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A Proximal Iteration for Deconvolving Poisson Noisy
Images Using Sparse Representations

François-Xavier Dupé, Jalal M. Fadili, and Jean-Luc Starck

Abstract—We propose an image deconvolution algorithm when
the data is contaminated by Poisson noise. The image to restore is
assumed to be sparsely represented in a dictionary of waveforms
such as the wavelet or curvelet transforms. Our key contributions
are as follows. First, we handle the Poisson noise properly by using
the Anscombe variance stabilizing transform leading to a nonlinear
degradation equation with additive Gaussian noise. Second, the de-
convolution problem is formulated as the minimization of a convex
functional with a data-fidelity term reflecting the noise properties,
and a nonsmooth sparsity-promoting penalty over the image rep-
resentation coefficients (e.g., �-norm). An additional term is also
included in the functional to ensure positivity of the restored image.
Third, a fast iterative forward-backward splitting algorithm is pro-
posed to solve the minimization problem. We derive existence and
uniqueness conditions of the solution, and establish convergence
of the iterative algorithm. Finally, a GCV-based model selection
procedure is proposed to objectively select the regularization pa-
rameter. Experimental results are carried out to show the striking
benefits gained from taking into account the Poisson statistics of
the noise. These results also suggest that using sparse-domain reg-
ularization may be tractable in many deconvolution applications
with Poisson noise such as astronomy and microscopy.

Index Terms—Deconvolution, forward-backward splitting, iter-
ative thresholding, Poisson noise, proximal iteration, sparse repre-
sentations.

I. INTRODUCTION

D ECONVOLUTION is a longstanding problem in many
areas of signal and image processing (e.g., biomedical

imaging [1], [2], astronomy [3], and remote-sensing, to quote
a few). For example, research in astronomical image deconvo-
lution has recently seen considerable work, partly triggered by
the Hubble space telescope (HST) optical aberration problem at
the beginning of its mission. In biomedical imaging, researchers
are also increasingly relying on deconvolution to improve the
quality of images acquired by confocal microscopes [2]. De-
convolution may then prove crucial for exploiting images and
extracting scientific content.

There is extensive literature on deconvolution problems. One
might refer to well-known dedicated monographs on the subject
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[4]–[6]. In presence of Poisson noise, several deconvolution
methods have been proposed such as Tikhonov–Miller inverse
filter and Richardson-Lucy (RL) algorithms; see [1], [3] for
a comprehensive review. The RL has been used extensively
in many applications because it is adapted to Poisson noise.
The RL algorithm, however, amplifies noise after a few
iterations, which can be avoided by introducing regularization.
In [7], the authors presented a Total Variation (TV)-regularized
RL algorithm. In astronomical imaging literature, several
authors advocated the use of wavelet-regularized RL algorithm
[8]–[10]. In the context of biological imaging deconvolution,
wavelets have also been used as a regularization scheme
when deconvolving biomedical images; [11] presents a version
of RL combined with wavelets denoising, and [12] uses
the thresholded Landweber iteration introduced in [13]. The
latter approach implicitly assumes that the contaminating
noise is Gaussian.

Other recent attempts for solving Poisson linear inverse
problems is a Bayesian multiscale framework proposed in [14]
based on a multiscale factorization of the Poisson likelihood
function associated with a recursive partitioning of the under-
lying intensity. Regularization of the solution is accomplished
by imposing prior probability distributions in a Bayesian
paradigm and the maximum a posteriori (MAP) solution
is computed using the expectation-maximization algorithm.
However, the multiscale analysis by the above authors is only
tractable with the Haar wavelet. Similarly, the work in [15] on
hard threshold estimators in the tomographic data framework
has shown that for a particular operator (the Radon operator) an
extension of wavelet-vaguelette decomposition (WVD) method
[16] for Poisson data is theoretically feasible. However, the
authors do not provide any computational algorithm for com-
puting the estimate. Inspired by the WVD method, the authors
in [17] explored an alternative approach via wavelet-based
decompositions combined with thresholding strategies that
address adaptivity issues. Specifically, their framework extends
the wavelet-Galerkin methods of [18] to the Poisson setting.
In order to ensure the positivity of the estimated intensity, the
log-intensity is expanded in a wavelet basis. This method is,
however, limited to standard orthogonal wavelet bases.

In the context of deconvolution with Gaussian white noise,
sparsity-promoting regularization over orthogonal wavelet co-
efficients has been recently proposed [13], [19], [20]. General-
ization to frames was proposed in [21] and [22]. In [23], the
authors presented an image deconvolution algorithm by itera-
tive thresholding in an overcomplete dictionary of transforms,
and [24] designed a deconvolution method that combines both
the wavelet and curvelet transforms. However, sparsity-based

1057-7149/$25.00 © 2009 IEEE

Authorized licensed use limited to: CEA Saclay. Downloaded on March 2, 2009 at 10:49 from IEEE Xplore.  Restrictions apply.



DUPÉ et al.: PROXIMAL ITERATION FOR DECONVOLVING POISSON NOISY IMAGES 311

approaches published so far have mainly focused on Gaussian
noise.

In this paper, we propose an image deconvolution algorithm
for data blurred and contaminated by Poisson noise. The
Poisson noise is handled properly by using the Anscombe
variance stabilizing transform (VST), leading to a nonlinear
degradation equation with additive Gaussian noise, see (1). The
deconvolution problem is then formulated as the minimization
of a convex functional combining a nonlinear data-fidelity term
reflecting the noise properties, and a nonsmooth sparsity-pro-
moting penalty over the representation coefficients of the image
to restore. Such representations include not only the orthogonal
wavelet transform but also overcomplete representations such
as translation-invariant wavelets, curvelets or wavelets and
curvelets. Since Poisson intensity functions are non-negative
by definition, an additional term is also included in the mini-
mized functional to ensure the positivity of the restored image.
Inspired by the work in [20], a fast proximal iterative algorithm
is proposed to solve the minimization problem. Experimental
results are carried out on a set of simulated and real images
to compare our approach to some competitors. We show the
striking benefits gained from taking into account the Poisson
nature of the noise and the morphological structures involved in
the image through overcomplete sparse multiscale transforms.

A. Relation to Prior Work

A naive solution to this deconvolution problem would be to
apply traditional approaches designed for Gaussian noise. How-
ever, this would be awkward as i) the noise tends to Gaussian
only for large mean intensities (central limit theorem), and ii) the
noise variance depends on the mean anyway. A more adapted
way would be to adopt a bayesian framework with an appro-
priate anti-log-likelihood score—the negative of the log-like-
lihood function— to obtain a data fidelity term reflecting the
Poisson statistics of the noise. The data fidelity term is derived
from the conditional distribution of the observed data given the
original image, which is known to be governed by physical
considerations concerned with the data-acquisition device and
the noise generating process (e.g., Poisson here). Unfortunately,
doing so, we would end-up with a functional which does not
satisfy a key property: the data fidelity term does not have a
Lipschitz-continuous gradient as required in [20], hence pre-
venting us from using the forward-backward splitting proximal
algorithm to solve the optimization problem. To circumvent this
difficulty, we propose to handle the noise statistical properties
by using the Anscombe VST. Some previous authors [25] have
already suggested to use the Anscombe VST, and then decon-
volve with wavelet-domain regularization as if the stabilized ob-
servation were linearly degraded and contaminated by additive
Gaussian noise. However, this is not valid as standard results
of the Anscombe VST lead to a nonlinear degradation equation
because of the square-root, see (1).

B. Organization of This Paper

The organization of the paper is as follows. We first formulate
our deconvolution problem under Poisson noise (Section II), and
then recall some necessary material about overcomplete sparse

representations (Section III). The core of the paper lies in Sec-
tion IV, where we state the deconvolution optimization problem,
characterize it and solve it using monotone operator splitting it-
erations. We also focus on the choice of the two main parameters
of the algorithm and propose some solutions. In Section V, ex-
perimental results are reported and discussed. The proofs of our
main results are deferred to the Appendix for the sake of pre-
sentation.

Notation and Terminology

Let a real Hilbert space, here a finite-dimensional real
vector space. We denote by the norm associated with the
inner product in , and is the identity operator on .
and are respectively reordered vectors of image samples and
transform coefficients.

A real-valued function is coercive, if
. The domain of is defined by

and is proper if . We say that
a real-valued function is lower semi-continuous (lsc) if

. Lower semi-continuity is weaker
than continuity, and plays an important role for existence of
solutions in minimization problems [26, p. 17]. is the
class of all proper lsc convex functions from to .
The subdifferential of a function at is the
set .
An element of is called a subgradient. A comprehensive
account of subdifferentials can be found in [26].

An operator acting on is -Lipschitz-continuous if
, where is the

Lipschitz constant. The spectral operator norm of is given by
.

We denote by the indicator of the convex set :
if ,
otherwise.

. We denote by the convergence.

II. PROBLEM STATEMENT

Consider the image formation model where an input image of
pixels is blurred by a point spread function (PSF) and con-

taminated by Poisson noise. The observed image is then a dis-
crete collection of counts which are bounded,
i.e., . Each count is a realization of an indepen-
dent Poisson random variable with a mean , where
is the circular convolution operator. Formally, this writes

. The deconvolution problem at hand is to restore
from the observed count image .
A natural way to attack this problem would be to adopt a

MAP bayesian framework with an appropriate likelihood func-
tion—the distribution of the observed data given an original

—reflecting the Poisson statistics of the noise. However, as
stated above, this would prevent us from using the forward-
backward splitting proximal algorithm to solve the MAP opti-
mization problem, since the gradient of the data fidelity term is
not Lipschitz-continuous. Indeed, forward-backward iteration is
essentially a generalization of the classical gradient projection
method [27] for constrained convex optimization and mono-
tone variational inequalities, and inherit restrictions similar to
those methods. For such methods, Lipschitz continuity of the
gradient is classical [27, Theorem 8.6–2]. The latter property is
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then crucial for the iterates in (13) to be determined uniquely,
and for the forward-backward splitting algorithm to converge;
see Theorem 1 and also [28]. For this reason, we propose to
handle the noise statistical properties by using the Anscombe
VST [29] defined as

(1)

where is an additive white Gaussian noise of unit variance.1 In
words, is nonlinearly related to . In Section IV, we provide an
elegant optimization problem and a fixed point algorithm taking
into account such a nonlinearity.

III. SPARSE IMAGE REPRESENTATION

Let be an image. can be written as the
superposition of elementary atoms parameterized by
according to the following linear generative model:

(2)

We denote by the dictionary i.e., the matrix whose
columns are the generating waveforms all normalized
to a unit -norm. The forward (analysis) transform is then de-
fined by a non-necessarily square matrix
with . When the dictionary is said to be redundant
or overcomplete. In the case of the simple orthogonal basis, the
inverse (synthesis) transform is trivially . Whereas as-
suming that is a tight frame implies that the frame operator
satisfies , where is the tight frame constant.
For tight frames, the pseudo-inverse reconstruction (synthesis)
operator reduces to . In the sequel, the dictionary will
correspond either to an orthobasis or to a tight frame of .

Owing to recent advances in modern harmonic analysis,
many redundant systems, like the undecimated wavelet trans-
form, curvelet, contourlet, etc., were shown to be very effective
in sparsely representing images. By sparsity, we mean that
we are seeking for a good representation of with only few
significant coefficients.

In the rest of the paper, the dictionary is built by taking
union of one or several transforms, each corresponding to an
orthogonal basis or a tight frame. Choosing an appropriate dic-
tionary is a key step towards a good sparse representation, hence
restoration. A core idea here is the concept of morphological
diversity. When the transforms are amalgamated in the dictio-
nary, they have to be chosen such that each leads to sparse
representation over the parts of the image it is serving while
being inefficient in representing the other image content. As
popular examples, one may think of wavelets for smooth im-
ages with isotropic singularities [30, Section 9.3], curvelets for
representing piecewise smooth images away from con-
tours [31], [32], wave atoms or local DCT to represent locally
oscillating textures [30], [33].

1Rigorously speaking, the equation is to be understood in an asymptotic sense.

IV. SPARSE ITERATIVE DECONVOLUTION

A. Optimization Problem

In this section, we derive that the class of minimization prob-
lems we are interested in, see (5), can be stated in the general
form

(3)

where , and is differentiable with
a -Lipschitz gradient. We denote by the set of solutions of
(3).

From (1), we immediately deduce the data fidelity term

(4)

where denotes the (circular) convolution operator. From a
statistical perspective, (4) corresponds to the anti-log-likelihood
score. Note that for bias correction reasons [34], the value 1/8
may be used instead of 3/8 in (4). However, there are implica-
tions of this alternate choice on the Lipschitz constant in (8),
and, consequently, it can be seen from Theorem 1 that this will
have an unfavorable impact on the convergence speed of the de-
convolution algorithm.

Adopting a bayesian framework and using a standard MAP
rule, our goal is to minimize the following functional with re-
spect to the representation coefficients:

(5)

where we implicitly assumed that are independent
and identically distributed with a Gibbsian density .
The penalty function is chosen to enforce sparsity,
is a regularization parameter and is the indicator function of
the convex set . In our case, is the positive orthant. The role
of the term is to impose the positivity constraint on the
restored image because we are fitting Poisson intensities, which
are positive by nature. We also define the set ,
that is .

From(5), we have the following.
Proposition 1:
i) is convex function. It is strictly convex if is an or-

thobasis and (i.e., the spectrum of the PSF
does not vanish within the Nyquist band).
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ii) The gradient of is

(6)

with

(7)

iii) is continuously differentiable with a -Lipschitz gra-
dient where

(8)

iv) is a particular case of problem (3).
A proof can be found in the Appendix.

B. Characterization of the Solution

Since is coercive and convex, the following holds.
Proposition 2:

1) Existence: has at least one solution, i.e., .
2) Uniqueness: has a unique solution if is an or-

thobasis and , or if is strictly convex.

C. Proximal Iteration

We first define the notion of a proximity operator, which was
introduced in [35] as a generalization of the notion of a convex
projection operator.

Definition 1 (Moreau [35]): Let . Then, for every
, the function achieves its

infimum at a unique point denoted by . The operator
thus defined is the proximity operator of .

Moreover,

(9)

Equation (9) means that is the resolvent of the subdif-
ferential of [36]. Recall that the resolvent of the subdifferen-
tial is the single-valued operator such that

.
It will also be convenient to introduce the reflection operator

.
For notational simplicity, we denote by the function

. Our goal now is to express the proximity operator
associated to , which will be needed in the iterative deconvo-
lution algorithm. The difficulty stems from the definition of
which combines both the “positivity” constraint and the regular-
ization. Unfortunately, we can show that even with a separable
penalty , the operator has no ex-
plicit form in general, except the case where . We then
propose to replace explicit evaluation of by a sequence of
calculations that activate separately and . We
will show that the last two proximity operators have closed-form
expressions. Such a strategy is known as a splitting method of
maximal monotone operators [36], [37]. As both and be-
long to and are nondifferentiable, our splitting method is

based on the Douglas–Rachford algorithm [28], [36], [37]. The
following lemma summarizes our scheme.

Lemma 1: Let an orthobasis or a tight frame with constant
. Recall that .
1) If , then .
2) Otherwise, let be a sequence in such that

. Take , and define the
sequence of iterates

(10)
where

,

and is the projector onto the positive orthant
. Then

(11)

The proof is detailed in the Appendix. Note that when is an
orthobasis, .

To implement the above iteration, we need to express ,
which is given by the following result for a wide class of penal-
ties .

Lemma 2: Suppose that satisfies, i) is convex even-
symmetric, non-negative and nondecreasing on , and

. ii) is twice differentiable on . iii) is contin-
uous on , it is not necessarily smooth at zero and admits a pos-
itive right derivative at zero .
Then, the proximity operator of , has exactly
one continuous solution decoupled in each coordinate

if
if .

(12)

A proof of this lemma can be found in [38]. A similar result
also has recently appeared in [39]. Among the most popular
penalty functions satisfying the above requirements, we have

, in which case the associated proximity operator
is the popular soft-thresholding.

We are now ready to state our main proximal iterative algo-
rithm to solve the minimization problem .

Theorem 1: For , let be a sequence
in such that

, let be a sequence in

such that , and let and be sequences in
such that and . Fix ,
for every , set

(13)

where and are given by Proposition 1 (ii) and
Lemma 1. Then converges to a solution of .

This is the most general convergence result known on the for-
ward-backward iteration. The name of the iteration is inspired
by well-established techniques from numerical linear algebra.
The words “forward” and “backward” refer respectively to the
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standard notions of a forward difference (here, explicit gradient
descent) step and of a backward difference (here implicit prox-
imity) step in numerical analysis. The sequences and play
a prominent role as they formally establish the robustness of
the algorithm to numerical errors when computing the gradient

and the proximity operator . The latter remark will
allow us to accelerate the algorithm by running the sub-itera-
tion (10) only a few iterations (see implementation details in
Section IV-F).

For illustration, let us take as the norm, in which case
is the component-wise soft-thresholding with threshold

, , and in (13), and in
(10). Thus, bringing all the pieces together, the deconvolution
algorithm dictated by iterations (13) and (10) is summarized in
Algorithm 1.

Algorithm 1

Task: Image deconvolution with Poisson noise, solve (5).
Parameters: The observed image counts , the dictionary

, number of iterations in (13) and in
sub-iteration (10), relaxation parameter , regularization
parameter .
Initialization:
• Apply VST .
• Initial solution .
Main iteration:
For to ,
• Compute blurred estimate .

• Compute “residuals” .

• Move along the descent direction .
• Initialize , and start sub-iteration.
• For to ,

— Project orthogonally to :
.

— Update by soft-thresholding
.

• Update .
End main iteration
Output: Deconvolved image .

D. Choice of

The relaxation (or descent) parameter has an important im-
pact on the convergence speed of the algorithm. The upper-
bound provided by Theorem 1, derived from the Lipschitz con-
stant (8), is only a sufficient condition for (13) to converge,
and may be pessimistic in some applications. To circumvent

this drawback, Tseng proposed in [40] an extension of the for-
ward-backward algorithm with an iteration to adaptively esti-
mate a “good” value of . The main result provided hereafter is
an adaptation to our context to the one of Tseng [40]. We state it
in full for the sake of completeness and the reader convenience.

Theorem 2: Let as defined above (Section IV-A). Choose
any . Let be a sequence such that ,

. Let as defined in (5). Then the sequence of
iterates [see (14), shown at the bottom of the page] converges
to a minimum of .

As is Lipschitz-continuous, the update of the relaxation
sequence is rather easy. Indeed, using an Armijo-Goldstein-
type stepsize approach, we can compute and update at each
iteration by taking to be the largest
satisfying

(15)

where , and are constants.
is a typical choice.

It is worth noting that for tight frames, this algorithm will
somewhat simplify the computation of , removing the
need of the Douglas–Rachford sub-iteration (10); but whatever
the transform, this will come at the price of keeping track of
the gradient of at the points and , and the need to
check (15) several times.

E. Choice of

As usual in regularized inverse problems, the choice of is
crucial as it represents the desired balance between sparsity (reg-
ularization) and deconvolution (data fidelity). For a given appli-
cation and corpus of images (e.g., confocal microscopy), a naive
brute-force approach would consist in testing several values of

and taking the best one by visual assessment of the deconvo-
lution quality. However, this is cumbersome in the general case.

We propose to objectively select the regularizing parameter
based on an adaptive model selection criterion such as the gen-
eralized cross validation (GCV) [41]. Other criteria are possible
as well including the AIC [42] or the BIC [43]. GCV attempts
to provide a data-driven estimate of by minimizing

(16)

where denotes the solution arrived at by iteration (13) (or
(14)), and is the effective number of degrees of freedom.

Deriving the closed-form expression of is very challenging
in our case as it faces two main difficulties, i) the observation
model (1) is nonlinear, and ii) the solution is not known

(14)
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in closed form but given by the iterative forward-backward al-
gorithm.

Degrees of freedom is a familiar phrase in statistics. In
(overdetermined) linear regression is the number of esti-
mated predictors. More generally, degrees of freedom is often
used to quantify the model complexity of a statistical modeling
procedure. However, generally speaking, there is no exact cor-
respondence between the degrees of freedom and the number
of parameters in the model. In penalized solutions of inverse
problems where the estimator is linear in the observation, e.g.,
Tikhonov regularization or ridge regression in statistics, is
simply the trace of the so-called influence or the hat matrix.
However, in general, it is difficult to derive the analytical ex-
pression of for general nonlinear modeling procedures such
as ours. This remains a challenging and active area of research.

Stein’s unbiased risk estimation (SURE) theory [44]
gives a rigorous definition of the degrees of freedom for
any fitting procedure. Following our notation, given the
solution provided by our deconvolution algorithm, let

represent the model fit from the

observation . As , it follows
from [45] that the degrees of freedom of our procedure is

a quantity also called the optimism of the estimator . If
the estimation algorithm is such that is almost-differen-
tiable [44] with respect to , so that its divergence is well-de-
fined in the weak sense (as is the case if were uniformly
Lipschitz-continuous), Stein’s Lemma yields the so-called di-
vergence formula

(17)

where the expectation is taken under the distribution of .
The is then the sum of the sensitivity of each fitted value
with respect to the corresponding observed value. For example,
the last expression of this formula has been used in [46] for or-
thogonal wavelet denoising. However, it is notoriously difficult
to derive the closed-form analytical expression of from the
above formula for general nonlinear modeling procedures. To
overcome the analytical difficulty, the bootstrap [47] can be used
to obtain an (asymptotically) unbiased estimator of . Ye [48]
and Shen and Ye [49] proposed using a data perturbation tech-
nique to numerically compute an (approximately) unbiased es-
timate for when the analytical form of is unavailable.
From (17), the estimator of takes the form

(18)

where is the -dimensional density of . It
can be shown that this formula is valid if is replaced by any

vector of random of variables with finite higher order moments.
The author in [48] proved that this is an unbiased estimate of
as , that is . It can be com-
puted by Monte-Carlo integration with near 0.6 as devised in
[48]. However, both bootstrap and Ye’s method, although gen-
eral and can be used for any , are computationally
prohibitive. This is the main reason we will not use them here.

Zou et al. [50] recently studied the degrees of freedom of the
Lasso2 in the framework of SURE. They showed that for any
given the number of nonzero coefficients in the model is an
unbiased and consistent estimate of . However, for their re-
sults to hold rigorously, the matrix in the Lasso must
be over-determined with . Nonetheless,
one can show that their intuitive estimator can be extended to
the under-determined case (i.e., ) under the so-called
(UC) condition of [51]; see Theorem 2 in that reference. This
will yield an unbiased estimator of , but consistency would
be much harder to prove since it requires that the Gram matrix

is positive-definite which only happens in the special case
of an orthogonal basis and . Furthermore, even
with the norm, extending this simple estimator rigorously to
our setting faces two additional serious difficulties beside un-
derdeterminacy of : namely the nonlinearity of the degrada-
tion (1) and the positivity constraint in (5).

Following this discussion, it appears clearly that estimating
is either computationally intensive (bootstrap or perturbation

techniques), or analytically difficult to derive. In this paper, in
the same vein as [50], we conjecture that a simple estimator of

, is given by the cardinal of the support of . That is, from
(12)–(13)

(19)

With such a simple formula on hand, expression of the model
selection criteria GCV in (16) is readily available.

Although this formula is only an approximation, in all our
experiments, it performed reasonably well. This is testified by
Fig. 1(a) and (b) which, respectively, show the behavior of the
GCV as a function of for two images: the Cameraman por-
trayed in Fig. 4(a) and the Neuron phantom shown in Fig. 2(a).
As the ground-truth is known in the simulation, we computed
for each the mean absolute-error (MAE)—well adapted to
Poisson noise as it is closely related to the squared Hellinger
distance [52]—as well as the mean square-error (MSE) between
the deconvolved and true image. We can clearly see that the
GCV reaches its minimum close to those of the MAE and the
MSE. Even though the regularization parameter dictated by the
GCV criterion is slightly higher than that of the MSE, which
may lead to a somewhat over-smooth estimate.

F. Computational Complexity and Implementation Details

The bulk of computation of our deconvolution algorithm is
invested in applying (resp. ) and its adjoint (resp. ).
These operators are never constructed explicitly, rather they are
implemented as fast implicit operators taking a vector , and
returning (resp. ) and (resp. ). Multiplication

2The Lasso model correspond to the case of (5) where the degradation model
in (1) is linear and � is the � -norm.
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Fig. 1. GCV for the Cameraman (a) and the Neuron phantom (b). The transla-
tion-invariant discrete wavelet transform was used with the Cameraman image,
and the curvelet transform with the Neuron phantom. The solid line represents
the GCV, the dashed line the MSE and the dashed-dotted line the MAE.

Fig. 2. Deconvolution of a simulated neuron (Intensity ��). (a) Original,
(b) blurred, (c) blurred&noisy, (d) RL-TV [7], (e) NaiveGauss [12], (f) RL-MRS
[3], (g) FTITPR [55], (h) our algorithm.

by or costs two FFTs, that is operations (
denotes the number of pixels). The complexity of and
depends on the transforms in the dictionary: for example, the

orthogonal wavelet transform costs operations, the trans-
lation-invariant discrete wavelet transform (TI-DWT) costs

, the curvelet transform costs , etc. Let
denote the complexity of applying the analysis or synthesis

operator. Define and as the number of iterations in
the forward-backward algorithm and the Douglas–Rachford
sub-iteration, and recall that is the number of coefficients.
The computational complexities of our iterations (13) and (14)
are summarized in the equation shown at the bottom of the
page.

The orthobasis case requires less multiplications by and
because in that case, is a bijective linear operator. Thus, the
optimization problem (5) can be equivalently written in terms
of image samples instead of coefficients, hence reducing com-
putations in the corresponding iterations (13) and(14).

For our implementation, as in Algorithm 1, we have taken
and in (13), and in (10). As the

PSF in our experiments is low-pass normalized to a unit sum,
. was the -norm, leading to soft-thresholding.

Furthermore, in order to accelerate the computation of
in (13), the Douglas–Rachford sub-iteration (10) was only run
once (i.e., ) starting with . In this case, one can
check that if , then this leads to the “natural” formula

In our experimental studies, the GCV-based selection of
was run using the forward-backward algorithm (13) which has
a lower computational burden than (14) (see the table for com-
putational complexities). Once was objectively chosen by the
GCV procedure, the deconvolution algorithm was applied using
(14) to exempt the user from the choice of the relaxation param-
eter .

V. RESULTS

A. Simulated Data

The performance of our approach has been assessed on sev-
eral test images: a 128 128 neuron phantom [53], a 370 370
confocal microscopy image of micro-vessel cells [54], the Cam-
eraman (256 256), a 512 512 simulated astronomical image
of the Hubble Space Telescope Wide Field Camera of a distant
cluster of galaxies [3]. Our algorithm was compared to RL with
total variation regularization (RL-TV [7]), RL with multireso-
lution support wavelet regularization (RL-MRS [9]), fast trans-
lation invariant tree-pruning reconstruction combined with an
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Fig. 3. Deconvolution of a microscopy cell image (Intensity ��).
(a) Original, (b) blurred, (c) blurred&noisy, (d) RL-TV [7], (e) NaiveGauss
[12], (f) RL-MRS [3], (g) FTITPR [55], (h) our algorithm.

EM algorithm (FTITPR [55]) and the naive proximal method
that would treat the noise as if it were Gaussian (NaiveGauss
[12]). For all results presented, each algorithm was run with

iterations, enough to reach convergence. For all
results below, was selected using the GCV criterion for our
algorithm. For fair comparison to [12], was also chosen by
adapting our GCV formula to the Gaussian noise.

Fig. 2(a) depicts a phantom of a neuron with a mushroom-
shaped spine. The maximum intensity is 30. Its blurred (using
a 7 7 moving average) and blurred+noisy versions are in (b)
and (c). With this neuron, and for NaiveGauss and our approach,
the dictionary contained the curvelet tight frame [32]. The
deconvolution results are shown in Fig. 2(d)–(h). As expected
at this intensity level, the NaiveGauss algorithm performs quite
badly, as it does not fit the noise model at this intensity regime.
It turns out that NaiveGauss under-regularizes the estimate and
the Poisson signal-dependent noise is not always under con-
trol. This behavior of NaiveGauss, which was predictable at this
intensity level, will be observed on almost all tested images.
RL-TV does a good job at deconvolution but the background
is dominated by artifacts, and the restored neuron has stair-
case-like artifacts typical of TV regularization. Our approach
provides a visually pleasant deconvolution result on this ex-
ample. It efficiently restores the spine, although the background
is not fully cleaned. RL-MRS also exhibits good deconvolution
results. On this image, FTITPR provides a well smoothed esti-
mate but with almost no deconvolution.

These qualitative visual results are confirmed by quantitative
measures of the quality of deconvolution, where we used both
the MAE and the traditional MSE criteria. At each intensity

Fig. 4. Deconvolution of the cameraman (Intensity ��). (a) Orig-
inal, (b) blurred, (c) blurred&noisy, (d) RL-TV [7], (e) NaiveGauss [12],
(f) RL-MRS [3], (g) FTITPR [55], (h) our algorithm.

value, 10 noisy and blurred replications were generated and and
the MAE was computed for each deconvolution algorithm. The
average MAE over the 10 replications are given in Fig. 6 (similar
results were obtained for the MSE, not shown here). In general,
our algorithm performs very well at all intensity regimes (espe-
cially at medium to low). The NaiveGauss is among the worst al-
gorithms at low intensity levels. Its performance becomes better
as the intensity increases which was expected. RL-MRS is effec-
tive at low and medium intensity levels and is even better than
our algorithm on the Cell image. RL-TV underperforms all al-
gorithms at low intensity. We suspect the staircase-like artifacts
of TV-regularization to be responsible for this behavior. At high
intensity, RL-TV becomes competitive and its MAE comparable
to ours.

The same experiment as above was carried out with the con-
focal microscopy cell image; see Fig. 3. In this experiment, the
PSF was a 7 7 moving average. For the NaiveGauss and our
approach, the dictionary contained the TI-DWT. NaiveGauss
deconvolution result is spoiled by artifacts. RL-TV produces a
good restoration of small isolated details but with a dominating
staircase-like artifacts. FTITPR yields a somewhat oversmooth
estimate, whereas our approach provides a sharper deconvolu-
tion result. This visual inspection is in agreement with the MAE
measures of Fig. 6. In particular, one can notice that RL-MRS
shows the best behavior, and the performance of our approach
compared to the other methods on this cell image is roughly the
same as on the previous neuron image.

Fig. 4(a) depicts the result of the experiment on the Cam-
eraman with maximum intensity of 30. The PSF was the same
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Fig. 5. Deconvolution of the simulated sky. (a) Original, (b) blurred,
(c) blurred&noisy, (d) RL-TV [7], (e) NaiveGauss [12], (f) RL-MRS [3],
(g) FTITPR [55], (h) our algorithm.

as above. Again, the dictionary contained the TI-DWT frame.
One may notice that the degradation in Fig. 4(c) is quite severe.
Our algorithm provides the most visually pleasing result with
a good balance between regularization and deconvolution, al-
though some artifacts are persisting. RL-MRS manages to de-
convolve the image with more artifacts than our approach, and
suffers from a loss of photometry. Again, FTITPR gives an over-
smooth estimate with many missing details. Both RL-TV and
NaiveGauss yield results with many artifacts. This visual im-
pression is in agreement with the MAE values in Fig. 6.

To assess the computational cost of the compared algorithms,
Table I summarizes the execution times on the Cameraman
image with an Intel PC Core 2 Duo 2GHz, 2 GB RAM. Except
RL-MRS which is written in C++, all other algorithms were
implemented in Matlab.

The same experimental protocol was applied to a simulated
Hubble Space Telescope wide field camera image of a distant
cluster of galaxies portrayed in Fig. 5(a). We used the Hubble
Space Telescope PSF as given in [3]. The maximum intensity on
the blurred image was 5000. For NaiveGauss and our approach,
the dictionary contained the TI-DWT frame. For this image, the
RL-MRS is clearly the best as it was exactly designed to handle
Poisson noise for such images. Most faint structures are recov-
ered by RL-MRS and large bright objects are well deconvolved.
Our approach also yields a good deconvolution result and pre-
serves most faint objects that are hardly visible on the degraded
image. However, the background is less clean than the one of
RL-MRS. A this high intensity regime, NaiveGauss provides
satisfactory results comparable to ours on the galaxies. FTITPR

Fig. 6. Average MAE of all algorithms as a function of the intensity level.
(a) Cameraman, (b) neuron phantom, (c) cell.

TABLE I
EXECUTION TIMES FOR THE SIMULATED 256� 256 CAMERAMAN IMAGE

USING THE TI-DWT �� � ����

Fig. 7. Impact of the dictionary on deconvolution of the simulated Lines-
Gaussians image with maximum intensity 30. (a) Original, (b) blurred,
(c) blurred&noisy, (d) restored with TI-DWT, (e) restored with curvelets,
(f) restored with a dictionary containing both transforms.

manages to properly recover most significant structures with a
very clean background, but many faint objects are lost. RL-TV
gives a deconvolution result comparable to ours on the brightest
objects, but the background is dominated by spurious faint struc-
tures.

We also quantified the influence of the dictionary on the de-
convolution performance on three test images. We first show in
Fig. 7 the results of an experiment on a simulated 128 128
image, containing point-like sources (upper left), gaussians and
lines. In this experiment, the maximum intensity of the original
image is 30 and we used the 7 7 moving-average PSF. The
TI-DWT depicted in Fig. 7(d) does a good job at recovering
isotropic structures (point-like and gaussians), but the lines are
not well restored. This drawback is overcome when using the
curvelet transform as seen from Fig. 7(e), but as expected, the
faint point-like source in the upper-left part is sacrificed. Visu-
ally, using a dictionary with both transforms seems to take the
best of both worlds, see Fig. 7(g).
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Fig. 8. Impact of the dictionary on deconvolution performance as a function of
the maximal intensity level for several test images. (a) Neuron phantom, (b) cell
and (c) LinesGaussians images. Solid line indicates the TI-DWT, dashed line
corresponds to the curvelet transform, and dashed-dotted line to the dictionary
built by merging both wavelets and curvelets.

Fig. 9. Deconvolution of a real neuron. (a) Original noisy, (b) restored with our
algorithm.

Fig. 8 shows the MAE—here normalized to the maximum in-
tensity of the original image for the sake of legibility—as a func-
tion of the maximal intensity level for three test images: Neuron
phantom, Cell and LinesGaussians. As above, three dictionaries
were used: TI-DWT (solid line), curvelets (dashed line) and
a dictionary built by merging both transforms (dashed-dotted
line). For the Neuron phantom, which is piecewise-smooth, the
best performance is given by the TI-DWT curvelets dictionary
at medium and high intensities. Even though the differences be-
tween dictionaries are less salient at low intensity levels. For
the Cell image, which contains many localized structures, the
TI-DWT seems to provide the best behavior, especially as the
intensity increases. Finally, the behavior observed for the Lines-
Gaussians image is just the opposite to that of the Cell. More
precisely, the curvelets and TI-DWT curvelets dictionaries
show the best performance with an advantage to the latter. How-
ever, this limited set of experiments does not allow to conclude
that a dictionary built by amalgamating several transforms is the

best strategy in general. Such a choice strongly depends on the
image morphological content.

B. Real Data

Finally, we applied our algorithm on a real 512 512
confocal microscopy image of neurons. Fig. 9(a) depicts the
observed image3 using the GFP fluorescent protein. The optical
PSF of the fluorescence microscope was modeled using the
gaussian approximation described in [56]. Fig. 9(b) shows the
restored image using our algorithm with the wavelet transform.
The images are shown in log-scale for better visual rendering.
We can notice that the background has been cleaned and some
structures have reappeared. The spines are well restored and
part of the dendritic tree is reconstructed. However, some
information can be lost (see tiny holes). We suspect that this
result may be improved using a more accurate PSF model.

C. Reproducible Research

Following the philosophy of reproducible research [57], a
toolbox is made available freely for download at the first au-
thor’s webpage
This toolbox is a collection of Matlab functions, scripts and
datasets for image deconvolution under Poisson noise. It re-
quires at least WaveLab 8.02 [57]. The toolbox implements the
proposed algorithms and contains all scripts to reproduce most
of the figures included in this paper.

VI. CONCLUSION

In this paper, a novel sparsity-based fast iterative thresholding
deconvolution algorithm that takes account of the presence
of Poisson noise was presented. The Poisson noise was han-
dled properly. A careful theoretical study of the optimization
problem and characterization of the iterative algorithm were
provided. The choice of the regularization parameter was also
attacked using a GCV-based procedure. Several experimental
tests have shown the capabilities of our approach, which
compares favorably with some state-of-the-art algorithms.
Encouraging preliminary results were also obtained on real
confocal microscopy images.

The present work may be extended along several lines.
For example, it is worth noting that our approach generalizes
straightforwardly to any nonlinearity in (1) other than the
square-root, provided that the corresponding data fidelity term
as in (4) is convex and has a Lipschitz-continuous gradient.
This is for instance the case if a generalization of the Anscombe
VST [58] is applied to a Poisson plus Gaussian noise, which is
a realistic noise model for data obtained from a CCD detector.
For such a noise, one can easily show similar results to those
proved in our work. In this paper, the simple expression of
the degrees of freedom was conjectured without a rigorous
proof. Deriving the exact analytical expression of , if pos-
sible, needs further investigation and a very careful analysis
that we leave for a future work. On the applicative side, the
extension to 3-D to handle confocal microscopy volumes is
under investigation. Extension to multivalued images is also an
important aspect that will be the focus of future research.

3Courtesy of the GIP Cycéron, Caen, France.
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APPENDIX

Proof of Proposition 1:
Proof:

i) is obviously convex, as and are bounded linear
operators and is convex.

ii) The computation of the gradient of is straightforward.
iii) For any , we have

(20)

The function is one-to-one in-
creasing on with derivative uniformly bounded
above by . Thus

(21)

Using the fact that for a tight
frame, and is bounded since by assumption,
we conclude that is Lipschitz-continuous with the
constant given in (8).

Proof of Proposition 2:
Proof: The existence is obvious because is coercive. If

is an orthobasis and then is strictly convex and
so is leading to a strict minimum. Similarly, if is strictly
convex, so is , hence .

Proof of Lemma 1:
Proof:

1) Let . From Definition
1, is the unique minimizer of , whereas

is the unique minimizer of . If
, then is also the unique minimizer

of as obviously in this case. That is,
.

2) Let’s now turn to the general case. We have to find the
unique solution to the following minimization problem:

As both and but nondifferentiable, we
use the Douglas–Rachford splitting method [28], [36]. This
iteration is given by

(22)
where the sequence satisfies the condition of the
lemma. From [28, Corollary 5.2], and by strict convexity,
we deduce that the sequence of iterates converges to a
unique point , and is the unique proximity point

.
It remains now to explicitly express and

. is the proximity operator of a

quadratic perturbation of , which is related to
by

(23)

See [20, Lemma 2.6].
Using [59, Proposition 11], we have

(24)

This completes the proof.
Proof of Theorem 1:
Proof: The most general result on the convergence of the

forward-backward algorithm is is due to [20, Theorem3.4].
Hence, combining this theorem with Lemma 1, Lemma 2 and
Proposition 1, the result follows.

REFERENCES

[1] P. Sarder and A. Nehorai, “Deconvolution method for 3-D fluorescence
microscopy images,” IEEE Signal Process Mag., vol. 23, pp. 32–45,
2006.

[2] J. Pawley, Handbook of Confocal Microscopy. New York: Plenum,
2005.

[3] J.-L. Starck and F. Murtagh, Astronomical Image and Data Analysis.
New York: Springer, 2006.

[4] H. C. Andrews and B. R. Hunt, Digital Image Restoration. Engle-
wood Cliffs, NJ: Prentice-Hall, 1977.

[5] P. Jansson, Image Recovery: Theory and Application. New York:
Academic, 1987.

[6] P. Jansson, Deconvolution of Images and Spectra. New York: Aca-
demic, 1997.

[7] N. Dey, L. Blanc-Féraud, C. Zimmer, Z. Kam, J.-C. Olivo-Marin, and J.
Zerubia, “A deconvolution method for confocal microscopy with total
variation regularization,” presented at the IEEE ISBI, 2004.

[8] J.-L. Starck and F. Murtagh, “Image restoration with noise suppres-
sion using the wavelet transform,” Astron. Astrophys., vol. 288, pp.
343–348, 1994.

[9] J.-L. Starck, A. Bijaoui, and F. Murtagh, “Multiresolution support ap-
plied to image filtering and deconvolution,” CVGIP: Graph. Models
Image Process., vol. 57, pp. 420–431, 1995.

[10] G. Jammal and A. Bijaoui, “Dequant: a flexible multiresolution restora-
tion framework,” Signal Process., vol. 84, pp. 1049–1069, 2004.

[11] J. B. de Monvel et al., “Image restoration for confocal microscopy:
Improving the limits of deconvolution, with application of the visu-
alization of the mammalian hearing organ,” Biophys. J., vol. 80, pp.
2455–2470, 2001.

[12] C. Vonesch and M. Unser, “A fast iterative thresholding algorithm for
wavelet-regularized deconvolution,” presented at the IEEE ISBI, 2007.

[13] I. Daubechies, M. Defrise, and C. D. Mol, “An iterative thresholding al-
gorithm for linear inverse problems with a sparsity constraints,” Comm.
Pure Appl. Math., vol. 112, pp. 1413–1541, 2004.

[14] R. Nowak and E. Kolaczyk, “A statistical multiscale framework for
poisson inverse problems,” IEEE Trans. Inf. Theory, vol. 46, pp.
2794–2802, 2000.

[15] L. Cavalier and J.-Y. Koo, “Poisson intensity estimation for tomo-
graphic data using a wavelet shrinkage approach,” IEEE Trans. Inf.
Theory, vol. 48, pp. 2794–2802, 2002.

[16] D. L. Donoho, “Nonlinear solution of inverse problems by wavelet-
vaguelette decomposition,” Appl. Comput. Harmon. Anal., vol. 2, pp.
101–126, 1995.

[17] A. Antoniadis and Bigot, “Poisson inverse problems,” Ann. Statist., vol.
34, pp. 1811–1825, 2006.

[18] A. Cohen, M. Hoffman, and M. Reiss, “Adaptive wavelet-galerkin
methods for inverse problems,” SIAM J. Numer. Anal., vol. 42, pp.
1479–1501, 2004.

[19] M. Figueiredo and R. Nowak, “An em algorithm for wavelet-based
image restoration,” IEEE Trans. Image Process., vol. 12, pp. 906–916,
2003.

Authorized licensed use limited to: CEA Saclay. Downloaded on March 2, 2009 at 10:49 from IEEE Xplore.  Restrictions apply.



DUPÉ et al.: PROXIMAL ITERATION FOR DECONVOLVING POISSON NOISY IMAGES 321

[20] P. L. Combettes and V. R. Wajs, “Signal recovery by proximal forward-
backward splitting,” SIAM Multiscale Model. Simul., vol. 4, no. 4, pp.
1168–1200, 2005.

[21] G. Teschke, “Multi-frame representations in linear inverse problems
with mixed multi-constraints,” Appl. Comput. Harmon. Anal., vol. 22,
no. 1, pp. 43–60, 2007.

[22] C. Chaux, P. L. Combettes, J.-C. Pesquet, and V. R. Wajs, “A varia-
tional formulation for frame-based inverse problems,” Inv. Prob., vol.
23, pp. 1495–1518, 2007.

[23] M. J. Fadili and J.-L. Starck, “Sparse representation-based image de-
convolution by iterative thresholding,” in ADA IV. New York: Else-
vier, 2006.

[24] J.-L. Starck, M. Nguyen, and F. Murtagh, “Wavelets and curvelets for
image deconvolution: a combined approach,” Signal Process., vol. 83,
pp. 2279–2283, 2003.

[25] C. Chaux, L. Blanc-Féraud, and J. Zerubia, “Wavelet-based restoration
methods: application to 3D confocal microscopy images,” presented at
the SPIE Wavelets XII, 2007.

[26] C. Lemaréchal and J.-B Hiriart-Urruty, Convex Analysis and Minimiza-
tion Algorithms I, 2nd ed. New York: Springer, 1996.

[27] P. G. Ciarlet, Introduction à l’analyse Numérique Matricielle et à l’op-
timisation. Paris, France: Masson-Paris, 1985.

[28] P. L. Combettes, “Solving monotone inclusions via compositions of
nonexpansive averaged operators,” Optimization, vol. 53, pp. 475–504,
2004.

[29] F. J. Anscombe, “The transformation of Poisson, binomial and nega-
tive-binomial data,” Biometrika, vol. 35, pp. 246–254, 1948.

[30] S. G. Mallat, A Wavelet Tour of Signal Processing, 2nd ed. New York:
Academic, 1998.

[31] E. J. Candès and D. L. Donoho, “Curvelets—a surprisingly effective
nonadaptive representation for objects with edges,” in Curve and Sur-
face Fitting, A. Cohen, C. Rabut, and L. Schumaker, Eds. Nashville,
TN: Vanderbilt Univ. Press, 1999.

[32] E. Candès, L. Demanet, D. Donoho, and L. Ying, “Fast discrete curvelet
transforms,” SIAM Multiscale Model. Simul., vol. 5, pp. 861–899, 2005.

[33] L. Demanet and L. Ying, “Wave atoms and sparsity of oscillatory pat-
terns,” Appl. Comput. Harmon Anal., vol. 23, no. 3, pp. 368–387, 2007.

[34] M. Jansen, “Multiscale poisson data smoothing,” J. Roy. Statist. Soc.
B., vol. 68, no. 1, pp. 27–48, 2006.

[35] J.-J. Moreau, “Fonctions convexes duales et points proximaux dans un
espace hilbertien,” CRAS Sér. A Math., vol. 255, pp. 2897–2899, 1962.

[36] J. Eckstein and D. P. Bertsekas, “On the Douglas–Rachford splitting
method and the proximal point algorithm for maximal monotone oper-
ators,” Math. Programm., vol. 55, pp. 293–318, 1992.

[37] P.-L. Lions and B. Mercier, “Splitting algorithms for the sum of two
nonlinear operators,” SIAM J. Numer. Anal., vol. 16, pp. 964–979,
1979.

[38] M. Fadili, J.-L. Starck, and F. Murtagh, “Inpainting and zooming using
sparse representations,” The Comput. J., 2006, to be published.

[39] P. L. Combettes and J.-C. Pesquet, “Proximal thresholding algorithm
for minimization over orthonormal bases,” SIAM J. Optim., vol. 18, no.
4, pp. 1351–1376, Nov. 2007.

[40] P. Tseng, “A modified forward-backward splitting method for maximal
monotone mappings,” SIAM J. Control Optim., vol. 38, pp. 431–446,
2000.

[41] G. H. Golub, M. Heath, and G. Wahba, “Generalized cross-validation
as a method for choosing a good ridge parameter,” Technometrics, vol.
21, no. 2, pp. 215–223, 1979.

[42] H. Akaike, B. N. Petrox, and F. Caski, “Information theory and an ex-
tension of the maximum likelihood principle,” in Proc. 2nd Int. Symp.
Information Theory, 1973, pp. 267–281.

[43] G. Schwarz, “Estimation of the dimension of a model,” Ann. Statist.,
vol. 6, pp. 461–464, 1978.

[44] C. Stein, “Estimation of the mean of a multivariate normal distribution,”
Ann. Statist., vol. 9, pp. 1135–1151, 1981.

[45] B. Efron, “How biased is the apparent error rate of a prediction rule,”
J. Amer. Statist. Assoc., vol. 81, pp. 461–470, 1981.

[46] M. Jansen, M. Malfait, and A. Bultheel, “Generalized cross validation
for wavelet thresholding,” Signal Process., vol. 56, no. 1, pp. 33–44,
1997.

[47] B. Efron, “The estimation of prediction error: covariance penalties and
cross-validation,” J. Amer. Statist. Assoc., vol. 99, pp. 619–642, 2004.

[48] J. Ye, “On measuring and correcting the effects of data mining and
model selection,” J. Amer. Statist. Assoc., vol. 93, pp. 120–131, 1998.

[49] X. Shen and J. Ye, “Adaptive model selection,” J. Amer. Statist. Assoc.,
vol. 97, pp. 210–221, 2002.

[50] H. Zou, T. Hastie, and R. Tibshirani, “On the degrees of freedom of the
lasso,” Ann. Staist., vol. 35, pp. 2173–2192, 2007.

[51] C. Dossal, A Necessary and Sufficient Condition for Exact Recovery
by � Minimization 2007 [Online]. Available: http://hal.archives-ou-
vertes.fr/hal-00164738/en/

[52] A. Barron and T. Cover, “Minimum complexity density estimation,”
IEEE Trans. Inf. Theory, vol. 37, pp. 1034–1054, 1991.

[53] Rebecca Willett Homepage [Online]. Available: http://www.ee.duke.
edu/ willett/

[54] ImageJ website [Online]. Available: http://rsb.info.nih.gov/ij/
[55] R. Willett and R. Nowak, “Fast multiresolution photon-limited image

reconstruction,” presented at the IEEE ISBI 2004.
[56] B. Zhang, J. Zerubia, and J.-C. Olivo-Marin, “Gaussian approximations

of fluorescence microscope PSF models,” Appl. Opt., vol. 46, no. 10,
pp. 1819–1829, 2007.

[57] J. Buckheit and D. Donoho, “Wavelab and reproducible research,”
in Wavelets and Statistics, A. Antoniadis, Ed. New York: Springer,
1995.

[58] F. Murtagh, J.-L. Starck, and A. Bijaoui, “Image restoration with noise
suppression using a multiresolution support,” Astron., Astrophys., Sup-
plement Ser., vol. 112, pp. 179–189, 1995.

[59] P. L. Combettes and J.-C. Pesquet, “A Douglas–Rachford splittting ap-
proach to nonsmooth convex variational signal recovery,” IEEE J. Sel.
Topics Signal Process., vol. 1, no. 4, pp. 564–574, Apr. 2007.

François-Xavier Dupé graduated from the Ecole
Nationale Supérieure d’Ingénieur (ENSI) de Caen,
Caen, France in 2006. He is currently pursuing the
Ph.D. degree at the Image Team of the GREYC
laboratory, Caen.

His research interests include inverse problems in
image processing and shapes recognition.

Jalal M. Fadili graduated from the Ecole Nationale
Supérieure d’Ingénieurs (ENSI) de Caen, Caen,
France, and received the M.Sc. and Ph.D. degrees in
signal and image processing from the University of
Caen.

He was a Research Associate with the University
of Cambridge (MacDonnel-Pew Fellow), Cam-
bridge, U.K., from 1999 to 2000. He has been an
Associate Professor of signal and image processing
since September 2001 at ENSI. He was a Visitor at
the Queensland University of Technology, Brisbane,

Australia, and Stanford University, Stanford, CA, in 2006. His research
interests include statistical approaches in signal and image processing, inverse
problems in image processing, multiscale methods, and sparse representations
in signal and image processing. His areas of application include medical and
astronomical imaging.

Jean-Luc Starck received the Ph.D. degree from
the University Nice-Sophia Antipolis, France, and
the Habilitation degree from the University Paris XI,
Paris, France.

He was a Visitor at the European Southern Obser-
vatory (ESO) in 1993 and at the Statistics Depart-
ment, Stanford University, Stanford, CA, in 2000 and
2005, and at the University of California, Los An-
geles, in 2004. He has been a Researcher at CEA,
France, since 1994. He is Leader of the project Mul-
tiresolution at CEA and he is a core team member of

the PLANCK ESA project. He has published more than 200 papers in different
areas in scientific journals and conference proceedings. He is also the author of
two books entitled Image Processing and Data Analysis: The Multiscale Ap-
proach (Cambridge University Press, 1998) and Astronomical Image and Data
Analysis (Springer, 2006, 2nd Ed.). His research interests include image pro-
cessing, statistical methods in astrophysics, and cosmology. He is an expert in
multiscale methods such as wavelets and curvelets.

Authorized licensed use limited to: CEA Saclay. Downloaded on March 2, 2009 at 10:49 from IEEE Xplore.  Restrictions apply.


