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(a)

(b)

Fig. 6. Reconstructed Lena images (PSNR = 30 dB). (a) Using BWTH at
52.15 : 1 compression. (b) Using JPEG at 32.47 : 1 compression.

superposition operations. We add a new member, K1-transform, to
the family of reversible embedded wavelet transforms that may be
used in lossless compression. It has a higher degree of regularity
than the two existing reversible embedded wavelet transforms. The
performance measure of our lossless compression using K1-transform
was shown to have a 10% improvement over the lossless JPEG.
For lossy compression, we present a fast reconstruction algorithm
based on multiplierless 2-D filter masks that take advantage of the
characteristics of the wavelet transformed data; the Hilbert scanning
is applied to gain an additional compression. In comparison to JPEG,
this BWTH compression demonstrated a 60% improvement.
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A New Entropy Measure Based on the
Wavelet Transform and Noise Modeling

J.-L. Starck, F. Murtagh, and R. Gastaud

Abstract—We present in this brief a new way to measure the informa-
tion in a signal, based on noise modeling. We show that the use of such
an entropy-related measure leads to good results for signal restoration.

I. INTRODUCTION

The term “entropy” is due to Clausius (1865), and the concept of
entropy was introduced by Boltzmann into statistical mechanics, in
order to measure the number of microscopic ways that a given macro-
scopic state can be realized. Shannon [11] founded the mathematical
theory of communication when he suggested that the information
gained in a measurement depends on the number of possible outcomes
out of which one is realized. Shannon also suggested that the entropy
can be used for maximization of the bits transferred under a quality
constraint. Jaynes [7] proposed to use the entropy measure for radio
interometric image deconvolution, in order to select in a set of
possible solutions which contains the minimum of information, or
following his entropy definition, that which has a maximum entropy.
In principle, the solution verifying such a condition should be the
most reliable. A lot of work has been carried out in the last 30 years
on the use of entropy for the general problem of data filtering and
deconvolution [1], [3]–[5], [8]–[10], [12], [16].

Traditionally, information and entropy are determined from events
and the probability of their occurrence. Signal and noise are basic
building blocks of signal and data analysis in the physical sciences.
Instead of the probability of an event, in this work we are led to
consider the probabilities of our data being either signal or noise.

Observed dataY in the physical sciences are generally corrupted
by noise, which is often additive and which follows in many cases
a Gaussian distribution, a Poisson distribution, or a combination
of both. Using Bayes’ theorem to evaluate the probability of the
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realization of the original signalX, knowing the dataY , we have

Prob(X j Y ) =
Prob(Y j X) � Prob(X)

Prob(Y )
: (1)

Prob(Y j X) is the conditional probability of getting the dataY
given an original signalX, i.e., it represents the distribution of the
noise. It is given, in the case of uncorrelated Gaussian noise with
variance�2, by

Prob(Y j X) = exp �
pixels

(Y �X)2

2�2
: (2)

The denominator in (1) is independent ofX and is considered as a
constant (stationary noise).Prob(X) is the a priori distribution of
the solutionX. In the absence of any information on the solution
X except its positivity, a possible course of action is to derive the
probability ofX from its entropy, which is defined from information
theory.

The main idea of information theory [11] is to establish a relation
between the received information and the probability of the observed
event [2]. If we noteI(E) the information related to the eventE,
andp the probability of this event happening, then we consider that

I(E) = f(p): (3)

Then we assume the two following principles.

• The information is a decreasing function of the probability. This
implies that the more information we have, the less will be the
probability associated with one event.

• Additivity of the information. If we have two independent events
E1 andE2, the informationI(E) associated with the happening
of both is equal to the addition of the information of each of
them.

I(E) = I(E1) + I(E2): (4)

Since E1 (of probability p1) and E2 (of probability p2) are
independent, then the probability of both happening is equal to the
product ofp1 and p2. Hence,

f(p1p2) = f(p1) + f(p2): (5)

Then we can say that the information measure is

I(E) = k ln(p) (6)

wherek is a constant. Information must be positive, andk is generally
fixed at �1.

Another interesting measure is the mean information, which is
denoted

H = �
i

pi ln(pi): (7)

This quantity is called the entropy of the system, and was established
by Shannon in 1948 [11].

This measure has the following several properties.

• It is maximal when all events have the same probabilitypi =
1=Ne (Ne being the number of events), and is equal toln(Ne).
It is in this configuration that the system is the most undefined.

• It is minimal when one event is sure. In this case, the system is
perfectly known, and no information can be added.

• The entropy is a positive, continuous, and symmetric function.

Then if we know the entropyH of the solution (the next section
describes different ways to calculate it), we derive its probability by

Prob(X) = exp(��H(X)): (8)

Given the data, the most probable image is obtained by maximizing
Prob(X j Y ). Taking the logarithm of (1), we thus need to maximize

ln(Prob(X j Y ))

= ��H(X) + ln(Prob(Y j X))� ln(Prob(Y )): (9)

The last term is a constant and can be omitted. Then, in the case of
Gaussian noise, the solution is found by minimizing

J(X) =
pixels

(Y �X)2

2�2
+ �H(X) =

�2

2
+ �H(X) (10)

which is a linear combination of two terms: the entropy of the
signal, and a quantity corresponding to�2 in statistics measuring the
discrepancy between the data and the predictions of the model.� is a
parameter that can be viewed alternatively as a Lagrangian parameter
or a value fixing the relative weight between the goodness-of-fit and
the entropyH.

For the deconvolution problem, the object–data relation is given
by the convolution

Y = P �X (11)

whereP is the point spread function, and the solution is found (in
the case of Gaussian noise) by minimizing

J(X) =
pixels

(Y � P �X)2

2�2
+ �H(X): (12)

The way the entropy is defined is fundamental, because the solution
will depend on its definition. The next section discusses the different
approaches which have been proposed in the past.

II. THE CONCEPT OFENTROPY

We wish to estimate an unknown probability densityp(x) of the
data. A direct approach would be to build up the histogram of values
X(i), using a suitable interval�x, counting up how many times
mk each interval(xk; xk + �x) occurs among theN occurrences.
Then the probability that a data value belongs to an intervalk is
pk = mk=N , and each data value has a probabilitypk. The entropy
is defined by

Hs(X) = �

m

k=1

pk ln(pk) (13)

wherem is the number of intervals. The entropy is minimum and
equal to zero when the signal is flat, and increases when we have
some fluctuations. Using this entropy in (10) for restoration leads to
a minimum entropy restoration method.
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The trouble with this approach is that, because the number of
occurrences is finite, the estimatepk will be in error by an amount
proportional tom�(1=2)

k [6]. The error becomes significant whenmk

is small. Furthermore, this kind of entropy definition is not easy to
use for signal restoration, because the gradient of (10) is not easy
to compute. For these reasons, other entropy functions are generally
used. The main ones are

• Burg [4]:

Hb(X) = �
pixels

ln(X) (14)

• Frieden [5]:

Hf (X) = �
pixels

X ln(X) (15)

• Gull and Skilling [8]:

Hg(X) =
pixels

X �M �X ln(X j M): (16)

Each of these entropies can be used, and they correspond to different
probability distributions that one can associate with an image [9]
(see [5], [12], [13] for descriptions). The last definition of the
entropy has the advantage of having a zero maximum whenX

equals the modelM , usually taken as a flat image. All of these
entropy measures are negative, and maximum when the image is flat.
They are negative because an offset term is omitted which has no
importance for the minimization of the functional. The fact that we
consider that a signal has maximum information value when it is flat
is evidently a curious way to measure information. The probability of
X must be defined byProb(X) = exp(�H(X)). The sign has been
inverted [see (8)], which is natural if we want the best solution to be
the smoothest. These three entropies lead to the maximum entropy
restoration method, for which the solution is found by minimizing
(for Gaussian noise)

J(X) =
pixels

(Y �X)2

2�2
� �H(X): (17)

In 1986, Narayan and Nityanda [9] compared several entropy
functions, and finally concluded by saying that all were comparable if
they have good properties, i.e., they enforce positivity, and they have
a negative second derivative which discourages ripple. They showed
also that results varied strongly with the background level, and that
these entropy functions produced poor results for negative structures,
i.e., structures under the background level (absorption area in an
image, absorption band in a spectrum, etc.), and compact structures
in the signal. The Gull and Skilling entropy gives rise to the difficulty
of estimating a model. Furthermore, it has been shown [3] that the
solution was dependent on this choice.

Many studies [3], [10], [16] have been carried out in order to
improve the functional to be minimized. But the question which
should be raised is: what is a good entropy for signal restoration?

Trying to answer this corresponds to asking what is the information
in the signal. The entropy should verify the following criteria.

1) The information in a flat signal is zero.
2) The amount of information in a signal is independent of the

background.
3) The amount of information is dependent on the noise. A given

signalY (Y = X+Noise) doesn’t furnish the same information
if the noise is high or small.

4) The entropy must work in the same way for a pixel which has
a valueB+ � (B being the background), and for a pixel which
has a valueB � �.

(a)

(b)

Fig. 1. (a) Lena image and (b) the same data distributed differently. These
two images have the same entropy, using any of the standard entropy methods.

5) The amount of information is dependent on the correlation in
the signal. If a signalS presents large features above the noise,
it contains a lot of information. By generating a new set of
data fromS, by randomly taking the pixel values inS, the
large features will evidently disappear, and this new signal will
contain less information. But the pixel values will be the same
as in S.

Fig. 1(a) and (b) shows, respectively, the Lena image and an image
obtained by distributing randomly the Lena image pixel values. For
someone who is not involved in image processing, the second image
contains less information than the first one. For someone working
on image transmission, it is clear that the second image will require
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more bits for a lossless transmission, and from this point of view,
he will consider that the second one contains more information. The
standard entropy methods produce exactly the same value for both
images and, for such methods, both images contain the same amount
of information. For data restoration, all fluctuations due to noise are
not of interest, and do not contain relevant information. From this
physical point of view, that is the reason why the standard definition
of entropy seems badly adapted to information measurement in signal
restoration.

III. ENTROPY FROM NOISE MODELING

In the case of signal restoration, the noise is the main problem. This
means that we should not consider the probability of appearance of
a pixel value in an image, but rather its probability of being due
to the signal (or to the noise). If we consider a variablex which
follows a probability distributionp(x), we can define the information
in x by � ln(p(x)), and a signalS can be considered as a set of
individual variablesxk (pixels), each of which follows the same
probability distribution. Then the information contained in the data
can be measured by�

pixel
ln(p(x)). If x follows a Gaussian

distribution with zero mean, we have

H(X) =
pixels

x2

2�2
: (18)

The energy gives a good measurement of information. But many
of the required criteria are not fulfilled by using such an entropy
(correlation between pixels, background-independent, etc.). It seems
difficult to derive a good probability distribution from the pixel values
which fulfill the entropy requirements.

This is not so for transformed data, especially when using the
wavelet transform. This has already been done, in fact, for finding
threshold levels in filtering methods by means of wavelet coefficient
thresholding [14]. Thus we must introduce the concept of multires-
olution into our entropy. We will now consider that the information
contained in some dataset is the sum of the information at different
resolution levelsj. Choosing the “̀a trous” wavelet transform (see
[14] for a description of this wavelet transform algorithm), a signal
S can be represented by

S(k) =

l

j=1

wj(k) + cl(k) (19)

where k is the pixel index,wj are the wavelet coefficients ofS;
j the resolution level, andcl the smoothed version ofS. Due to
the properties of the wavelet transform, the setwj(x) for all x has
a zero mean. From noise modeling, we can derive the probability
distribution in the wavelet space of a wavelet coefficient, assuming
it is due to the noise. The entropy becomes

H(X) = �

l

j=1

N

k=1

ln(p(wj(k))): (20)

For Gaussian noise, we get

H(X) =

l

j=1

N

k=1

wj(k)
2

2�2j
(21)

where �j is the noise at scalej. We see that the information is
proportional to the energy of the wavelet coefficients. The higher a
wavelet coefficient, the lower will be the probability, and the higher

Fig. 2. Multiscale entropy of the Lena image (continuous curve), and
multiscale entropy of the scrambled image (dashed curve).

will be the information furnished by this wavelet coefficient. We can
see easily that this entropy fulfills all the requirements of Section II.
If we consider two signalsS1; S2, derived from a third oneS0 by
adding noise

S1 = S0 +N1(�1)

S2 = S0 +N2(�2)
(22)

then we have

if �1 < �2 then H(S1) > H(S2) (23)

and a flat image has zero entropy.
Our entropy definition is completely dependent on the noise

modeling. If we consider a signalS, and we assume that the noise is
Gaussian, with a standard deviation equal to�, we won’t measure the
same information compared to the case when we consider that the
noise has another standard deviation value, or if the noise follows
another distribution.

Fig. 2 shows the information measure at each scale for both the
Lena image and its scrambled version. The global information is
the addition of the information at each scale. We see that for the
scrambled image (dashed curve), the information-versus-scale curve
is flat, while for the unscrambled Lena image, it increases with the
scale.

IV. SIGNAL INFORMATION AND NOISE INFORMATION

A. Definition

In the previous section, we have seen how it was possible to
measure the information related to a wavelet coefficient. Since the
data are composed of an original signal and noise, our information
measure is corrupted by noise. Trying to decompose our information
measure into two components—one(HS) corresponding to the
noncorrupted part—and another(HN) to the corrupted part—we have

H(X) = HS(X) +HN(X): (24)

We will define in the followingHS as the signal information, and
HN as the noise information. It must be clear that noise does not
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contain any information, and what we call noise information is a
quantity which is measured as information by the multiscale entropy,
and which is probably not informative to us.

As described in the previous section, the informationh relative to
a wavelet coefficientwj is � ln(p(wj)). If the wavelet coefficient is
small, its value can be due to the noise, andh should be assigned to
HN . If the wavelet coefficient is high, compared to the noise standard
deviation,h cannot be due to the noise, andh should be assigned
to HS . h can be distributed asHN or HS based on the probability
pn(wj) that the wavelet coefficient is due to noise, or the probability
ps(wj) that it is due to signal. We haveps(wj) = 1� pn(wj). We
consider thathn(wj) = �pn(wj) ln(p(wj)) is the noise information,
andhs(wj) = �ps(wj) ln(p(wj)) is the signal information. Hence
signal information and noise information are defined by

Hs(X) =

l

j=1

N

k=1

hs(wj(k))

= �

l

j=1

N

k=1

ps(wj(k)) ln(p(wj(k)))

Hn(X) =

l

j=1

N

k=1

hn(wj(k))

= �

l

j=1

N

k=1

pn(wj(k)) ln(p(wj(k))):

(25)

For the Gaussian noise case, we estimatepn(wj) that a wavelet
coefficient is due to the noise by

pn(wj) =Prob(W > jwj j)
=

2p
2��j

+1

jw j

exp �W
2

2�2j
dW

=erfc
jwj jp
2�j

(26)

and

Hs(X) =

l

j=1

N

k=1

w2
j

2�2j
erf

jwj jp
2�j

Hn(X) =

l

j=1

N

k=1

w2
j

2�2j
erfc

jwj jp
2�j

:

(27)

Note thatHs(X)+Hn(X) is always equal toH(X). For Gaussian
noise, the functional to minimize becomes

J(X) =
pixels

(Y �X)2

2�2
+ �(Hs(X) +Hn(X)): (28)

If we want to preserve features with high signal-to-noise ratio from
the regularization, we just omitHs(X) and we get

J(X) =
pixels

(Y �X)2

2�2
+ �Hn(X): (29)

We seek a solution which minimizes the amount of information which
could be due to the noise.

By this measure, information relative to high wavelet coefficients
is completely assigned to the signal. This allows us also to exclude
wavelet coefficients with high signal-to-noise ratio (SNR) from the
regularization. It leads to perfect fit of the solution with the data
at scales and positions with high SNR. If we want to consider the
information due to noise, even for significant wavelet coefficients,
the noise information relative to a wavelet coefficient is

hn(wj) =
jw j

0

pn(u j wj)
@H(x)

@x
x=u

du (30)

which gives for Gaussian noise

hn(wj) =
1

�2j

jw j

0

u erfc
jwj j � up

2�j
du (31)

and the noise and signal information in a signal are

Hs(X) =

l

j=1

N

k=1

1

�2j

jw j

0

u erf
jwj j � up

2�j
du

Hn(X) =

l

j=1

N

k=1

1

�2j

jw j

0

u erfc
jwj j � up

2�j
du:

(32)

Equations (27) and (32) lead to two different ways to regularize
a signal. The first requires that we use all the information which
is furnished in high wavelet coefficients, and leads to an exact
preservation of the flux in a structure. If the signal presents high
discontinuities, artifacts can appear in the solution due to the fact that
the wavelet coefficients located at the discontinuities are not noisy,
but have been modified like noise. The second equation doesn’t have
this drawback, but a part of the flux of a structure (compatible with
noise amplitude) can be lost in the restoration process. It is, however,
not as effective as in the standard maximum entropy methods.

B. A New Approach for Signal Restoration

The new definition of the information contained in noisy data can
easily lead to a new approach for restoration of images.

The problem of filtering or restoring dataD can be expressed by
the following. We search for a solution~D such that the difference
betweenD and ~D minimizes the information due to the signal, and
such that~D minimizes the information due to the noise.

J( ~D) = Hs(D� ~D) +Hn( ~D): (33)

Furthermore, the smoothness of the solution can be controlled by
adding a parameter

J( ~D) = Hs(D� ~D) + �Hn( ~D): (34)

Here,� is considered as a constant value, but we can easily imagine
having a regularization parameter per scale, or even per wavelet
coefficient, depending on the signal-to-noise ratio of the data. This
direction will be investigated in the future.

The following three points must be noted.

1) The positivity of the solution is not enforced.
2) There is no constraint on the flux.
3) The last scale of the wavelet transform is not taken into account

in this entropy.

The first two points can be easily resolved by introducing stricta
priori constraints on the solution [17]

J(Z) = Hs(D� C(Z)) + �Hs(C(Z)): (35)

And the real solution is evidently~D = C(Z). Positivity and total
flux conservation impose

C(Z)(x) = x

I(x)

x

Z(x)2
Z(x)2: (36)

Any other constraint can evidently be introduced into the functionC.
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Fig. 3. Spectrum and filtered spectrum superimposed.

Fig. 4. Difference (upper part) between the real spectrum and its smoothed version. Part (pixels 400 to 500) of the spectrum (continuous curve), with
the filtered spectrum overplotted (dashed).

There is no constraint to be introduced to cater to the third point
above, but this should not be a problem if the number of scales we
use for the entropy is high enough. Indeed, in this case, the last scale
becomes flat, and flux normalization should correctly fix this level.

C. Example

Fig. 3 presents a spectrum and the result (overplotted) after filtering
using the multiscale entropy. The difference between the spectrum
and its smoothed version is plotted in Fig. 4 (upper part). As we can
see, the residual contains only noise. In order to better see the quality
of the smoothing, we have plotted only a part of the spectrum (see

lower part of Fig. 4), and the filtered spectrum superimposed. The
absorption lines are not modified using our filtering technique.

Fig. 5(a) shows the Lena image (cf. Fig. 1) to which Gaussian
noise of standard deviation 10 has been added. Fig. 5(b) shows the
result using (32) with a regularization parameter value of 2.

V. CONCLUSION

We have seen that information must be measured from the trans-
formed data, and not from the data itself. This approach has been
used in fact for several years in the domain of image compression.
Indeed, modern image compression methods consist first of applying
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(a)

(b)

Fig. 5. (a) Lena+ Gaussian noise. (b) Filtered image.

a transformation (cosine transform for JPEG, wavelet transform,
etc.) to the image, and then coding the coefficients obtained. A
good transform for image compression is obviously an orthogonal
transform because there is no redundancy, and the number of pixels is
the same as in the original image. The exact number of bits necessary
to code the coefficients is given by the Shannon entropy. For signal
restoration, the problem is not to reduce the number of bits in the
representation of the data, and we prefer to use a nonorthogonal
wavelet transform, which avoids artifacts in reconstruction due to
undersampling.

We could have used the Shannon entropy to measure the in-
formation at a given scale, and derive the bins of the histogram
from the standard deviation of the noise; but for several reasons,

we thought it better to directly introduce noise probability into our
information measure. First, we have seen that this leads, for Gaussian
noise, to a very physical relation between the information and the
wavelet coefficients: information is proportional to the energy of the
wavelet coefficients normalized by the standard deviation of the noise.
Second, it works even in the case of images with few photons/events
(the histograms in this case present a bias). We have seen that the
equations are easy to manipulate. Finally, experiments have confirmed
that this approach gives good results. We have also seen that our
new information measure leads naturally to a new method for signal
restoration. We are now experimenting with this method, and working
on generalizations to other classes of noise.
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