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The information content of an image is a key as-
pect of any processing task, and there are two
ways to define information: we can recognize
the different objects in the image, which is fun-

damental for most image analysis applications, or we can
derive a quantity, which is representative of the amount
of information in the image.

Shannon [38], in the framework of communication
theory, suggested that the information related to a given
measure was connected to its frequency of occurrence and
proposed the entropy function as a means to calculate the
amount of information in a data set. An important prop-
erty of the entropy is that it gives exactly the number of
bits needed to compress or transfer the data without any
loss of information.

Shannon entropy does not take into account the corre-
lation between pixels, and it is very well known that
decorrelating the data decreases the entropy. Using a re-
versible transform such as the discrete cosine transform
(DCT) leads to a new data set, which has lower entropy
and can therefore be compressed with fewer bits. This re-
sult has been employed in the widely used JPEG compres-
sion method. But this result also means that we have
introduced a priori information, namely that the data are
correlated. An hypothesis of how the data are correlated is
given by the choice of the transform. The more accurate
this assumption is, then the more faithfully the chosen
transform will represent the data and decrease the en-
tropy.

The wavelet transform (WT) is considered one of the
best tools to do this job. It allows us to separate the com-
ponents of an image according to their size. It is a perfect
tool for astronomical images, typically composed of ob-
jects of different size, such as stars, galaxies, interstellar
clouds, clusters of galaxies, etc.

It is clear that if a multiscale representation is capable
of representing information which serves to decrease the

entropy, it is also useful for detection of the different
components contained in the image. For instance, it has
been shown that an image can be completely (or almost
completely) reconstructed from its multiscale edges [31],
i.e., the edges detected at each scale. So the WT is useful
for both kinds of information measurement, the deter-
ministic kind, which indicates what is in the image and
where, and the statistical one, which gives a quantity rela-
tive to the amount of information.

Another aspect of astronomical images, but also of
many other classes of image, is the presence of noise. The
observed signal can be decomposed into two compo-
nents: the useful signal (or signal of interest) and the
noise. It is very important to understand what the behav-
ior of the noise is like in wavelet space, if we want subse-
quently to analyze correctly the data in such a space.

We present in this article how to measure the informa-
tion in an astronomical image, in both a statistical and a
deterministic way. In the following sections, we discuss
the wavelet transform and the noise modeling, and we
describe how to measure the information and the impli-
cations for objet detection, filtering, and deconvolution.

The Wavelet and
Other Multiresolution Transforms
There are many two-dimensional WT algorithms [44].
The most well known are:
▲ The (bi-) orthogonal wavelet transform. This wavelet
transform [32], often referred to as the discrete wavelet
transform (DWT), is the most widely used among avail-
able DWT algorithms. It is a nonredundant representa-
tion of the information. An introduction to this type of
transform can be found in [9]. The Haar wavelet trans-
form belongs to this class.
▲ The Feauveau wavelet transform. Feauveau [15] intro-
duced AU: spelling ok -- quincunx analysis. This analy-
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sis is not dyadic and allows an image decomposition with
a resolution factor equal to 2.
▲ The à trous algorithm [39], [44]. The wavelet transform
of an image by this algorithm produces, at each scale j, a
set{ }w j . This has the same number of pixels as the image.
The original image c0 can be expressed as the sum of all
the wavelet scales and the smoothed array c p by
c c wp j

p
j0 1= + =Σ and a pixel at position x y, can be ex-

pressed also as the sum of all the wavelet coefficients at
this posit ion, plus the smoothed array
c x y c x y w x yp jj

p

0 1
( , ) ( , ) ( , )= +

=∑ .
The multiresolution median transform [46] is one al-

ternative to the wavelet transform for multiscale decom-
position. The median transform is nonlinear (so it is not a
wavelet transform, but represents an image in a similar
way to the à trous algorithm) and offers advantages for
robust smoothing (i.e., the effects of outlier pixel values
are mitigated). The multiresolution median transform
consists of a series of smoothings of the input image, with
successively broader kernels. Each successive smoothing
provides a new resolution scale. The multiresolution co-
efficient values constructed from differencing images at
successive resolution scales are not necessarily of zero
mean, and so the potential artifact-creation difficulties re-
lated to this aspect of wavelet transforms do not arise. For
integer input image values, this transform can be carried
out in integer arithmetic only which may lead to compu-
tational savings. As in the case of the à trous algorithm,
the original image can be expressed by a sum of the scales
and the smoothed array.

All of these methods have advantages and drawbacks.
Based on the content of the image, and the nature of the
noise, each of these transforms may well be considered as
optimal. In astronomical images, there are generally no
edges, and objects are relatively diffuse. For this reason,
an isotropic or symmetric analysis produces better results.
Furthermore, for most usual applications (detection, fil-
tering, deconvolution, etc.), undersampling leads to se-
vere artifacts which can be easily avoided by
nonorthogonal transforms such as the à trous algorithm.
For these reasons, the DWT is widely used for compres-
sion, but is less attractive for pattern recognition applica-
tions in the astronomical domain. The main WT used is
the à trous algorithm, because it is symmetric, which is
appropriate for a large range of astronomical images.

Noise and Significant Wavelet Coefficients
Here we describe how to model the noise in wavelet
space. In general, data are contaminated by Gaussian
noise, Poisson noise, or a combination of both. But
sometimes, data are already processed (through calibra-
tion processing for instance), and the noise does not fol-
low a known distribution. However, we can often make
some assumptions, such as to suppose that it is locally
Gaussian. Another relatively usual case is that of nonho-
mogeneous or nonstationary Gaussian noise. In such a

case we can derive, for each pixel, the noise standard devi-
ation. This means that we have a second image (the root
mean square image) indicating the noise level for each
pixel. It can be updated every time we coadd or otherwise
process our data.

This section discusses how we handle different situa-
tions. Some of our noise modeling results are, of neces-
sity, derived for specific wavelet transforms.

Gaussian Noise
Noise is often taken as Poisson (related to the arrival of
photons) and/or Gaussian. For Gaussian noise, it is easy
to derive an estimation of the noise standard deviationσ j
at scale j from the noise standard deviation, which can be
evaluated with good accuracy in an automated way [42].
To detect the significant wavelet coefficients, it suffices to
compare the wavelet coefficients w x yj ( , ) to a threshold
level t j . t j is generally taken equal to k jσ , and k is chosen
between three and five. The value of three corresponds to
a probability of false detection of 0.27%. If w x yj ( , ) is
small, then it is not significant and could be due to noise.
If w x yj ( , ) is large, it is significant:

if then is significant

if then is not signif

w t w

w t w

j j j

j j j

≥

< icant. (1)

Other threshold methods have been proposed, like the
universal threshold [12], [10], or the SURE method [11],
but they generally do not produce as good results as the
hard thresholding method based on the significant coeffi-
cients. An alternative to the hard thresholding is the soft
thresholding, which consists of replacing each wavelet co-
efficient w j k, (j being the scale index, and k the position
index) by the value ~

,w j k where

( )~ ( ), , , ,w w w T w Tj k j k j k j j k j= − ≥sgn if (2)

=0 otherwise. (3)

But for astronomical images, soft thresholding should
never be used because it leads to photometry loss in re-
gard to all objects, which can easily be verified by examin-
ing the residual map (i.e., data − filtered data).

Poisson and Combined Gaussian
and Poisson noise

Poisson Noise: Case of More Than 20 Photons Per Pixel
If the noise in the data I is Poisson, the transformation [1]
t I I( ) /= +2 3 8 acts as if the data arose from a Gaussian
white noise model, with σ =1, under the assumption that
the mean value of I is sufficiently large. However, this
transform has some limits, and it has been shown that it
cannot be applied to data with less than about 20 photons
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per pixel. So for X-ray or gamma ray data, other solutions
have to be found, which manage the case of a reduced
number of events or photons under assumptions of Pois-
son statistics.

Combined Gaussian and Poisson Noise
The generalization of variance stabilization [35] is

t I x y I x y g( ( , )) ( , )= + + −2 3
8

2 2

α
α α σ α

where α is the gain of the detector, and g and σ are the
mean and the standard deviation of the read-out noise.

Poisson Noise with Few Events Using the À Trous Transform
A wavelet coefficient at a given position l and at a given
scale j is

w x y n
x x y y

j
k K

k
k k

j
( , )

,
=

− −



∈

∑ ψ
2 (4)

where K is the support of the wavelet functionψ and nk is
the number of events which contribute to the calculation
of w x yj ( , ) [i.e., the number of photons included in the
support of the dilated wavelet centered at ( , )x y ].

If a wavelet coefficient w x yj ( , )is due to noise, it can be
considered as a realization of the sum Σ k K kn∈ of inde-
pendent random variables with the same distribution as
that of the wavelet function [nk being the number of
events used for the calculation of w x yj ( , )]. This allows
the comparison of the wavelet coefficients of the data
with the values which can be taken by the sum of n inde-
pendent variables.

The distribution of one event in wavelet space is then
directly given by the histogram H1 of the waveletψ. Since
we consider independent events, the distribution of a co-
efficient w n (note the changed subscripting for w, for
convenience) related to n events is given by n
autoconvolutions of H1 :

H H H Hn = ⊗ ⊗ ⊗1 1 1L . (5)

For a large number of events, H n converges to a Gaussi-
an. We then establish detection thresholds with 95% or
99% confidence. This constructive detection approach
clearly depends on the wavelet function used.

Poisson Noise with Few Events Using the Haar Transform
The Haar transform presents the advantage of simplicity
for modeling Poisson noise. A wavelet coefficient is only
the difference of two values which both follow a Poisson
distribution. For one-dimensional data, and using the
normalized Haar transform (L2-normalization),
Kolaczyk [27] proposed to use a detection level for the
scale j equal to: AU: Is there an extra parenthesis in
(6)?

( )t n n nj
j

l l l l= + +− +2 2 4 82 2 2( / ) ( log ( log ) log λ
(6)

where nl
n= −2 2 1log , n being the number of samples, and

λ l the background rate per bin in nl .
In two dimensions, Kolaczyk and Dixon [26] pro-

posed to use the following threshold, corresponding to a
false detection rate of α:

[ ]t z z zj
j

j= + +− +2 41
2

2
2

4
2

2( )
/ / /α α αλ

(7)

where j is the scale level ( j J=1... , J being the number of
scales), λ λj

j=2 2 is the background rate over n j
j=2 2

pixels, and zα / 2 is the point under the Gaussian density
function for which there falls a mass ofα / 2 in the tails be-
yond each zα / 2 point.

Jammal and Bijaoui [24] found that the probability
density function (PDF) of a Haar wavelet coefficient (us-
ing the filters h = [ , ]1 1 and g = −[ , ]1 1 ) is given by

( ) ( )p w Ij
j

p
j

p+
+ += = −1

2 1 2 12 2ν λ λνexp ( ) (8)

where I xν ( ) is the modified Bessel function of integer or-
der ν, and λ p is the background rate.

However, some experiments [40] have shown that
▲ The à trous algorithm is significantly better than any of
the Haar-based methods, and
▲ The Jammal-Bijaoui threshold is a little better than the
Kolaczyk one for compact source detection and is equiva-
lent for more extended sources. But the Kolaczyk thresh-
old requires less computation time and is easier to
implement.

Hence, the Haar transform is less efficient for restor-
ing astronomical images than the à trous algorithm. But
its simplicity, and the computation time, may be attrac-
tive in practice.

Model and Simulation
Simulations can be used for deriving the probability that a
wavelet coefficient is not due to the noise [14]. Modeling
a sky image (i.e., uniform distribution and Poisson noise)
allows determination of the wavelet coefficient distribu-
tion and derivation of a detection threshold. For
substructure detection in an astronomical cluster, the
large structure of the cluster must be first modeled, or
otherwise noise photons related to the large scale struc-
ture will introduce false detections at lower scales. If we
have a physical model, Monte Carlo simulations can also
be used [13], [21], but this requires lengthy computation
time, and the detections will always be model dependent.
Damiani et al. [8], and also Freeman et al. [16], propose
to calculate the background from the data to derive the
fluctuations due to the noise in the wavelet scales. From
our point of view, it is certainly better to use the histo-
gram autoconvolution method, which is robust and fast,
but the simulations may still be useful in the case where
the noise does not follow exactly a Poisson distribution,
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due, for example, to instrumental effects. If these effects
can be simulated, the detection level will also take them
into account.

Root Mean Square Map
The root mean square (RMS) map R x yσ( , ) is often asso-
ciated with the data, when it is captured. For each wavelet
coefficient w x yj ( , ) of R, the exact standard deviation
σ j x y( , ) has to be calculated from the root mean square
map R x yσ( , ) [41].

Assuming the noise is not correlated, a wavelet coeffi-
cient w x yj ( , ) is obtained by the correlation product be-
tween the image R and a function g j , where x and y are
discrete variables

w x y R x y g x k y lj
k l

j( , ) ( , ) ( , )= + +∑ ∑ .
(9)

Then we have

σ σj
k l

jx y R x y g x k y l2 2 2( , ) ( , ) ( , )= + +∑ ∑ .
(10)

In the case of the à trous algorithm, the coefficients
g x yj ( , ) are more easily computed by taking the wavelet
transform of a discrete Dirac function (w δ , in our nota-
tion):

g w x yj x y j( , ) ( , )= δ . (11)

Then the mapσ j
2 is calculated by correlating the square of

the wavelet scale j of w δ with R x yα
2 ( , ).

Other Kinds of Noise

Nonstationary Additive Noise
The noise is assumed to be locally Gaussian. So we must
consider a noise standard deviation corresponding to an
individual pixel and treat the problem as previously. The
R x yσ( , )map can be obtained by taking the standard devi-
ation in a box around each pixel.

Nonstationary Multiplicative Noise
The image is first log transformed. Then the transformed
image is treated as an image with nonstationary additive
noise.

Stationary Correlated Noise
The noise is stationary, but correlated. This noise model-
ing requires a noise map, containing a realization of the
noise. The threshold at a scale j,Sj , is found by computing
the wavelet transform of the noise map, and using the his-
togram of Sj to derive the PDF of Sj .

Undefined Noise
The standard deviation is estimated for each wavelet coef-
ficient, by considering a box around it, and the calculation
ofσ is carried out in the same way as for nonstationary ad-
ditive noise. The latter determines a map of variances for
the image, which is used to derive the variances for the
wavelet coefficients. In the case of �undefined noise� we
do not assume additivity of the noise, and so we calculate
the noise from local variance in the resolution scales.

Deterministic Information:
Object Detection
New methods based on wavelet transforms have recently
been developed for source extraction in an image [3],
[47]. In the multiscale vision model [3], [44], an object in
a signal is defined as a set of structures detected in the
wavelet space. The wavelet transform algorithm used for
such a decomposition is the à trous algorithm. The algo-
rithm produces N images of the same size, each one con-
taining only information in a given frequency band. From
such images, we derive the multiresolution support
which is then segmented to form structures. We describe
the different steps leading towards structure being associ-
ated with an object.

Multiresolution Support and Its Segmentation
A multiresolution support of an image describes in a logi-
cal or Boolean way if an image I contains information at a
given scale j and at a given position ( , )x y . If
M j x yI( ) ( , , )=1 (or = true), then I contains information
at scale j and at the position ( , )x y . M depends on several
parameters:
▲ The input image.
▲ The algorithm used for the multiresolution decompo-
sition.
▲ The noise.
▲ All additional constraints we want the support to sat-
isfy.

Such a support results from the data, the treatment
(noise estimation, etc.), and from knowledge on our part
of the objects contained in the data (size of objects, linear-
ity, etc.). In the most general case, a priori information is
not available to us.

The multiresolution support of an image is computed
in several steps:
▲ Step one is to compute the wavelet transform of the im-
age.
▲ Binarization of each scale leads to the multiresolution
support (the binarization of an image consists of assign-
ing to each pixel a value only equal to zero or one).
▲ A priori knowledge can be introduced by modifying the
support.

This last step depends on the knowledge we have of
our images. For instance, if we know there is no interest-
ing object smaller or larger than a given size in our image,
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we can suppress, in the support, anything which is due to
that kind of object. This can often be done conveniently
by the use of mathematical morphology [37], [20]. In the
most general setting, we naturally have no information to
add to the multiresolution support.

The multiresolution support will be obtained by de-
tecting at each scale the significant coefficients. The
multiresolution support is defined by

M j x y
w x y
w x y

j

j

( , , )
( , )

, ( , )
=

1, if is significant
if is not s0 ignificant.



 (12)

Multiresolution Support Segmentation
The segmentation consists of labeling a Boolean image (0
or 1 values). Each group of connected pixels having a �1"
value get a label value between 1 and Lmax , with Lmax be-
ing the number of groups (components). This process is
repeated separately at each scale of the multiresolution
support. We define a �structure,� Sj

i , as the group of com-
ponents (the vertices comprising them are by definition
significant) which has label i at a given scale j.

Multiscale Vision Model
An object is described as a hierarchical set of structures.
The rule which allows us to connect two structures into a
single object is called �interscale relation.� Figure 1 shows
how several structures at different scales are linked to-
gether and form objects. We have now to define the
interscale relation: let us consider two structures at two
successive scales, Sj

k and Sj
l
+1 . Each structure is located in

one of the individual images of the decomposition and
corresponds to a region in this image where the signal is
significant. Denoting pm the pixel position of the maxi-
mum wavelet coefficient value of Sj

k , Sj
k is said to be con-

nected to Sj
l
+1 if Sj

l
+1 contains the pixel position pm (i.e.,

the maximum position of the structure Sj
k must also be

contained in the structure Sj
l
+1 ). Several structures ap-

pearing in successive wavelet coefficient images can be
connected in such a way, which we call an object in the
interscale connectivity graph.

Reconstruction
Once an object is detected in wavelet space, it can be iso-
lated by searching for the simplest function which pres-
ents the same signal in wavelet space. The problem of
reconstruction [3] consists then of searching for a signal
V such that its wavelet coefficients are the same as those of
the detected structure. By denoting T the wavelet trans-
form operator and Pb the projection operator in the
subspace of the detected coefficients (i.e., setting to zero
all coefficients at scales and positions where nothing was
detected), the solution can be found by minimizing the
following expression:

J V W P Vb( ) ( )= − oT (13)

where W represents the detected wavelet coefficients of
the signal. A complete description of algorithms for
minimization of such a functional can be found in [3].

Statistical Information: Multiscale Entropy

The Concept of Multiscale Image Entropy
The idea behind multiscale entropy is that the informa-
tion contained in an image or, more generally in a data
set, is the addition of the information contained at differ-
ent scales. One consequence is that the correlation be-
tween pixels is now taken into account when measuring
the information. This was not the case with entropy defi-
nitions generally used in the past in image restoration.
Major, and widely used, definitions of entropy, are:
▲ Burg [5]:

H X Xb
k

N

k( ) ln( )= −
=
∑

1 (14)

▲ Frieden [17]:

H X X Xf k k
k

N

( ) ln( )= −
=
∑

1 (15)

▲ Gull and Skilling [23]:

H X X M X
X
Mg

k

N

k k k
k

k

( ) ln= − −








=
∑

1 (16)

where M is a given model, usually taken as a flat image. N
is the number of pixels, and k represents an index pixel.

Each of these entropies correspond to different proba-
bility distributions that one can associate with an image
[36]. The pixel distribution (correlation between pixels)
is not considered in these definitions and implied by them
is that two images having the same intensity histogram
have the same entropy. Figure 2 illustrates this. The sec-
ond image is obtained by distributing randomly the Sat-
urn image pixel values, and the standard entropy
definitions produce the same information measurement
for both images. The concept of information becomes ex-
clusively statistically. From the deterministic information
viewpoint�the viewpoint of interest to the domain ex-
pert�the second image contains less information than the
first one. For someone working on image transmission, it
is clear that the second image will require more bits for
lossless transmission, and from this point of view, he/she
will consider that the second image contains more infor-
mation. Finally, for data restoration�requiring use of
both deterministic and statistical viewpoints�fluctua-
tions due to noise are not of interest and do not contain
relevant information. From this physical point of view,
the standard definition of entropy seems badly adapted to
information measurement in signal restoration.
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It was discussed in [45] as to what a good entropy
measurement for signal restoration or analysis should be,
and we proposed that the following criteria should be ver-
ified:
▲ The information in a flat signal is zero.
▲ The amount of information in a signal is independent
of the background.
▲ The amount of information is dependent on the noise.
A given signal Y (Y X= + Noise) does not furnish the
same information if the noise is high or small.
▲ The entropy should treat a pixel with value B + ε (B be-
ing the background) as equally informative as a pixel with
value B − ε.
▲ The amount of information is dependent on the corre-
lation in the signal. If a signal S presents large features
above the noise, it contains a lot of information. By gener-
ating a new set of data from S, by randomly taking the
pixel values in S, the large features will evidently disap-
pear, and this new signal will contain less information.
But the pixel values will be the same as in S.

It is clear that among all entropy functions proposed in
the past, it is the Shannon one [38] which best respects
these criteria. Indeed, if we assume that the histogram bin
is defined as a function of the standard deviation of the
noise, the first four points are verified, while none of these
criteria are verified with other entropy functions (and
only one point is verified for the Gull and Skilling entropy
by taking the model equal to the background).

Following on from these criteria, a possibility is to
consider that the entropy of a signal is the sum of the in-
formation at each scale of its wavelet transform [45], and
the information of a wavelet coefficient is related to the
probability of it being due to noise. Denoting h the infor-
mation relative to a single wavelet coefficient, we have

H X h w
j

l

j k
k

N j

( ) ( ),=
= =
∑ ∑

1 1 (17)

with h w p wj k j k( ) ln ( ), ,= − . l is the number of scales, and
N j is the number of samples in the band j (N Nj = for the
à trous algorithm). For Gaussian noise, we get

h w
w

j k
j k

j

( ),
,=

2

22σ (18)

where σ j is the noise at scale j. We see that the informa-
tion is proportional to the energy of the wavelet coeffi-
cients. The higher a wavelet coefficient, then the lower
will be the probability, and the higher will be the informa-
tion furnished by this wavelet coefficient. We can see eas-
ily that this entropy fulfills all our requirements. As for the
Shannon entropy, the information increases with the en-
tropy, and using such an entropy leads, for optimization
purposes, to a minimum entropy method.

Since the data is composed of an original signal and
noise, our information measure is corrupted by noise, and
we decompose our information measure into two com-

ponents, one (H S ) corresponding to the noncorrupted
part, and the other (H N ) to the corrupted part. We have
[45]

H X H X H XS N( ) ( ) ( )= + . (19)

We will define in the following H S as the signal informa-
tion, and H N as the noise information. It must be clear
that noise does not contain any information, and what we
call �noise information� is a quantity which is measured
as information by the multiscale entropy, and which is
probably not informative to us.

If a wavelet coefficient is small, its value can be due to
noise, and the information h relative to this single wavelet
coefficient should be assigned to H N . If the wavelet coef-
ficient is high, compared to the noise standard deviation,
its value cannot be due to the noise, and h should be as-
signed to H S . h can be distributed as H N or H S , based
on the probability p wn j k( ), that the wavelet coefficient is
due to noise, or the probability p ws j k( ), that it is due to
signal. We have p w p ws j k n j k( ) ( ), ,= −1 . For the Gaussian
noise case, we estimate p wn j k( ), that a wavelet coefficient
is due to the noise by

( )
( )

p w W w

W dW

n j k j k

j
w j

j k

( )

exp /

, ,

| |,

= >

= −

=

+∞

∫
Prob

er

2
2

22

πσ
σ 2

fc
w j k

j

, .
2σ













(20)

For each wavelet coefficient w j k, , we have to estimate
now the fractions hn and hs of h which should be assigned
to H n and H s . Hence signal information and noise in-
formation are defined by

H X h w

H X h w

s
j

l

s
k

N

j k

n
j

l

n
k

N

j k

j

j

( ) ( )

( ) ( )

,

,

=

=

= =

= =

∑ ∑

∑ ∑

1 1

1 1

.
(21)

The idea for deriving hs and hn is the following: we
imagine that the information h relative to a wavelet coeffi-
cient is a sum of small information components dh, each
of them having a probability to be noise information, or
signal information. Hence

( )h w p w u
h x

x
dun j k n

w

j k
x u

j k( )
( )

,

| |

,
,= −

∂
∂





∫

=
0

(22)

is the noise information relative to a single wavelet coeffi-
cient, and

( )h w p w u
h x

x
dus j k s

w

j k
x u

j k( )
( )

,

| |

,
,= −

∂
∂





∫

=
0

(23)
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hn is the signal information relative to a single wavelet co-
efficient. For Gaussian noise, we have

h w u
w u

du

h w

n j k
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w j k
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s j
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| | ,,=
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,

| | ,) .,

k
j

w j k

j
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−









∫

1
22 0σ σ

erf
(24)

We verify easily that h h hn s+ = .

Multiscale Entropy as a
Measure of Relevant Information
Since the multiscale entropy extracts the information
from the signal only, we ought to verify whether the as-
tronomical content of an image is related to its multiscale
entropy.

For this purpose, we studied the astronomical content
of 200 images of 1024 1024× pixels extracted from scans
of eight different plates carried out by the MAMA facility
(Paris, France) [22] and stored at CDS (Strasbourg,
France) in the Aladin archive [4]. We estimated the con-
tent of these images in three different ways:
▲ By counting the number of objects in an astronomical
catalog (USNO A2.0 catalog) within the image. The
United States Naval Observatory (USNO) catalog was
obtained by source extraction from the same survey plates
as we used in our study.
▲ By counting the number of objects estimated in the im-
age by the Sextractor object detection package [2]. As in
the case of USNO these detections are mainly point
sources (stars, as opposed to spatially extended objects
like galaxies).
▲ By counting the number of structures detected at sev-
eral scales using the MR/1 multiresolution analysis pack-
age [34].

Figure 3 shows the results of plotting these numbers
for each image against the multiscale signal entropy of the
image. The best results are obtained using the MR/1
package, followed by Sextractor and then by the number
of sources extracted from USNO. Of course the latter
two basically miss the content at large scales, which is
taken into account by MR/1.

Sextractor and multiresolution methods were also ap-
plied to a set of CCD images from CFH UH8K, 2MASS,
and the DENIS near-infrared surveys. Results obtained
were very similar to what was obtained above. This seems
to point to multiscale entropy as being a universally appli-
cable measurement of image content and certainly for the
type of scientific image used here.

Subsequently we looked for the relation between the
multiscale entropy and the optimal compression rate of
an image which we can obtain by multiresolution tech-
niques [44]. By optimal compression rate we mean a
compression rate which allows all the sources to be pre-
served and which does not degrade the astrometry and

photometry. Louys et al. [30] and Couvidat [7] have
estimated this optimal compression rate using the com-
pression program of the MR/1 package [34].

Figure 4 shows the relation obtained between the
multiscale entropy and the optimal compression rate for
all the images used in our previous tests including CCD
images. The power law relation is obvious, thus allowing
us to conclude that:
▲ The compression rate depends strongly on the astro-
nomical content of the image. We can then say that com-
pressibility is also an estimator of the content of the
image.
▲ The multiscale entropy allows us to predict the optimal
compression rate of the image.

Filtering from the Multiscale Entropy
The multiscale entropy filtering method (MEF) [45],
[43] consists of measuring the information h relative to
wavelet coefficients and of separating this into two parts
hs , and hn . The expression hs is called the signal informa-
tion and represents the part of h which is definitely not
contaminated by the noise. The expression hn is called the
noise information and represents the part of h which may
be contaminated by the noise. We have h h hs n= + . Fol-
lowing this notation, the corrected coefficient ~w should
minimize:

( ) ( ) ( )J w h w w h wj s j j n j
~ ~ ~= +− α (25)

i.e., there is a minimum of information in the residual
( ~)w w− which can be due to the significant signal, and a
minimum of information which could be due to the noise
in the solution ~w j .

Simulations have shown [43] that the MEF method
produces a better result than the standard soft or hard
thresholding, from both the visual aspect and PSNR
(peak signal-to-noise ratio). Figures 5 and 6 show the fil-
tering respectively on simulated noisy blocks and on a real
spectrum.

Deconvolution from the Multiscale Entropy
Consider an image characterized by its intensity distribu-
tion (the �data�) I, corresponding to the observation of a
�real image� O through an optical system. If the imaging
system is linear and shift-invariant, the relation between
the data and the image in the same coordinate frame is a
convolution:

I O P N= +* . (26)

P is the point spread function (PSF) of the imaging sys-
tem, and N is additive noise. In practiceO P* is subject to
nonstationary noise which one can tackle by simulta-
neous object estimation and restoration [25]. The issue of
more extensive statistical modeling will not be further ad-
dressed here (see [28], [29], and [33]), beyond noting
that multiresolution frequently represents a useful frame-
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work, allowing the user to introduce a priori knowledge
of objects of interest.

We want to determine O x y( , ) knowing I and P. This
inverse problem has led to a large amount of work, the
main difficulties being the existence of: i) a cut-off fre-
quency of the point spread function and ii) the additive
noise (see, for example, [6], [18], and [19]).

Equation (26) is usually in practice an ill-posed prob-
lem. This means that there is not a unique solution.

The most realistic solution is that which minimizes the
amount of information, but remains compatible with the
data. By the MEM method, minimizing the information
is equivalent to maximizing the entropy and the func-
tional to minimize is

J O
I P O

H O
k

N
k k

I

( )
( ( * ) )

( )=
−

+
=
∑

1

2

22σ
α

(27)

where H is either the Frieden or the Gull and Skilling en-
tropy.

Similarly, using the multiscale entropy, minimizing
the information is equivalent to minimizing the entropy
and the functional to minimize is

( )
J O

I P O
H O

k

N
k k

I

( )
( * )

( )=
−

+
=
∑

1

2

22σ
α .

(28)

We have seen that in the case of Gaussian noise, H is
given by the energy of the wavelet coefficients. We have

( )
J O

I P O w

k

N
k k

I j

l
j k

jk

N j

( )
( * ) ,=

−
+

= = =
∑ ∑ ∑

1

2

2
1

2

2
12 2σ

α
σ (29)

whereσ j is the noise at scale j, N j the number of pixels at
the scale j,σ I the noise standard deviation in the data, and
l the number of scales.

Rather than minimizing the amount of information in
the solution, we may prefer to minimize the amount of in-
formation which can be due to the noise. The function is
now

( )
J O

I P O
H O

k

N
k k

I
n( )

( * )
( )=

−
+

=
∑

1

2

22σ
α .

(30)

The solution is found by computing the gradient
∇( ( ))J O and performing the following iterative schema:

O O J On n n+ = − ∇1 γ ( ( )) (31)

Conclusion
The perspectives opened up by:
▲ The range of noise models, catering for a wide range of
eventualities in physical science imagery and signals, and

▲ The new two-pronged but tightly coupled understand-
ing of the concept of information
have given rise to better quality results in applications
such as noise filtering, deconvolution, compression, and
object (feature) detection. We have illustrated some of
these new results in this article, and others can be found in
the references. The theoretical foundations of our per-
spectives have been sketched out. The practical implica-
tions, too, are evident from the range of important signal
processing problems which we can better address with
this armory of methods.

Even broader and more ambitious objectives follow.
As a launch pad for content-based image retrieval, for in-
stance, the results and perspectives described in this arti-
cle are of importance. The results described in this work
are targeted at information and at relevance.

While we have focused on experimental results in as-
tronomical image and signal processing, the possibilities
are apparent in many other application domains.
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▲ 1. Example of connectivity in the wavelet space: contiguous
significant wavelet coefficients form a structure, and following
an interscale relation, a set of structures form an object. Two
structures S Sj j, +1 at two successive scales belong to the same
object if the position pixel of the maximum wavelet coefficient
value of S j is included in Sj +1.

▲ 2. Saturn image (left) and the same data distributed differently
(right). These two images have the same entropy, using any of
the standard entropy definitions.

▲ 3. Multiscale entropy (vertical) versus the number of objects
(horizontal): the number of objects is, respectively, obtained
from (top) the USNO catalog, (middle) the Sextractor package,
and (bottom) the MR/1 package.

▲ 4. Multiscale entropy (vertical) of astronomical images versus
the optimal compression ratio (horizontal). Images which con-
tain a high number of sources have a small ratio and a high
multiscale entropy value. The relation is almost linear.

▲ 5. Top, noisy blocks and filtered blocks overplotted. Bottom, fil-
tered blocks.

▲ 6. Top, real spectrum and filtered spectrum overplotted. Bot-
tom, filtered spectrum.

The Haar transform is less efficient for restoring astro-
nomical images but its simplicity, and the computation
time, may be attractive in practice.
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