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Abstract

Over the last few years, the development of multi-channabees motivated interest in methods
for the coherent processing of multivariate data. Someifipessues have already been addressed as
testified by the wide literature on the so-called blind seuseparation (BSS) problem. In this context,
as clearly emphasized by previous work, it is fundamentat the sources to be retrieved present some
gquantitatively measurable diversity. Recently, sparsityd morphological diversity have emerged as a
novel and effective source of diversity for BSS. We give hevene new and essential insights into the
use of sparsity in source separation and we outline the galserle of morphological diversity as being
a source of diversity or contrast between the sources. Tpemintroduces a new BSS method coined
Generalized Morphological Component Analysis (GMCA) tteltes advantages of both morphological
diversity and sparsity, using recent sparse overcompletedundant signal representations. GMCA is a
fast and efficient blind source separation method. We ptesgnments and a discussion supporting the
convergence of the GMCA algorithm. Numerical results in timatiate image and signal processing are
given illustrating the good performance of GMCA and its rsimess to noise.

EDICS: MRP-WAVL
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INTRODUCTION

In the blind source separation (BSS) setting, the instaaas linear mixture model assumes that we are

givenm observationgz,- - - ,z,, } Where eacHx;};—1.... », iS @ row-vector of size; each measurement
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is the linear mixture of» source processes :
n
vie{l, - ,m}, ﬂb‘izzaijsj 1)
j=1

As the measurements aredifferent mixtures, source separation techniques aimcaivexing the original
sourcesS = [sT,... sT|T by taking advantage of some information contained in the th@ysignals

ren

are mixed in the observed data. This mixing model is convelyigewritten in matrix form :
X=AS+N 2)

where X is the m x t measurement matriX§ is then x ¢t source matrix andA is them x n mixing

matrix. A defines the contribution of each source to each measureent. x ¢ matrix N is added to
account for instrumental noise or model imperfections.

In the blind approach (where both the mixing mattxand the sourceS are unknown), source separation
merely boils down to devising quantitative measures of ity or contrast to differentiate the sources.
Most BSS techniques can be separated into two main clasepending on the way the sources are
distinguished:

« Statistical approach - ICA well-known independent component analysis (ICA) methosisume

that the sourcegs;}i—1 ... , (modeled as random processes) are statistically indeperase non
Gaussian. These methods (for example JADE [1], FastICA tnderivatives [2] and [3], Infomax)
already provided successful results in a wide range of emjitins. Moreover, even if the inde-
pendence assumption is strong, it is in many cases physipilsible. Theoretically, Leet al.

[4] emphasize on the equivalence of most of ICA techniquesttual information minimization

processes. Then, in practice, ICA algorithms are abousdeyadequate contrast functions which are

related to approximations of mutual information. In ternigdizcernibility, statistical independence
is a “source of diversity” between the sources.

« Morphological diversity and sparsityrecently, the seminal paper by Zibulevsiyal. [5] introduced

a novel BSS method that focuses on sparsity to distingusskdhrces. They assumed that the sources

are sparse in a particular badgis (for instance orthogonal wavelet basis). The soui®eand the

mixing matrix A are estimated from a Maximum A Posteriori estimator with arsjy-promoting

prior on the coefficients of the sourceslin They showed that sparsity clearly enhances the diversity

between the sources. The extremal sparse case assumebethsdurces have mutually disjoint



supports (sets of non-zero samples) in the sparse or tramsfiodomain (see [6],[7]). Nonetheless

this simple case requires highly sparse signals. Unfotéiyahis is not the case for large classes

of signals and especially in image processing.
A new approach coined Multichannel Morphological Compdnemalysis (MMCA) is described in [8].
This method is based anorphological diversity that is the assumption that thesources; };—1.... , we
look for are sparse in different representations (i.eia@hetries). For instance, a piece-wise smooth source
s1 (cartoon picture) is well-sparsified in a curvelet tightnfire while a warped globally oscillating source
so (texture) is better represented using a Discrete Cosinesioem (DCT). MMCA takes advantage of
this “morphological diversity” to differentiate betweelmet sources with accuracy. Practically, MMCA is
an iterative thresholding algorithm which builds on the#itdevelopments in harmonic analysis (ridgelets
[9], curvelets [10], [11], [12], etc).
This paper:we extend the MMCA method to the much more general case whereomsider that
each sources; is a sum of several components (= Zszl ) each of which is sparse in a given
dictionary. For instance, one may consider a mixturenafural images in which each is a sum of a
piece-wise smooth part (i.e. edges) and a texture compobsitig this model, we show that sparsity
clearly provides enhancements and gives robustness te.nois
Section | provides an overview of the use of morphologicaédity for component separation in single
and multichannel images. In section II-A we introduce a n@arse BSS method coined Generalized
Morphological Component Analysis (GMCA). Section Il shewow to speed up GMCA and the
algorithm is described in section V. In this last sectidnisialso shown that this new algorithm can be
recast as a fixed-point algorithm for which we give heurisboivergence arguments and interpretations.
Section V provides numerical results showing the good perdmces of GMCA in a wide range of

applications including blind source separation and maiftate denoising.

DEFINITIONS AND NOTATIONS

A vector y will be a row vectory = [y1,--- ,y:]. Bold symbols represent matrices aMi® is the
transpose oM. The Frobenius norm o is ||Y ||, defined by| Y3 = Trace(YTY). The k-th entry

of y, is yplk], yp is the p-th row andy? the ¢-th column ofY.

In the proposed iterative algorithmg{" will be the estimate of; at iterationh. The notation||y||o



defines the, pseudo-norm of (i.e the number of non-zero elementsyinwhile ||y|; is the¢; norm of

y. D =[], ¢%]T defines &l x t dictionary the rows of which are uni-norm atoms{¢;},. The
mutual coherence db ( see [13] and references therein )is = maxg, 44, |¢Z-¢>§.F\. WhenT > t, this
dictionary is said to be redundant or overcomplete. In the, wee will be interested in the decomposition
of a signaly in D. We thus definesg(y) (respectiverS}?(y)) the set of solutions to the minimization
problemmin, ||c|lp S.t. y = ¢D (respectivelymin, ||c||; S.t.y = ¢D). When thel, sparse decomposition
of a given signaly has a unique solution, let = Ap(y) wherey = oD denote this solution. Finally,
we define)s(.) to be a thresholding operator with threshadldhard-thresholding or soft-thresholding;
this will be specified when needed).

The supportA(y) of row vectory is A(y) = {k;|y[k]| > 0}. Note that the notion of support is well-
adapted td/y-sparse signals as these are synthesized from a few nomizdiomary elements. Similarly,
we define thej-support ofy asAs(y) = {k; |y[k]| > d]|y|le } Where|ly||s = maxy |y[k]| iS thels, norm

of y. In sparse source separation, classical methods assutmbehsources have disjoint supports. We
define a weaker property for signajs andy, to haved-disjoint supports ifA;(y,) N As(y,) = 0. We
further defined* = min{d; As(y,) N As(y,) = 0;  Vp # q}.

Finally, as we deal with source separation, we need a waystesaghe separation quality. A simple way
to compare BSS methods in a noisy context uses the mixingixmaiterion Ay = ||I, — PATA||;,
where Al is the pseudo-inverse of the estimate of the mixing matixandP is a matrix that reduces
the scale/permutation indeterminacy of the mixing modedlekd, whenA is perfectly estimated, it is
equal toA up to scaling and permutation. As we use simulations, thesnurces and mixing matrix are
known and thusP can be computed easily. The mixing matrix criterion is thtrictty positive unless

the mixing matrix is correctly estimated up to scale and peation.

. MORPHOLOGICAL DIVERSITY

A signal y is said to be sparse in a waveform dictiondpyif it can be well represented from a few

dictionary elements. More precisely, let us definsuch that :
y=aD 3)

The entries ol are commonly called “coefficients” af in D. In that settingy is said to be sparse in

D if most entries ofx are nearly zero and only a few have “significant” amplitudearticular/y-sparse



signals are generated from a few non-zero dictionary elésndiote that this notion of sparsity is strongly
dependent on the dictiona®; see e.g. [14], [15] among others. As discussed in [16], alsibasis is
often not well-adapted to large classes of highly structutata such as “natural images”. Furthermore,
over the past ten years, new tools have emerged from harranalgsis : wavelets, ridgelets [9], curvelets
[10], [11], [12], bandlets [17], contourlets [18], to namdeav. It is quite tempting to combine several
representations to build a larger dictionary of waveforimat twill enable the sparse representation of
large classes of signals. Nevertheless, wiers overcompleteife. 7' > t), the solution of Equation 3
is generally not unique. In that case, the authors of [14]ewiBe first to seek the sparsestin terms

of /p-pseudo-norm, such thgt= oD. This approach leads to the following minimization problem
min ||af[p S.t.y = oD 4
(0%

Unfortunately, this is an NP-hard optimization problem e@rhiis combinatorial and computationally
unfeasible for most applications. The authors of [14] alsoppsed to convexify the constraint by

substituting the convex; norm to theé, norm leading to the following linear program :
min ||a|; s.t.y = oD (5)
[e%

This problem can be solved for instance using interior-paiethods. It is known as Basis Pursuit [19]

in the signal processing community. Nevertheless, problehand (5) are seldom equivalent. Important
research concentrated on finding equivalence conditiotvgele®m the two problems [15],[20],[21].

In [16] and [22], the authors proposed a practical algoritoimed Morphological Component Analysis

(MCA) aiming at decomposing signals in overcomplete diwdiges made of a union of bases. In the

MCA setting, y is the linear combination oD morphological components:

D D
y=> k=Y ard (6)
k=1 k=1

where{®,},_; ... p are orthonormal basis d&’'. Morphological diversity then relies on the sparsity of
those morphological components in specific bases. In tefnfg worm, this morphological diversity can

be formulated as follows:

v{i,j} € {1,--- ,D}; j#i= |le:®] o < lle:®] llo @)



In words, MCA then depends on the incoherence between thelistibnaries{®;};—; ... p to estimate

the morphological componen{s; };,—; ... p by solving the following convex minimization problem:

D D
{gi} = Arg ?;H}IZ i @] Iy + £lly = > @ills ®)
=1 =1

Note that the minimization problem in (8) is closely relatedBasis Pursuit Denoising (BPDN - see
[19]). In [23], we proposed a particular block-coordinatdaxation, iterative thresholding algorithm
(MCA/MOM) to solve (8). Theoretical arguments as well asexments were given showing that MCA
provides at least as good results as Basis Pursuit for spaeseomplete decompositions in a union of
bases. Moreover, MCA turns out to be clearly much faster Basis Pursuit. Then, MCA is a practical
alternative to classical sparse overcomplete decompoditichniques.

We would like to mention several other methods based on natwgical diversity in the specific field
of texture/natural part separation in image processingt}, [25], [26], [27].

In [8], we introduced a multichannel extension of MCA coingCA (Multichannel Morphological
Component Analysis). In the MMCA setting, we assumed thatsiburcess in (2) have strictly different
morphologiesi(e. each source; was assumed to be sparsely represented in one particutanormal
basis®;). An iterative thresholding block-coordinate relaxatialgorithm was proposed to solve the

following minimization problem :
A &1 : T . 2
{A,S} = argrg}g; [sk @y [l1 + #[IX — AS|3 (9)

We then showed in [8] that sparsity and morphological diteisiproves the separation task. It confirmed
the key role of morphological diversity in source separatio distinguish between the sources.
In the next section, we will introduce a novel way to accowntgparsity and morphological diversity

in a general Blind Source Separation framework.

[l. GENERALIZED MORPHOLOGICAL COMPONENTANALYSIS
A. The GMCA framework
The GMCA framework states that the observed @atare classically generated as a linear instantaneous
mixture of unknown source$ using an unknown mixing matriXA as in Equation (2). Note that,

we consider here only the overdetermined source separafisa wheren > n and thusA has full

column rank. Future work will be devoted to an extension t® timder-determined case < n. An



additive perturbation ternN is added to account for noise or model imperfection. From,rfovs the
concatenation oD orthonormal baseé®;};—1.... p: D = [®7, - ,<I>1T)]T. We assuma priori that the
sources(s; }i—1,... , are sparse in the dictiona. In the GMCA setting, each source is modeled as the

linear combination ofD morphological components where each component is spasspecific basis :

D D
Vie{l,--- ,n}; 8; = Z%k = Zaik'@k (10)
k=1 k=1

GMCA seeks an unmixing scheme, through the estimatiod pfvhich leads to the sparsest sources
S in the dictionaryD. This is expressed by the following optimization task venttin its augmented

Lagrangian form:

n D
A Q1 . . T . 2
{A,S} = arg%l}él ;1 kgl lloit @y |0 + || X — AS||5 (11)

where each row o8 is such thats; = Zszl ;. Obviously this algorithm is combinatorial by nature.
We then propose to substitute thenorm to thef, sparsity, which amounts to solving the optimization

problem :

n D
XA Q1 : &T _ 2
{A,S}—argrg;g;;||%¢k||l+m||x AS|3 (12)

More conveniently, the producAS can be split inton x D multichannel morphological components:
AS = ZM a‘y;;. Based on this decomposition, we propose an alternatingmiziation algorithm

to estimate iteratively one term at a time. Define ffiek}-th multichannel residual b, , = X —
Z{p,q}#@k} aP,, as the part of the dat unexplained by the multichannel morphological component
a’p;,. Estimating the morphological componen, = o, ®; assumingA andyg,q 24y are fixed leads

to the component-wise optimization problem :
Pir = argmin i@ |1 + 11Xk — o' @il (13)

or equivalently,

Qi = argmin ol + &)1 Xi k@i — a’oull3 (14)

since here®, is an orthogonal matrix. By classical ideas in convex anglyes necessary condition for

&, to be a minimizer of the above functional is that the null eedie an element of its subdifferential



at a;y, that is :

1 7
2

1
26’3

whered||a;k||1 is the subgradient defined as (owing to the separability @ffhnorm):

ufl] = signafl]), 1€ Ala)

ull] e [-1,1], otherwise

Ollal = {ueR!

Hence, (15) can be rewritten equivalently as two conditleasling to the following closed-form solution:

0, if ‘(aiTXM(IJg) [1]( <l

amll] = (16)

f[a? IPa "X 21{”@ ez Sien (a szq’) otherwise

This exact solution is known as soft-thresholding. Henbke,dlosed-form estimate of the morphological

componentp;, Is:
1

- (17)
2r|a’||3

1 .
@z‘kz)\5<|| T a' X,kq)k)@k with § =
2

Now, considering fixeda?},; and$S, updating the columm’ is then just a least-squares estimate:

at = Z als, s (18)

|SZ||2 pAi

wheresy, = Zszl vik- In a simpler context, this iterative and alternating ofation scheme has already
proved its efficiency in [8].
In practice each column oA is forced to have unit; norm at each iteration to avoid the classical

scale indeterminacy of the produdtS in Equation (2). The GMCA algorithm is summarized below:



1. Set the number of iterations I, and threshold 6%
2. While §™ is higher than a given lower bound émin (€.g. can depend on the noise variance),
Fori=1,---,n
Fork=1,---,D

« Compute the residual term r{;’’ assuming the current estimates of ¢ g} (ix}» B\ugy£(ax; 7€ fixed:

i =at " (X ~ Lpar2lik ap(hil)@({zg}l))

o Estimate the current coefficients of %51('1]:») by Thresholding with threshold 6"):
& = Ao (07

« Get the new estimate of ¢,;, by reconstructing from the selected coefficients a1 :
B = ol

Update o’ assuming a”**"’ and the morphological components @) are fixed :

i1 n =ph=1 (R (k)T
a BEQIE X - Zp;éi a Sp ) S

— Decrease the thresholds §(*).

GMCA is an iterative thresholding algorithm such that atlederation it first computesoarse
versions of the morphological compon€ni;y, }i=1,... n:k=1,...,p for a fixed source;. These raw sources
are estimated from their most significant coefficientsZin Hence, the corresponding coluna is
estimated from the most significant featuresspfEach source and its corresponding columnAofire
then alternately estimated. The whole optimization schdma progressively refines the estimatesSof
and A aso decreases towards,;,. This particular iterative thresholding scheme providas tobustness
to the algorithm by working first on the most significant featiin the data and then progressively

incorporating smaller details to finely tune the model partars.

B. The dictionaryD

As an MCA-like algorithm (for more details, see [8], [23]het GMCA algorithm involves multipli-
cations by matrice@{ and ®;. Thus, GMCA is worthwhile in terms of computational burdenlang
as the redundant dictionar® is a union of bases or tight frames. For such dictionariesrices <I>}f
and®; are never explicitely constructed, and fast implicit asayand reconstruction operators are used

instead (for instance, wavelet transforms, global or latstrete cosine transform, etc).

C. Complexity analysis

We here provide a detailed analysis of the complexity of GM®@A& begin by noting that the bulk of the

computation is invested in the application®f and®, at each iteration and for each component. Hence,



fast implicit operators associated €, or its adjoint are of key importance in large-scale appiice.

In our analysis below, we leV, denote the cost of one application of a linear operabqr or its
adjoint. The computation of the multichannel residuals dbr (i, k) costsO(nDmt) flops. Each step
of the double 'For’ loop computes the correlation of thisidesl with o’ using O(mt) flops. Next,

it computes the residual correlations (application@f), thresholds them, and then reconstructs the
morphological component;;. This costsO(2V; + T') flops. The sources are then reconstructed with
O(nDt), and the update of each mixing matrix column invol¥&gnt) flops. Noting that in our setting,

n ~m < t,andV, = O(t) or O(tlogt) for most popular transforms, the whole GMCA algorithms then
costsO (Iuaxn?Dt) + O (2@ maxn Eszl Vi +nDT). Thus, in practice GMCA could be computationally
demanding for large scale high dimensional problems. Irti@edll, we prove that adding some more
assumptions leads to a very simple, accurate and much fgtmithm that enables to handle very large

scale problems.

D. The thresholding strategy

Hard or Soft-thresholding ? :rigorously, we should use a soft-thresholding process.réctize,
hard-thresholding leads to better results. Furthermorf2&), we empirically showed that the use of
hard-thresholding is likely to provide th®y sparse solution for the single channel sparse decompuositio
problem. By analogy, we guess that the use of hard-threstpld likely to solve the multichannél,
norm problem instead of (12).

Handling noise: The GMCA algorithm is well suited to deal with noisy data. As® that the noise
standard deviation isy. Then, we simply apply the GMCA algorithm as described abtemninating
as soon as the threshaidets less thamon; 7 typically takes its value in the range- 4. This attribute
of GMCA makes it a suitable choice for use in noisy appliqasiotGMCA not only manages to separate

the sources, but also succeeds in removing an additive asiseby-product.

E. The Bayesian point of view

We can also consider GMCA from a Bayesian viewpoint. Forainsg, let's assume that the mixtures
{x;}i=1,... m, the mixing matrixA, the sourcegs;};—i ... , and the noise matritN are random variables.
For simplicity, N is Gaussian; its samples ai@ from a multivariate Gaussian distributidvi(0, Xx) with

zero mean and covariance matbly. The noise covariance matrRy; is assumed known. For simplicity,
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the noise samples are considered to be decorrelated frorohammel to the other; the covariance matrix
3N is thus diagonal. We assume that each entnAofs generated from a uniform distribution. Let’s
remark that other priors oA could be imposed here; e.g. known fixed column for example.

We assume that the sources},—; ... , are statistically independent from each other and theifficants

in D (the {c;}i—1.... ») are generated from a Laplacian law:

T

Vi=1,---,n;  plag) = [ [ plailk]) o< exp (—pl|ail|r) (19)
k=1

In a Bayesian framework, the use of the Maximum a posteristin@tor leads to the following opti-

mization problem:

n D
A Q1 . o 2 . T
{A,S} = arg min X — AS|[s, + 24 ;1 kE_l it Py 11 (20)

where ||.||z, is the Frobenius norm defined such thafX|% = Trace(XTZ'X). Note that this
minimization task is similar to (11) except that here the nnef.||s, accounts for noise. In the case

of isotropic and decorrelated noisee( En = 0&1,,), problems (12) and (20) are equivalent (with

k= 1/(2u0%).

F. lllustrating GMCA

We illustrate here the performance of GMCA with a simple t@pexyiment. We consider two sources
s1 and se sparse in the union of the DCT and a discrete orthonormal leabasis. Their coefficients
in D are randomly generated from a Bernoulli-Gaussian didiohu the probability for a coefficient
{a12[k]}k=1,.. 7 t0 be non-zero iy = 0.01 and its amplitude is drawn from a Gaussian distribution
with mean0 and variancel. The signals were composed of= 1024 samples. Figure 1 illustrates
the evolution of A, as the noise variance decreases. We compare our method Relhttve Newton
Algorithm (RNA) [28] that accounts for sparsity and EFICA.[3he latter is a FastICA variant designed
for highly leptokurtotic sources. Both RNA and EFICA werephgd after “sparsifying” the data via an
orthonormal wavelet transform. Figure 1 shows that GMCAdwels similarly to state-of-the-art sparse

BSS techniques.
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Fig. 1. Evolution of the mixing matrix criteriol 4 as the noise variance varies: GMC#o(id line), EFICA, (x) :, RNA (+).
Abscissa :signal-to-noise ratio in dBOrdinate : mixing matrix criterion value.

1. SPEEDING UPGMCA
A. Introduction: the orthonormal case

Let us assume that the dictionaByis no longer redundant and reduces to an orthonormal basés. T
optimization problem (12) then boils down to the followingeo
A.S) = inx|@x — Aal3 i|lo with S = aD 21
(A.8) = argpip slOx — Aalf +3_ llll 2 (21)
1=
where each row 0®x = XD7 stores the decomposition of each observed chann®l. iBimilarly the
£1 norm problem (12) reduces to :
n
A, S} = ink||@x — Aa|3 Iy with S = aD 22
{A, S} = argmin £||©x — Aalf; + Z; llevilla a (22)
The GMCA algorithm no longer needs transforms at each imraas only the dataX have to be
transformed once if». Clearly, this case is computationally much cheaper. Uafately, no orthonormal
basis is able to sparsely represent large classes of signdlyet we would like to use “very” sparse
signal representations which motivated the use of redundgmesentations in the first place. The next
section gives a few arguments supporting the substitutfa22) to (12) even when the dictiona® is

redundant.

B. The redundant case

In this section, we assunt® is redundant. We consider that each datlm};—; ... ,, has a uniqué

sparse decomposition€. S(Z(a:i) is a singleton for an € {1,--- ,m}). We also assume that the sources
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have uniquée/, sparse decompositionse. Sﬁ(si) is a singleton for ali € {1,--- ,n}). We then define
Ox = [Ap(x)T, -, Ap(z,)T)T andO®g = [Ap(s1)T, -, Ap(s,)T]T.

Up to now, we believed in morphological diversity as the seusf discernibility between the sources we
wish to separate. Thus, distinguishable sources must diseernibly different” supports i®. Intuition
then tells us thatvhen one mixes very sparse sources their mixtures shoulddsesparseTwo cases

have to be considered:

« Sources with disjoint supports iR : the mixing process increase thenorm :||Ap(z;)|lo > ||Ap(si)llo

forall j € {1,---,m} andi € {1,--- ,n}. WhenD is made of a single orthogonal basis, this
property is exact.

« Sources with-disjoint supports irnD : the argument is not so obvious; we guess that the number

of significant coefficients irD is higher for mixture signals than for the original sparserses with
high probability : CardAs(z;)) > Card(As(s;)) foranyj € {1,--- ,m} andi € {1,--- ,n}.
Owing to this “intuitive” viewpoint, even in the redundarase, the method is likely to solve the following

optimization problem :
{A, 65} = arg min £ ©x — ABs|3 + [1©sllo (23)

Obviously, (23) and (11) are not equivalent unlésss orthonormal. WherD is redundant, no rigorous
mathematical proof is easy to derive. Nevertheless, exgaaris will outline that intuition leads to good
results. In (23), note that a key point is still doubtful : sgEredundant decompositions (operatgs)
are non-linear and in general no linear model is preservedingy Ap (Ox) = AAp (Og) at the

solution is then an invalid statement in general. The nestige will focus on this source of fallacy.

C. When non-linear processes preserve linearity

Whatever the sparse decomposition used (e.g. MatchinguPyg®], Basis Pursuit [19]), the de-
composition process is non-linear. The simplification wedenaarlier is no longer valid unless the
decomposition process preserves linear mixtures. Let sisfficus on a single signal : assume thds

the linear combination ofn original signals ¢ could be a single datum in the BSS model) :

Y= vy (24)
i=1
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Assuming each{y;}i=1... ., has a unique/y sparse decomposition, we defing = Ap(y;) for all
ie{l,---,m}. As defined earlierSZ?(y) is the set off;, sparse solutions perfectly synthesizingfor
anya € Sz(y); y = oD. Amongst these solutions, one is the linearity-presergalgtion o* defined

such that:

o = i Vi (25)
i=1

As o* belongs toSef(y), a sufficient condition for thé, sparse decomposition to preserve linearity is

the uniqueness of the sparse decomposition. Indeed, [b¥Egdrthat, in the general case, if
lladlo < (np' +1)/2 (26)

then this is the unique maximally sparse decomposition,thatin this caség(y) contains this unique
solution as well. Therefore, if all the sources have spamsrigh decompositions i® in the sense of
inequality (26), then the sparse decomposition operats(.) preserves linearity.

In [23], the authors showed that whén is the union of D orthonormal bases, MCA is likely to
provide the uniqué, pseudo-norm sparse solution to problem (4) when the soameesparse enough.
Furthermore, in [23], experiments illustrate that the Domdiuo uniqueness bound is far too pessimistic.
Uniqueness should hold, with high probability, beyond tloeirid (26). Hence, based on this discussion
and the results reported in [23], we consider in the next exmnts that the operatiotp(y) which
stands for the decomposition gfin D using MCA, preserves linearity.

In the BSS contextn the Blind Source Separation framework, recall that edxdeovation{z; };—; ...

is the linear combination of sources :

Ty = Zaijsj (27)
Jj=1

Owing to the last paragraph, if the sources and the obsensthave uniqué,-sparse decompositions

in D then the linear mixing model is preserved, that is:
Ap (zi) = Y aijAp (s5) (28)
j=1

and we can estimate both the mixing matrix and the sourcdseirsparse domain by solving (23).
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IV. THE FAST GMCA ALGORITHM

According to the last section, a fast GMCA algorithm workimgthe sparse transformed domain
(after decomposing the data i using a sparse decomposition algorithm) could be desigmesblive
(21) (respectively (22)) by an iterative and alternatenestion of ®g and A. There is an additional
important simplification when substituting problem (22)(1&2). Indeed, asn > n, it turns out that (22)
is a multichannebverdeterminedeast-squares error fit with -sparsity penalization. A closely related

optimization problem to this augmented lagrangian form is
Inin [|©x — A®s|l3 subjectto [|®sll <q (29)

which is a multichannel residual sum of squares witl; @udget constraint. Assuming. is known,
this problem is equivalent to the multichannel fitting rexgien problem with/;-constraint addressed by
the homotopy method in [30] or the LARS/Lasso in [31]. While tlatter methods are slow stepwise
algorithm, we propose the following faster stagewise metho

« Update the coefficient®g = \; (ATQX), s is a thresholding operator (hard for (21) and soft

for (22)) and the threshold decreases with increasing iteration count assuninig fixed.

« Update the mixing matrixA by a least-squares estimatk:= ©x O3 (éség)fl.
Note that the latter two step estimation scheme has the flafahe alterningSparse codingpictionary
learning algorithm presented in [32] in a different framework.

The two stages iterative process leads to the following GdCA algorithm:

1. Perform a MCA to each data channel to compute Ox :
Ox = [Ap (z:)"]"
2. Set the number of iterations I'max and threshold {650)}2:1,.4 "
3. While each 6™ is higher than a given lower bound émin (€.g. can depend on the noise variance),
— Proceed with the following iteration to estimate the coefficients of the sources ®g at iteration ~ assuming
A is fixed:
@S(h+1) = Asom (ATW@X):
— Update A assuming Os is fixed :
A+D) @X(;)éh)T ((:)(Sh)é(sh)T)—1
— Decrease the threshold 5.

4. Stop when 6 = §in.
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The coarse to fineprocess is also the core of this fast version of GMCA. Indeeden 6" is
high, the sources are estimated from their most significaafficients inD. Intuitively, the coefficients
with high amplitude in®g are (i) less perturbed by noise and (ii) should belong to amg source
with overwhelming probability. The estimation of the saescis refined as the threshodddecreases
towards a final valué,,;,. Similarly to the previous version of the GMCA algorithm ésgection 1lI-A),
the optimization process provides robustness to noise aipk ltonvergence even in a noisy context.
Experiments in Section V illustrate the good performandesun algorithm.

Complexity analysisWhen the approximation we made is valid, the fast simplifiddG& version
requires only the application of MCA on each channel, whgHaister than the non-fast version (see

Section 1I-C).

A. A fixed point algorithm

Recall that the GMCA algorithm is composed of two steps: §ijreatingS assumingA is fixed, (ii)
Inferring the mixing matrixA assumingS is fixed. In the simplified GMCA algorithm, the first step

boils down to a least-squares estimation of the sourceswelll by a thresholding as follows :
Os = s (AT@X) (30)

where AT is the pseudo-inverse of the current estimateof the mixing matrix. The next step is a
least-squares update &f:

A—0x07 (@Ség)‘1 (31)

Define®g = AT@x such that®g = )\ ((:)s) and rewrite the previous equation as follows:
- - . A\T . . AT\ L
A= ABg); (@s) ()\5 (@S) s (@S) > (32)

Interestingly, (32) turns out to be a fixed point algorithm.the next section, we will have a look at its

behavior.
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B. Convergence study

1) From a deterministic point of viewA fixed point of the GMCA algorithm is reached when the

following condition is verified :
O3 (0s) = s (Os) s (@5) (33)

Note that owing to the non-linear behavior &f(.) the first term is generally not symmetric as opposed
to the second. This condition can thus be viewed as a kinslyofmetrizatiorcondition on the matrix
Os)\s ((:DS>T. Let's examine each element of this matrix in the= 2 case without loss of generality.
We will only deal with two distinct sources, ands,. On the one hand, the diagonal elements are such

that:

pp

[@m (@S)T] Sy FAs(a i)
k=1
— D ((:)S) As (@s)T]pp (34)

The convergence condition is then always true for the diagefements. On the other hand, the off-

diagonal elements of (33) are as follows:

Z bplk]aglk] = Z Gp[k] g k] and Z bplk]aglk] = bip[k]Gg K]

keAs(aq) kEAs(Gp)NAs(Gyq) kEAs(Gyp) kEAs(Gp)NAs(Gg)
(35)

Let us assume now that the sources héngisjoint supports. Definé* the minimum scalad such that
s, ands, areds-disjoint. Similarly, we assume tha, and s, ared-disjoint ands’ is the minimum scalar
§ such thats, and 3, are ¢-disjoint. Thus for anys > 47 : DokeAs(a,)nAs(a,) Oplklaq[k] = 0.
As we noted earlier in Section IlI-B, when the sources aré@ently sparse, mixtures are likely to have
wider §-supports than the original sourcés: < 6 unless the sources are well estimated. Thus for any

§* < 6 < &' the convergence condition is not true for the off-diagoealris in (33) as :
> lklaglk] #0and Y dy[klaglk] # 0 (36)
keAs(&q) keAs(&yp)
Thus the convergence criterion is valid whén= 4'; i.e. the sources are correctly recovered up to an

“error” 0*. When the sources have strictly disjoint suppotts £ 0), the convergence criterion holds

true when the estimated sources perfectly match the trueassu
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2) Statistical heuristics:From a statistical point of view, the sources and s, are assumed to be
random processes. We assume that the entries,@f] and o,[k] are identically and independently
generated from a heavy-tailed probability density funtiodf) which is assumed to be unimodal at zero,
even, monotonically increasing for negative values. Fetance, any generalized Gaussian distribution
verifies those hypotheses. Figure 2 represents the jpaihiof two independent sparse sources (on the

left) and the jointpdf of two mixtures (on the right). We then take the expectatibbaih sides of (35):

Y E{ay[ka,k} = > E{cp[k]ag[k]} 37)
keAs(aq) keAs(ap)NAs(Gq)

And symmetrically,
Y E{q[Ka, K]} = > E{ (k] og[K]} (38)
keAs(&p) keNs(ap)NAs(Gyq)

Intuitively the sources are correctly separated when tlandires of the star shaped contour plot (see
Figure 2 on the left) of the joinpdf of the sources are collinear to the axes.
The question is therdo conditions (37) and (38) lead to a unique solutiddo acceptable solutions be-

long to the set of fixed poinBNote that if the sources are perfectly estimated ek (Og) As (©g)”'}

500
450
a00
350
00
250 &
200
150
100
50|
50 100 15 200 250 300 30 400 450 500

Fig. 2. Contour plots of a simulated joipdf of 2 independent sources generated from a generalized Gauasiaf(z) o
exp(—pul|z|®®). Left : joint pdf of the original independent sourceRight : joint pdf of 2 mixtures.

is diagonal andE{®g\; (Og)} = E{)\s (@s) \; (Os)}. As expected, the set of acceptable solutions (up
to scale and permutation) verifies the convergence conditiet us assume that, anda, are uncorrelated
mixtures of the true sources, and a,; hard-thresholding then correlatés and \;(&,) (respectively

a, and\s(&y)) unless the joinpdf of the estimated sources, and«, has the same symmetries as the
thresholding operator (this property has also been outhing33]). Figure 3 gives a rather good empirical
point of view of the previous remark. On the left, Figure 3 ide&pthe jointpdf of two unmixed sources

that have been hard-thresholded. Note that whatever tleshblds we apply, the thresholded sources
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Fig. 3. Contour plots a simulated joipdf of 2 independent sources generated from a generalized Gauagiahat have
been hard-thresholdedleft : joint pdf of the original independent sources that have been haedtibided Right : joint pdf
of 2 mixtures of the hard-thresholded sources.

are still decorrelated as their joiptf verifies the same symmetries as the thresholding operatoth©
contrary, on the right of Figure 3, the hard-thresholdingcess further correlates the two mixtures.

For a fixedsd, several fixed points lead to decorrelated coefficient veetg andéa,. Figure 3 provides a
good intuition: for fixeds the set of fixed points is divided into two different categstri(i) those which
dependon the value of§ (plot on the right) and (ii) those that are valid fixed points &ll values of§
(plot (on the left of Figure 3)). The latter solutions leadatceptable sources up to scale and permutation.
As GMCA involves a decreasing thresholding scheme, the firadl points are stable if they verify the
convergence conditions (37) and (38) for @llTo conclude, if the GMCA algorithm converges, it should

converge to the true sources up to scale and permutation.

C. Handling noise

Sparse decompositions in the presence of noise leads to coonelicated results on the support
recovery property (see [34] and [35]), and no simple restdis be derived for the linearity-preserving
property. In practice, we use MCA as a practical sparse bag@mposition. When accounting for noise,
MCA is stopped at a given threshold which depends on the n@sance (typically3on whereoy is
the noise standard deviation). MCA then selects the mosifigignt coefficients of the signal we wish to
decompose irD. When the signals are sparse enougtinsuch coefficients (with high amplitudes) are
less perturbed by noise and thus GMCA provides good resotieed, for “very” sparse decompositions
with a reasonable signal-to-noise ratio, the influence aderon the most significant coefficients is rather
slight [34]; thus the fixed point property (33) is likely to Idatrue for most significant coefficients. In
that case, “very” sparse decompositions provide robusttegsoise. These arguments will be confirmed

and supported by the experiments of Section V.
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D. Morphological diversity and statistical independence

In the next section, we give experimental results of congoams of GMCA to well-known BSS and
Independent Component Analysis (ICA) methods. Interghtjrthere are close links between ICA and
GMCA.

« Theoretically :morphological diversity is, by definition, a determinisgiioperty. As we pointed out
earlier, from a probabilistic viewpoint, sources geneatatedependently from a sparse distribution
should be morphologically different (i.e. withtdisjoint support with high probability).

« Algorithmically : we pointed out that GMCA turns to be a fixed point algorithmhagbnvergence

condition (33). In [36], the authors present an overviewhs tCA fauna in which Equation (33)
then turns out to be quite similar to some ICA-like converggenonditions for which a fixed point
in B is attained when a matri&{f (BX)BX*} is symmetric (in this equatioB is the unmixing

matrix andf(.) is the ICA scorefunction). In our setting, the operatag (.) plays a similar role as

the scorefunction f(.) in ICA.

In the general case, GMCA will tend to estimate a “mixing” masuch that the sources are the sparsestin
D. We will take advantage of this propensity to look for a mallinnel representation (via the estimation
of A) in which the estimated components are “very” spars@®inThis point will be illustrated in the

next section to denoise color images.

V. RESULTS
A. The sparser, the better

Up to now we used to claim that sparsity and morphologicaddiity are the clue for good separation

results. The role of morphological diversity is twofold:

« Separability : the sparser the sources in the diction@nfredundant or not), the more “separable”
they are. As we noticed earlier, sources with different rhotpgies are diversely sparse (i.e. they
haveJ-disjoint supports ifD with a “small” §). The use of a redundam? is thus motivated by the
grail of sparsity in a wide class of signals for which spgrsiteans separability.

« Robustness to noise or model imperfectionsthe sparser the sources, the least dramatic the noise.
In fact, sparse sources are concentrated on few significeficients in the sparse domain for which

noise is a slight perturbation. As a sparsity-based met@diCA should be less sensitive to noise.



Furthermore, from a signal processing point of view, deplvith highly sparse signals leads to easier
and more robust models. To illustrate those points, let usidern = 2 unidimensional sources with
1024 samples (those sources are BiampandHeaviSinesignals available in the WavelLab toolbox - see
[37]). The first column of Figure 4 shows the two syntheticrees. Those sources are randomly mixed
so as to providen = 2 observations portrayed by the second column of Figure 4. ¥geiraed that
MCA preserves linearity for such sources and mixtures (sgechoice of the dictionary later on). The
mixing matrix is assumed to be unknown. Gaussian noise veittances%; is added. The third and fourth
columns of Figure 4 depict the GMCA estimates computed waigpectively (i) a single orthonormal
discrete wavelet transform (DWT) and (i) a union of DCT an@&/D Visually, GMCA performs quite
well either with a single DWT or with a union of DCT and DWT.

Figure 5 gives the value of the mixing matrix criteridny = ||I, — PATA|; as the signal-to-noise

200 400 600 800 1000 1200 00 200 400 600 800 1000 1200

Fig. 4. The sparser the better - first column: the original sourcesSecond column:mixtures with additive Gaussian noise
(SNR =19dB). Third column: sources estimated with GMCA using a single Discrete Orthag@Vavelet Transform (DWT).
Fourth column: Sources estimated with GMCA using a redundant dictionargeraf the union of a DCT and a DWT.

ratio (SNR)101og, (||AS||3/||N]3) increases. When the mixing matrix is perfectly estimated, = 0,
otherwise A > 0. In Figure 5, thedashedline corresponds to the behavior of GMCA in a single
DWT,; the solid line depicts the results obtained using GMCA wifens the union of the DWT and the
DCT. On the one hand, GMCA gives satisfactory result\asis rather low for each experiment. On
the other hand, the values @, provided by GMCA in the MCA-domain are approximatelytimes
better than those given by GMCA using a unique DWT. This sanply experiment clearly confirms
the benefits of sparsity for blind source separation. Funtbee it underlines the effectiveness of “very”

sparse representations provided by overcomplete dicteEma
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Fig. 5. The sparser the better :behavior of the mixing matrix criterion when the noise vage increases for DWT-GMCA
(Dashed line) and (DWT+DCT)-GMCA (Solid line).

B. Dealing with noise

The last paragraph emphasized on sparsity as the key forefiicient source separation methods. In
this section, we will compare several BSS techniques withGaMn an image separation context. We
chose3 different reference BSS methods:

« JADE : the well-known ICA (Independent Component Analysia$ed on fourth-order statistics (see

[1]).

« Relative Newton Algorithm : the separation technique weady mentioned. This seminal work
(see [28]) paved the way for sparsity in Blind Source Separatn the next experiments, we used
the Relative Newton Algorithm (RNA) on the data transforntgda basic orthogonal bidimensional
wavelet transform (2D-DWT).

« EFICA : this separation method improves the FastICA alparifor sources following generalized
Gaussian distributions. We also applied EFICA on data foaamsed by a 2D-DWT where the
assumptions on the source distributions is appropriate.

Figure 6 shows the original sources (top pictures) and2tmaixtures (bottom pictures). The original
sourcess; andsy have a unit variance. The matrix that mixes the sources is such that= 0.25s1 +
0.5s2+n1 andx, = —0.75s1 +0.5s9 +n9 Wheren; andny are Gaussian noise vectors (with decorrelated
samples) such that the SNR equélsiB. The noise covariance matr®y is diagonal.

In section V-A we claimed that a sparsity-based algorithnulddead to more robustness to noise. The

comparisons we carry out here are twofold: (i) we evaluagesttparation quality in terms of correlation
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Fig. 6. Top : the 256 x 256 source imagesBottom : two different mixtures. Gaussian noise is added such tfeatSiKR is
equal to10dB.

coefficient between the original and estimated sourceseasdise variance varies; (ii) as the estimated
sources are also perturbed by noise, correlation coeffgcigre not always very sensitive to separation
errors, we also assess the performances of each method lputogithe mixing matrix criteriom\ 4.
The GMCA algorithm was computed with the union of a Fast Cletvéransform (available online -
see [38], [39]) and a Local Discrete Cosine Transform (LDCIHe union of the curvelet transform and
LDCT are often well suited to a wide class of “natural” images

Figure 7 portrays the evolution of the correlation coeffitseof sourcel (left picture) and source (right
picture) as a function of the SNR. At first glance, GMCA, RNAdaBFICA are very robust to noise as
they give correlation coefficients closed to the optimalueal. On these images, JADE behaves rather
badly. It might be due to the correlation between these twocas. For higher noise levels (SNR lower

than10dB), EFICA tends to perform slightly worse than GMCA and RNXs we noted earlier, in our
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Fig. 7. Evolution of the correlation coefficient betweengaral and estimated sources as the noise variance vaobd:line
: GMCA, dashedline: JADE, (x) : EFICA, (+) : RNA. Abscissa :SNR in dB.Ordinate : correlation coefficients.

experiments, a mixing matrix-based criterion turns outéanore sensitive to separation errors and then
better discriminates between the methods. Figure 8 dejhietbehavior of the mixing matrix criterion as
the SNR increases. Recall that the correlation coefficieais not able to discriminate between GMCA
and RNA. The mixing matrix criterion clearly reveals thefeliences between these methods. First, it
confirms the dramatic behavior of JADE on that set of mixtu®scondly, RNA and EFICA behave
rather similarly. Thirdly, GMCA seems to provide far bettesults with mixing matrix criterion values
that are approximately0 times lower than RNA and EFICA.
To summarize, the findings of this experiment confirm the kdg of sparsity in blind source separation:
« Sparsity brings better results : remark that, amongst the methods we used, only JADE is not
a sparsity-based separation algorithm. Whatever the mieggparating in a sparse representation
enhances the separation quality : RNA, EFICA and GMCA cjeadtperforms JADE.
« GMCA takes better advantage of overcompleteness and morpthagical diversity: RNA, EFICA
and GMCA provide better separation results with the benésiparsity. Nonetheless, GMCA takes

better advantage of sparse representations than RNA ar@AEFI

C. Denoising color images

Up to now we emphasized on sparse blind source separatiaallRieat in section IV-B, we showed
that the stable solutions of GMCA are the sparsest in theodiaty D. Thus it is tempting to extend
GMCA to other multivalued problems such as multi-spectiathdestoration.

For instance, it is intuitively appealing to denoise mualtived data (such as color images) in multichannel
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representations in which the new components are sparseiuei gictionaryD. Let's consider multival-
ued data stored row-wise in the data maiXix We assume that those multivalued data are perturbed by
additive noise. Intuition tells us that it would be worth kiag for a new representatiok = AS such
that the new component are sparse in the dictionay. GMCA could be used to achieve this task.
We applied GMCA in the context of color image denoising (SNR5dB). This is illustrated in Figure

9 where the original RGB imadeare shown on the left. Figure 9 in the middle shows the RGB anag
obtained using a classical wavelet-based denoising meathaghch color plane (hard-thresholding in the
Undecimated Discrete Wavelet Transform (UDWT)). GMCA isnmputed in the curvelet domain on the
RGB colour channels and the same UDWT-based denoising isedpp the source$. The denoised
data are obtained by coming back to the RBG space via the xmAtriFigure 9 on the right shows
the denoised GMCA image using the same wavelet-based degparethod. Visually, denoising in the
"GMCA colour space” performs better than in the RGB spacgufé 10 zooms on a particular part of
the previous images. Visually, the contours are betteoredt Note that GMCA was computed in the
curvelet space which is known to sparsely represent piseesynooth images witti? contours [10]. We
also applied this denoising scheme with other color spaoesentations : YUV, YCC (Luminance and
chrominance spaces). We also applied JADE on the origifalcamages and denoised the components
estimated by JADE. The question is thevould it be worth denoising in a different space (YUV, YCC,
JADE or GMCA) instead of denaising in the original RGB spa¢edure 11 shows the SNR improvement
(in dB) as compared to denoising in the RGB space obtainedasi enethod method (YUV, YCC,

LAll colour images can be downloaded letp://perso.orange.fr/jbobin/gmca2.html
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Fig. 9. Left: Original 256 x 256 image with additive Gaussian noise. The SNR is equdl5st@B. Middle : Wavelet-based
denoising in the RGB spac®ight : Wavelet-based denoising in the curvelet-GMCA space.

JADE and GMCA). Figure 11 shows that YUV and YCC represeoiatilead to the same results. Note
that the YCC colour standard is derived from the YUV one. Whis particular colour image, JADE
gives satisfactory results as it can improve denoising up ti8. Finally, as expected, a sparsity-based
representation such as GMCA provides better results. HEMCA enhances denoising up 2B. This
series of tests confirms the visual impression that we get frigure 9. Note that such “GMCA colour

space” is adaptive to the data.

Fig. 10. Zoom the test .imagel;e.ft : Original image with additive Gaussian noise. The SNR is egud5 dB. Middle :
Wavelet-based denoising in the RGB spaReght : Wavelet-based denoising in the curvelet-GMCA space.

a) On the choice oD and the denoising methodThe denoising method we used is a simple hard-
thresholding process in the Undecimated Wavelet (UDWTjasgntation. Furthermor& is a curvelet
tight frame (via the fast curvelet transform - [38]). Intwdly, it would be far better to perform both the
estimation ofA and denoising in the same sparse representafdometheless, real facts are much more

complicated:

« Estimating the new sparse multichannel representatiooytih the estimation oA in D) should
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Fig. 11. Denoising color images : how GMCA can improve maltiste data restoratioAbscissa :Mean SNR in dBOrdinate
: Gain in terms of SNR in dB compared to a denoising processanRGB color space. Solid line: GMCA, dashed-dotted
line: JADE, e’ YUV, '+': YCC.

be performed in the sparsest representation.

« In practice, the “sparsest representation” and the reptaten for the “best denoising algorithm” are
not necessarily identical : (i) for low noise levels, thevaiet representation [38] and the UDWT give
similar denoising results. Estimatiny and denoising should give better results in the same curvele
representation, (ii) for higher noise level, UDWT providebetter denoising representation. We then
have to balance between @stimating A and (ii) denoising choosing the curvelet representation

for (i) and the UDWT for (ii) turns to give good results for adei range of noise levels.

SOFTWARE

A Matlab toolbox coined GMCALab will be available online lattp://www.greyc.ensicaen.fjfadili.

V1. CONCLUSION

The contribution of this paper is twofold : (i) it gives newsights into how sparsity enhances blind
source separation, (ii) it provides a new sparsity-basedceoseparation method coined Generalized Mor-
phological Component Analysis (GMCA) that takes betteraadage of sparsity giving good separation
results. GMCA is able to improve the separation task via #eeaf recent sparse overcomplete (redundant)
representations. We give conditions under which a simgli@CA algorithm is designed leading to a
fast and effective algorithm. Remarkably, GMCA turns to lggiiealent to a fixed point algorithm for

which we derive convergence conditions. Our arguments shawvGMCA converges to the true sources
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up to scale and permutation. Numerical results confirm thatphmological diversity clearly enhances

source separation. Furthermore GMCA performs well with hénefit of sparsity. Further work will

focus on extending GMCA to the under-determined BSS caswllizi GMCA also provides promising

prospects in other application such as multivalued dat@nason. Our future work will also emphasize

on the use of GMCA-like methods to other multivalued dataliappons.
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