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Abstract

Over the last few years, the development of multi-channel sensors motivated interest in methods

for the coherent processing of multivariate data. Some specific issues have already been addressed as

testified by the wide literature on the so-called blind source separation (BSS) problem. In this context,

as clearly emphasized by previous work, it is fundamental that the sources to be retrieved present some

quantitatively measurable diversity. Recently, sparsityand morphological diversity have emerged as a

novel and effective source of diversity for BSS. We give heresome new and essential insights into the

use of sparsity in source separation and we outline the essential role of morphological diversity as being

a source of diversity or contrast between the sources. This paper introduces a new BSS method coined

Generalized Morphological Component Analysis (GMCA) thattakes advantages of both morphological

diversity and sparsity, using recent sparse overcomplete or redundant signal representations. GMCA is a

fast and efficient blind source separation method. We present arguments and a discussion supporting the

convergence of the GMCA algorithm. Numerical results in multivariate image and signal processing are

given illustrating the good performance of GMCA and its robustness to noise.

EDICS: MRP-WAVL

Index Terms

Morphological diversity, sparsity, overcomplete representations, BSS, wavelets, curvelets.

INTRODUCTION

In the blind source separation (BSS) setting, the instantaneous linear mixture model assumes that we are

givenm observations{x1, · · · , xm} where each{xi}i=1,··· ,m is a row-vector of sizet; each measurement
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is the linear mixture ofn source processes :

∀i ∈ {1, · · · ,m}, xi =
n

∑

j=1

aijsj (1)

As the measurements arem different mixtures, source separation techniques aim at recovering the original

sourcesS = [sT
1 , · · · , sT

n ]T by taking advantage of some information contained in the waythe signals

are mixed in the observed data. This mixing model is conveniently rewritten in matrix form :

X = AS + N (2)

whereX is the m × t measurement matrix,S is the n × t source matrix andA is the m × n mixing

matrix. A defines the contribution of each source to each measurement.An m× t matrix N is added to

account for instrumental noise or model imperfections.

In the blind approach (where both the mixing matrixA and the sourcesS are unknown), source separation

merely boils down to devising quantitative measures of diversity or contrast to differentiate the sources.

Most BSS techniques can be separated into two main classes, depending on the way the sources are

distinguished:

• Statistical approach - ICA :well-known independent component analysis (ICA) methods assume

that the sources{si}i=1,··· ,n (modeled as random processes) are statistically independent and non

Gaussian. These methods (for example JADE [1], FastICA and its derivatives [2] and [3], Infomax)

already provided successful results in a wide range of applications. Moreover, even if the inde-

pendence assumption is strong, it is in many cases physically plausible. Theoretically, Leeet al.

[4] emphasize on the equivalence of most of ICA techniques tomutual information minimization

processes. Then, in practice, ICA algorithms are about devising adequate contrast functions which are

related to approximations of mutual information. In terms of discernibility, statistical independence

is a “source of diversity” between the sources.

• Morphological diversity and sparsity :recently, the seminal paper by Zibulevskyet al. [5] introduced

a novel BSS method that focuses on sparsity to distinguish the sources. They assumed that the sources

are sparse in a particular basisD (for instance orthogonal wavelet basis). The sourcesS and the

mixing matrix A are estimated from a Maximum A Posteriori estimator with a sparsity-promoting

prior on the coefficients of the sources inD. They showed that sparsity clearly enhances the diversity

between the sources. The extremal sparse case assumes that the sources have mutually disjoint
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supports (sets of non-zero samples) in the sparse or transformed domain (see [6],[7]). Nonetheless

this simple case requires highly sparse signals. Unfortunately this is not the case for large classes

of signals and especially in image processing.

A new approach coined Multichannel Morphological Component Analysis (MMCA) is described in [8].

This method is based onmorphological diversity that is the assumption that then sources{si}i=1,··· ,n we

look for are sparse in different representations (i.e. dictionaries). For instance, a piece-wise smooth source

s1 (cartoon picture) is well-sparsified in a curvelet tight frame while a warped globally oscillating source

s2 (texture) is better represented using a Discrete Cosine Transform (DCT). MMCA takes advantage of

this “morphological diversity” to differentiate between the sources with accuracy. Practically, MMCA is

an iterative thresholding algorithm which builds on the latest developments in harmonic analysis (ridgelets

[9], curvelets [10], [11], [12], etc).

This paper:we extend the MMCA method to the much more general case where we consider that

each sourcesi is a sum of several components (si =
∑K

k=1 ϕk) each of which is sparse in a given

dictionary. For instance, one may consider a mixture ofnatural images in which each is a sum of a

piece-wise smooth part (i.e. edges) and a texture component. Using this model, we show that sparsity

clearly provides enhancements and gives robustness to noise.

Section I provides an overview of the use of morphological diversity for component separation in single

and multichannel images. In section II-A we introduce a new sparse BSS method coined Generalized

Morphological Component Analysis (GMCA). Section III shows how to speed up GMCA and the

algorithm is described in section IV. In this last section, it is also shown that this new algorithm can be

recast as a fixed-point algorithm for which we give heuristicconvergence arguments and interpretations.

Section V provides numerical results showing the good performances of GMCA in a wide range of

applications including blind source separation and multivariate denoising.

DEFINITIONS AND NOTATIONS

A vector y will be a row vectory = [y1, · · · , yt]. Bold symbols represent matrices andM
T is the

transpose ofM. The Frobenius norm ofM is ‖Y‖2 defined by‖Y‖2
2 = Trace

(

Y
T
Y

)

. Thek-th entry

of yp is yp[k], yp is thep-th row andyq the q-th column ofY.

In the proposed iterative algorithms,ỹ(h) will be the estimate ofy at iterationh. The notation‖y‖0
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defines thè 0 pseudo-norm ofy (i.e the number of non-zero elements iny) while ‖y‖1 is the`1 norm of

y. D = [φT
1 , · · · , φT

T ]T defines aT × t dictionary the rows of which are unit̀2-norm atoms{φi}i. The

mutual coherence ofD ( see [13] and references therein ) isµD = maxφi 6=φj
|φiφ

T
j |. WhenT > t, this

dictionary is said to be redundant or overcomplete. In the next, we will be interested in the decomposition

of a signaly in D. We thus defineSD
`0

(y) (respectivelySD
`1

(y)) the set of solutions to the minimization

problemminc ‖c‖0 s.t. y = cD (respectivelyminc ‖c‖1 s.t. y = cD). When the`0 sparse decomposition

of a given signaly has a unique solution, letα = ∆D(y) wherey = αD denote this solution. Finally,

we defineλδ(.) to be a thresholding operator with thresholdδ (hard-thresholding or soft-thresholding;

this will be specified when needed).

The supportΛ(y) of row vectory is Λ(y) = {k; |y[k]| > 0}. Note that the notion of support is well-

adapted tò 0-sparse signals as these are synthesized from a few non-zerodictionary elements. Similarly,

we define theδ-support ofy asΛδ(y) = {k; |y[k]| > δ‖y‖∞} where‖y‖∞ = maxk |y[k]| is the`∞ norm

of y. In sparse source separation, classical methods assume that the sources have disjoint supports. We

define a weaker property for signalsyp andyq to haveδ-disjoint supports ifΛδ(yp) ∩ Λδ(yq) = ∅. We

further defineδ? = min{δ; Λδ(yp) ∩ Λδ(yq) = ∅; ∀p 6= q}.

Finally, as we deal with source separation, we need a way to assess the separation quality. A simple way

to compare BSS methods in a noisy context uses the mixing matrix criterion ∆A = ‖In − PÃ
†
A‖1,

whereÃ
† is the pseudo-inverse of the estimate of the mixing matrixA, andP is a matrix that reduces

the scale/permutation indeterminacy of the mixing model. Indeed, whenA is perfectly estimated, it is

equal toÃ up to scaling and permutation. As we use simulations, the true sources and mixing matrix are

known and thusP can be computed easily. The mixing matrix criterion is thus strictly positive unless

the mixing matrix is correctly estimated up to scale and permutation.

I. M ORPHOLOGICAL DIVERSITY

A signal y is said to be sparse in a waveform dictionaryD if it can be well represented from a few

dictionary elements. More precisely, let us defineα such that :

y = αD (3)

The entries ofα are commonly called “coefficients” ofy in D. In that setting,y is said to be sparse in

D if most entries ofα are nearly zero and only a few have “significant” amplitudes.Particular`0-sparse
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signals are generated from a few non-zero dictionary elements. Note that this notion of sparsity is strongly

dependent on the dictionaryD; see e.g. [14], [15] among others. As discussed in [16], a single basis is

often not well-adapted to large classes of highly structured data such as “natural images”. Furthermore,

over the past ten years, new tools have emerged from harmonicanalysis : wavelets, ridgelets [9], curvelets

[10], [11], [12], bandlets [17], contourlets [18], to name afew. It is quite tempting to combine several

representations to build a larger dictionary of waveforms that will enable the sparse representation of

large classes of signals. Nevertheless, whenD is overcomplete (i.e. T > t), the solution of Equation 3

is generally not unique. In that case, the authors of [14] were the first to seek the sparsestα, in terms

of `0-pseudo-norm, such thaty = αD. This approach leads to the following minimization problem:

min
α

‖α‖0 s.t. y = αD (4)

Unfortunately, this is an NP-hard optimization problem which is combinatorial and computationally

unfeasible for most applications. The authors of [14] also proposed to convexify the constraint by

substituting the convex̀1 norm to the`0 norm leading to the following linear program :

min
α

‖α‖1 s.t. y = αD (5)

This problem can be solved for instance using interior-point methods. It is known as Basis Pursuit [19]

in the signal processing community. Nevertheless, problems (4) and (5) are seldom equivalent. Important

research concentrated on finding equivalence conditions between the two problems [15],[20],[21].

In [16] and [22], the authors proposed a practical algorithmcoined Morphological Component Analysis

(MCA) aiming at decomposing signals in overcomplete dictionaries made of a union of bases. In the

MCA setting,y is the linear combination ofD morphological components:

y =
D

∑

k=1

ϕk =
D

∑

k=1

αkΦk (6)

where{Φi}i=1,··· ,D are orthonormal basis ofRt. Morphological diversity then relies on the sparsity of

those morphological components in specific bases. In terms of `0 norm, this morphological diversity can

be formulated as follows:

∀{i, j} ∈ {1, · · · ,D}; j 6= i ⇒ ‖ϕiΦ
T
i ‖0 < ‖ϕiΦ

T
j ‖0 (7)
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In words, MCA then depends on the incoherence between the sub-dictionaries{Φi}i=1,··· ,D to estimate

the morphological components{ϕi}i=1,··· ,D by solving the following convex minimization problem:

{ϕi} = Arg min
{ϕi}

D
∑

i=1

‖ϕiΦ
T
i ‖1 + κ‖y −

D
∑

i=1

ϕi‖
2
2 (8)

Note that the minimization problem in (8) is closely relatedto Basis Pursuit Denoising (BPDN - see

[19]). In [23], we proposed a particular block-coordinate relaxation, iterative thresholding algorithm

(MCA/MOM) to solve (8). Theoretical arguments as well as experiments were given showing that MCA

provides at least as good results as Basis Pursuit for sparseovercomplete decompositions in a union of

bases. Moreover, MCA turns out to be clearly much faster thanBasis Pursuit. Then, MCA is a practical

alternative to classical sparse overcomplete decomposition techniques.

We would like to mention several other methods based on morphological diversity in the specific field

of texture/natural part separation in image processing - [24], [25], [26], [27].

In [8], we introduced a multichannel extension of MCA coinedMMCA (Multichannel Morphological

Component Analysis). In the MMCA setting, we assumed that the sourcesS in (2) have strictly different

morphologies (i.e. each sourcesi was assumed to be sparsely represented in one particular orthonormal

basisΦi). An iterative thresholding block-coordinate relaxationalgorithm was proposed to solve the

following minimization problem :

{Ã, S̃} = arg min
A,S

n
∑

k=1

‖skΦ
T
k ‖1 + κ‖X −AS‖2

2 (9)

We then showed in [8] that sparsity and morphological diversity improves the separation task. It confirmed

the key role of morphological diversity in source separation to distinguish between the sources.

In the next section, we will introduce a novel way to account for sparsity and morphological diversity

in a general Blind Source Separation framework.

II. GENERALIZED MORPHOLOGICAL COMPONENT ANALYSIS

A. The GMCA framework

The GMCA framework states that the observed dataX are classically generated as a linear instantaneous

mixture of unknown sourcesS using an unknown mixing matrixA as in Equation (2). Note that,

we consider here only the overdetermined source separationcase wherem ≥ n and thusA has full

column rank. Future work will be devoted to an extension to the under-determined casem < n. An
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additive perturbation termN is added to account for noise or model imperfection. From now, D is the

concatenation ofD orthonormal bases{Φi}i=1,··· ,D: D =
[

Φ
T
1 , · · · ,ΦT

D

]T
. We assumea priori that the

sources{si}i=1,··· ,n are sparse in the dictionaryD. In the GMCA setting, each source is modeled as the

linear combination ofD morphological components where each component is sparse ina specific basis :

∀i ∈ {1, · · · , n}; si =

D
∑

k=1

ϕik =

D
∑

k=1

αikΦk (10)

GMCA seeks an unmixing scheme, through the estimation ofA, which leads to the sparsest sources

S in the dictionaryD. This is expressed by the following optimization task written in its augmented

Lagrangian form:

{Ã, S̃} = arg min
A,S

n
∑

i=1

D
∑

k=1

‖ϕikΦ
T
k ‖0 + κ‖X − AS‖2

2 (11)

where each row ofS is such thatsi =
∑D

k=1 ϕik. Obviously this algorithm is combinatorial by nature.

We then propose to substitute the`1 norm to the`0 sparsity, which amounts to solving the optimization

problem :

{Ã, S̃} = arg min
A,S

n
∑

i=1

D
∑

k=1

‖ϕikΦ
T
k ‖1 + κ‖X − AS‖2

2 (12)

More conveniently, the productAS can be split inton × D multichannel morphological components:

AS =
∑

i,k aiϕik. Based on this decomposition, we propose an alternating minimization algorithm

to estimate iteratively one term at a time. Define the{i, k}-th multichannel residual byXi,k = X −
∑

{p,q}6={i,k} apϕpq as the part of the dataX unexplained by the multichannel morphological component

aiϕik. Estimating the morphological componentϕik = αikΦk assumingA andϕ{pq}6={ik} are fixed leads

to the component-wise optimization problem :

ϕ̃ik = arg min
ϕik

‖ϕikΦ
T
k ‖1 + κ‖Xi,k − aiϕik‖

2
2 (13)

or equivalently,

α̃ik = arg min
αik

‖αik‖1 + κ‖Xi,kΦ
T
k − aiαik‖

2
2 (14)

since hereΦk is an orthogonal matrix. By classical ideas in convex analysis, a necessary condition for

α̃ik to be a minimizer of the above functional is that the null vector be an element of its subdifferential
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at α̃ik, that is :

0 ∈ −
1

‖ai‖2
2

aiT

Xi,kΦ
T
k + αik +

1

2κ‖ai‖2
2

∂‖αik‖1 (15)

where∂‖αik‖1 is the subgradient defined as (owing to the separability of the `1-norm):

∂‖α‖1 =







u ∈ R
t

∣

∣

∣

∣

∣

u[l] = sign(α[l]), l ∈ Λ(α)

u[l] ∈ [−1, 1], otherwise.







.

Hence, (15) can be rewritten equivalently as two conditionsleading to the following closed-form solution:

α̂jk[l] =















0, if
∣

∣

∣

(

aiT

Xi,kΦ
T
k

)

[l]
∣

∣

∣
≤ 1

2κ

1
‖ai‖2

2
aiT

Xi,kΦ
T
k − 1

2κ‖ai‖2
2
sign

(

aiT

Xi,kΦ
T
k

)

otherwise.

(16)

This exact solution is known as soft-thresholding. Hence, the closed-form estimate of the morphological

componentϕik is:

ϕ̃ik = λδ

(

1

‖ai‖2
2

aiT

Xi,kΦ
T
k

)

Φk with δ =
1

2κ‖ai‖2
2

(17)

Now, considering fixed{ap}p 6=i andS, updating the columnai is then just a least-squares estimate:

ãi =
1

‖si‖2
2



X−
∑

p 6=i

apsp



 sT
i (18)

wheresk =
∑D

k=1 ϕik. In a simpler context, this iterative and alternating optimization scheme has already

proved its efficiency in [8].

In practice each column ofA is forced to have unit̀ 2 norm at each iteration to avoid the classical

scale indeterminacy of the productAS in Equation (2). The GMCA algorithm is summarized below:
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1. Set the number of iterations Imax and threshold δ(0)

2. While δ(h) is higher than a given lower bound δmin (e.g. can depend on the noise variance),

For i = 1, · · · , n

For k = 1, · · · , D

• Compute the residual term r
(h)
ik assuming the current estimates of ϕ{pq}6={ik}, ϕ̃

(h−1)
{pq}6={ik} are fixed:

r
(h)
ik = ãi(h−1)T

“

X −
P

{p,q}6={i,k} ãp(h−1)

ϕ̃
(h−1)

{pq}

”

• Estimate the current coefficients of ϕ̃
(h)
ik by Thresholding with threshold δ(h):

α̃
(h)
ik = λδ(h)

“

r
(h)
ik Φ

T
k

”

• Get the new estimate of ϕik by reconstructing from the selected coefficients α̃
(h)
ik :

ϕ̃
(h)
ik = α̃

(h)
ik Φk

Update ai assuming ap6=k(h)

and the morphological components ϕ̃
(h)
pq are fixed :

ãi(h)

= 1

‖s̃
(h)
i

‖2
2

“

X −
Pn

p6=i ãp(h−1)

s̃
(h)
p

”

s̃
(h)T

i

– Decrease the thresholds δ(h).

GMCA is an iterative thresholding algorithm such that at each iteration it first computescoarse

versions of the morphological component{ϕik}i=1,··· ,n;k=1,··· ,D for a fixed sourcesi. These raw sources

are estimated from their most significant coefficients inD. Hence, the corresponding columnai is

estimated from the most significant features ofsi. Each source and its corresponding column ofA are

then alternately estimated. The whole optimization schemethen progressively refines the estimates ofS

andA asδ decreases towardsδmin. This particular iterative thresholding scheme provides true robustness

to the algorithm by working first on the most significant features in the data and then progressively

incorporating smaller details to finely tune the model parameters.

B. The dictionaryD

As an MCA-like algorithm (for more details, see [8], [23]), the GMCA algorithm involves multipli-

cations by matricesΦT
k andΦk. Thus, GMCA is worthwhile in terms of computational burden as long

as the redundant dictionaryD is a union of bases or tight frames. For such dictionaries, matrices Φ
T
k

andΦk are never explicitely constructed, and fast implicit analysis and reconstruction operators are used

instead (for instance, wavelet transforms, global or localdiscrete cosine transform, etc).

C. Complexity analysis

We here provide a detailed analysis of the complexity of GMCA. We begin by noting that the bulk of the

computation is invested in the application ofΦ
T
k andΦk at each iteration and for each component. Hence,
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fast implicit operators associated toΦk or its adjoint are of key importance in large-scale applications.

In our analysis below, we letVk denote the cost of one application of a linear operatorΦk or its

adjoint. The computation of the multichannel residuals forall (i, k) costsO(nDmt) flops. Each step

of the double ’For’ loop computes the correlation of this residual with aiT

using O(mt) flops. Next,

it computes the residual correlations (application ofΦ
T
k ), thresholds them, and then reconstructs the

morphological componentφik. This costsO(2Vk + T ) flops. The sources are then reconstructed with

O(nDt), and the update of each mixing matrix column involvesO(mt) flops. Noting that in our setting,

n ∼ m � t, andVk = O(t) or O(t log t) for most popular transforms, the whole GMCA algorithms then

costsO(Imaxn
2Dt) + O(2Imaxn

∑D
k=1 Vk + nDT ). Thus, in practice GMCA could be computationally

demanding for large scale high dimensional problems. In Section III, we prove that adding some more

assumptions leads to a very simple, accurate and much fasteralgorithm that enables to handle very large

scale problems.

D. The thresholding strategy

Hard or Soft-thresholding ? :rigorously, we should use a soft-thresholding process. In practice,

hard-thresholding leads to better results. Furthermore in[23], we empirically showed that the use of

hard-thresholding is likely to provide thè0 sparse solution for the single channel sparse decomposition

problem. By analogy, we guess that the use of hard-thresholding is likely to solve the multichannel̀0

norm problem instead of (12).

Handling noise:The GMCA algorithm is well suited to deal with noisy data. Assume that the noise

standard deviation isσN. Then, we simply apply the GMCA algorithm as described above, terminating

as soon as the thresholdδ gets less thanτσN; τ typically takes its value in the range3−4. This attribute

of GMCA makes it a suitable choice for use in noisy applications. GMCA not only manages to separate

the sources, but also succeeds in removing an additive noiseas a by-product.

E. The Bayesian point of view

We can also consider GMCA from a Bayesian viewpoint. For instance, let’s assume that the mixtures

{xi}i=1,··· ,m, the mixing matrixA, the sources{sj}j=1,··· ,n and the noise matrixN are random variables.

For simplicity,N is Gaussian; its samples areiid from a multivariate Gaussian distributionN (0,ΣN) with

zero mean and covariance matrixΣN. The noise covariance matrixΣN is assumed known. For simplicity,
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the noise samples are considered to be decorrelated from onechannel to the other; the covariance matrix

ΣN is thus diagonal. We assume that each entry ofA is generated from a uniform distribution. Let’s

remark that other priors onA could be imposed here; e.g. known fixed column for example.

We assume that the sources{si}i=1,··· ,n are statistically independent from each other and their coefficients

in D (the {αi}i=1,··· ,n) are generated from a Laplacian law:

∀i = 1, · · · , n; p(αi) =
T

∏

k=1

p(αi[k]) ∝ exp (−µ‖αi‖1) (19)

In a Bayesian framework, the use of the Maximum a posteriori estimator leads to the following opti-

mization problem:

{Ã, S̃} = arg min
A,S

‖X −AS‖2
ΣN

+ 2µ
n

∑

i=1

D
∑

k=1

‖ϕikΦ
T
k ‖1 (20)

where ‖.‖ΣN
is the Frobenius norm defined such that :‖X‖2

ΣN
= Trace

(

X
T
Σ

−1

N
X

)

. Note that this

minimization task is similar to (11) except that here the metric ‖.‖ΣN
accounts for noise. In the case

of isotropic and decorrelated noise (i.e. ΣN = σ2
N
Im), problems (12) and (20) are equivalent (with

κ = 1/(2µσ2
N

)).

F. Illustrating GMCA

We illustrate here the performance of GMCA with a simple toy experiment. We consider two sources

s1 and s2 sparse in the union of the DCT and a discrete orthonormal wavelet basis. Their coefficients

in D are randomly generated from a Bernoulli-Gaussian distribution: the probability for a coefficient

{α1,2[k]}k=1,··· ,T to be non-zero isp = 0.01 and its amplitude is drawn from a Gaussian distribution

with mean0 and variance1. The signals were composed oft = 1024 samples. Figure 1 illustrates

the evolution of∆A as the noise variance decreases. We compare our method to theRelative Newton

Algorithm (RNA) [28] that accounts for sparsity and EFICA [3]. The latter is a FastICA variant designed

for highly leptokurtotic sources. Both RNA and EFICA were applied after “sparsifying” the data via an

orthonormal wavelet transform. Figure 1 shows that GMCA behaves similarly to state-of-the-art sparse

BSS techniques.
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Fig. 1. Evolution of the mixing matrix criterion∆A as the noise variance varies: GMCA (solid line), EFICA, (?) :, RNA (+).
Abscissa :signal-to-noise ratio in dB.Ordinate : mixing matrix criterion value.

III. SPEEDING UPGMCA

A. Introduction: the orthonormal case

Let us assume that the dictionaryD is no longer redundant and reduces to an orthonormal basis. The

optimization problem (12) then boils down to the following one:

{Ã, S̃} = arg min
A,S

κ‖ΘX − Aα‖2
2 +

n
∑

i=1

‖αi‖0 with S = αD (21)

where each row ofΘX = XDT stores the decomposition of each observed channel inD. Similarly the

`1 norm problem (12) reduces to :

{Ã, S̃} = arg min
A,S

κ‖ΘX − Aα‖2
2 +

n
∑

i=1

‖αi‖1 with S = αD (22)

The GMCA algorithm no longer needs transforms at each iteration as only the dataX have to be

transformed once inD. Clearly, this case is computationally much cheaper. Unfortunately, no orthonormal

basis is able to sparsely represent large classes of signalsand yet we would like to use “very” sparse

signal representations which motivated the use of redundant representations in the first place. The next

section gives a few arguments supporting the substitution of (22) to (12) even when the dictionaryD is

redundant.

B. The redundant case

In this section, we assumeD is redundant. We consider that each datum{xi}i=1,··· ,m has a uniquè0

sparse decomposition (i.e.SD
`0

(xi) is a singleton for ani ∈ {1, · · · ,m}). We also assume that the sources
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have uniquè 0 sparse decompositions (i.e. SD
`0

(si) is a singleton for alli ∈ {1, · · · , n}). We then define

ΘX = [∆D(x1)
T , · · · ,∆D(xm)T ]T andΘS = [∆D(s1)

T , · · · ,∆D(sn)T ]T .

Up to now, we believed in morphological diversity as the source of discernibility between the sources we

wish to separate. Thus, distinguishable sources must have “discernibly different” supports inD. Intuition

then tells us thatwhen one mixes very sparse sources their mixtures should be less sparse. Two cases

have to be considered:

• Sources with disjoint supports inD : the mixing process increase the`0 norm :‖∆D(xj)‖0 > ‖∆D(si)‖0

for all j ∈ {1, · · · ,m} and i ∈ {1, · · · , n}. WhenD is made of a single orthogonal basis, this

property is exact.

• Sources withδ-disjoint supports inD : the argument is not so obvious; we guess that the number

of significant coefficients inD is higher for mixture signals than for the original sparse sources with

high probability : Card(Λδ(xj)) > Card(Λδ(si)) for any j ∈ {1, · · · ,m} and i ∈ {1, · · · , n}.

Owing to this “intuitive” viewpoint, even in the redundant case, the method is likely to solve the following

optimization problem :

{Ã, Θ̃S} = arg min
A,ΘS

κ‖ΘX − AΘS‖
2
2 + ‖ΘS‖0 (23)

Obviously, (23) and (11) are not equivalent unlessD is orthonormal. WhenD is redundant, no rigorous

mathematical proof is easy to derive. Nevertheless, experiments will outline that intuition leads to good

results. In (23), note that a key point is still doubtful : sparse redundant decompositions (operator∆D)

are non-linear and in general no linear model is preserved. Writing ∆D (ΘX) = A∆D (ΘS) at the

solution is then an invalid statement in general. The next section will focus on this source of fallacy.

C. When non-linear processes preserve linearity

Whatever the sparse decomposition used (e.g. Matching Pursuit [29], Basis Pursuit [19]), the de-

composition process is non-linear. The simplification we made earlier is no longer valid unless the

decomposition process preserves linear mixtures. Let us first focus on a single signal : assume thaty is

the linear combination ofm original signals (y could be a single datum in the BSS model) :

y =

m
∑

i=1

νiyi (24)
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Assuming each{yi}i=1,··· ,m has a uniquè 0 sparse decomposition, we defineαi = ∆D(yi) for all

i ∈ {1, · · · ,m}. As defined earlier,SD
`0

(y) is the set of̀ 0 sparse solutions perfectly synthesizingy: for

any α ∈ SD
`0

(y); y = αD. Amongst these solutions, one is the linearity-preservingsolutionα? defined

such that:

α? =

m
∑

i=1

νiαi (25)

As α? belongs toSD
`0

(y), a sufficient condition for thè0 sparse decomposition to preserve linearity is

the uniqueness of the sparse decomposition. Indeed, [14] proved that, in the general case, if

||α||0 < (µ−1
D + 1)/2 (26)

then this is the unique maximally sparse decomposition, andthat in this caseSD
`1

(y) contains this unique

solution as well. Therefore, if all the sources have sparse enough decompositions inD in the sense of

inequality (26), then the sparse decomposition operator∆D(.) preserves linearity.

In [23], the authors showed that whenD is the union ofD orthonormal bases, MCA is likely to

provide the uniquè0 pseudo-norm sparse solution to problem (4) when the sourcesare sparse enough.

Furthermore, in [23], experiments illustrate that the Donoho-Huo uniqueness bound is far too pessimistic.

Uniqueness should hold, with high probability, beyond the bound (26). Hence, based on this discussion

and the results reported in [23], we consider in the next experiments that the operation∆D(y) which

stands for the decomposition ofy in D using MCA, preserves linearity.

In the BSS context:In the Blind Source Separation framework, recall that each observation{xi}i=1,··· ,m

is the linear combination ofn sources :

xi =

n
∑

j=1

aijsj (27)

Owing to the last paragraph, if the sources and the observations have uniquè0-sparse decompositions

in D then the linear mixing model is preserved, that is:

∆D (xi) =

n
∑

j=1

aij∆D (sj) (28)

and we can estimate both the mixing matrix and the sources in the sparse domain by solving (23).
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IV. T HE FAST GMCA ALGORITHM

According to the last section, a fast GMCA algorithm workingin the sparse transformed domain

(after decomposing the data inD using a sparse decomposition algorithm) could be designed to solve

(21) (respectively (22)) by an iterative and alternate estimation of ΘS and A. There is an additional

important simplification when substituting problem (22) to(12). Indeed, asm ≥ n, it turns out that (22)

is a multichanneloverdeterminedleast-squares error fit with̀1-sparsity penalization. A closely related

optimization problem to this augmented lagrangian form is

min
A,ΘS

‖ΘX − AΘS‖
2
2 subject to ‖ΘS‖1 < q (29)

which is a multichannel residual sum of squares with a`1-budget constraint. AssumingA is known,

this problem is equivalent to the multichannel fitting regression problem with̀ 1-constraint addressed by

the homotopy method in [30] or the LARS/Lasso in [31]. While the latter methods are slow stepwise

algorithm, we propose the following faster stagewise method:

• Update the coefficients:̃ΘS = λδ

(

Ã
†
ΘX

)

, λδ is a thresholding operator (hard for (21) and soft

for (22)) and the thresholdδ decreases with increasing iteration count assumingA is fixed.

• Update the mixing matrixA by a least-squares estimate:Ã = ΘXΘ̃
T

S

(

Θ̃SΘ̃
T

S

)−1
.

Note that the latter two step estimation scheme has the flavour of the alterningSparse coding/Dictionary

learning algorithm presented in [32] in a different framework.

The two stages iterative process leads to the following fastGMCA algorithm:

1. Perform a MCA to each data channel to compute ΘX :

ΘX = [∆D (xi)
T ]T

2. Set the number of iterations Imax and threshold {δ
(0)
i }i=1,··· ,n

3. While each δ(h) is higher than a given lower bound δmin (e.g. can depend on the noise variance),

– Proceed with the following iteration to estimate the coefficients of the sources ΘS at iteration h assuming

A is fixed:

ΘS
(h+1) = λδ(h)

“

A
†(h)

ΘX

”

:

– Update A assuming ΘS is fixed :

Ã
(h+1) = ΘXΘ̃

(h)T

S

“

Θ̃
(h)
S

Θ̃
(h)T

S

”−1

– Decrease the threshold δ(h).

4. Stop when δ(h) = δmin.
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The coarse to fineprocess is also the core of this fast version of GMCA. Indeed,when δ(h) is

high, the sources are estimated from their most significant coefficients inD. Intuitively, the coefficients

with high amplitude inΘS are (i) less perturbed by noise and (ii) should belong to onlyone source

with overwhelming probability. The estimation of the sources is refined as the thresholdδ decreases

towards a final valueδmin. Similarly to the previous version of the GMCA algorithm (see section II-A),

the optimization process provides robustness to noise and helps convergence even in a noisy context.

Experiments in Section V illustrate the good performances of our algorithm.

Complexity analysis:When the approximation we made is valid, the fast simplified GMCA version

requires only the application of MCA on each channel, which is faster than the non-fast version (see

Section II-C).

A. A fixed point algorithm

Recall that the GMCA algorithm is composed of two steps: (i) estimatingS assumingA is fixed, (ii)

Inferring the mixing matrixA assumingS is fixed. In the simplified GMCA algorithm, the first step

boils down to a least-squares estimation of the sources followed by a thresholding as follows :

Θ̃S = λδ

(

Ã
†
ΘX

)

(30)

where Ã
† is the pseudo-inverse of the current estimateÃ of the mixing matrix. The next step is a

least-squares update ofA:

Ã = ΘXΘ̃
T

S

(

Θ̃SΘ̃
T

S

)−1
(31)

DefineΘ̂S = Ã
†
ΘX such thatΘ̃S = λδ

(

Θ̂S

)

and rewrite the previous equation as follows:

Ã = ÃΘ̂Sλδ

(

Θ̂S

)T
(

λδ

(

Θ̂S

)

λδ

(

Θ̂S

)T
)−1

(32)

Interestingly, (32) turns out to be a fixed point algorithm. In the next section, we will have a look at its

behavior.
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B. Convergence study

1) From a deterministic point of view:A fixed point of the GMCA algorithm is reached when the

following condition is verified :

Θ̂Sλδ

(

Θ̂S

)T

= λδ

(

Θ̂S

)

λδ

(

Θ̂S

)T

(33)

Note that owing to the non-linear behavior ofλδ(.) the first term is generally not symmetric as opposed

to the second. This condition can thus be viewed as a kind ofsymmetrizationcondition on the matrix

Θ̂Sλδ

(

Θ̂S

)T

. Let’s examine each element of this matrix in then = 2 case without loss of generality.

We will only deal with two distinct sourcessp andsq. On the one hand, the diagonal elements are such

that:

[

Θ̂Sλδ

(

Θ̂S

)T
]

pp

=

T
∑

k=1

α̂p[k]λδ(α̂p[k])

= [λδ

(

Θ̂S

)

λδ

(

Θ̂S

)T

]pp (34)

The convergence condition is then always true for the diagonal elements. On the other hand, the off-

diagonal elements of (33) are as follows:

∑

k∈Λδ(α̂q)

α̂p[k]α̂q[k] =
∑

k∈Λδ(α̂p)∩Λδ(α̂q)

α̂p[k]α̂q[k] and
∑

k∈Λδ(α̂p)

α̂p[k]α̂q[k] =
∑

k∈Λδ(α̂p)∩Λδ(α̂q)

α̂p[k]α̂q[k]

(35)

Let us assume now that the sources haveδ-disjoint supports. Defineδ? the minimum scalarδ such that

sp andsq areδ-disjoint. Similarly, we assume that̂sp and ŝq areδ-disjoint andδ† is the minimum scalar

δ such that̂sp and ŝq areδ-disjoint. Thus for anyδ > δ† :
∑

k∈Λδ(α̂p)∩Λδ(α̂q) α̂p[k]α̂q[k] = 0.

As we noted earlier in Section III-B, when the sources are sufficiently sparse, mixtures are likely to have

wider δ-supports than the original sources:δ? < δ† unless the sources are well estimated. Thus for any

δ? ≤ δ < δ† the convergence condition is not true for the off-diagonal terms in (33) as :

∑

k∈Λδ(α̂q)

α̂p[k]α̂q[k] 6= 0 and
∑

k∈Λδ(α̂p)

α̂p[k]α̂q[k] 6= 0 (36)

Thus the convergence criterion is valid whenδ? = δ†; i.e. the sources are correctly recovered up to an

“error” δ?. When the sources have strictly disjoint supports (δ? = 0), the convergence criterion holds

true when the estimated sources perfectly match the true sources.
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2) Statistical heuristics:From a statistical point of view, the sourcessp and sq are assumed to be

random processes. We assume that the entries ofαp[k] and αq[k] are identically and independently

generated from a heavy-tailed probability density function (pdf) which is assumed to be unimodal at zero,

even, monotonically increasing for negative values. For instance, any generalized Gaussian distribution

verifies those hypotheses. Figure 2 represents the jointpdf of two independent sparse sources (on the

left) and the jointpdf of two mixtures (on the right). We then take the expectation of both sides of (35):

∑

k∈Λδ(α̂q)

E{α̂p[k]α̂q[k]} =
∑

k∈Λδ(α̂p)∩Λδ(α̂q)

E{α̂p[k]α̂q[k]} (37)

And symmetrically,

∑

k∈Λδ(α̂p)

E{α̂p[k]α̂q[k]} =
∑

k∈Λδ(α̂p)∩Λδ(α̂q)

E{α̂p[k]α̂q[k]} (38)

Intuitively the sources are correctly separated when the branches of the star shaped contour plot (see

Figure 2 on the left) of the jointpdf of the sources are collinear to the axes.

The question is then:do conditions (37) and (38) lead to a unique solution? do acceptable solutions be-

long to the set of fixed points? Note that if the sources are perfectly estimated thenE{λδ (ΘS)λδ (ΘS)T }
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Fig. 2. Contour plots of a simulated jointpdf of 2 independent sources generated from a generalized Gaussianlaw f(x) ∝
exp(−µ|x|0.5). Left : joint pdf of the original independent sources.Right : joint pdf of 2 mixtures.

is diagonal andE{ΘSλδ (ΘS)} = E{λδ (ΘS) λδ (ΘS)}. As expected, the set of acceptable solutions (up

to scale and permutation) verifies the convergence condition. Let us assume that̂αp andα̂q are uncorrelated

mixtures of the true sourcesαp and αq; hard-thresholding then correlateŝαp and λδ(α̂q) (respectively

α̂q andλδ(α̂p)) unless the jointpdf of the estimated sourcesαp andαq has the same symmetries as the

thresholding operator (this property has also been outlined in [33]). Figure 3 gives a rather good empirical

point of view of the previous remark. On the left, Figure 3 depicts the jointpdf of two unmixed sources

that have been hard-thresholded. Note that whatever the thresholds we apply, the thresholded sources
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Fig. 3. Contour plots a simulated jointpdf of 2 independent sources generated from a generalized Gaussianlaw that have
been hard-thresholded.Left : joint pdf of the original independent sources that have been hard-thresholded.Right : joint pdf
of 2 mixtures of the hard-thresholded sources.

are still decorrelated as their jointpdf verifies the same symmetries as the thresholding operator. On the

contrary, on the right of Figure 3, the hard-thresholding process further correlates the two mixtures.

For a fixedδ, several fixed points lead to decorrelated coefficient vectors α̂p andα̂q. Figure 3 provides a

good intuition: for fixedδ the set of fixed points is divided into two different categories: (i) those which

dependon the value ofδ (plot on the right) and (ii) those that are valid fixed points for all values ofδ

(plot (on the left of Figure 3)). The latter solutions lead toacceptable sources up to scale and permutation.

As GMCA involves a decreasing thresholding scheme, the finalfixed points are stable if they verify the

convergence conditions (37) and (38) for allδ. To conclude, if the GMCA algorithm converges, it should

converge to the true sources up to scale and permutation.

C. Handling noise

Sparse decompositions in the presence of noise leads to morecomplicated results on the support

recovery property (see [34] and [35]), and no simple resultscan be derived for the linearity-preserving

property. In practice, we use MCA as a practical sparse signal decomposition. When accounting for noise,

MCA is stopped at a given threshold which depends on the noisevariance (typically3σN whereσN is

the noise standard deviation). MCA then selects the most significant coefficients of the signal we wish to

decompose inD. When the signals are sparse enough inD, such coefficients (with high amplitudes) are

less perturbed by noise and thus GMCA provides good results.Indeed, for “very” sparse decompositions

with a reasonable signal-to-noise ratio, the influence of noise on the most significant coefficients is rather

slight [34]; thus the fixed point property (33) is likely to hold true for most significant coefficients. In

that case, “very” sparse decompositions provide robustness to noise. These arguments will be confirmed

and supported by the experiments of Section V.
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D. Morphological diversity and statistical independence

In the next section, we give experimental results of comparisons of GMCA to well-known BSS and

Independent Component Analysis (ICA) methods. Interestingly, there are close links between ICA and

GMCA.

• Theoretically :morphological diversity is, by definition, a deterministicproperty. As we pointed out

earlier, from a probabilistic viewpoint, sources generated independently from a sparse distribution

should be morphologically different (i.e. withδ-disjoint support with high probability).

• Algorithmically : we pointed out that GMCA turns to be a fixed point algorithm with convergence

condition (33). In [36], the authors present an overview of the ICA fauna in which Equation (33)

then turns out to be quite similar to some ICA-like convergence conditions for which a fixed point

in B is attained when a matrixE{f (BX)BX
T } is symmetric (in this equationB is the unmixing

matrix andf(.) is the ICA scorefunction). In our setting, the operatorλδ (.) plays a similar role as

the scorefunction f(.) in ICA.

In the general case, GMCA will tend to estimate a “mixing” matrix such that the sources are the sparsest in

D. We will take advantage of this propensity to look for a multichannel representation (via the estimation

of A) in which the estimated components are “very” sparse inD. This point will be illustrated in the

next section to denoise color images.

V. RESULTS

A. The sparser, the better

Up to now we used to claim that sparsity and morphological diversity are the clue for good separation

results. The role of morphological diversity is twofold:

• Separability : the sparser the sources in the dictionaryD (redundant or not), the more “separable”

they are. As we noticed earlier, sources with different morphologies are diversely sparse (i.e. they

haveδ-disjoint supports inD with a “small” δ). The use of a redundantD is thus motivated by the

grail of sparsity in a wide class of signals for which sparsity means separability.

• Robustness to noise or model imperfections :the sparser the sources, the least dramatic the noise.

In fact, sparse sources are concentrated on few significant coefficients in the sparse domain for which

noise is a slight perturbation. As a sparsity-based method,GMCA should be less sensitive to noise.
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Furthermore, from a signal processing point of view, dealing with highly sparse signals leads to easier

and more robust models. To illustrate those points, let us considern = 2 unidimensional sources with

1024 samples (those sources are theBumpandHeaviSinesignals available in the WaveLab toolbox - see

[37]). The first column of Figure 4 shows the two synthetic sources. Those sources are randomly mixed

so as to providem = 2 observations portrayed by the second column of Figure 4. We assumed that

MCA preserves linearity for such sources and mixtures (see our choice of the dictionary later on). The

mixing matrix is assumed to be unknown. Gaussian noise with varianceσ2
N

is added. The third and fourth

columns of Figure 4 depict the GMCA estimates computed with respectively (i) a single orthonormal

discrete wavelet transform (DWT) and (ii) a union of DCT and DWT. Visually, GMCA performs quite

well either with a single DWT or with a union of DCT and DWT.

Figure 5 gives the value of the mixing matrix criterion∆A = ‖In − PÃ
†
A‖1 as the signal-to-noise
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Fig. 4. The sparser the better - first column: the original sources.Second column:mixtures with additive Gaussian noise
(SNR = 19dB). Third column: sources estimated with GMCA using a single Discrete Orthogonal Wavelet Transform (DWT).
Fourth column: Sources estimated with GMCA using a redundant dictionary made of the union of a DCT and a DWT.

ratio (SNR)10 log10

(

‖AS‖2
2/‖N‖2

2

)

increases. When the mixing matrix is perfectly estimated,∆A = 0,

otherwise∆A > 0. In Figure 5, thedashedline corresponds to the behavior of GMCA in a single

DWT; the solid line depicts the results obtained using GMCA whenD is the union of the DWT and the

DCT. On the one hand, GMCA gives satisfactory results as∆A is rather low for each experiment. On

the other hand, the values of∆A provided by GMCA in the MCA-domain are approximately5 times

better than those given by GMCA using a unique DWT. This simple toy experiment clearly confirms

the benefits of sparsity for blind source separation. Furthermore it underlines the effectiveness of “very”

sparse representations provided by overcomplete dictionaries.
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Fig. 5. The sparser the better :behavior of the mixing matrix criterion when the noise variance increases for DWT-GMCA
(Dashed line) and (DWT+DCT)-GMCA (Solid line).

B. Dealing with noise

The last paragraph emphasized on sparsity as the key for veryefficient source separation methods. In

this section, we will compare several BSS techniques with GMCA in an image separation context. We

chose3 different reference BSS methods:

• JADE : the well-known ICA (Independent Component Analysis)based on fourth-order statistics (see

[1]).

• Relative Newton Algorithm : the separation technique we already mentioned. This seminal work

(see [28]) paved the way for sparsity in Blind Source Separation. In the next experiments, we used

the Relative Newton Algorithm (RNA) on the data transformedby a basic orthogonal bidimensional

wavelet transform (2D-DWT).

• EFICA : this separation method improves the FastICA algorithm for sources following generalized

Gaussian distributions. We also applied EFICA on data transformed by a 2D-DWT where the

assumptions on the source distributions is appropriate.

Figure 6 shows the original sources (top pictures) and the2 mixtures (bottom pictures). The original

sourcess1 ands2 have a unit variance. The matrixA that mixes the sources is such thatx1 = 0.25s1 +

0.5s2 +n1 andx2 = −0.75s1 +0.5s2+n2 wheren1 andn2 are Gaussian noise vectors (with decorrelated

samples) such that the SNR equals10dB. The noise covariance matrixΣN is diagonal.

In section V-A we claimed that a sparsity-based algorithm would lead to more robustness to noise. The

comparisons we carry out here are twofold: (i) we evaluate the separation quality in terms of correlation
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Fig. 6. Top : the 256 × 256 source images.Bottom : two different mixtures. Gaussian noise is added such that the SNR is
equal to10dB.

coefficient between the original and estimated sources as the noise variance varies; (ii) as the estimated

sources are also perturbed by noise, correlation coefficients are not always very sensitive to separation

errors, we also assess the performances of each method by computing the mixing matrix criterion∆A.

The GMCA algorithm was computed with the union of a Fast Curvelet Transform (available online -

see [38], [39]) and a Local Discrete Cosine Transform (LDCT). The union of the curvelet transform and

LDCT are often well suited to a wide class of “natural” images.

Figure 7 portrays the evolution of the correlation coefficients of source1 (left picture) and source2 (right

picture) as a function of the SNR. At first glance, GMCA, RNA and EFICA are very robust to noise as

they give correlation coefficients closed to the optimal value 1. On these images, JADE behaves rather

badly. It might be due to the correlation between these two sources. For higher noise levels (SNR lower

than10dB), EFICA tends to perform slightly worse than GMCA and RNA.As we noted earlier, in our
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Fig. 7. Evolution of the correlation coefficient between original and estimated sources as the noise variance varies:solid line
: GMCA, dashedline: JADE, (?) : EFICA, (+) : RNA. Abscissa :SNR in dB.Ordinate : correlation coefficients.

experiments, a mixing matrix-based criterion turns out to be more sensitive to separation errors and then

better discriminates between the methods. Figure 8 depictsthe behavior of the mixing matrix criterion as

the SNR increases. Recall that the correlation coefficientswas not able to discriminate between GMCA

and RNA. The mixing matrix criterion clearly reveals the differences between these methods. First, it

confirms the dramatic behavior of JADE on that set of mixtures. Secondly, RNA and EFICA behave

rather similarly. Thirdly, GMCA seems to provide far betterresults with mixing matrix criterion values

that are approximately10 times lower than RNA and EFICA.

To summarize, the findings of this experiment confirm the key role of sparsity in blind source separation:

• Sparsity brings better results : remark that, amongst the methods we used, only JADE is not

a sparsity-based separation algorithm. Whatever the method, separating in a sparse representation

enhances the separation quality : RNA, EFICA and GMCA clearly outperforms JADE.

• GMCA takes better advantage of overcompleteness and morphological diversity: RNA, EFICA

and GMCA provide better separation results with the benefit of sparsity. Nonetheless, GMCA takes

better advantage of sparse representations than RNA and EFICA.

C. Denoising color images

Up to now we emphasized on sparse blind source separation. Recall that in section IV-B, we showed

that the stable solutions of GMCA are the sparsest in the dictionary D. Thus it is tempting to extend

GMCA to other multivalued problems such as multi-spectral data restoration.

For instance, it is intuitively appealing to denoise multivalued data (such as color images) in multichannel
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Fig. 8. Evolution of the mixing matrix criterion∆A as the noise variance varies:solid line : GMCA, dashedline : JADE, (?)
: EFICA, (+) : RNA. Abscissa :SNR in dB.Ordinate : mixing matrix criterion value.

representations in which the new components are sparse in a given dictionaryD. Let’s consider multival-

ued data stored row-wise in the data matrixX. We assume that those multivalued data are perturbed by

additive noise. Intuition tells us that it would be worth looking for a new representationX = AS such

that the new componentsS are sparse in the dictionaryD. GMCA could be used to achieve this task.

We applied GMCA in the context of color image denoising (SNR =15dB). This is illustrated in Figure

9 where the original RGB image1 are shown on the left. Figure 9 in the middle shows the RGB image

obtained using a classical wavelet-based denoising methodon each color plane (hard-thresholding in the

Undecimated Discrete Wavelet Transform (UDWT)). GMCA is computed in the curvelet domain on the

RGB colour channels and the same UDWT-based denoising is applied to the sourcesS. The denoised

data are obtained by coming back to the RBG space via the matrix A. Figure 9 on the right shows

the denoised GMCA image using the same wavelet-based denoising method. Visually, denoising in the

”GMCA colour space” performs better than in the RGB space. Figure 10 zooms on a particular part of

the previous images. Visually, the contours are better restored. Note that GMCA was computed in the

curvelet space which is known to sparsely represent piecewise smooth images withC2 contours [10]. We

also applied this denoising scheme with other color space representations : YUV, YCC (Luminance and

chrominance spaces). We also applied JADE on the original colour images and denoised the components

estimated by JADE. The question is then:would it be worth denoising in a different space (YUV, YCC,

JADE or GMCA) instead of denoising in the original RGB space ?Figure 11 shows the SNR improvement

(in dB) as compared to denoising in the RGB space obtained by each method method (YUV, YCC,

1All colour images can be downloaded athttp://perso.orange.fr/jbobin/gmca2.html.
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Fig. 9. Left : Original 256 × 256 image with additive Gaussian noise. The SNR is equal to15 dB. Middle : Wavelet-based
denoising in the RGB space.Right : Wavelet-based denoising in the curvelet-GMCA space.

JADE and GMCA). Figure 11 shows that YUV and YCC representations lead to the same results. Note

that the YCC colour standard is derived from the YUV one. Withthis particular colour image, JADE

gives satisfactory results as it can improve denoising up to1 dB. Finally, as expected, a sparsity-based

representation such as GMCA provides better results. Here,GMCA enhances denoising up to2dB. This

series of tests confirms the visual impression that we get from Figure 9. Note that such “GMCA colour

space” is adaptive to the data.

Fig. 10. Zoom the test images.Left : Original image with additive Gaussian noise. The SNR is equal to 15 dB. Middle :
Wavelet-based denoising in the RGB space.Right : Wavelet-based denoising in the curvelet-GMCA space.

a) On the choice ofD and the denoising method :The denoising method we used is a simple hard-

thresholding process in the Undecimated Wavelet (UDWT) representation. Furthermore,D is a curvelet

tight frame (via the fast curvelet transform - [38]). Intuitively, it would be far better to perform both the

estimation ofA and denoising in the same sparse representation. Nonetheless, real facts are much more

complicated:

• Estimating the new sparse multichannel representation (through the estimation ofA in D) should
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Fig. 11. Denoising color images : how GMCA can improve multivariate data restoration.Abscissa :Mean SNR in dB.Ordinate
: Gain in terms of SNR in dB compared to a denoising process in the RGB color space. Solid line: GMCA, dashed-dotted
line: JADE, ′•′ YUV, ′+′: YCC.

be performed in the sparsest representation.

• In practice, the “sparsest representation” and the representation for the “best denoising algorithm” are

not necessarily identical : (i) for low noise levels, the curvelet representation [38] and the UDWT give

similar denoising results. EstimatingA and denoising should give better results in the same curvelet

representation, (ii) for higher noise level, UDWT providesa better denoising representation. We then

have to balance between (i)EstimatingA and (ii) denoising; choosing the curvelet representation

for (i) and the UDWT for (ii) turns to give good results for a wide range of noise levels.

SOFTWARE

A Matlab toolbox coined GMCALab will be available online athttp://www.greyc.ensicaen.fr/∼jfadili .

VI. CONCLUSION

The contribution of this paper is twofold : (i) it gives new insights into how sparsity enhances blind

source separation, (ii) it provides a new sparsity-based source separation method coined Generalized Mor-

phological Component Analysis (GMCA) that takes better advantage of sparsity giving good separation

results. GMCA is able to improve the separation task via the use of recent sparse overcomplete (redundant)

representations. We give conditions under which a simplified GMCA algorithm is designed leading to a

fast and effective algorithm. Remarkably, GMCA turns to be equivalent to a fixed point algorithm for

which we derive convergence conditions. Our arguments showthat GMCA converges to the true sources
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up to scale and permutation. Numerical results confirm that morphological diversity clearly enhances

source separation. Furthermore GMCA performs well with full benefit of sparsity. Further work will

focus on extending GMCA to the under-determined BSS case. Finally, GMCA also provides promising

prospects in other application such as multivalued data restoration. Our future work will also emphasize

on the use of GMCA-like methods to other multivalued data applications.
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