithm. Choice of overlapping blocks is preferred for analyzing signals while

preventing artefact. In such a case we get again an overcomplete transform with redundancy

factor of 4 for an overlap of 50%. A fast algorithm with complexity of n2 log2 n exists for its

computation. The DCT is appropriate for a sparse representation of either smooth or periodic

behaviors.

B.2 The Gabor Transform

The Gabor transform is quite popular among researchers working on texture content. This

transform is essentially a localized DFT, where the localization is obtained by windowing portions

of the signal in an overlapping fashion. The amount of redundancy is controllable. For a proper

choice of the overlap and the window, both the forward and the inverse transforms can be applied

with complexity of n2 log2 n.

IV. Numerical Considerations

A. Numerical Scheme

Returning to the separation process as posed in Equation (6), we need to solve an optimization

problem of the form

{αopt
t , αopt

n } = Arg min
{αt, αn}

‖αt‖1 + ‖αn‖1 (9)

+λ ‖X − Ttαt −Tnαn‖2
2 + γTV {Tnαn}.

Instead of solving this optimization problem, finding {αopt
t , αopt

n }, let us reformulate the problem

so as to get the texture and the natural part images, X t and Xn, as our unknowns. The reason

behind this change is the obvious simplicity gained by searching lower-dimensional vectors -

representation vectors are far longer than the image they represent for overcomplete dictionaries

as the ones we use here.

Define Xt = Ttαt and Xn = Tnαn. Given Xt, we can recover αt as αt = T+
t X t + rt where

rt is an arbitrary vector in the null-space of Tt, and T+
t is the Moore-Penrose pseudo-inverse of

Tt. Note that for tight frames, this matrix is the same (up to a constant) as the Hermite adjoint
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one, and thus its computation is relatively easy. Put these back into (6) we obtain

{Xopt
t , Xopt

n } = Arg min
{Xt, Xn, rt, rn}

‖T+
t Xt + rt‖1 + ‖T+

n Xn + rn‖1 (10)

+ λ ‖X − X t − Xn‖2
2 + γTV {Xn}

Subject to: Ttrt = 0 , Tnrn = 0.

The term T+
t X t is an overcomplete linear transform of the image X t. Similarly, T+

n Xn is an

overcomplete linear transform of the natural part. In our attempt to replace the representation

vectors as unknowns, we see that we have a pair of residual vectors to be found as well. If we

choose (rather arbitrarily at this stage) to assign those vectors as zeros we obtain the problem

{Xopt
t , Xopt

n } = Arg min
{Xt, Xn}

‖T+
t Xt‖1 + ‖T+

n Xn‖1 (11)

+ λ ‖X − Xt − Xn‖2
2 + γTV {Xn}.

We can justify the choice rt = 0 and rn = 0 in several ways:

Bounding function: Since (11) is obtained from (10) by choosing rt = 0, rn = 0, we necessarily

get that the value of (10) (after optimization) is upper bounded by the value of (11). Thus, in

minimizing (11) instead, we guarantee that the true function to be minimized is of even lower

value.

Relation to the Block-Coordinate-Relaxation algorithm: Comparing (11) to the case

discussed in Equation (8), we see a close resemblance. If we assume that the dictionaries involved

are unitary, we get a complete equivalence between solving (10) and (11). In a way we may refer to

the approximation we have made here as a method to generalize the block-coordinate-relaxation

method for the non-unitary case.

Relation to MAP: The expression written as a penalty function in (11) has a Maximal-A-

Posteriori estimation flavor to it. It suggests that the given image X is known to originate

from a linear combination of the form Xt + Xn, contaminated by Gaussian noise - this part

comes from the likelihood function ‖X − Xt − Xn‖2
2. For the texture image part there is the

assumption that it comes from a Gibbs distribution of the form Const · exp (−βt‖T+
t Xt‖1). As

for the natural part, there is a similar assumption about the existence of a prior of the form

Const · exp (−βn‖T+
n Xn‖1 − γnTV {Xn}). While different from our original point of view, these

assumptions are reasonable and not far from the Basis Pursuit approach.

The bottom line to all this discussion is that we have chosen an approximation to our true
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minimization task, and with it managed to get a simplified optimization problem, for which an

effective algorithm can be proposed. Our minimization task is thus given by

min
{Xt, Xn}

∥

∥

∥T
+
t Xt

∥

∥

∥

1
+

∥

∥T+
n Xn

∥

∥

1 + λ ‖X − Xt − Xn‖2
2 + γTV {Xn} . (12)

The algorithm we use is based on the Block-Coordinate-Relaxation method [22] (see Appendix

I), with some required changes due to the non-unitary transforms involved, and the additional

TV term. The algorithm is given below:

1. Initialize Lmax, number of iterations per layer N , and threshold δ = λ · Lmax.

2. Perform N times:

Part A - Update of Xn assuming Xt is fixed:

– Calculate the residual R = X − Xt − Xn.

– Calculate the curvelet transform of Xn + R and obtain αn = T+
n (Xn + R).

– Soft threshold the coefficient αn with the δ threshold and obtain α̂n.

– Reconstruct Xn by Xn = Tnα̂n.

Part B - Update of Xt assuming Xn is fixed:

– Calculate the residual R = X − Xt − Xn.

– Calculate the local DCT transform of Xt + R and obtain αt = T+
t (Xt + R).

– Soft threshold the coefficient αt with the δ threshold and obtain α̂t.

– Reconstruct Xt by Xt = Ttα̂t.

Part C - TV Consideration:

– Apply the TV correction by Xn = Xn − µγ
∂TV {X

n
}

∂X
n

.

– The parameter µ is chosen either by a line-search minimizing the overall

penalty function, or as a fixed step-size of moderate value that

guarantees convergence.

3. Update the threshold by δ = δ − λ.

4. If δ > λ, return to Step 2. Else, finish.

The algorithm for minimizing (12). Here Tn is the curvelet transform, and Tt is the local DCT1.

In the above algorithm, soft threshold is used due to our formulation of the `1 sparsity penalty

term. However, as we have explained earlier, the `1 expression is merely a good approximation

for the desired `0 one, and thus, replacing the soft by a hard threshold towards the end of the

iterative process may lead to better results.

1If the texture is the same on the whole image, then a global DCT should be preferred.
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We chose this numerical scheme over the Basis Pursuit interior-point approach in [11], because

it presents two major advantages: (i) We do not need to keep all the transformations in memory.

This is particularly important when we use redundant transformations such the un-decimated

wavelet transform or the curvelet one. Also, (ii) We can add different constraints on the compo-

nents. Here we applied only the TV constraint on one of the components, but other constraints,

such as positivity, can easily be added as well. Our method allows us to build easily a dedicated

algorithm which takes into account the a priori knowledge we have on the solution for a specific

problem.

B. TV and Undecimated Haar Transform

A link between the TV and the undecimated Haar wavelet soft thresholding has been studied

in [33], arguing that in the 1D case the TV and the undecimated single resolution Haar are

equivalent. When going to 2D, this relation does not hold anymore, but the two approaches

share some similarities. Whereas the TV introduces translation- and rotation-invariance, the

undecimated 2D Haar presents translation- and scale-invariance (being multi-scale). In light of

this interpretation, we can change the part C in the algorithm as described below. This method

is expected to lead to similar results to the ones obtained with the regular TV.

Part C - TV Consideration:

– Apply the TV correction by using the undecimated Haar wavelet

transform H and a soft thresholding:

o Calculate the undecimated Haar wavelet transform of Xn

and obtain α̂h.

o Soft threshold the coefficient αh with the γ threshold

o Reconstruct Xn by Xn = H−1α̂h.

– The parameter µ is chosen as before.

Alternative Stage C - Replacement of the TV by undecimated Haar.

C. Noise Consideration

The case of noisy data can be easily considered in our framework, and merged into the al-

gorithm such that we get a three-way separation to texture, natural part, and additive noise –

X = Xt + Xn + N . We can normalize both transforms T+
t and T+

n such that for a given noise

realization N with zero-mean and a unit standard deviation, αn = T+
n N and αt = T+

t N have
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also a standard deviation equals to 1. Then, only the last step of the algorithm changes. By

replacing the stopping criterion δ > λ by δ > kσ, where σ is the noise standard deviation and

k ≈ 3, 4. This ensures that coefficients with an absolute value lower than kσ will never be taken

into account.

V. Experimental Results

A. Image Decomposition

We start the description of our experiments with a synthetically generated image composed

of a natural scene and a texture, where we have the ground truth parts to compare against. We

implemented the proposed algorithm with the curvelet transform (five resolution levels) for the

natural scene part, and a global DCT transform for the texture. We used the soft thresholding

Haar as a replacement to the TV, as described in previous section. The parameter γ was fixed

to 2. The overall algorithm converges in a matter of 10 − 20 iterations. Due to the inefficient

implementation of the curvelet transform, the overall run-time of this algorithm is 30 minutes.

Recent progress made in the implementation of the curvelet is expected to reduce this run-time

by more than one order of magnitude.

In this example, we got better results if the very low frequency components of the image are

first subtracted from it, and then added to Xn after the separation. The reason for this is

the evident overlap that exists between the two dictionaries – both considers the low-frequency

content to belong to them as both can represent it efficiently. Thus, by removing this content

prior to the separation we avoid separation ambiguity. Also, by returning this content later to

the curvelet part, we use our expectation to see the low frequencies as belonging to the piecewise

smooth image.

Figure 2 shows the original image (addition of the texture part and the natural part), the

low frequency component, the texture reconstructed component X t and the natural scene part

Xn. As can be seen, the separation is reproduced rather well. Figure 3 shows the results of

the second experiment where the separation is applied on the above combined image after being

contaminated by additive noise (σ = 10). We see that the presence of noise does not deteriorate

the separation algorithm’s performance, and the noise is separated rather well.

We have also applied our method to the Barbara (512x512) image. We used the curvelet

transform with the five resolution levels, and overlapping DCT transform with a block size

32 × 32. The parameter γ has been fixed to 0.5. Here, we used the standard TV regularization
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Fig. 2. The original combined image (top left), its low frequency content (top right), the separated

texture part (bottom left), and the separated natural part (bottom right).

implementation. Figure 4 shows the Barbara image, the reconstructed cosine component X t

and the reconstructed curvelet component Xn. Figure 5 shows a magnified part of the face. For

comparison, the separated components reconstructed by Vese-Osher approach [3] are also shown.

We note here that in general the comparison between different image separation methods

should be done with respect to the application in mind. Here we consider the separation itself

as the application and thus the results are compared by visually inspecting the outcomes.

B. Non Linear Approximation

The efficiency of a given decomposition can be estimated by a non-linear approximation (NLA)

scheme, where sparsity is a measure of success. An NLA-curve is obtained by reconstructing

the image from the m-first best terms of the decomposition. For example, using the wavelet

expansion of a function f (smooth away from a discontinuity across a C2 curve), the best m-

terms approximation f̃W
m obeys ‖ f − f̃W

m ‖2
2� m−1, m → ∞, while for a Fourier expansion it is
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Fig. 3. The original noisy image (top left), the separated texture part (top right), the separated natural

part (bottom left), and the residual noise component (bottom right).

‖ f − f̃F
m ‖2

2� m− 1

2 , m → ∞ [34], [35]. Using the algorithm described in the previous section,

we decompose the image X into two components Xt and Xn using the overcomplete transforms

Tt and Tn. Since the decomposition is (very) redundant, the exact overall representation X may

require a relatively small number of coefficients due to the promoted sparsity, and this essentially

yield a better NLA-curve.

Figure 6 presents the NLA-curves for the image Barbara using (i) the wavelet transform

(OWT), (ii) the DCT, and (iii) the results of the algorithm discussed here, based on the OWT-

DCT combination. Denoting the wavelet transform as T+
n and the DCT one as T+

t , the repre-

sentation we use includes the m largest coefficients from {αt, αn} = {T+
t X t, T+

n Xn}. Using

these m values we reconstruct the image by

X̃m = Ttα̃t + Ttα̃n.

The curves in Figure 6 show the representation error standard deviation as a function of m (i.e.
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Fig. 4. The original Barbara image (top). the separated texture (bottom left), and the separated natural

part (bottom right).

E(m) = σ(X − X̃m)). We see that for m < 15 %, the combined representation leads to a better

non linear approximation curve than both the DCT and the OWT alone.

C. Applications

The ability to separate the image as we show has many applications. We sketch here two such

simple experiments to illustrate the importance of a successful separation.

Edge detection is a crucial processing step in many computer-vision applications. When the

texture is highly contrasted, most of the detected edges are due the texture rather than the

natural part. By separating first the two components we can detect the true object’s edges.

Figure 7 shows the edges detected by the Canny algorithm on both the original image and the

curvelet reconstructed component (see Figure 2).

Figure 8 shows a galaxy imaged with the GEMINI-OSCIR instrument at 10 µ. The data is
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Fig. 5. Top: reconstructed DCT and curvelet components by our method. Bottom: v and u components

using Vese’s algorithm.

contaminated by a noise and a stripping artifact (assumed to be the texture in the image) due

to the instrument electronics. As the galaxy is isotropic, we used the isotropic wavelet transform

instead of curvelet. Figure 8 summarizes the results of the separation where we see a successful

isolation of the galaxy, the textured disturbance, and the additive noise.

VI. Prior Art

This work was primarily inspired by the image separation work by Vese and Osher [3]. However,

there have been several other attempts to achieve such separation for various needs. We list here

some of those works, present briefly their contributions, and relate them to our algorithm.

A. Variational Separation Paradigm

Whereas piecewise smooth images u are assumed to belong to the Bounded-Variation (BV )

family of functions u ∈ BV (R2), texture is known to behave differently. A different approach
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Fig. 6. Standard deviation of the error of reconstructed Barbara image versus the m largest coefficients

used in the reconstruction. Full line – DCT transform, dotted line – orthogonal wavelet transform,

and dashed line – our signal/texture decomposition.

has recently been proposed for separating the texture v from the signal f (= u + v) [3], based

on a model proposed by Meyer [9]. Similar attempts and additional contributions in this line

are reported in [7], [8], [36]. This model suggests that a texture image v is to belong to a

different family of functions denoted as v ∈ BV ∗(R2). This notation implies the existence of

two functions g1, g2 ∈ L∞(R2) such that v(x, y) = ∂xg1(x, y) + ∂yg2(x, y). The BV ∗ norm is

defined using the two functions g1, g2 as ‖v‖BV ∗ = ‖(|g1(x)|2 + |g2(x)|2) 1

2‖∞. Vese and Osher

suggested a variational minimization problem that approximate the above model. This approach

essentially searches for the solution u, g1, g2 of

inf
(u, g1, g2)

{‖u‖BV + λ‖v‖BV ∗} subject to f = u + v (13)

A numerical algorithm to solve this problem is described in [3], with encouraging simulation

results. Since the direct treatment of the BV ∗ in the above formulation is hard, Vese and Osher

proposed an approximation by using an Lp-norm of the g1, g2 functions. Also, the constraint is

replaced by a penalty of the form µ‖f − u − v‖2
2. Their method approaches Meyer’s model as p

and µ go to infinity.

Although the approach we take is totally different, it bares some similarities in spirit to the
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Fig. 7. Left: detected edges on the original image. Right: detected edges on the curvelet reconstruct

component.

above described method. Referring to our formulation in (12) with the choice γ = 0,

min
{Xt, Xn}

∥

∥T+
n Xn

∥

∥

1 +
∥

∥

∥T+
t Xt

∥

∥

∥

1
+ λ ‖X − Xt − Xn‖2

2 . (14)

we see the following connections (note that equivalence is not claimed here):

• Based on our previous discussion on the relation between the TV and the undecimated Haar,

we can propose ‖Hu‖1 as a replacement to ‖u‖BV . Here, H is the undecimated Haar transform

(i.e. H = T+
n in our original notations). Thus there is a similarity between the effects of the first

terms in both (13) and (14).

• We may argue that images with sparse representations in the DCT domain (local with varying

block sizes and block overlap) present strong oscillations and therefore could be considered as

textures, belonging to the Banach space BV ∗(R2). This suggests that ‖v‖BV ∗ could also be

approximated by an `1 norm term ‖Dv‖1 where D is the DCT transform (i.e. D = T+
t in our

notations). This leads to a similarity between the second terms in the two optimization problems

(13) and (14).

• The third expression is exactly the same in (13) and (14), after the Vese-Osher modifications.

Thus, we see a close relation between our model and the one proposed by Meyer as adopted and

used by Vese and Osher. However, there are also major differences that should be mentioned:

• In our implementation we do not use the undecimated Haar with just one resolution, but rather

use the complete pyramid. We should note that The variational approach could be extended to

have a multi-scale treatment by adopting spatially adaptive and resolution adaptive coefficient
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Fig. 8. The original image (top left), the reconstructed wavelet component (top right), the DCT recon-

structed component (bottom left), and the residual noise (bottom right).

λ.

• We have replaced the Haar with more effective transforms such as curvelet. Several reasons

justify such a change. Among them is the fact that curvelet better succeeds in detecting noisy

edges.

• Our method does not search for the implicit g1, g2 supposed to be the origin of the texture,

but rather searches directly the texture part by an alternative and simpler model based on the

local DCT.

• We should note that the methodology presented in the paper is not limited to the separation

of texture and piecewise-smooth parts of an image. The basic idea of separation of signals to

different content types, leaning on the idea that each of the ingredients have a sparse represen-

tation with a proper choice of a dictionary. This may lead to other applications, and different

implementations. We leave this for future research.
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• As a final note, we should remark that the Vese-Osher technique is much faster than the one

presented here. The prime reason for this gap is the curvelet transform runtime. Future versions

of curvelet may change this shortcoming.

B. Compression via Separation

A pioneering work described in [2] proposes a separation of cartoon from texture for efficient

image compression. This algorithm relies on an experience gined on similar decompositions

applied to audio signals [37]. Our algorithm is very similar in spirit to the approach taken in

[2], namely, use of different dictionaries for effective (sparse) representation of each content type,

and pursuit that seeks the sparsest of all representations. Still there are several major differences

worth mentioning:

• While our algorithm uses curvelet, ridgelet, and several other types of over-complete transforms,

the chosen dictionaries in [2] are confined to be orthonormal wavelet packets (optimized per the

task). This choice is crucial for the compression to follow, but cause loss of sparsity in the

representations.

• Our separation approach is parallel, seeking jointly a decomposition of the image into the two

ingredients. The numerical implementation uses ”Sardy-Like” sequential transforms followed by

soft thresholding, but applied iteratively, the algorithm gets closer to the basis pursuit result,

which is essentially a parallel decomposition technique. The algorithm in [2] is sequential, pealing

the cartoon content and then treating the reminder as texture.

• The proposed method in [2] concentrates on compression performance, and has less interest

in the visual quality of the separation. The algorithm presented here, on the other hand, is all

about getting pleasing images to a human viewer. This is why TV penalty was added to treat

ringing artifacts.

• A large portion of our work came as a direct consequence to the theoretical study we have

done on the basis pursuit performance limits (see Appendix II). When we assume sparsity under

the chosen dictionaries, we can invoke the uniqueness result, that says that the original sparsity

pattern is indeed the sparsest one possible. When we employ the basis pursuit for numerically

getting the result, we lean on the equivalence result promising that if indeed the combination is

sparse enough, BP will find it well. The work in [2] claims of success are leaning on the actual

obtained compression results.
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Very recent similar attempt to exploit separation for image compression is reported in [5]. The

authors use the variational paradigm for achieving the separation, and then consider compression

of each content type separately, as in [2].

The separation algorithm presented in [4] is proposed for a general analysis of image content

and not compression. However, it bares some similarities to both the algorithm in [2] and the one

presented in this paper. As in [2], the decomposition of the image content is sequential: The first

stage extracts the sketchable content (similar to the piecewise smooth content, but different),

and this is achieved by the matching pursuit algorithm, applied with a trained dictionary of

local primitives. The second stage represents the non-sketchable (texture) content and is based

on Markov Random Field (MRF) representation. The goal of the proposed separation in [4]

is somewhat different than the one discussed here, as it focuses on a sparse description of the

sketched image. This is in contrast to the method proposed here where sparsity is desired and

found across all content types.

VII. Discussion

In this paper we have presented a novel method for separating an image into its texture and

piecewise smooth ingredients. Our method is based on the ability to represent these content

types as sparse combinations of atoms of predetermined dictionaries. The proposed approach

is a fusion of the Basis Pursuit algorithm and the Total-Variation regularization scheme, both

merged in order to direct the solution towards a successful separation.

This paper offers a theoretical analysis of the separation idea with the Basis Pursuit algorithm,

and shows that a perfect decomposition of image content could be found in principle. While the

theoretical bounds obtained for a perfect decomposition are rather weak, they serve both as a

starting point for future research, and as motivating results for the practical sides of the work.

In going from the pure theoretic view to the implementation, we manage to extend the model

to treat additive noise – essentially any content in the image that does not fit well with either

texture or piecewise-smooth contents. We also changed the problem formulation, departing from

the Basis Pursuit, and getting closer to a Maximum A-Posteriori estimation method. The new

formulation leads to smaller memory requirements, and the ability to add helpful constraints.
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Appendix I - The Block-Coordinate-Relaxation Method

In Section II-C we have seen an alternative formulation to the separation task, built on the

assumption that the involved dictionaries are concatenations of unitary matrices. Thus, we need

to minimize (7), given (after a simplification) as

min
{α(k)}L

k=1

L
∑

k=1

‖α(k)‖1 + λ

∥

∥

∥

∥

∥

X −
L

∑

k=1

T(k)α(k)

∥

∥

∥

∥

∥

2

2

. (I-1)

Note that we have discarded the TV part for the discussion given here. We also simply assume

that the unknowns α(k) contain both the texture and the piecewise-smooth parts.

Minimizing such a penalty function was shown by Bruce, Sardy and Tseng [22] to be quite

simple, as it is based on the shrinkage algorithm due to Donoho and Johnston [21]. In what

follows we briefly describe this algorithm and its properties.

Property 1: Referring to (I-1) as a function of {α(k)}k0
, assuming all other unknowns as

known, there is a closed-form solution for the optimal {α(k)}k0
, given by

{α(k)}opt
k0

= sign(Z) ·
(

|Z| − 1

2λ

)

+
(I-2)

for Z = X − ∑L
k=1, k 6=K0

T(k)α(k).

Proof: Rewriting (I-1) assuming that {α(k)}k0
are known, we have

min
α(k0)

‖α(k0)‖1 + λ ‖Z − T(k0)α(k0)‖2
2 . (I-3)

Due to the fact that T(k0) is unitary and the fact that the `2 norm is unitary invariant we can

rewrite this penalty term as

min
α(k0)

‖α(k0)‖1 + λ
∥

∥

∥T(k0)
HZ − α(k0)

∥

∥

∥

2

2
, (I-4)

which in turn, can be written as

min
α(1),α(2),...,α(N)

N
∑

n=1

(

|α(n)| + λ[α(n) − zt(n)]2
)

. (I-5)
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This function is a sum of N (the dimension of α(k0)) scalar and independent convex optimization

problems. The term zt(n) represents the nth entry of the inverse transform (T(k0)) of the vector

Z. The solution for this problem is given by the shrinkage operator mentioned above [21].

This property is the source of the simple numerical scheme of the Block-Coordinate-Relaxation

Method. The idea is to sweep through the vectors α(k) one at a time repeatedly, fixing all others,

and solving for each.

Property 2: Sweeping sequentially through k and updating α(k) as in Property 1, the Block-

Coordinate-Relaxation Method is guaranteed to converge to the optimal solution of (I-1).

Proof: The proof is given in [22], along with practical implementation ideas.

Appendix II - Theoretic Analysis of the Separation Task

In this Appendix we aim to show that the separation as described in this paper has strong

theoretical justification roots. Those lean on some very recent results in the study of the Basis

Pursuit performance. The presented material in this appendix is deliberately brief, with the

intention to present a more extensive theoretical study in a separate paper.

We start with Equation (3) that stands as the basis for the separation process. This equation

could also be written differently as

αopt
all =







αopt
t

αopt
n






= Arg min

{αt, αn}

∥

∥

∥

∥

∥

∥

∥







αt

αn







∥

∥

∥

∥

∥

∥

∥

0

(II-1)

subject to: X =

[

Tt Tn

]







αt

αn






= Tallαall.

¿From [14] we recall the definition of the Spark:

Definition 1: Given a matrix A, its Spark (σA = Spark{A}) is defined as the minimal number

of columns from the matrix that form a linearly dependent set.

Based on this we have the following result in [14] that gives a guarantee for global optimum

of (II-1) based on a sparsity condition:

Theorem 1: If a candidate representation αall satisfies ‖αall‖0 < Spark{Tall}/2, then this

solution is necessarily the global minimum of (II-1).

Based on this result it is clear that the higher the value of the Spark, the stronger this result

is. Immediate implication from the above is the following observation, referring to the success of

the separation process:
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Corollary 1: If the image X = Xt + Xn is built such that X t = Ttαt and Xn = Tnαn, and

‖αt‖0 + ‖αn‖0 < Spark{Tall}/2 is true, then the global minimum of (II-1) is necessarily the

desired separation.

Proof: The proof is simple deduction from Theorem 1.

Actually, a stronger claim could be given if we assume a successful choice of dictionaries Tt

and Tn. Let us define a variation of the Spark that refers to the interface between atoms from

two dictionaries:

Definition 2: Given two matrices A and B with the same number of rows, their Inter–Spark

(σA↔B = Spark{A,B}) is defined as the minimal number of columns from the concatenated

matrix [A,B] that form a linearly dependent set, and such that columns from both matrices

participate in this combination.

An important feature of our problem is that the goal is the successful separation of content of

an incoming image and not finding the true sparse representation per each part. Thus, a stronger

claim can be made:

Corollary 2: Suppose the image X = X t +Xn is built such that X t = Ttαt and Xn = Tnαn. If

‖αt‖0 + ‖αn‖0 < σTt↔Tn/2 and ‖αt‖0, ‖αn‖0 > 0 (i.e., there is a mixture of the two), then if the

global minimum of (II-1) satisfies ‖αopt
t ‖0, ‖αopt

n ‖0 > 0, it is necessarily the successful separation.

Proof: Given a mixture of columns from the two dictionaries, by the definition of the Inter–

Spark it is clear that if there are fewer than σTt↔Tn/2 non-zeros in such combination, it must be

the unique sparsest solution. The new bound is higher than Spark{Tall}/2 and therefore this

result is stronger.

So far we concentrated on Equation (II-1) which stands as the ideal (but impossible) tool for the

separation. An interesting question is why should the `1 replacement succeed in the separation

as well. In order to answer this question we have to define first the Mutual Incoherence:

Definition 3: Given a matrix A, its Mutual−Incoherence{A} = MA is defined as the maximal

off-diagonal entry in the absolute Gram matrix |AHA|.

The Mutual Incoherence is closely related to the Spark, and thus one can similarly define a

similar notion of Inter–MA. We have the following result in [14]:

Theorem 2: If the solution αopt
all of (II-1) satisfies ‖αopt

all ‖0 < (1/MTall
+ 1)/2, then the `1

minimization alternative is guaranteed to find it.

For the separation task, this Theorem implies that the separation via (4) is successful if it is
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based on sparse enough ingredients:

Corollary 3: If the image X = Xt + Xn is built such that X t = Ttαt and Xn = Tnαn, and

‖αt‖0 + ‖αn‖0 < (1/MTall
+ 1)/2 is true, then the solution of (4) leads to the global minimum of

(II-1) and this is necessarily the desired separation.

Proof: The proof is simple deduction from Theorem 2.

We should note that the bounds given here are quite restrictive and does not reflect truly the

much better empirical results. The above analysis is coming form a worst-case point of view (e.g.,

see the definition of the Spark), as opposed to the average case we expect to encounter empirically.

Nevertheless, the ability to prove perfect separation in a stylized application without noise and

with restricted success is of great benefit as a proof of concept.

In order to demonstrate the gap between theoretical results and empirical evidence in Basis

Pursuit separation performance, figure 9 presents a simulation of the separation task for the case

of signal X of length 64, a dictionary built as the combination of the Hadamard unitary matrix

(assumed to be Tt) and the identity matrix (assumed to be Tn). We randomly generate sparse

representations with varying number of non-zeros in the two parts of the representation vector

(of length 128), and present the empirical probability (based on averaging 100 experiments) to

recover correctly the separation.

For this case, Corollary 3 suggest that the number of non-zero in the two parts should be

smaller than 0.5 · (1 + 1/M) = (1 +
√

64)/2 = 4.5. Actually a better result exists for this

case in [15] due to the construction of the overall dictionary as a combination of two unitary

matrices. Thus, the better bound is (
√

2 − 0.5))/M = 7.3. Both these bounds are overlayed on

the empirical results in the figure, and as can be seen, Basis Pursuit succeeds well beyond the

bound. Moreover, this trend is expected to strengthen as the signal size grows, since than the

worst-case-scenarios (for which the bounds refer to) become of smaller probability and of less

affect on the average result.

It is interesting to note that very recent attempts by several research groups managed to

quantify the average behavior of the basis pursuit in probabilistic terms. A pioneering work by

Candes, Romberg, and Tao [38] established one such important result, and several others follow,

although none is published yet.
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Fig. 9. Empirical probability of success of the Basis Pursuit algorithm for separation of sources. Per every

sparsity combination, 100 experiments are performed and the success rate is computed. Theoretical

bounds are also drawn for comparison.
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