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Compressed Sensing in Astronomy
Jérôme Bobin, Jean-Luc Starck, and Roland Ottensamer

Abstract—Recent advances in signal processing have focused on
the use of sparse representations in various applications. A new
field of interest based on sparsity has recently emerged: compressed
sensing. This theory is a new sampling framework that provides
an alternative to the well-known Shannon sampling theory. In this
paper, we investigate how compressed sensing (CS) can provide new
insights into astronomical data compression. We first give a brief
overview of the compressed sensing theory which provides very
simple coding process with low computational cost, thus favoring
its use for real-time applications often found onboard space mis-
sion. In practical situations, owing to particular observation strate-
gies (for instance, raster scans) astronomical data are often redun-
dant; in that context, we point out that a CS-based compression
scheme is flexible enough to account for particular observational
strategies. Indeed, we show also that CS provides a new fantastic
way to handle multiple observations of the same field view, allowing
us to recover low level details, which is impossible with standard
compression methods. This kind of CS data fusion concept could
lead to an elegant and effective way to solve the problem ESA is
faced with, for the transmission to the earth of the data collected
by PACS, one of the instruments onboard the Herschel spacecraft
which will launched in late 2008/early 2009. We show that CS en-
ables to recover data with a spatial resolution enhanced up to 30%
with similar sensitivity compared to the averaging technique pro-
posed by ESA.

Index Terms—Astronomy, compressed sensing, remote sensing,
sparsity, wavelets.

I. INTRODUCTION

F ROM year to year, the quantity of astronomical data in-
creases at an ever-growing rate. In part, this is due to very

large digital sky surveys in the optical and near infrared, which
in turn has been made possible by the development of digital
imaging arrays such as charge-coupled devices (CCDs). The
size of digital arrays is continually growing, pushed by the de-
mands of astronomical research for ever larger quantities of data
in ever shorter time periods. As a result, the astronomical com-
munity is also confronted with a rather desperate need for data
compression techniques.

Several techniques have in fact been used, or even developed,
for astronomical data compression [1], [2]. For some projects,
we need to achieve huge compression ratios, which cannot be
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obtained by current methods without introducing unacceptable
distortions. Furthermore, for most astronomical data compres-
sion problems, three main properties must be under control: res-
olution (point spread function), sensitivity (ability to detect low
level signals), and photometry.

The Herschel satellite,1 which will be launched in late 2008/
early 2009, is faced with a similar problem. Indeed, the pho-
tometer data need to be compressed by a factor of approximately
6 to be transferred. As the CPU load has to be extremely small,
conventional compression methods cannot be used.

Recently, an alternative sampling theory has emerged which
shows that signals can be recovered from far fewer samples
(measurements) than what the Nyquist/Shannon sampling
theory states. This new theory coined compressed sensing or
(compressive sensing) introduced in the seminal papers [3], [4]
relies on the compressibility of signals or more precisely on
the property for some signals to be sparsely represented. From
the compressed sensing viewpoint, sparse signals could be
acquired “economically” (from a few samples) without loss of
information. It introduces new conceptions in data acquisition
and sampling.

Scope of the Paper: We propose a new alternative approach
for the transmission of astronomical images, based on CS.
Section II reviews the principle of the CS theory. We will see
that CS can be used in different ways for data compression
purposes: i) sensor design or ii) as a classical “compres-
sion-decompression” two-stage scheme. In this paper, we will
particularly focus on the latter. Indeed, in practical situations
(more particularly for onboard applications), CS provides a
simple coding or compression stage that only requires a low
computational burden. Most of the computational complexity is
in the decoding step. In Section III, we show how CS offers us
a flexible data compression framework as i) compression and
decompression are decoupled and ii) CS is able to account for
the redundancy of the data due to some particular observational
strategies to enhance the decoding process. It is particularly
profitable when multiple observations of the same sky area are
available. This happens very often in astronomical imaging
when we need to build a large map from a micro-scan or
a raster-scan. Section IV highlights the effectiveness of the
proposed CS-based compression for solving the Herschel data
compression problem. Indeed, we show the advantage of CS
over the averaging approach (proposed by the European Spatial
Agency-ESA) which has been considered so far.

II. A BRIEF INTRODUCTION TO COMPRESSED SENSING

In this section, we give a brief and non-exhaustive review of
compressed sensing and show how this new sampling theory
will probably lead to a “revolution” in signal processing and
communication theory. For more exhaustive tutorials in this

1See http://www.esa.int/science/herschel.
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field, we refer the reader to the review papers [5], [6]. In this
paper, we will assume that the signal belongs to (written
as a column vector with entries or samples). We will also
assume that is compressible.

A. Gist of Compressed Sensing

Compressibility: The content of most astronomical images
if often well structured: diffuse gas clouds, point sources
to name only a few. Recent advances in harmonic analysis
have provided tools that efficiently represent such structures
(wavelets, curvelets, to name a few). In this context, ef-
ficient representations mean sparse representations. Let us
consider a signal of size . Let be an orthonormal basis
(e.g. classically, an orthogonal wavelet basis for astronomical
data processing) and let us consider the projection of in

(1)

The signal is said to be sparse in if most entries of the
so-called coefficient vector are zero or close to zero and
thus only a few have significant amplitudes. In other words,
the signal can be efficiently approximated (with low
approximation error or distortion) from only a few significant
coefficients. Then such sparse signal is said to be compressible.
Note that, in the last decade, sparsity has emerged as one
of the leading concepts in a wide range of signal processing
applications. More formally, we will distinguish two categories
of compressible signals.

— Strict sparsity: Only entries of are different
form zero. is said to be -sparse in .

— Wide sense compressibility: A more realistic definition of
compressibility consists in describing how the entries of
behave. Let us consider that . Then is
said to be compressible in , if there exists such
that: . Here defines a kind of sparsity or
compressibility degree. Real-world data are more akin to
be wide sense compressible.

Acquiring Incoherent Measurements: Assuming that is
compressible (i.e., has a sparse representation in a particular
basis ), can be efficiently approximated (with low distortion)
from only a few entries of . In the Compressed Sensing
framework, the signal is not acquired directly; it is observed
or measured from measurements . These
measurements are obtained by projecting the signal on a set
of so-called measurement vectors as follows:

(2)

Each sample is then the scalar product of with a specific
measurement vector . The gist of compressed sensing relies
on two major concepts: i) the data to be compressed are indeed
compressible; more precisely the data have a “structured” con-
tent so that they can be sparsely represented in some basis ; ii)
the measurement vectors are non adaptive (they
should not depend on ) and incoherent with the basis in which

is assumed to be sparse.
As stated in [5], two main categories of measurement ensem-

bles can be used for CS coding.

— Random measurements: is not explicitly used; the
measurements are random linear combi-
nations of the entries of . Fourier, Binary or Gaussian
measurements are widely used. In the CS framework, in-
coherent measurements can be obtained by using random
ensembles (see [3], [7] and references therein). Random-
ness is likely to provide incoherent projections.

— Incoherent measurements: In that case, is a determin-
istic basis which is assumed to be incoherent with . More
quantitatively, incoherence between and is measured
by their mutual coherence: . The
lower is, the more incoherent and are. In practical
situations, typical astronomical data are compressible in a
wavelet basis ; a good choice for is the noiselet basis
[8].

In this paper, measurement vectors are designed by selecting
at random a set (indexed by ) of vectors from a deterministic
orthonormal basis as suggested in [9] .

An empirical interpretation: In the CS framework, the signal
to be transferred is . Let recall that the backbone of
CS is twofold.

— Data are compressible: Only a few entries of have a
significant amplitude; is then almost entirely determined
from only a few entries .

— Measurements are incoherent: The measurement matrix
and are incoherent. From a empirical point of view,

the incoherence of and means that the information
carried by a few entries of is spread all over the entries
of . Each sample is likely to contain a piece
of information of each significant entry of . As ,
the ratio is equivalent to a compression ratio.

B. Signal Recovery

1) Exact Solutions: The previous paragraph emphasized on
the way the compression step should be devised. The decom-
pression step amounts to recovering the original signal out
of the compressed signal . Furthermore, is known a
priori to be compressible in . Then the recovery problem boils
down to emphasizing on the sparsity of the vector .
As proposed in [3], [4], the decompression or decoding step is
equivalent to solving the following optimization problem:

(3)

Several strong recovery results in the particular CS framework
have been proved based on specific assumptions with random
measurement ensembles (see [3], [10]). For instance, in the ex-
treme strict sparsity case where only entries of are nonzero,
conditions are given in [3] showing that the problem in (3) pro-
vides the exact solution . Nevertheless, the data are often cor-
rupted by noise. A more realistic compression model would be
the following:

(4)

where is a white Gaussian noise with variance . As the mea-
surement matrix is a submatrix of the orthonormal matrix

, the projected noise is still white and Gaussian
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with the same variance . The projected data are then recast as
follows: . The recovery step then boils down to
solving the next optimization problem

(5)

where is an upper bound of . Defining
provides a reasonable upper bound on

the noise norm, with overwhelming probability. In [11]
conditions are given that guarantee some optimality results
from the problem in (5).

The convex program (second-order cone program) in (5) then
provides an efficient and robust mechanism to provide an ap-
proximate to the signal .

III. COMPRESSED SENSING IN ASTRONOMY

In the next sections, we focus on applying the com-
pressed sensing framework to astronomical remote sensing. In
Section II, we show that compressed sensing and more precisely
its way of coding information provides alternatives to astro-
nomical instrument design. Section II-B gives emphasis on the
ability of CS decoding to easily account for the redundancy of
the data (for instance, provided by specific observational strate-
gies) thus improving the whole compression performances.

A. Compressed Sensing as a Way of Designing Sensors

The philosophy of compressed sensing (i.e., projecting onto
incoherent measurement ensembles) should be directly applied
in the design of the detector. Devising an optical system that
directly “measures” incoherent projections of the input image
would provide a compression system that encodes in the analog
domain.

Interestingly, this kind of measurement paradigm is far from
being science-fiction. Indeed, in the field of -ray imaging, the
so-called coded-masks2 (see [12] and references therein) are
used since the sixties and are currently operating in the ESA/In-
tegral space mission.3 In -ray (high energy) imaging, coded
masks are used as aperture masks scattering the incoming pho-
tons. Empirically, -ray data are overwhelmingly composed of
point sources (i.e. already rather sparse). The coded mask scat-
ters the photons coming from each point sources over almost
all the detectors. Each detector then provide incoherent projec-
tion. The last step to compressed sensing would amount to se-
lecting only a few detector’s signal (potentially at random) to
be transmitted thus completing the compression stage. The first
application of compressed sensing then dates back to the 1960s!
In the compressed sensing community, the coded mask concept
has inspired the design of the celebrated “compressed sensing
camera” [13] that provide effective image compression with a
single pixel. Simulations involving coded mask for compressive
imaging have been made by Willet in [14].

Similarly, (radio-) interferometric data are acquired in the
Fourier domain (i.e., visibilities), and the observed signal is
known to be sparse in the direct domain for unresolved objects

2We invite the interested readers to visit the following site that is devoted to
coded aperture imaging: http://astrophysics.gsfc.nasa.gov/cai/.

3See http://sci.esa.int/science-e/www/area/index.cfm?fareaid=21.

or in the wavelet domain for extended sources. A posteriori, it is
not surprising that the best methods which have been proposed
in the past for reconstructing such images are based on sparsity.
Indeed, the famous CLEAN algorithm [15] and its multiscale
version [16], [17] can be seen as matching pursuit algorithms
[18], and therefore enforce the sparsity of the solution, in the di-
rect space for CLEAN and in the wavelet space for Multiresolu-
tion CLEAN. Recent and CS reconstruction methods (see,
for instance, [19] and [20]) would certainly improve the compu-
tation time to derive these dirac-sparse and wavelet-sparse so-
lutions.

B. A Flexible Compression/Decompression Scheme

In this section, we will particularly focus on using Com-
pressed Sensing as a classical “compression/decompression”
two stages technique. We will emphasize on showing that
Compressed Sensing have several advantages over standard
compression techniques such as the celebrated JPEG20004

compression standard.
Computational Complexity: The onboard computational

complexity of CS compression depends on the choice of
(for instance, noiselets in the forthcoming experiments). The
only computational cost required by a CS-based compression
is the computation of . When noiselets are used, their
computational cost evolves as thus involving a low CPU
load which is lower than the computational burden required
by JPEG2000 (typically ). Furthermore, the CS
projections (noiselets in the forthcoming examples), require no
further encoding in contrast to classical compression methods
such as JPEG2000.

Decoupling: In contrast to classical compression techniques,
there is a complete decoupling between the compression and the
decompression in the CS framework. Therefore the decompres-
sion step can be changed while keeping the same compressed
data. This is a very nice property. Indeed, we have seen that the
quality of the decompressed data is related to the sparsity of the
data in a given basis . If we discover in a few years a new basis
which leads to a better sparsity of the data, then we can still im-
prove the quality of the decompressed data.

Data Fusion Perspective: Accounting for the Redundancy of
the Data: In astronomy, remote sensing data involving specific
scanning strategies (raster scans) often provide redundant data
which cannot be accounted for by standard compression tech-
niques. In a general framework, let us consider that observa-
tions of the same sky area are available: such that

(6)

where are independent random submatrices
of with . Clearly, it would be worth recov-
ering from the compressed observations . We
then propose to substitute the decompression problem in (5)
with the following:

(7)

4See http://www.jpeg.org/jpeg2000/.
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Owing to the convexity of this problem, it can be recast in the
following Lagrangian form:

(8)

Let define as the diagonal matrix of size the entries of
which are defined as follows:

if
otherwise

(9)

where is the th diagonal element of . Let define the
signal of size as follows:

(10)

where is complement of in . Inspired by recent
iterative thresholding methods [21], [22], we propose solving
the problem in (8) by means of a projected Landweber iterative
algorithm. At iteration , the coefficients would be updated
as follows:

(11)
where is the soft-thresholding operator with threshold . Fur-
ther calculation entails appreciable simplifications

(12)
where is the identity matrix of size .

Choosing the Regularization Parameter : The problem in
(12) is a general sparse decomposition problem in a redundant
dictionary (see [23], [24] and references therein). The choice of
the regularization parameter is crucial as it balances between
the sparsity constraint and the how the solution fits the data.
Classical approaches would advocate the use of cross-validation
to estimate an optimal value of . Nevertheless, cross-validation
is computationally expensive and thus not appropriate for large
scale problems.

In a different framework, the same kind of optimiza-
tion problem has been solved using a specific iterative
hard-thresholding algorithm coined Morphological Com-
ponent Analysis (MCA—see [25]) for which the threshold
decreases. Inspired by MCA, hard-thresholding is used and
the threshold is decreased at each iteration. It starts from

and decreases towards . The
value of is 0 in the noiseless case. When noise corrupts
the data , may depend on the noise level. In Section IV,
numerical results are given. In these experiments, noise con-
tamination is assumed to be white Gaussian with zero mean
and variance . In this case, the final threshold is chosen as

which gives an upper bound for noise coefficients
with overwhelming probability.

C. Example: Joint Recovery of Multiple Observations

For instance, let us consider that the data are made of
images such that each image is a noise-

Fig. 1. Top-left: Input image � of size 512 � 512. Top-right: Estimate from
the average of 100 images compressed by JPEG2000 with a compression rate
� � ���. Bottom: Estimate from 100 pictures compressed by CS with a com-
pression rate � � ���.

Fig. 2. Zoomed versions—Top-left: Input image � of size 512 � 512. Top-
right: Estimate from the average of 100 images compressed by JPEG2000 with
a compression rate � � ���. Bottom: Estimate from 100 pictures compressed
by CS with a compression rate � � ���.

less observation of the same sky area . We propose to decom-
press the set of observations in a joint recovery
scheme. Each observation is compressed using CS such that

. Compression is made by solving the problem
in (8) using the iterative thresholding algorithm described pre-
viously. Fig. 1 provides the compression/decompression results
of using CS and JPEG2000. At first sight, both techniques
behave similarly. Fig. 2 depicts the zoomed versions of the pre-
vious pictures. Clearly, CS provides better visual results. Recall
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TABLE I
CS VERSUS JPEG2000: RECOVERY SNR IN DECIBELS

AND RELATIVE INTENSITY ERROR

that in astronomy, the main properties to be under control are:
i) the resolution, ii) the sensitivity, and iii) the photometry. Let
us have a look at photometry by defining the intensity of as:

. Both compression techniques can be compared
in terms of the their relative intensity error defined has the ratio:

where is the intensity of the recovered image. Quan-
titative results are presented in Table I.

Where the where is the re-
covered signal. This huge difference between both compression
strategies is the consequence of a fundamental property of CS:
the linearity of the compression. In contrast to standard com-
pression techniques (such as JPEG2000), the CS-based com-
pression is linear. The data to transmit are indeed simple linear
projections: where models instrumental
noise. Whatever the compression rate (i.e., ), the in-
coherence between the measurement vectors and the data
is likely to guarantee that does not belong to the null space
of . As a consequence, the compressed data always contain
a piece of information belonging to . Standard compression
methods (which are nonlinear) do not verify this crucial prop-
erty. For low level details, a standard compression method will
kill its high frequencies and they will never be recovered what-
ever the number of times this source is observed.

Need for Joint Decompression: Assume that is compress-
ible. More precisely, for a fixed distortion , there exists
such that for , where
is the -term approximation of (i.e., synthesized from the

entries of that have the most significant amplitudes). The
CS theory tells us that the same error (i.e., distortion) can be
obtained by solving the problem in (7) from inco-
herent measurements. Let us assume that, the set
have been generated at random such that, with high probability,

; then, the set of measurement vector
is equivalent to a global measurement matrix where

. To summarize, recovering from the set of
measurements is likely to provide the same recon-
struction that would be able to get from measurements thus
leading to better recovery performances.

IV. REAL-WORLD APPLICATION: THE HERSCHEL PROJECT

Herschel is one of the cornerstone missions of the European
Space Agency (ESA). This space telescope has been designed
to observe in the far-infrared and sub-millimeter wavelength
range. Its launch is scheduled for the fall of 2008/spring of 2009.
The shortest wavelength band, 57–210 , is covered by PACS
(Photodetector Array Camera and Spectrometer) [26], which
provides low to medium resolution spectroscopy and dual-band
photometry. When PACS is used as a photometer, it will simul-
taneously image with its two bolometer arrays, a 64 32 and a

32 16 matrix, both read out at 40 Hz. The ESA is faced with a
challenging problem: conventional low-cost compression tech-
niques cannot achieve a satisfactory compression rate. In this
Section, we propose a new CS-based compression scheme for
the Herschel/PACS data that yield an elegant and effective way
to overcome the Herschel compression dilemma.

A. Herschel Dilemma

The Herschel space telescope is partially hampered by the
narrowness of the transmission band compared to the large
amount of data to be transferred. This handicap stems from the
limitation of conventional compression techniques to provide
adequate compression rate with low computational cost, given
the high readout noise. More quantitatively, the data have to be
compressed in real time by a factor of 6 with very low CPU
power.

Problem Statement: The Herschel spacecraft is about to be
launched; ESA is faced with a compression problem as the data
need to be compressed by a factor of . Up to now, the
only acceptable solution for the ESA (with respect to computa-
tional cost and quality) to overcome this need for a higher com-
pression rate is the average of consecutive images [27].
Indeed, the compression code has no information about the scan
speed or the scan direction and a shift-and-add averaging solu-
tion is not possible. Other compression techniques such JPEG
or JPEG2000 are also not acceptable because of computation
time constraints.

Herschel will observe wide sky areas thus requiring fast scan-
ning strategies. Hershel/PACS will provide sets of consecutive
64 32 images that will be shifted with a typical shift value

pixel in fast scanning mode. Unfortunately, the shift value
is comparable to the full width at half maximum (FWHM) of

the instrumental point spread function (PSF) is pixels.
As a consequence, averaging consecutive images will entail
a catastrophic loss of spatial resolution. This can be catastrophic
for some scientific programs. Furthermore, averaging is far less
optimal for noise reduction as averaging shifted signals does not
yield a noise variance reduction.

An effective compression scheme would have to balance be-
tween the following performance criteria.

— Spatial resolution: Averaging fast scanned data entails a
lower spatial resolution. An effective compression scheme
should provide a lower resolution loss.

— Sensitivity: Averaging will reduce noise but will also blur
the data thus entailing a loss of sensitivity. Sensitivity (i.e.,
ability to detect low level details or sources) after compres-
sion/decompression must be under control.

B. Compressed Sensing for the Herschel Data

The Herschel/PACS mission needs a compression rate equal
to with . A first approach would amount to
compressing independently each image. As stated earlier, ac-
counting for the redundancy of the data is profitable to enhance
the global compression/decompression performances. Then,
compressing/decompressing consecutive images jointly
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would be more relevant. If we consider a stack of con-
secutive images , the simplest generative model is
the following:

(13)

where is an operator that shifts the original image with a
shift . In practice, and . The term models in-
strumental noise or model imperfections. According to the com-
pressed sensing framework, each signal is projected onto the
subspace ranged by a subset of columns of . Each compressed
observation is then obtained as follows:

(14)

where the sets are such that:

(15)

(16)

where the cardinality of each subset is . When
there is no shift between consecutive images, these conditions
guarantee that the signal can be reconstructed univocally from

, up to noise. Furthermore, is assumed to be pos-
itive. The decoding step amounts to seeking the signal as fol-
lows:

(17)

We propose solving this problem by using an adapted version of
the iterative algorithm we introduced in Section II-B. Further-
more, the content of astronomical data is often positive. Con-
straining the solution to be positive would help solving the re-
covery problem. Assuming that the shifting operator is in-
vertible,5 we substitute (12) by

(18)

The positivity constraint is accounted for by projecting at each
iteration the solution of the previous update equation on the
cone generated by the vectors having positive entries:

where the projector is defined as follows:

if
otherwise

(19)

where is the th entry of . Convergence is guar-
anteed as long as shifting the image does note deteriorate the
original signal. In practice, this condition is not valid, only a

5This assumption is true when shifting the image does note deteriorate the
original signal.

Fig. 3. Top left: Original image of size 128� 128 the total intensity of which
is � � ����. Top right: First input noisy map (out of 6). White Gaussian
with variance � � � was added. Bottom left: Mean of the 6 input images.
Bottom right: Reconstruction from noiselet-based CS projections. The iterative
algorithm described in Section III has been used with 100 iterations.

portion of the image can be recovered with precision. Similarly
to the discussion in Section III, joint decompression should be
profitable as sets of consecutive shifted images provide redun-
dant data. In the next section, we illustrate the good perfor-
mances of the proposed decoding scheme.

Notations: In the next experiments, the data will made of
pointwise sources; it is worth defining some useful notations.
Recall that we assume the telescope’s PSF to have a FWHM
equal to . The shift between the original datum and the th
datum is . The intensity of the datum (defined in
Section III). We also assume the has positive entries.

C. A Toy-Example

In the following experiments, the datum is a 128 128
image. The instrument is assumed to have a FWHM
pixels. For the sake of simplicity, each shift pixels.
White Gaussian noise is added to account for the instrumental
noise. As we stated earlier, three main properties must be under
control: i) spatial resolution, ii) sensitivity, and iii) photometry.
Concerning the last point, it was shown in Section III-C, that
CS was very efficient compared to JPEG2000. In this section,
we will particularly focus on sensitivity and spatial resolution.

1) Sensitivity: In this experiment, the datum contains 49
point sources that have been uniformly scattered. The amplitude
of each point source is generated at random with a Gaussian
distribution. The top-left picture of Fig. 3 shows the input data

. The additive Gaussian noise has a fixed unit variance. The
top-right panel of Fig. 3 features the data contaminated with
noise. Comparisons between the MO6 (“Mean of 6 images”)
and CS methods are made by evaluating for varying intensity
value (from 700 to 140 000; it is equivalent to a SNR varying
from 13.2 to 33 dB) the rate of detected point sources. To
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Fig. 4. Detection rate when the intensity of the input data varies: Solid line
Resolution defined by the Rayleigh criterion of the CS-based reconstruction. �:
Resolution of the solution provided by the mean of 6 images.

avoid false detection, the same pre-processing step is per-
formed: i) “à trous” bspline wavelet transform (see [28]), ii)

hard-thresholding6 where is the residual standard
deviation estimated by a Median Absolute Deviation (MAD)
at each wavelet scale, and iii) reconstruction. The bottom-left
panel of Fig. 3 features such filtered decoded image using
the MO6 strategy. The bottom-right picture in Fig. 3 shows
the filtered CS-based solution. In this experiment the total
intensity of the point sources is set to 3500. At first sight, both
methods provide similar detection performances. As expected,
the CS-based solution has a better spatial resolution.

Fig. 4 shows the detection rate (with no false detection) of
each method for intensities varying from to

. At high intensity (higher than ), both MO6
and CS provide rather similar detection performances. Interest-
ingly, at low intensity, CS provides slightly better results. This
unexpected phenomenon is partly due to the spread that results
from the average of shifted images.

MO6 is theoretically (for low shifts) near-optimal for point
source detection. In contrast, this experiment shows that CS can
provide similar or better detection performances than MO6.

2) Resolution: Spatial resolution is a crucial instrumental
feature. Averaging shifted images clearly deteriorates the final
spatial resolution of Hershel/PACS. In this experiment, the orig-
inal datum is made of a couple of point sources. In the worst
case, these point sources are aligned along the scan direction.
The top-left picture of Fig. 5 features the original signal . In
the top-right panel of Fig. 5, the intensity of the point sources is
set to while the noise variance is . The SNR
of the data to compress is equal to 2.7 dB. The MO6 solution
(resp. the CS-based solution) is shown on the left (resp. right) at
the bottom of Fig. 5. As expected, the spatial resolution of the
MO6 is clearly worse than the resolution of the input datum .
Visually, the CS-based solution mitigate the resolution loss.

For different intensity of the datum (from 100 to 2000),
the spatial resolution is evaluated according to the Rayleigh
criterion. The Rayleigh criterion is the generally accepted cri-
terion for the minimum resolvable detail: two point sources are
resolved when the first minimum is lower than the amplitude at

6Such �� is likely to avoid false detection as it defines a rather conservative
threshold.

Fig. 5. Top left: Original image of size 128 � 128 the total intensity of which
is � � ����. Top right: First input noisy map (out of 6). White Gaussian
with variance � � � was added. Bottom left: Mean of the 6 input images.
Bottom right: Reconstruction from noiselet-based CS projections. The iterative
algorithm has been used with 100 iterations.

half maximum of a single point source as illustrated in Fig. 6.
For a fixed intensity , the resolution limit is evaluated by
seeking the minimal distance between the point sources for
which the Rayleigh criterion is verified. For intensities varying
from to , the resolution limit is reported in
Table II.

The CS-based compression scheme provides a solution with
better spatial resolution. At high intensity, the resolution gain
(in comparison with MO6) is equal to a third of the instrumental
FWHM (1 pixel). At low intensity, the resolution gain provided
by the CS-based method slightly decreases.

This experiment shows that CS mitigates the resolution loss
resulting from the joint compression of 6 consecutive images.

D. Realistic Data

1) Data: Real Herschel/PACS data are more complex than
those we simulated in the previous experiments. The original
datum is contaminated with a slowly varying “flat field” com-
ponent . In a short sequence of 6 consecutive images, the
flat field component is almost fixed. In this context, the data

can then be modeled as follows:

(20)

If is known (which will be the case in the forthcoming exper-
iments), is replaced by in (18). If

is unknown, it can be estimated within the iterative algorithm.
The next section focuses on the resolution gain provided by the
CS- based method in the scope of real Herschel/PACS data. The
data have been designed by adding realistic pointwise sources
to real calibration measurements performed in mid-2007.
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Fig. 6. Rayleigh criterion—Left: The point sources are not resolved. Middle: Resolution limit. Right: Fully resolved point sources.

TABLE II
Spatial resolution in pixels: FOR VARYING DATUM FLUX, THE RESOLUTION

LIMIT OF EACH COMPRESSION TECHNIQUE IS REPORTED. THE CS-BASED

COMPRESSION ENTAILS A RESOLUTION GAIN EQUAL TO A 30% OF THE

SPATIAL RESOLUTION PROVIDED BY MO6

Fig. 7. Top left: Original image of size 32 � 64 with a total intensity of � �

����. Top right: First input noisy map (out of 6). The PACS data already con-
tains approximately Gaussian noise. Bottom left: Mean of the 6 input images.
Bottom right: Reconstruction from noiselet-based CS projections. The iterative
algorithm has been used with 100 iterations.

2) Resolution: Similarly to the experiments performed in
Section IV-C-2, we added a couple of point sources to Her-
schel/PACS data. The top-left picture of Fig. 7 features the orig-
inal signal . In the top-right panel of Fig. 7, the intensity of the
point sources is set to . The “flat field” component
overwhelms the useful part of the data so that has at best a
level that is 30 times lower than the “flat field” component. The
MO6 solution (resp. the CS-based solution) is shown on the left
(resp. right) and at the bottom of Fig. 7 and all the results are
presented in Table III. Similarly to the previous fully simulated
experiment, the CS-based algorithm provides better resolution
performances. The resolution gain can reach 30% of the FWHM
of the instrument’s PSF for a wide range of signal intensities.
This experiment illustrates the reliability of the CS-based com-
pression to deal with real-world data compression.

TABLE III
Spatial resolution in pixels: FOR VARYING DATUM FLUX, THE RESOLUTION

LIMIT OF EACH COMPRESSION TECHNIQUE IS REPORTED. THE CS-BASED

COMPRESSION ENTAILS A RESOLUTION GAIN EQUAL TO A 30% OF THE

SPATIAL RESOLUTION PROVIDED BY MO6

V. CONCLUSION

In this paper, we overview the potential applications of com-
pressed sensing (CS) in astronomical imaging. The CS appeal
in astronomy is twofold: i) it provides a very easy and com-
putationally cheap coding scheme for onboard astronomical re-
mote sensing and ii) from a data fusion perspective, the de-
coding stage is flexible enough to account for the redundancy
of the data thus leading to significant recovery enhancements.
We particularly point out the huge advantage of compressed
sensing over standard compression techniques in the scope of
multiple scanning observations (observing the same sky area
several times). We have shown that compressed sensing data fu-
sion can lead to improvements compared to standard techniques.
Preliminary numerical experiments illustrate the reliability of
a CS-based compression scheme in the scope of astronomical
remote sensing such as the Herschel space mission. We show
that compressed sensing provides an elegant and effective com-
pression technique that overcome the compression issue ESA is
faced with. In the next step we will focus on performing more
realistic experiments in the scope of the Herschel space mis-
sion by adding some physical information: calibration, statis-
tical noise models, flat field estimation to name a few. This
paper show that applying CS to the Herschel space mission is
of major interest. Indeed, CS is the only existing alternative so-
lution to the averaging solution, and CS enables to recover data
with a spatial resolution enhanced up to 30% with similar sen-
sitivity compared to the averaging technique. CS will probably
be implemented onboard thus being the first application of com-
pressed sensing for a real-world space mission.
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