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Morphological Component Analysis: An
Adaptive Thresholding Strategy

Jérôme Bobin, Jean-Luc Starck, Jalal M. Fadili, Yassir Moudden, and David L. Donoho

Abstract—In a recent paper, a method called morphological
component analysis (MCA) has been proposed to separate the
texture from the natural part in images. MCA relies on an iterative
thresholding algorithm, using a threshold which decreases linearly
towards zero along the iterations. This paper shows how the MCA
convergence can be drastically improved using the mutual inco-
herence of the dictionaries associated to the different components.
This modified MCA algorithm is then compared to basis pursuit,
and experiments show that MCA and BP solutions are similar in
terms of sparsity, as measured by the 1 norm, but MCA is much
faster and gives us the possibility of handling large scale data sets.

Index Terms—Feature extraction, morphological component
analysis (MCA), sparse representations.

I. INTRODUCTION

I N a series of recent papers [1]–[4], the morphological com-
ponent analysis (MCA) concept was developed and it has

been shown that MCA can be used for separating the texture
from the piecewise smooth component [2], for inpainting ap-
plications [3] or more generally for separating several compo-
nents which have different morphologies. MCA has also been
extended to the multichannel case in [5], [6]. The main idea be-
hind MCA is to use the morphological diversity of the different
features contained in the data, and to associate each morphology
to a dictionary of atoms for which a fast transform is available.
Thanks to recent developments in harmonic analysis, many new
multiscale transforms are now available [7]–[10], which greatly
increases the potentiality of MCA.

In Section I, we recall the MCA methodology. In [2], the
authors introduced the MCA algorithm based on an iterative
thresholding scheme depending on two key parameters: the
threshold and the number of iterations. In Section I-B, we
introduce a new way of tuning the threshold. We show that this
new strategy called MOM, for “mean of max,” is very practical
as it is adaptive to the data, and has a finite stopping-behaviour
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since it alleviates us from the delicate choice of the number
of iterations. We also prove conditions that guarantee no false
detections with overwhelming probability. Numerical examples
are provided in Section II-A.

Furthermore, MCA/MOM also turns out to be a practical way
to decompose a signal in an overcomplete representation made
of a union of bases. In Section II-B, we provide a comparison
between MCA and Basis Pursuit (BP) which clearly indicates
that MCA/MOM is a practical alternative to classical sparse de-
composition algorithms such as BP [11].

II. NEW THRESHOLDING STRATEGY IMPROVING MCA

A. Overview of MCA

For a given -sample signal consisting of a sum of sig-
nals , , having different morphologies,
MCA assumes that a dictionary of bases exists
such that, for each , is sparse in and not, or at least not
as sparse, in other , ,
where denotes the pseudo-norm of the vector (i.e., the
number of nonzero coefficients of ). For the sake of simplicity,
we will consider in this paper a number of morphological com-
ponents equal to two, but our results can be easily extended
to any . We note the decomposition of in

. In [1] and [2], it was proposed
to estimate the components and by solving the following
constrained optimization problem:

(1)

where is the noise standard deviation in the noisy case. For
now, we assume that no noise perturbs the data , (i.e.,
equality constraint). Extension of our method to deal with noise
is discussed in Section I-D.

The MCA algorithm given below relies on an iterative alter-
nate matched filtering and thresholding scheme.

1) Set the number of iterations and thresholds and

2) While is higher than a given lower bound (e.g.,
can depend on the noise variance),

— Proceed with the following iteration to estimate components
at iteration :

For
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• Compute the residual term assuming the current

estimates of , is fixed

• Estimate the current coefficients of by hard thresholding

with threshold

• Get the new estimate of by reconstructing from the
selected coefficients

— Decrease the thresholds following a given strategy

At the th iteration, we have two estimates , of and
( , ). Then and are obtained

as follows:

(2)

where the operator consists in decomposing over
the transform ( , i.e., matched filtering), thresh-
olding the obtained coefficients with the threshold

, and reconstructing from
. The thresholding operator can be either a

hard or a soft thresholding. In practice, hard thresholding leads
generally to better results [1], [2]. The threshold decreases
linearly towards zero

(3)

where is the first threshold and is the number of
iterations. Both are parameters of the method. The first
threshold can be set automatically to a large enough value
(for instance the maximum in magnitude of all coefficients

). For an exact representa-
tion of the data with the morphological components, must
be set to zero. When noise is contained in the data, as discussed
in Section I-D, should be set to few times the noise
standard deviation. Intuitively, MCA distinguish between the
morphological components by taking advantage of the mutual
coherence of the subdictionaries and . Quantitatively, the
mutual coherence of a dictionary is defined,
assuming that its columns are normalized to unit -norm, in
terms of the Gram matrix

The “mutual incoherence” of the dictionaries is a key assump-
tion for the MCA algorithm; it states that the image we wish to

decompose contains features with different morphologies which
are sparse in different representations. MCA will provide a good
components separation by using this morphological diversity
concept when the transforms amalgamated in the dictionary are
mutually incoherent enough.

Although the simplicity of this linear strategy is an advantage,
there is no way to estimate the minimum number of iterations
yielding a successful separation. Too small a number of itera-
tions leads to a bad separation while a large number of iterations
is computationally expensive. Experiments have clearly shown
that the optimal number of iterations depends on the data (typ-
ically hundreds). Therefore, a good thresholding strategy must
provide a fast decomposition with the least number of iterations

.

B. “Mean-of-Max”—The Intuition

As we stated before, the choice of the threshold management
strategy is vital towards good performance of the MCA sepa-
ration mechanism. A “good” thresholding strategy is one that
meets three main requirements: i) applicability to the data for
a wide range of dictionary pairs, ii) low global computational
cost and iii) no need to prespecify a number of iterations. Thus,
in this section, we discuss a new threshold management method
aiming at satisfying the above three requirements.

We assume now that the entries of
(where is the number of entries

of each vector ) are identically and independently
distributed (iid) random variables. We further assume a sparse
distribution so that most of the samples of a given are
zeros. We can, thus, divide this vector into two subsets. The
first one contains the nonzero coefficients . This set is
called the support of . The second one is complementary
to the latter . During the MCA process, at the th
iteration in the transform, MCA selects coefficients from
the following vector:

(4)

(5)

which is a perturbed version of with an error term . This
term is due to i) the imperfect estimation of (i.e., some of the
coefficients in have not yet been recovered), and ii) the mu-
tual coherence of the transforms and . We define

, where . This quantity is
the estimation error of the th morphological component in the
coefficients domain. Without loss of generality, let us assume
that at iteration , . This equation
states that the most significant (in terms of norm) coefficient
that has not been selected yet belongs to the support of . We
then discuss the way we ought to tune so as to estimate

at iteration . The converse case

would yield the same discussion. Concretely, we would like
to update avoiding false detections and, thus, fix the
threshold in order to select new coefficients in the support

. These new coefficients are guaranteed to be in the support of
with overwhelming probability if their amplitudes are higher
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Fig. 1. Rationale governing the MCA/MOM thresholding strategy.

than the highest (in absolute value) amplitude of the entries of
the nuisance term

(6)

Owing to the last argument, has to be chosen such that

(7)

Basically, (7) says that to qualify, the chosen threshold must
avoid false detections. The upper bound in (7) ensures that at
least one coefficient in the support of will be recovered at
iteration . Nonetheless, these two bounds depend on the true
coefficients and cannot be computed in practice.

Instead, we intuitively guess that knowing the maximum
values of the total residual in the

and domains will give us some information about the
relative values of the useful parts and the perturbation
terms . Let us have a look at the following quantities:

. Note that
these quantities can be easily computed online. The top (re-
spectively, bottom) picture in Fig. 1 depicts an intuitive view
of (respectively, ). In these plots, we define

.
Note that, for extremely incoherent dictionaries, the error

terms are negligible, and . Furthermore,

according to the incoherence of the subdictionaries and ,
is sparser than . This entails that with high

probability

(8)

As a consequence, choosing such that
intuitively fulfills the conditions in (7).

C. MOM Strategy: Analysis

In this section, we give arguments to support and prove that
the following choice:

(9)

is sufficient for the set of inequalities (7) to hold true under some
mild nonrestrictive conditions. This strategy coined MOM, is il-
lustrated in Fig. 1 as explained in the previous section. A key
advantage is that it only requires to assess the maximum ab-
solute values of the total residual transformed in each basis

and of the dictionary ( and in Fig. 1). Com-
pared to the initial linear decrease strategy, MOM resorts to
an additional use of the implicit transform operators associ-
ated to which induces an additional computational cost
(typically or for most popular transforms). It
does not require any other parameters and provides a data-adap-
tive strategy. We define by the th column of . Before
proving the sufficiency of the bounds (7), let us first note that

(10)

(11)

(12)

where

. Through iterations of MCA, it is easy to esti-

mate online the following quantities:

(13)

(14)

Straightforward calculations give the following inequalities:

(15)

and similarly for . Let us denote
. As MOM selects

new coefficients in , at iteration , we can write
with . Then, the

following inequalities are easy to derive:

(16)
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Hence, defining is sufficient to guarantee
the inequalities in (7) under the following conditions:

(17)

(18)

A straightforward development of (17) provides the next
condition

(19)

As , the right hand side of (19) is bounded below by
. Thus, (17) is always verified if . Recalling that

, it is worth noting that if at iteration
, we have:

(20)

then the condition is necessarily satisfied. Note that
the above inequality has a flavor of the sparsity criterion en-
suring unique maximally sparse solutions of -norm under-de-
termined linear systems in [12]–[15]. In words, the lower bound
we arrive at stipulates that, as long as the rest of coefficients
to be identified at iteration , in the support (resp., ) is
sparse enough, then with a high probability, we are ensured to
avoid false detections (i.e., coefficients not belonging ). That
is, the atoms newly selected by the MCA/MOM algorithm at
each iteration to enter the active set are guaranteed (with over-
whelming probability) to belong to the support of the true solu-
tion. Thus, for rather sparse signals, (17) is valid entailing the
lower bound inequality . The same

correct term selection property with a condition similar to (20)
has also been shown in a recent paper of Donoho and Tsaig [16],
when studying the properties of the Homotopy algorithm. Note
that the Homotopy method is different from MCA; the Homo-
topy is an exact path following that identifies one coefficient of
the solution at a time entering or leaving the active set, while
MCA/MOM is an adaptive stagewise iterative thresholding that
follows the solution path by identifying groups of coefficients
entering the active set at each iteration.

As far as the upper bound inequality in (7) is concerned, [18]
implies that

(21)

Note that although this condition is much more restrictive [con-
dition (18) is not always verified], it is also less important as
it only guarantees MCA to pick at least one new coefficient at
each iteration. Let us add that in the case where the number
of morphological components , the threshold in (9) is
computed as the mean of the two dominant terms of the set

.

D. Handling Additive Gaussian Noise

From a probabilistic point of view, the -norm constraint
in (1) is equivalent to the anti-loglikelihood assuming the data
are perturbed by an additive white Gaussian noise (AWGN).
Hence, MCA can handle intrinsically data perturbed by additive
Gaussian noise. Furthermore, MCA being a thresholding-based
algorithm, it is, therefore, very robust to the noise since
thresholding techniques belong to the best approaches for
noise removal [17] in image processing. MCA is an iterative
coarse-to-fine (in terms of coefficient amplitude in the dic-
tionary) and AWGN noise can be handled by just stopping
iterating when the residual is at the noise level. Assuming that
the noise variance is known, the algorithm stops at iteration

when the -norm of the residual satisfies .
Another way consists in using a similar strategy as in denoising
methods, and the iteration will stop when is smaller than

, where is a constant, typically between 3 and 5. Put for-
mally, the convergence is achieved when the residual satisfies:

. A similar criterion
was used in the combined (wavelet/curvelet) filtering method
[18].

For non-Gaussian noise, a similar strategy as before could
also be used, but a noise modeling step in the transform
domain must be accomplished in order to derive the prob-
ability density function for each coefficient of the dictio-
nary to be due to the noise. Then the convergence criterion
can be recast as a test of the null hypothesis: remaining

coefficients are not significant. This is formally written
. The dis-

tribution of many noise models in different dictionaries such
as wavelets or curvelets have been proposed in the literature
[19]. Another line of action to handle some specific noise dis-
tributions such as Poisson or Rayleigh noise is to use variance
stabilizing transforms [19]–[21], and the problem is brought
back to the Gaussian case.

E. Related Work

Donoho et al. in [22] have also recently focused on iterative
thresholding scheme applied to solving under-determined linear
sparse problems. Interestingly, models similar to theirs can be
easily transposed to our MCA setting. In their context, the per-
turbation term [see (5)] is assumed to be a Gaussian process
whose samples are iid. Estimating the standard deviation
at iteration using a median absolute deviation estimate pro-
vides a straightforward thresholding strategy: (in
practice, ) the validity of which stands as long as the gaus-
sianity of is a valid assumption (i.e., for incoherent dictio-
naries with low mutual coherence ).

F. Success Phase Diagram

In order to evaluate the success/failure of MCA, we define
as the class of signals such that if belongs to

, it is the linear combination
where and are Bernoulli-Gaussian random vectors
the samples of which are nonzero with probabilities and

respectively. Nonzero coefficients are generated from a
Gaussian law with mean zero and variance 1. Fig. 1 illustrates
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Fig. 2. Opposite ` estimation error in decibels of the first morphological com-
ponent extracted with MCA/MOM (�20 log (ky � ~y k )). In abscissa: p
and in ordinate:p .

the efficiency of MCA/MOM. It shows the opposite estima-
tion error of the first morphological component extracted with
MCA/MOM ( ) for different values of

and between 0.01 and 0.5. Each point has been evaluated
from 25 different decompositions of signals (the number of
samples is ). The redundant dictionary used in this
experiment is the Spikes/Sines dictionary (in practice, is
the concatenation of the identity matrix and the DCT matrix).
One observes what can be interpreted as a rather sharp phase
transition. For couples below the phase transition, the
estimation of the morphological components is successful.
The bottom-left bound is the theoretical recovery bound (in
this case, this bound is equal to ; see [23]).
The top-right bound is the MCA empirical bound defined such
that the natural logarithm of the estimation error is less than

dB. Clearly, the theoretical bound is too pessimistic and
MCA/MOM has a wider successful area.

III. EXPERIMENTAL RESULTS

A. Texture/Natural Part Separation

Here, we compare the decompositions obtained with the
linear strategy and the MOM. The redundant dictionary we
used is composed of the union of the curvelet transform and the
global DCT. Previous results (see Section II) have been proven
assuming that and were orthogonal. In [24], the author
shows that thresholding is still relevant for overcomplete rep-
resentations for sparse minimization. Furthermore, in [22],
the authors developed a thresholding-based sparse decomposi-
tion algorithm in overcomplete representations. Dealing with
redundant subdictionaries such as the curvelet representation is
then still reliable. In practice, even if the curvelet transform is
not orthogonal, the same MOM thresholding strategy is used
and achieves astounding results.

Fig. 3 shows that MCA/MOM is more adaptive than
MCA/Linear. Indeed, it continually selects new atoms (plot
in the middle of Fig. 3) while MCA/Linear selects most of
the coefficients in the last iterations. The same phenomenon
is observed in the plot on the right. It shows the evolution
of the -norm of the total residual: with MCA/MOM it de-
creases continually down to zero. These two plots shed light on
how the MOM strategy adapts to the data. Indeed, the MOM
strategy computes a new threshold at each iteration by taking
into account online the evolution of the total residual term (in

norm). Conversely, the linear strategy is not concerned

Fig. 3. Left: Original image (size 128� 128) used to compare the (dashed)
linear and the (solid) MOM strategies. Middle: Number of recovered coeffi-
cients k� k + k� k while the algorithm is in progress. In abscissa: Number
of iterations in log scale. Right: Reconstruction error ` -norm ky� ~y � ~y k
as a function of the number of iterations.

Fig. 4. Left: Original signal. Middle: First morphological component (curvelet
transform) extracted with MCA/MOM. Right: Second morphological compo-
nent (global DCT) extracted with MCA/MOM.

with the way the coefficients are distributed. Fig. 4 shows the
result of a texture-cartoon separation experiment. The first
morphological component is depicted in the middle of Fig. 4
and the second one on the right. The picture on the left depicts
the original image. The overcomplete dictionary in this case
is taken as the union of the curvelet transform and the global
DCT. Hence, MCA/MOM extracts in the DCT basis a globally
oscillatory part of the original image and leaves in the first
morphological component edges and piece-wise smooth parts
(i.e., cartoon). Visually, MCA/MOM performs well as a feature
extraction/separation algorithm. Compared to MCA/linear that
needs hundreds of iterations to converge, only 25 iterations
were required for a similar separation quality. Note that the
total variation (TV) constraint (see [2]) has not been taken
into account here. Adding such a constraint would certainly
improve slightly the result.

B. Comparing MCA and Basis Pursuit

So far, MCA has been considered as an efficient feature ex-
traction/separation algorithm based on sparse decompositions.
In practice, we also observe that MCA gives rather good results
as a sparse decomposition algorithm in a union of bases. Several
references ([12], [23], and references therein) have shown that
some algorithms such as BP solve the minimization problem
and even the minimization problem provided that some con-
ditions are verified. The results of some experiments we car-
ried out in order to compare BP and MCA/MOM are pictured in
Fig. 5. The graphs were computed as an average over 50 decom-
positions of signals belonging to the Bernoulli–Gaussian model

with random and . The dictionary used in
this experiment is the union of an orthogonal 1-D wavelet trans-
form and the global DCT. The top-left plot in Fig. 5 shows the

-curve. The top-right graph depicts the -curve: the
MCA/MOM curve is below the BP curves. Then, in terms of
norm sparsity, MCA/MOM and BP performs rather similarly.
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Fig. 5. Top left: ` =` -curve of both (solid line) MCA/MOM
and (dashed line) BP. Top right: ` =` -curve of both (solid line) MCA/MOM
and (dashed line) BP. Bottom left: Nonlinear approximation curve (` =` ) of
both (solid line) MCA/MOM and (dashed line) BP. Bottom right: Comparison
of execution times (in seconds): (solid line) MCA/MOM and (dashed line) BP.

Finally, the bottom-left picture features the nonlinear approxi-
mation error curve computed from the set of coefficients esti-
mated with both BP and MCA/MOM. According to the suc-
cess phase diagram in Fig. 1, for most signals belonging to

, and sparse problems are not equivalent. In-
deed, as it uses a hard thresholding scheme, MCA/MOM is
likely to converge to a sparse solution. On the contrary, BP
solves the sparse problem. Then, in terms of sparsity,
MCA/MOM achieves better nonlinear approximation as illus-
trated in the bottom-left plot of Fig. 5. The bottom right of Fig. 5
shows how the computational cost increases as the number of
samples increases. MCA/MOM is clearly faster than BP. To
conclude this section, MCA/MOM is a practical, fast and effi-
cient way to decompose signals in a union of bases.1

IV. CONCLUSION

As a feature extraction/separation algorithm, MCA proved its
efficiency. However, previous work did not propose any care-
fully-designed strategy to manage the threshold. This paper first
insists on the impact of a particular choice of a thresholding
scheme. Then, we exhibit a new advantageous way to tune the
thresholds which we called MOM. The MOM strategy differs
from other heuristics in the sense that it is fast, accurate and
adaptive. It also no longer requires hand-tuning parameters as
the MOM strategy is parameter free. Last, but not least, we put
forward conditions that guarantee, with overwhelming proba-
bility, a good performance in the estimation of the morpholog-
ical components as they particularly avoid false detections. We
also showed that MCA is at least as efficient as BP in achieving
sparse decompositions in redundant dictionaries. As it performs
drastically faster than BP, MCA/MOM provides a practical al-
ternative to this well-known sparse decomposition algorithm. In

1More experiments with other images and sparse representations can be found
at http://www.greyc.ensicaen.fr/~jfadili, http://jstarck.free.fr/mca.html or http://
perso.orange.fr/jbobin/MCA2.html

the future, it would be interesting to extend MCA/MOM to be
able to deal with other types of noise. A multichannel version
of MCA has also recently been proposed in which MOM could
be very useful [5], [6].
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