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Sparsity and Morphological Diversity
in Blind Source Separation

Jérome Bobin, Jean-Luc Starck,

Abstract—Over the last few years, the development of multi-
channel sensors motivated interest in methods for the coherent
processing of multivariate data. Some specific issues have already
been addressed as testified by the wide literature on the so-called
blind source separation (BSS) problem. In this context, as clearly
emphasized by previous work, it is fundamental that the sources
to be retrieved present some quantitatively measurable diversity.
Recently, sparsity and morphological diversity have emerged as a
novel and effective source of diversity for BSS. Here, we give some
new and essential insights into the use of sparsity in source sepa-
ration, and we outline the essential role of morphological diversity
as being a source of diversity or contrast between the sources.
This paper introduces a new BSS method coined generalized mor-
phological component analysis (GMCA) that takes advantages
of both morphological diversity and sparsity, using recent sparse
overcomplete or redundant signal representations. GMCA is a fast
and efficient BSS method. We present arguments and a discussion
supporting the convergence of the GMCA algorithm. Numerical
results in multivariate image and signal processing are given
illustrating the good performance of GMCA and its robustness to
noise.

Index Terms—Blind source separation (BSS), curvelets, morpho-
logical diversity, overcomplete representations, sparsity, wavelets.

I. INTRODUCTION

N THE blind source separation (BSS) setting, the instanta-
I neous linear mixture model assumes that we are given m
observations {z1,...,zm,} where each {z;}i=1,_ m is a row-
vector of size t; each measurement is the linear mixture of n
source processes

7=1

As the measurements are m different mixtures, source sepa-
ration techniques aim at recovering the original sources S =
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[slT, ey 35] by taking advantage of some information con-
tained in the way the signals are mixed in the observed data.
This mixing model is conveniently rewritten in matrix form

X=AS+N 2)

where X is the m X ¢ measurement matrix, S is the n X ¢ source
matrix and A is the 7 X n mixing matrix. A defines the contribu-
tion of each source to each measurement. An m X ¢t matrix N is
added to account for instrumental noise or model imperfections.

In the blind approach (where both the mixing matrix A and

the sources S are unknown), source separation merely boils
down to devising quantitative measures of diversity or contrast
to differentiate the sources. Most BSS techniques can be sepa-
rated into two main classes, depending on the way the sources
are distinguished.

* Statistical approach—ICA: Well-known independent com-
ponent analysis (ICA) methods assume that the sources
{si}i=1,..n (modeled as random processes) are statisti-
cally independent and non Gaussian. These methods (for
example JADE [1], FastICA and its derivatives [2] and
[3], Infomax) already provided successful results in a wide
range of applications. Moreover, even if the independence
assumption is strong, it is in many cases physically plau-
sible. Theoretically, Lee ef al. [4] emphasize on the equiv-
alence of most of ICA techniques to mutual information
minimization processes. Then, in practice, ICA algorithms
are about devising adequate contrast functions which are
related to approximations of mutual information. In terms
of discernibility, statistical independence is a “source of di-
versity” between the sources.

* Morphological diversity and sparsity: Recently, the sem-
inal paper by Zibulevsky et al. [5] introduced a novel
BSS method that focuses on sparsity to distinguish the
sources. They assumed that the sources are sparse in a
particular basis D (for instance orthogonal wavelet basis).
The sources S and the mixing matrix A are estimated
from a maximum a posteriori estimator with a sparsity-
promoting prior on the coefficients of the sources in D.
They showed that sparsity clearly enhances the diversity
between the sources. The extremal sparse case assumes
that the sources have mutually disjoint supports (sets of
nonzero samples) in the sparse or transformed domain (see
[6] and [7]). Nonetheless, this simple case requires highly
sparse signals. Unfortunately, this is not the case for large
classes of signals and especially in image processing.

A new approach coined multichannel morphological compo-
nent analysis (mmca) is described in [8]. This method is based
on morphological diversity that is the assumption that the n
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sources {s;};=1,...., we look for are sparse in different repre-
sentations (i.e., dictionaries). For instance, a piece-wise smooth
source s; (cartoon picture) is well sparsified in a curvelet tight
frame while a warped globally oscillating source s, (texture)
is better represented using a discrete cosine transform (DCT).
MMCA takes advantage of this “morphological diversity” to
differentiate between the sources with accuracy. Practically,
MMCA is an iterative thresholding algorithm which builds on
the latest developments in modern computational harmonic
analysis (ridgelets [9], curvelets [10]-[12], etc.).

This paper: We extend the MMCA method to the much more
general case where we consider that each source s; is a sum of
several components (si = Zle <pk) each of which is sparse
in a given dictionary. For instance, one may consider a mixture
of natural images in which each is a sum of a piece-wise smooth
part (i.e., edges) and a texture component. Using this model,
we show that sparsity clearly provides enhancements and gives
robustness to noise.

Section III provides an overview of the use of morphological
diversity for component separation in single and multichannel
images. In Section III-A, we introduce a new sparse BSS
method coined generalized morphological component analysis
(GMCA). Section V shows how to speed up GMCA and the
algorithm is described in Section VI; in this section, it is also
shown that this new algorithm can be recast as a fixed-point
algorithm for which we give heuristic convergence arguments
and interpretations. Section VI provides numerical results
showing the good performances of GMCA in a wide range of
applications including BSS and multivariate denoising.

DEFINITIONS AND NOTATIONS. A vector y will be a row
vector y = [y1,...,Y:]. Bold symbols represent matrices and
MT is the transpose of M. The Frobenius norm of M is ||Y||2
defined by ||Y||3 = Trace (YTY). The kthentry of y,, is y, [k],
Yp is the pth row and y? the gth column of Y.

In the proposed iterative algorithms, () will be the estimate
of y atiteration h. The notation ||y||o defines the £ pseudo-norm
of y (i.e the number of nonzero elements in y) while ||y||1 is
the £y norm of y. D = [¢],..., qS%]T defines a T x t dictio-
nary the rows of which are unit £5-norm atoms {¢; };. The mu-
tual coherence of D (see [13] and references therein) is up =
maxg, £4; ¢i¢JT|. When T" > ¢, this dictionary is said to be
redundant or overcomplete. In the next section, we will be in-
terested in the decomposition of a signal y in D. We, thus,
define S7(y) (respectively, S;”(y)) the set of solutions to the
minimization problem min. ||c||o s.t. y = ¢D (respectively,
min, ||c||1 s.t. y = ¢D). When the £ sparse decomposition of
a given signal y has a unique solution, let « = Ap(y) where
y = aD denote this solution. Finally, we define As(-) to be
a thresholding operator with threshold ¢ (hard thresholding or
soft thresholding; this will be specified when needed).

The support A(y) of row vector y is A(y) = {k; |y[k]| > 0}.
Note that the notion of support is well-adapted to £y-sparse sig-
nals as these are synthesized from a few nonzero dictionary el-
ements. Similarly, we define the 6-support of y as As(y) =
{F; ikl > 6llyllec} where [|ylloc = maxy, [y[K]| is the £o
norm of y. In sparse source separation, classical methods as-
sume that the sources have disjoint supports. We define a weaker
property for signals y, and y, to have é-disjoint supports if
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As(yp) N As(y,) = 0. We further define §* = min{6; As(y,) N
As(yq)= 0:¥ p # g}

Finally, as we deal with source separation, we need a way to
assess the separation quality. A simple way to compare BSS
methods in a noisy context uses the mixing matrix criterion
Ap = ||I, — PATA||;, where AT is the pseudo-inverse of
the estimate of the mixing matrix A, and P is a matrix that re-
duces the scale/permutation indeterminacy of the mixing model.
Indeed, when A is perfectly estimated, it is equal to A up to
scaling and permutation. As we use simulations, the true sources
and mixing matrix are known, and, thus, P can be computed
easily. The mixing matrix criterion is, thus, strictly positive un-
less the mixing matrix is correctly estimated up to scale and
permutation.

II. MORPHOLOGICAL DIVERSITY

A signal y is said to be sparse in a waveform dictionary D if
it can be well represented from a few dictionary elements. More
precisely, let us define « such that

y = aD. 3

The entries of « are commonly called “coefficients” of y in
D. In that setting, y is said to be sparse in D if most entries
of a are nearly zero and only a few have “significant” am-
plitudes. Particular /,-sparse signals are generated from a few
nonzero dictionary elements. Note that this notion of sparsity
is strongly dependent on the dictionary D; see, e.g., [14] and
[15], among others. As discussed in [16], a single basis is often
not well-adapted to large classes of highly structured data such
as “natural images.” Furthermore, over the past ten years, new
tools have emerged from modern computational harmonic anal-
ysis: wavelets, ridgelets [9], curvelets [10]-[12], bandlets [17],
contourlets [18], to name a few. It is quite tempting to combine
several representations to build a larger dictionary of waveforms
that will enable the sparse representation of large classes of sig-
nals. Nevertheless, when D is overcomplete (i.e., T' > t), the
solution of (3) is generally not unique. In that case, the authors
of [14] were the first to seek the sparsest «, in terms of £y-pseudo
norm, such that y = aD. This approach leads to the following
minimization problem:

min ||al|o s.t. y = aD. @)

Unfortunately, this is an NP-hard optimization problem which
is combinatorial and computationally unfeasible for most ap-
plications. The authors of [19] also proposed to convexify the
constraint by substituting the convex ¢; norm for the £y norm
leading to the following linear program:

min ||«|]; s.t. y = aD. 5)
«

This problem can be solved for instance using interior-point
methods. It is known as basis pursuit [19] in the signal pro-
cessing community. Nevertheless, problems (4) and (5) are
seldom equivalent. Important research concentrated on finding
equivalence conditions between the two problems [15], [20],
[21].
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In [16] and [22], the authors proposed a practical algorithm
coined morphological component analysis (MCA) aiming at de-
composing signals in overcomplete dictionaries made of a union
of bases. In the MCA setting, y is the linear combination of D
morphological components

D D
y:Z%:Zak‘I’k (6)
k=1 k=1

where {®;};,—;, . p are orthonormal basis of R’. Morpholog-
ical diversity then relies on the sparsity of those morphological
components in specific bases. In terms of £y norm, this morpho-
logical diversity can be formulated as follows:

V{ij}€{l,....D} j#i=|p®]

< e

.

(7
In other words, MCA then relies on the incoherence between
the subdictionaries {®;};—1 _p to estimate the morphological

components {@; };=1, .. p by solving the following convex min-
imization problem:

.....

%“I’ZT

2
1—{—}@‘ . ®)
2

D
Y- Z%‘
i=1

Note that the minimization problem in (8) is closely related to
basis pursuit denoising (BPDN); see [19]. In [23], we proposed
a particular block-coordinate relaxation, iterative thresholding
algorithm (MCA/MOM) to solve (8). Theoretical arguments as
well as experiments were given showing that MCA provides at
least as good results as basis pursuit for sparse overcomplete de-
compositions in a union of bases. Moreover, MCA turns out to
be clearly much faster than basis pursuit. Then, MCA is a prac-
tical alternative to classical sparse overcomplete decomposition
techniques.

We would like to mention several other methods based on
morphological diversity in the specific field of texture/natural
part separation in image processing—[24]-[27].

In [8], we introduced a multichannel extension of MCA
coined multichannel morphological component analysis
(MMCA). In the MMCA setting, we assumed that the sources
S in (2) have strictly different morphologies (i.e., each source
s; was assumed to be sparsely represented in one particular
orthonormal basis ®;). An iterative thresholding block-coordi-
nate relaxation algorithm was proposed to solve the following
minimization problem:

D
i} = Arg min ‘
{i} = Argmin ;

{A, S} = argmin ;

skéful +R|X — AS|Z. ()

We then showed in [8] that sparsity and morphological diversity
improves the separation task. It confirmed the key role of mor-
phological diversity in source separation to distinguish between
the sources.

In Section III, we will introduce a novel way to account
for sparsity and morphological diversity in a general BSS
framework.
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III. GENERALIZED MORPHOLOGICAL COMPONENT ANALYSIS

A. GMCA Framework

The GMCA framework states that the observed data X
are classically generated as a linear instantaneous mixture of
unknown sources S using an unknown mixing matrix A as
in (2). Note that we consider here only the overdetermined
source separation case where m > n and, thus, A has full
column rank. Future work will be devoted to an extension to
the under-determined case ™ < m. An additive perturbation
term N is added to account for noise or model imperfection.
From now, D is the concatenatiogﬂ of D orthonormal bases
{®:}i=1,..0 D= [éf e ,@f,} . We assume a priori that
the sources {s;}i=1,...» are sparse in the dictionary D. In the
GMCA setting, each source is modeled as the linear combina-
tion of D morphological components where each component is
sparse in a specific basis

D D
Vie{l,...,n}; si=Y o= aindy (10)
k=1 k=1

GMCA seeks an unmixing scheme, through the estimation of
A, which leads to the sparsest sources S in the dictionary D.
This is expressed by the following optimization task written in
its augmented Lagrangian form:

n D
{A.S} = argrfi,ig;g’

eudf | +rIX - ASJ3 (1)

where each row of S is such that s; = Z,?:l @ix. Obviously,
this algorithm is combinatorial by nature. We then propose to
substitute the ¢; norm for the ¢y sparsity, which amounts to
solving the optimization problem

n D
{A,S} = argnAl’lélzng_l ‘

More conveniently, the product AS can be split into n x D
multichannel morphological components: AS = Y, , a’wix.
Based on this decomposition, we propose an alfernating
minimization algorithm to estimate iteratively one term
at a time. Define the {i,k}th multichannel residual by
Xikg = X = Y pare{ik) @pq as the part of the data
X unexplained by the multichannel morphological component
aiwik. Estimating the morphological component ¢;;; = ;P
assuming A and ¢(,q)2(ir) are fixed leads to the compo-
nent-wise optimization problem

eudf || +rIX - AS|3. (12)

L a3)

Pik = arg I}’}in H%k‘I’;}FHI + 5 || Xie — a'oir
ik

or, equivalently

(14)

X 2
Qi = argrgin ||oz7;k||1 + kK HX,,kq)Z —a'ok ‘2
ik

since here ®;, is an orthogonal matrix. By classical ideas in
convex analysis, a necessary condition for ¢&;, to be a minimizer
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of the above functional is that the null vector be an element of
its subdifferential at &, that is

0€— o X ®T + o + Oeuklls  (15)

1 1
la?ll3 250?13

where ||k ||1 is the subgradient defined as (owing to the sep-
arability of the /;-norm)
I e Ala)
otherwise [ -

ull] = sign(afl]),
ull] e [=1,1],

Hence, (15) can be rewritten equivalently as two conditions

leading to the following closed-form solution:

bl = {0, 1f’ (a X; kcpT) [z]‘ <

o', otherwise

Ll {u eR’

2" (16)

where

C= (lo3)a” X @ —(1/26]a B)sign (o X @7 ).
This exact solution is known as soft thresholding. Hence, the
closed-form estimate of the morphological component ¢;y, is

ik = <” 1H2ai X 1 @), > &, with § = (17)

26|a’(| 3

Now, considering fixed {a?},; and S, updating the column a‘
is then just a least-squares estimate

it = Za sp | sT (18)
e 2
where s, = Ele ir. In a simpler context, this iterative

and alternating optimization scheme has already proved its
efficiency in [8].

In practice, each column of A is forced to have unit {5 norm
at each iteration to avoid the classical scale indeterminacy of
the product AS in (2). The GMCA algorithm is summarized as
follows.

1) Set the number of iterations I, and threshold (),

2) While ¢ (1) is higher than a given lower bound 6,;, (e.g.,
can depend on the noise variance).

For:=1,...,n
(h)

* Compute the residual term 7,
~(h—1
mates of ©(pq1£{ik} cpim};{ik} are fixed

>

{p.a}#{i,k}

assuming the current esti-

~(h—1)

(h) Li(h=1)7T
=a Pipa)

(h—1)
P
Tik a

X —

» Estimate the current coefficients of np(k) by Thresholding
with threshold §()

& k = As(n) (Tf,’?@f) .

e Get the new estimate of ;; by reconstructing from the
selected coefficients a(,’:)

Bl = oy s
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Update a’ assuming aP**" and the morphological compo-
nents gbz(,};) are fixed
O 1
BT
1513

n
wp(R—1) _ ~(h)T
_ P (h) | ()
E a 5y s .

pF#i

Decrease the thresholds ().

GMCA is an iterative thresholding algorithm such that at each
iteration it first computes coarse versions of the morphological
component {;}i=1, . nk=1,. p for a fixed source s;. These
raw sources are estimated from their most significant coeffi-
cients in D. Hence, the corresponding column a' is estimated
from the most significant features of s;. Each source and its
corresponding column of A are then alternately estimated. The
whole optimization scheme then progressively refines the es-
timates of S and A as § decreases towards 6,,;,. This partic-
ular iterative thresholding scheme provides true robustness to
the algorithm by working first on the most significant features
in the data and then progressively incorporating smaller details
to finely tune the model parameters.

B. Dictionary D

As an MCA-like algorithm (for more details, see [8] and
[23]), the GMCA algorithm involves multiplications by ma-
trices <I>£ and ®;,. Thus, GMCA is worthwhile in terms of com-
putational burden as long as the redundant dictionary D is a
union of bases or tight frames. For such dictionaries, matrices
¢I>Z and @, are never explicitely constructed, and fast implicit
analysis and reconstruction operators are used instead (for in-
stance, wavelet transforms, global or local discrete cosine trans-
form, etc.).

C. Complexity Analysis

Here, we provide a detailed analysis of the complexity of
GMCA. We begin by noting that the bulk of the computation
is invested in the application of @f and ®;, at each iteration
and for each component. Hence, fast implicit operators asso-
ciated to ®,, or its adjoint are of key importance in large-scale
applications. In our analysis below, we let V}, denote the cost
of one application of a linear operator ®;, or its adjoint. The
computation of the multichannel residuals for all (i, k) costs
O(nDm¢t) flops. Each step of the doublev “For” loop computes
the correlation of this residual with a* using O(mt) flops.
Next, it computes the residual correlations (application of
@Z), thresholds them, and then reconstructs the morphological
component ;. This costs O(2Vy, + T) flops. The sources
are then reconstructed with O(nDt), and the update of each
mixing matrix column involves O(m¢t) flops. Noting that in
our setting, n ~ m < t, and V;, = O(t) or O(tlogt) for most
popular transforms, the whole GMCA algorithms then costs
O (Inaxn®Dt) + O (2o S2p_, Ve +nDT). Thus, in
practice, GMCA could be computationally demanding for large
scale high-dimensional problems. In Section IV, we prove that
adding some more assumptions leads to a very simple, accurate
and much faster algorithm that enables to handle very large
scale problems.
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D. Thresholding Strategy

1) Hard or Soft Thresholding?: Rigorously, we should use a
soft-thresholding process. In practice, hard thresholding leads to
better results. Furthermore, in [23], we empirically showed that
the use of hard thresholding is likely to provide the ¢ sparse
solution for the single channel sparse decomposition problem.
By analogy, we guess that the use of hard thresholding is likely
to solve the multichannel ¢y norm problem instead of (12).

2) Handling Noise: The GMCA algorithm is well suited to
deal with noisy data. Assume that the noise standard deviation is
on.- Then, we simply apply the GMCA algorithm as described
above, terminating as soon as the threshold 6 gets less than T7oN;
T typically takes its value in the range 3—4. This attribute of
GMCA makes it a suitable choice for use in noisy applications.
GMCA not only manages to separate the sources, but also suc-
ceeds in removing an additive noise as a by-product.

E. Bayesian Point of View

We can also consider GMCA from a Bayesian viewpoint.
For instance, let us assume that the entries of the mixtures
{zi}i=1,..m, the mixing matrix A, the sources {s;};j=1, n
and the noise matrix N are random variables. For simplicity,
N is Gaussian; its samples are iid from a multivariate Gaussian
distribution A/(0, X ) with zero mean and covariance matrix
¥ . The noise covariance matrix X is assumed known. For
simplicity, the noise samples are considered to be decorrelated
from one channel to the other; the covariance matrix Xy is,
thus, diagonal. We assume that each entry of A is generated
from a uniform distribution. Let’s remark that other priors on A
could be imposed here; e.g., known fixed column for example.

We assume that the sources {s;};=1. ., are statistically
independent from each other and their coefficients in D (the
{ai}i=1, . n) are generated from a Laplacian law

jn; - plaq) = [ pleilk]) o exp (—plleillr) -

k=1
19)

In a Bayesian framework, the use of the maximum a posteriori

estimator leads to the following optimization problem:

Vi=1,...

n D
- . T
{A,S} = argmin | X — AS|5, + 2u; ; ) Pir®), H1
- (20)
where || - ||z, is the Frobenius norm defined such that:

IX[|g, = Trace (XTZ;IIX . Note that this minimization
task is similar to (11), except that here the metric || - ||z,
accounts for noise. In the case of homoscedastic and decor-
related noise (i.e., Xn = UlQ\IIm), problems (12) and (20) are
equivalent (with £ = 1/ (2u0g)).

F. Hlustrating GMCA

We illustrate here the performance of GMCA with a simple
toy experiment. We consider two sources s; and s, sparse
in the union of the DCT and a discrete orthonormal wavelet
basis. Their coefficients in D are randomly generated from a
Bernoulli-Gaussian distribution: the probability for a coef-
ficient {cv 2[k]}r=1, . 7 to be nonzero is p = 0.01 and its
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Mixing Matrix Criterion
o

10 15 20
SNRin dB

Fig. 1. Evolution of the mixing matrix criterion A 4 as the noise variance
varies: (solid line) GMCA, (*)EFICA, (+) RNA. Abscissa: Signal-to-noise
ratio in decibels. Ordinate: Mixing matrix criterion value.

amplitude is drawn from a Gaussian distribution with mean
0 and variance 1. The signals were composed of ¢ = 1024
samples. Fig. 1 illustrates the evolution of A as the noise
variance decreases. We compare our method to the relative
Newton algorithm (RNA) [28] that accounts for sparsity and
EFICA [3]. The latter is a FastICA variant designed for highly
leptokurtotic sources. Both RNA and EFICA were applied after
“sparsifying” the data via an orthonormal wavelet transform.
Fig. 1 shows that GMCA behaves similarly to state-of-the-art
sparse BSS techniques.

IV. SPEEDING Up GMCA

A. Introduction: The Orthonormal Case

Let us assume that the dictionary D is no longer redundant
and reduces to an orthonormal basis. The optimization problem
(12) then boils down to the following one:

{A,S} = arg I}\llél K||Ox — Aal|} + z; |lillo with S = @D

. @1
where each row of ©x = XDT stores the decomposition of
each observed channel in D. Similarly, the £; norm problem (12)
reduces to

{A,S} = ELI‘gI}Algl K||Ox — Aal5 + Zl leeil|1 with

S =aD. (22)
The GMCA algorithm no longer needs transforms at each it-
eration as only the data X have to be transformed once in D.
Clearly, this case is computationally much cheaper. Unfortu-
nately, no orthonormal basis is able to sparsely represent large
classes of signals and yet we would like to use “very” sparse
signal representations which motivated the use of redundant rep-
resentations in the first place. Section V gives a few arguments
supporting the substitution of (22) for (12) even when the dic-
tionary D is redundant.

B. Redundant Case

In this section, we assume D is redundant. We consider that
each datum {:L‘i}i=17___7m has a unique ¢y sparse decomposi-
tion (i.e., 7 (x;) is a singleton for any i € {1,...,m}). We
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also assume that the sources have unique £ sparse decomposi-
tions (i.e., ST (s;) is a singleton for all i € {1,...,n}). We
then define Ox = [Ap(ml)T, . ,Ap(xm)T]T and Og =
[Ap(s1)7, ..., Ap(sa)T]"

Up until now, we believed in morphological diversity as the
source of discernibility between the sources we wish to separate.
Thus, distinguishable sources must have “ discernibly different”
supports in D. Intuition then tells us that when one mixes very
sparse sources their mixtures should be less sparse. Two cases
have to be considered.

» Sources with disjoint supports in D: The mixing process
increases the £y norm: ||Ap(z;)|lo > ||Ap(s;)||o for all
j€e{l,...,m}andi € {1,...,n}. When D is made of a
single orthogonal basis, this property is exact.

e Sources with §-disjoint supports in D: The argument
is not so obvious; we guess that the number of signifi-
cant coefficients in D is higher for mixture signals than
for the original sparse sources with high probability:
Card (As(z;)) > Card (As(s;)) forany j € {1,...,m}
andi € {1,...,n}.

Owing to this “intuitive” viewpoint, even in the redundant

case, the method is likely to solve the following optimization
problem:

{A, 65} = arg min x[|Ox — ABs|3 +[®s[lo.  (23)
3 IS

Obviously, (23) and (11) are not equivalent unless D is or-
thonormal. When D is redundant, no rigorous mathematical
proof is easy to derive. Nevertheless, experiments will outline
that intuition leads to good results. In (23), note that a key point
is still doubtful: sparse redundant decompositions (operator
Ap) are nonlinear and in general no linear model is preserved.
Writing Ap (Ox) = AAp (Og) at the solution is then an
invalid statement in general. Section IV will focus on this
source of fallacy.

C. When Nonlinear Processes Preserve Linearity

Whatever the sparse decomposition used (e.g., matching pur-
suit [29], basis pursuit [19]), the decomposition process is non-
linear. The simplification we made earlier is no longer valid un-
less the decomposition process preserves linear mixtures. Let us
first focus on a single signal: Assume that y is the linear com-
bination of m original signals (y could be a single datum in the
BSS model)

(24)

m
Y= Z ViYi-
=1

Assuming each {y;};=1,. ., has a unique ¢, sparse decomposi-
tion, we define o; = Ap(y;) foralli € {1,...,m}. As defined
earlier, 82(3/) is the set of £, sparse solutions perfectly synthe-
sizing y: forany a € S}Z(y); y = o/D. Amongst these solutions,
one is the linearity-preserving solution a* defined such that

m
Oé*: E V;o.
i=1

(25)
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As o* belongs to S}Z (y), a sufficient condition for the ¢, sparse
decomposition to preserve linearity is the uniqueness of the
sparse decomposition. Indeed, [14] proved that, in the general
case, if

(26)

then this is the unique maximally sparse decomposition, and that
in this case Sg(y) contains this unique solution as well. There-
fore, if all the sources have sparse enough decompositions in D
in the sense of inequality (26), then the sparse decomposition
operator Ap () preserves linearity.

In [23], the authors showed that when D is the union of D
orthonormal bases, MCA is likely to provide the unique ¢
pseudo-norm sparse solution to problem (4) when the sources
are sparse enough. Furthermore, in [23], experiments illustrate
that the Donoho-Huo uniqueness bound is far too pessimistic.
Uniqueness should hold, with high probability, beyond the
bound (26). Hence, based on this discussion and the results
reported in [23], we consider in the next experiments that the
operation Ap(y) which stands for the decomposition of y in D
using MCA, preserves linearity.

1) Inthe BSS Context: Inthe BSS framework, recall that each
observation {z; };=1.... m is the linear combination of n sources

n

Tr; = E @ijSj.

=1

27)

Owing to the last paragraph, if the sources and the observa-
tions have unique £y-sparse decompositions in D then the linear
mixing model is preserved, that is

n

Ap (z;) = ai;Ap (s))

Jj=1

(28)

and we can estimate both the mixing matrix and the sources in
the sparse domain by solving (23).

V. FAST GMCA ALGORITHM

According to the last section, a fast GMCA algorithm
working in the sparse transformed domain (after decomposing
the data in D using a sparse decomposition algorithm) could
be designed to solve (21) [respectively, (22)] by an iterative
and alternate estimation of ®g and A. There is an additional
important simplification when substituting problem (22) for
(12). Indeed, as m > n, it turns out that (22) is a multichannel
overdetermined least-squares error fit with £; -sparsity penaliza-
tion. A closely related optimization problem to this augmented
lagrangian form is

min |©x — AOg||3 subject to ||Os|l1 <q  (29)
s IS

which is a multichannel residual sum of squares with a
£1-budget constraint. Assuming A is known, this problem is
equivalent to the multichannel fitting regression problem with

{1-constraint addressed by the homotopy method in [30] or
the LARS/Lasso in [31]. While the latter methods are slow
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stepwise algorithms, we propose the following faster stagewise
method. ~
« Update the coefficients:0g = \s (ATOx ), As is a thresh-
olding operator (hard for (21) and soft for (22)) and the
threshold § decreases with increasing iteration count as-
suming A is fixed.

* Update the mixing matri)1( A by a least-squares estimate:
A = 6x6; (6:65)

Note that the latter two step estimation scheme has the flavour of
the alterning sparse coding/dictionary learning algorithm pre-
sented in [32] in a different framework.

The two stages iterative process leads to the following fast
GMCA algorithm.

1) Perform a MCA to each data channel to compute ®@x

Ox = [Ap(x)"]"

and threshold

Imax

2) Set the number of iterations

{650) }izl .....

5 ,n
3) While each 6" is higher than a given lower bound 8.,
(e.g., can depend on the noise variance).
— Proceed with the following iteration to estimate the co-
efficients of the sources Og at iteration /4 assuming A
is fixed

e+ = \u) (AT(}L)6X> .

— Update A assuming Og is fixed
~ ~ T ~ (k) ~ (R)T -1
A1) _ ex@;’” (e(si)e(si) ) ‘

— Decrease the threshold 6(*).

4) Stop when 8 = §in.

The coarse to fine process is also the core of this fast version
of GMCA. Indeed, when 5 ig high, the sources are estimated
from their most significant coefficients in D. Intuitively, the
coefficients with high amplitude in g are i) less perturbed
by noise and ii) should belong to only one source with over-
whelming probability. The estimation of the sources is refined
as the threshold § decreases towards a final value §.,;,. Sim-
ilarly to the previous version of the GMCA algorithm (see
Section III-A), the optimization process provides robustness to
noise and helps convergence even in a noisy context. Exper-
iments in Section VI illustrate the good performances of our
algorithm.

1) Complexity Analysis: When the approximation we made
is valid, the fast simplified GMCA version requires only the ap-
plication of MCA on each channel, which is faster than the non-
fast version (see Section III-C). indeed, once MCA is applied
on each channel, each iteration requires o(7 maXnQDt) flops.

A. Fixed-Point Algorithm

Recall that the GMCA algorithm is composed of two steps: 1)
estimating S assuming A is fixed, ii) Inferring the mixing matrix
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A assuming S is fixed. In the simplified GMCA algorithm, the
first step boils down to a least-squares estimation of the sources
followed by a thresholding, as follows:

Os = \s (ATGX) (30)

where A is the pseudo-inverse of the current estimate A of the
mixing matrix. The next step is a least-squares update of A
- ~T /[~ ~T\ !
A = 0564 (eses) . 31)

Define és = AT@X such that és = As (és) and rewrite the
previous equation as follows:

- - ~ \T R ~ AT\~

A= 40 (65)" (1 (65) 24 (65)")
Interestingly, (32) turns out to be a fixed-point algorithm. In
Section VI, we will have a look at its behavior.

(32)

B. Convergence Study

1) From a Deterministic Point of View: A fixed point of the
GMCA algorithm is reached when the following condition is
verified:

R - \T R o \T
Osxs (0s) =25 (65) As (65) - (33)
Note that owing to the nonlinear behavior of As(-) the first term
is generally not symmetric as opposed to the second. This condi-
tion can, thus, be viewed as a kind of symmetrization condition

T

on the matrix és As (és) . Let’s examine each element of this
matrix in the n = 2 case without loss of generality. We will only
deal with two distinct sources s, and s,. On the one hand, the
diagonal elements are such that

[és)\g (ésﬂ

T

> i [ As (6 [])

Wzﬁ@gw%ﬂ

The convergence condition is then always true for the diagonal
elements. On the other hand, the off-diagonal elements of (33)
are as follows:

Y Gplklaglk] =

(34
pp

>

ap[K]cg K]

keAs(&y) k€ As (dp)NAs (Gq)
> dylklag[k] = > aplk]ag[k]. (35)
keAs(ap) kEAs(ap)NAs(bg)

Let us assume now that the sources have ¢-disjoint supports. De-
fine ¢* the minimum scalar 6 such that s, and s, are ¢-disjoint.
Similarly, we assume that $, and 3, are §-disjoint and 6 is the
minimum scalar 6 such that §, and §, are §-disjoint. Thus, for
any § > 6T Zkexﬁ(ap)m\ﬁ(aq) Gy [k]dg K] = 0.

As we noted earlier in Section IV-B, when the sources are
sufficiently sparse, mixtures are likely to have wider ¢ supports
than the original sources: 6* < §' unless the sources are well
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Fig. 2. Contour plots of a simulated joint pdf of two independent sources gen-
erated from a generalized Gaussian law f(2) o exp(—p|z[®-®). Left: Joint
pdf of the original independent sources. Right: Joint pdf of two mixtures.

estimated. Thus, for any 6* < § < ¢ the convergence condition
is not true for the off-diagonal terms in (33) as

> dylklag[kl £ 0and D dylkla[k] # 0. (36)

kEAs (@q) kEANs (dp)

Thus, the convergence criterion is valid when §* = 6T i.e., the
sources are correctly recovered up to an “error” 6*. When the
sources have strictly disjoint supports (6* = 0), the conver-
gence criterion holds true when the estimated sources perfectly
match the true sources.

2) Statistical Heuristics: From a statistical point of view,
the sources s, and s, are assumed to be random processes.
We assume that the entries of «,[k] and oy [k] are identically
and independently generated from a sparse prior with a heavy-
tailed probability density function (pdf) which is assumed to be
unimodal at zero, even, monotonically increasing for negative
values. For instance, any generalized Gaussian distribution ver-
ifies those hypotheses. Fig. 2 represents the joint pdf of two in-
dependent sparse sources (on the left) and the joint pdf of two
mixtures (on the right). We then take the expectation of both

sides of (35)

> E{ay[klag[k]} =
keAs(aq) kEAs(ap)NAs(Gg)

E{d,[klag[k]}

(37)
and symmetrically

Y E{&[Ra M) =

kEAs(61p)

>

keAs(ap)NAs(ag)

E{dp[k]aqk]}-

(38)
Intuitively, the sources are correctly separated when the
branches of the star shaped contour plot (see Fig. 2 on the left)
of the joint pdf of the sources are collinear to the axes.

The question is then: Do (37) and (38) lead to a
unique solution? Do acceptable solutions belong to the
set of fixed points? Note that if the sources are perfectly
estimated, then E{\s(Og)\s(Og)’} is diagonal and
E{Os)s (Os)} = E{A\s(Os)\s (Os)}. As expected, the
set of acceptable solutions (up to scale and permutation) veri-
fies the convergence condition. Let us assume that &, and &,
are uncorrelated mixtures of the true sources «;, and cy; hard
thresholding then correlates &, and As(d&,) (respectively, o,
and As(dyp)) unless the joint pdf of the estimated sources c,
and «, has the same symmetries as the thresholding operator
(this property has also been outlined in [33]). Fig. 3 gives a
rather good empirical point of view of the previous remark. On
the left, Fig. 3 depicts the joint pdf of two unmixed sources that
have been hard thresholded. Note that whatever the thresholds

2669

Fig. 3. Contour plots a simulated joint pdf of two independent sources
generated from a generalized Gaussian law that have been hard thresholded.
Left: Joint pdf of the original independent sources that have been hard thresh-
olded. Right: Joint pdf of two mixtures of the hard-thresholded sources.

we apply, the thresholded sources are still decorrelated as
their joint pdf verifies the same symmetries as the thresholding
operator. On the contrary, on the right of Fig. 3, the hard-thresh-
olding process further correlates the two mixtures.

For a fixed ¢, several fixed points lead to decorrelated coef-
ficient vectors &, and &,. Fig. 3 provides a good intuition: for
fixed ¢ the set of fixed points is divided into two different cat-
egories: 1) those which depend on the value of ¢ (plot on the
right) and ii) those that are valid fixed points for all values of ¢
(plot on the left of Fig. 3). The latter solutions lead to accept-
able sources up to scale and permutation. As GMCA involves a
decreasing thresholding scheme, the final fixed points are stable
if they verify the convergence conditions (37) and (38) for all 6.
To conclude, if the GMCA algorithm converges, it should con-
verge to the true sources up to scale and permutation.

C. Handling Noise

Sparse decompositions in the presence of noise leads to more
complicated results on the support recovery property (see [34]
and [35]), and no simple results can be derived for the lin-
earity-preserving property. In practice, we use MCA as a prac-
tical sparse signal decomposition. When accounting for noise,
MCA is stopped at a given threshold which depends on the noise
variance (typically, 3o where on is the noise standard devi-
ation). MCA then selects the most significant coefficients of
the signal we wish to decompose in D. When the signals are
sparse enough in D, such coefficients (with high amplitudes)
are less perturbed by noise, and, thus, GMCA provides good
results. Indeed, for “very” sparse decompositions with a rea-
sonable signal-to-noise ratio, the influence of noise on the most
significant coefficients is rather slight [34]; thus, the fixed-point
property (33) is likely to hold true for most significant coeffi-
cients. In that case, “very” sparse decompositions provide ro-
bustness to noise. These arguments will be confirmed and sup-
ported by the experiments of Section VI.

D. Morphological Diversity and Statistical Independence

In Section VI, we give experimental results of comparisons
between GMCA and well-known BSS and independent compo-
nent analysis (ICA) methods. Interestingly, there are close links
between ICA and GMCA.

* Theoretically morphological diversity is, by definition, a
deterministic property. As we pointed out earlier, from a
probabilistic viewpoint, sources generated independently
from a sparse distribution should be morphologically dif-
ferent (i.e., with 6-disjoint support with high probability).

» Algorithmically we pointed out that GMCA turns to be a
fixed-point algorithm with convergence condition (33). In
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Fig. 4. The sparser the better—first column: Original sources. Second column:
Mixtures with additive Gaussian noise (SNR = 19 dB). Third column: Sources
estimated with GMCA using a single discrete orthogonal wavelet transform
(DWT). Fourth column: Sources estimated with GMCA using a redundant dic-
tionary made of the union of a DCT and a DWT.

[36], the authors present an overview of the ICA fauna in
which (33) then turns out to be quite similar to some ICA-
like convergence conditions for which a fixed point in B is
attained when a matrix E{ f (BX) BX”'} is symmetric (in
this equation B is the unmixing matrix and f(-) is the ICA
score function). In our setting, the operator As (.) plays a
similar role as the score function f(-) in ICA.

In the general case, GMCA will tend to estimate a “mixing”
matrix such that the sources are the sparsest in D. We will take
advantage of this propensity to look for a multichannel repre-
sentation (via the estimation of A) in which the estimated com-
ponents are “very” sparse in D. This point will be illustrated in
Section VI to denoise color images.

VI. RESULTS

A. The Sparser, the Better

Up until now, we used to claim that sparsity and morpholog-
ical diversity are the clue for good separation results. The role
of morphological diversity is twofold.

¢ Separability: The sparser the sources in the dictionary D
(redundant or not), the more “separable” they are. As we
noticed earlier, sources with different morphologies are di-
versely sparse (i.e., they have d-disjoint supports in D with
a “small” §). The use of a redundant D is, thus, motivated
by the grail of sparsity in a wide class of signals for which
sparsity means separability.

* Robustness to noise or model imperfections: the sparser
the sources, the least dramatic the noise. In fact, sparse
sources are concentrated on few significant coefficients in
the sparse domain for which noise is a slight perturbation.
As a sparsity-based method, GMCA should be less sensi-
tive to noise.

Furthermore, from a signal processing point of view, dealing
with highly sparse signals leads to easier and more robust
models. To illustrate those points, let us consider n = 2
unidimensional sources with 1024 samples (those sources are
the Bump and HeaviSine signals available in the WaveLab
toolbox—see [37]). The first column of Fig. 4 shows the two
synthetic sources. Those sources are randomly mixed so as to
provide m = 2 observations portrayed by the second column
of Fig. 4. We assumed that MCA preserves linearity for such
sources and mixtures (see our choice of the dictionary later on).
The mixing matrix is assumed to be unknown. Gaussian noise
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Fig. 5. The sparser the better: Behavior of the mixing matrix criterion when
the noise variance increases for (dashed line) DWT — GMCA and (solid line)
(DWT 4+ DCT) — GMCA.

with variance o is added. The third and fourth columns of
Fig. 4 depict the GMCA estimates computed with respectively
i) a single orthonormal discrete wavelet transform (DWT) and
ii) a union of DCT and DWT. Visually, GMCA performs quite
well either with a single DWT or with a union of DCT and
DWT.

Fig. 5 gives the value of the mixing matrix criterion
Aa = |I. —PATAJ|; as the signal-to-noise ratio (SNR)
101ogy, (||AS||3/|IN|3) increases. When the mixing matrix is
perfectly estimated, Ay = 0, otherwise Aa > 0. In Fig. 5, the
dashed line corresponds to the behavior of GMCA in a single
DWT; the solid line depicts the results obtained using GMCA
when D is the union of the DWT and the DCT. On the one
hand, GMCA gives satisfactory results as A 5 is rather low for
each experiment. On the other hand, the values of A provided
by GMCA in the MCA-domain are approximately five times
better than those given by GMCA using a unique DWT. This
simple toy experiment clearly confirms the benefits of sparsity
for BSS. Furthermore it underlines the effectiveness of “very”
sparse representations provided by overcomplete dictionaries.
This is an occurrence of what D. L. Donoho calls the “blessing
of dimensionality” [38].

B. Dealing With Noise

The last paragraph emphasized on sparsity as the key for
very efficient source separation methods. In this section, we will
compare several BSS techniques with GMCA in an image sepa-
ration context. We chose three different reference BSS methods.

* JADE: The well-known independent component analysis
(ICA) based on fourth-order statistics (see [1]).

» Relative Newton Algorithm: The separation technique we
already mentioned. This seminal work (see [28]) paved the
way for sparsity in BSS. In the next experiments, we used
the relative Newton algorithm (RNA) on the data trans-
formed by a basic orthogonal bidimensional wavelet trans-
form (2-D DWT).

* EFICA: This separation method improves the FastICA al-
gorithm for sources following generalized Gaussian distri-
butions. We also applied EFICA on data transformed by a
2-D DWT where the assumptions on the source distribu-
tions is appropriate.

Fig. 6 shows the original sources (top pictures) and the 2 mix-
tures (bottom pictures). The original sources s; and s, have a
unit variance. The matrix A that mixes the sources is such that
r1 = 02581 + 0582 + nq and To = —0.7581 + 0582 + no
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Fig. 6. Top: 256 X 256 source images. Bottom: Two different mixtures.
Gaussian noise is added such that the SNR is equal to 10 dB.
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Fig. 7. Evolution of the correlation coefficient between original and estimated
sources as the noise variance varies. Solid line: GMCA. Dashed line: JADE.
(x): EFICA. (+): RNA. Abscissa: SNR in decibels. Ordinate: Correlation co-
efficients.

where n1 and ny are Gaussian noise vectors (with decorrelated
samples) such that the SNR equals 10 dB. The noise covariance
matrix Yy is diagonal.

In Section VI-A, we claimed that a sparsity-based algorithm
would lead to more robustness to noise. The comparisons we
carry out here are twofold: i) we evaluate the separation quality
in terms of correlation coefficient between the original and esti-
mated sources as the noise variance varies; ii) as the estimated
sources are also perturbed by noise, correlation coefficients are
not always very sensitive to separation errors, we also assess
the performances of each method by computing the mixing ma-
trix criterion A o . The GMCA algorithm was computed with the
union of a fast curvelet transform (available online—see [39]
and [40]) and a local discrete cosine transform (LDCT). The
union of the curvelet transform and LDCT are often well suited
to a wide class of “natural” images.

Fig. 7 portrays the evolution of the correlation coefficient of
source 1 (left picture) and source 2 (right picture) as a function
of the SNR. At first glance, GMCA, RNA and EFICA are very
robust to noise as they give correlation coefficients closed to the
optimal value 1. On these images, JADE behaves rather badly.
It might be due to the correlation between these two sources.
For higher noise levels (SNR lower than 10 dB), EFICA tends to
perform slightly worse than GMCA and RNA. As we noted ear-
lier, in our experiments, a mixing matrix-based criterion turns
out to be more sensitive to separation errors and then better dis-
criminates between the methods. Fig. 8 depicts the behavior of
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Fig. 9. Set of 15 sources used to analyze how GMCA scales when the number
of sources increases.

the mixing matrix criterion as the SNR increases. Recall that
the correlation coefficient was not able to discriminate between
GMCA and RNA. The mixing matrix criterion clearly reveals
the differences between these methods. First, it confirms the dra-
matic behavior of JADE on that set of mixtures. Second, RNA
and EFICA behave rather similarly. Thirdly, GMCA seems to
provide far better results with mixing matrix criterion values that
are approximately ten times lower than RNA and EFICA.

To summarize, the findings of this experiment confirm the key

role of sparsity in BSS.

* Sparsity brings better results: Remark that, amongst
the methods we used, only JADE is not a sparsity-based
separation algorithm. Whatever the method, separating in
a sparse representation enhances the separation quality:
RNA, EFICA and GMCA clearly outperform JADE.

* GMCA takes better advantage of overcompleteness
and morphological diversity: RNA, EFICA, and GMCA
provide better separation results with the benefit of spar-
sity. Nonetheless, GMCA takes better advantage of sparse
representations than RNA and EFICA.

C. Higher Dimension Problems and Computational Cost

In this section, we propose to analyze how GMCA behaves
when the dimension of the problem increases. Indeed, for a fixed
number of samples ¢, it would be more difficult to separate mix-
tures with a high number of sources n. In the following exper-
iment, GMCA is applied on data that are random mixtures of
n = 2 to 15 sources. The number of mixtures m is set to be
equal to the number of sources: m = n. The sources are se-
lected from a set of 15 images (of size 128 x 128 pixels). These
sources are depicted in Fig. 9. GMCA was applied using the
2nd generation curvelet transform [39]. Hereafter, we analyze
the convergence of GMCA in terms of mixing matrix criterion
A . This criterion is normalized as follows: A‘(AN) = Ap/n?
to be independent of the number of sources n. The picture on
the left of Fig. 10 shows how GMCA behaves when the number
of iterations I,y varies from 2 to 1000. Whatever the number
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Fig. 10. Left: Evolution of the normalized mixing matrix criterion when the
number of GMCA iterations Imax increases. Abscissa: Number of iterations.
Ordinate: Normalized mixing matrix criterion. The number of sources varies as
follows. Solid line: » = 2. Dashed line: n = 5, (O) : n = 10, (0) : n = 15.
Right:. Behavior of the computational cost when the number of sources in-
creases. Abscissa: Number of sources. Ordinate: Computational cost in seconds.
The number of iterations varies as follows. Solid line: [,,,., = 10. Dashed line:
Tmax = 100, (0) @ Imax = 1000.

of sources, the normalized mixing matrix criterion drops when
the number of iterations is higher than 50. When [, > 100,
the GMCA algorithm tends to stabilize. Then, increasing the
number of iterations does not lead to a substantial separation en-
hancement. When the dimension of the problem increases, the
normalized mixing matrix criterion at convergence gets slightly
larger (I;max > 100). As expected, for a fixed number of sam-
ples t, the separation task is likely to be more difficult when the
number of sources n increases. Fortunately, GMCA still pro-
vides good separation results with low mixing matrix criterion
(lower than 0.025) values up to n = 15 sources.

The picture on the right of Fig. 10 illustrates how the com-
putational cost! of GMCA scales when the number of sources
n varies. Recall that the GMCA algorithm is divided into two
steps: i) sparsifying the data and compute Oy, ii) estimating
the mixing matrix A and ©g. The picture on the right of Fig. 10
shows that the computational burden obviously increases when
the number of sources n grows. Let’s point out that, when m =
n, the computational burden of step i) is proportional to the
number of sources n and independent of the number of itera-
tions Ipnax- Then, for high I, values, the computational cost
of GMCA tends to be proportional to the number of iterations

Imax-

D. Denoising Color Images

Up until now, we emphasized on sparse BSS. Recall that, in
Section V-B, we showed that the stable solutions of GMCA are
the sparsest in the dictionary D. Thus, it is tempting to extend
GMCA to other multivalued problems such as multispectral data
restoration.

For instance, it is intuitively appealing to denoise multivalued
data (such as color images) in multichannel representations in
which the new components are sparse in a given dictionary D.
Let’s consider multivalued data stored row-wise in the data ma-
trix X. We assume that those multivalued data are perturbed by
additive noise. Intuition tells us that it would be worth looking
for a new representation X = AS such that the new compo-
nents S are sparse in the dictionary D. GMCA could be used to
achieve this task.

IThe experiments were run with IDL on a PowerMac G5 2-Ghz computer.
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Fig. 11. Left: Original 256 x 256 image with additive Gaussian noise. The
SNR is equal to 15 dB. Middle: Wavelet-based denoising in the RGB space.
Right: Wavelet-based denoising in the curvelet-GMCA space.

Fig. 12. Zoom the test images. Left: Original image with additive Gaussian
noise. The SNR is equal to 15 dB. Middle: Wavelet-based denoising in the RGB
space. Right: Wavelet-based denoising in the curvelet-GMCA space.

We applied GMCA in the context of color image denoising
(SNR = 15 dB). This is illustrated in Fig. 11 where the orig-
inal RGB image? are shown on the left. Fig. 11 in the middle
shows the RGB image obtained using a classical wavelet-based
denoising method on each color plane [hard thresholding in the
undecimated discrete wavelet transform (UDWT)]. GMCA is
computed in the curvelet domain on the RGB color channels
and the same UDWT-based denoising is applied to the sources
S. The denoised data are obtained by coming back to the RBG
space via the matrix A. Fig. 11 on the right shows the de-
noised GMCA image using the same wavelet-based denoising
method. Visually, denoising in the “GMCA color space” per-
forms better than in the RGB space. Fig. 12 zooms on a par-
ticular part of the previous images. Visually, the contours are
better restored. Note that GMCA was computed in the curvelet
space which is known to sparsely represent piecewise smooth
images with C? contours [10]. We also applied this denoising
scheme with other color space representations: YUV, YCC (Lu-
minance and chrominance spaces). We also applied JADE on the
original color images and denoised the components estimated
by JADE. The question is then: would it be worth denoising in
a different space (YUV, YCC, JADE, or GMCA) instead of de-
noising in the original RGB space? Fig. 13 shows the SNR im-
provement (in decibels) as compared to denoising in the RGB
space obtained by each method method (YUV, YCC, JADE,
and GMCA). Fig. 13 shows that YUV and YCC representations
lead to the same results. Note that the YCC color standard is
derived from the YUV one. With this particular color image,
JADE gives satisfactory results as it can improve denoising up to
1 dB. Finally, as expected, a sparsity-based representation such
as GMCA provides better results. Here, GMCA enhances de-
noising up to 2 dB. This series of tests confirms the visual im-
pression that we get from Fig. 11. Note that such “GMCA color
space” is adaptive to the data.

2All color images can be downloaded at http://perso.orange.fi/jbobin/gmca2.
html.
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Fig. 13. Denoising color images: how GMCA can improve multivariate data
restoration. Abscissa: Mean SNR in dB. Ordinate: Gain in terms of SNR in dB
compared to a denoising process in the RGB color space. Solid line: GMCA,
dashed-dotted line: JADE, “e” YUYV, “+”: YCC.

1) On the Choice of D and the Denoising Method: The de-
noising method we used is a simple hard-thresholding process
in the undecimated wavelet (UDWT) representation. Further-
more, D is a curvelet tight frame (via the fast curvelet trans-
form—([39]). Intuitively, it would be far better to perform both
the estimation of A and denoising in the same sparse represen-
tation. Nonetheless, real facts are much more complicated.

» Estimating the new sparse multichannel representation
(through the estimation of A in D) should be performed
in the sparsest representation.

e In practice, the “sparsest representation” and the rep-
resentation for the “best denoising algorithm” are not
necessarily identical: i) for low noise levels, the curvelet
representation [39] and the UDWT give similar denoising
results. Estimating A and denoising should give better
results in the same curvelet representation, ii) for higher
noise level, UDWT provides a better denoising represen-
tation. We then have to balance between i) Estimating A
and ii) denoising; choosing the curvelet representation for
i) and the UDWT for ii) turns to give good results for a
wide range of noise levels.

VII. SOFTWARE

A Matlab toolbox coined GMCALab will be available online
at http://perso.orange.fr/jbobin/gmcalab.html.

VIII. CONCLUSION

The contribution of this paper is twofold: i) it gives new in-
sights into how sparsity enhances BSS and ii) it provides a
new sparsity-based source separation method coined GMCA
that takes better advantage of sparsity giving good separation
results. GMCA is able to improve the separation task via the
use of recent sparse overcomplete (redundant) representations.
We give conditions under which a simplified GMCA algorithm
is designed leading to a fast and effective algorithm. Remark-
ably, GMCA turns to be equivalent to a fixed-point algorithm for
which we derive convergence conditions. Our arguments show
that GMCA converges to the true sources up to scale and permu-
tation. Numerical results confirm that morphological diversity
clearly enhances source separation. Furthermore GMCA per-
forms well with full benefit of sparsity. Further work will focus
on extending GMCA to the under-determined BSS case. Finally,
GMCA also provides promising prospects in other application
such as multivalued data restoration. Our future work will also
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emphasize on the use of GMCA-like methods to other multi-
valued data applications.
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