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•Part 1: Introduction inverse problems and image deconvolution  

•Part 2: Introduction to Sparsity and Compressed Sensing

•Part 3: Wavelets in Astronomy: from orthogonal wavelets and to the Starlet transform.
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inpainting, blind source separation.
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Inverse Problems in Astrophysics

PB 1: find X knowing Y,H and the statistical properties of the noise N
Ex: Astronomical image deconvolution
       Weak lensing

PB 2: find X and H knowing Y and the statistical properties of the noise N 
Ex: Blind deconvolution

Ill posed problem, i.e. not an unique and stable solution ==> Regularization

with some constraints on X



XMM (PN)  simulation  (50ks)





MISSING DATA

• Power estimation estimation.
• Gaussianity test, isotropy test, etc



Temperature

Galaxies

ISW (T)

ISW Reconstruction

! Previously: Cross-Correlate
<Tg>

! Reconstruct part of Temperature map 
due to ISW
! Reconstruct large scale secondary 

anisotropies
! Due to one or several galaxy distributions in 

foreground
! Recover primordial T at large scales

! Detection tricky ! Reconstruction 
complex problem



CMB Thermal SZ Synchrotron Free-free Dust

Sky components

Observations
Linear combination + PSF + Noise
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Multi-element interferometer

N

N(N � 1)

2

antennas/telescopes 

independent baselines

1 projected baseline 
= 1 sample in the Fourier « u,v » plane

VLA 

L
m

u

v
(u,v)
plane
sampling
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Radio-Interferometry Image Reconstruction 

Measurement System

  
FOURIER  

{H

X

Y = HX + N
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Fourier domain
Snapshot (u,v) coverage

discontinuous sampling of the (Fourier) (u,v) plane

Image domain

Reconstructed image = 
« true » sky * PSF = 

~FT-‐1

Dirty image

True sky



The image formation is expressed in the convolution integral

Y (x, y) =

Z +1

x1=�1

Z +1

y1=�1
h(x� x1, y � y1)X(x1, y1)dx1dy1 +N(x, y)

= (h ⇤X)(x, y) +N(x, y) = HX +N

where Y is the data, H the point-spread-function (PSF), and X is the solution.

In Fourier space we have:

ˆY (u, v) = ˆh(u, v) ˆX(u, v) + ˆN(u, v)

We want to determine X knowing h and X. The main di�culties are the

existence of:

• a cut-o↵ frequency of the point spread function.

• the noise.

It is in fact an ill posed problem, there is not an unique solution.
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Deconvolution



A solution can be obtained by computing the Fourier transform of the de-

convolved object

ˆO by a simple division between the image

ˆI and the PSF

ˆP

ˆ

˜X(u, v) =
ˆY (u, v)

ˆh(u, v)
=

ˆX(u, v) +
ˆN(u, v)

ˆh(u, v)

This method, sometimes called Fourier-quotient method is very fast. We only

need to do a Fourier transform and an inverse Fourier transform.

For frequencies close the frequency cut-o↵, the noise term becomes impor-

tant, and the noise is amplified. Then in the presence of noise, this method

cannot be used.
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Fourier-quotient method



It is easy to verify that the minimization of k Y (x, y)� h(x, y) ⇤X(x, y) k2
lead to the solution:

ˆ

˜

X(u, v) =

ˆ

h

⇤
(u, v)

ˆ

Y (u, v)

| ˆh(u, v) |2

which is defined on if

ˆ

h(u, v) is di↵erent from zero. The problem is general

ill-posed and we need to introduce a regularization in order to find an unique

and stable solution.
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Least-square solution



Tikhonov regularization consists of minimizing the term:

JT (X) =k Y �HX k2 +� k FX k2

where f corresponds to a high-pass filter. This criterion contains two terms. The

first, k Y �HX k2, expresses fidelity to the data Y , and the second, � k FX k2,
expresses smoothness of the restored image.

� is the regularization parameter and represents the trade-o↵ between fidelity

to the data and the smoothness of the restored image.

The solution is obtained directly in Fourier space

ˆ

˜X(u, v) =
ˆh⇤

(u, v) ˆY (u, v)

| ˆh(u, v) |2 +� | ˆf(u, v) |2

CosmoStat Lab

Tikhonov regularization



This method can be generalized, and we write:

ˆ

˜X(u, v) = ˆW (u, v)
ˆI(u, v)
ˆh(u, v)

and W must satisfy the following conditions:

1. | ˆW (u, v) | 1, for any ⌫ > 0

2. lim(u,v)!(0,0)
ˆW (u, v) = 1 for any (u, v) such that

ˆh(u, v) 6= 0.

3.

ˆW (u, v)/ˆh(u, v) bounded for any (u, v)

Any function sastifying these three conditions defines a regularized linear solu-

tion.
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Generalization



⌫ =
p
u

2 + v

2

• Truncated window function: Ŵ (u, v) =

⇢
1 if | ĥ(u, v) |�

p
✏

0 otherwise

where ✏ is

the regularization parameter.

• Rectangular window: Ŵ (u, v) =

⇢
1 if | ⌫ | ⌦
0 otherwise

where ⌦ defines the band-

width.

• Triangular window: Ŵ (u, v) =

⇢
1� ⌫

⌦ if | ⌫ | ⌦
0 otherwise

• Hanning Window: Ŵ (u, v) =

⇢
cos(⇡⌫

⌦ ) if | ⌫ | ⌦
0 otherwise

• Gaussian Window: Ŵ (u, v) =

⇢
exp(�4.5 ⌫2

⌦2 ) if | ⌫ | ⌦
0 otherwise
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Most Used Windows



Linear regularized methods have several advantages:

• very fast

• the noise in the solution can easily be derived from the noise in the data and
the window function. For example, if the noise in the data is Gaussian with
a standard deviation �d, the noise in the solution if �2

s = �2
d

P
W 2

k . This
noise estimation does however not take into account the errors relative to the
inaccurate knowledge of the PSF, which limits its interest in practice.

Linear regularized methods presents also several drawbacks

• Creation of Gibbs oscillations in the neighborhood of the discontinuities con-
tained in the data. The visual quality is therefore degraded.

• No a priori information can be used. For example, negative values can exist in
the solution, while in most cases, we know that it must positive.

• As the window function is a low-pass filter, the resolution is degraded. There
is trade-o� between the resolution we want to achieve and the noise level in
the solution. Other methods, such wavelets-based methods, do not have such a
constraint.
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Most Used Windows



CLEAN decomposes an image into a set of diracs. We get

• a set
�c = {A1�(x� x1, y � y1), . . . , An�(x� xn, y � yn)}

• a residual R.

The deconvolved image is:

X(x, y) = �c ⇥B(x, y) + R(x, y)

where B is the clean beam.
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Radio-Astronomy and CLEAN
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A classical deconvolution method

CLEAN

●  Iterative PSF subtraction from the dirty map

● Optimal on point sources

Stolen from D. Wilner presentation 

Basic Algorithm
initialize: 
i) residual map = dirty map 
ii) Clean Component list = 0

1.   identify the highest peak in the residual map as a point source 
2.   subtract a fraction of this peak from the residual map using a scaled dirty beam

                                                          s(l,m) x gain 
3.   add this point source location and amplitude to the Clean Component list 
4.   goto step 1 (an iteration) unless stopping criterion reached 
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CLEAN RUNNING

Stolen from D. Wilner presentation 
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CLEAN RUNNING

Stolen from D. Wilner presentation 
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CLEAN RUNNING

Stolen from D. Wilner presentation 
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CLEAN RUNNING

Stolen from D. Wilner presentation 
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CLEAN RUNNING

Stolen from D. Wilner presentation 
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CLEAN RUNNING

Stolen from D. Wilner presentation 



The Bayesian approach consists to construct the conditional probability den-
sity relationship:

p(X/Y ) =
p(Y/X)p(X)

p(Y )

The Bayes solution is found by maximizing the right part of the equation. The
maximum likehood solution (ML) maximizes only the density p(Y/X) over X:

ML(X) = max
X

p(Y/X)

The maximum-a-posteriori solution (MAP) maximizes over X the product p(Y/X)p(X)
of the ML and a prior:

MAP (X) = max
X

p(Y/X)p(X)

p(Y ) is considered as a constant value which has no e�ect in the maximiza-
tion processus, and is neglected. The ML solution is equivalent to the MAP
solution assuming an uniform density probability for p(X).
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Bayesian methodology



MAP (X) = max
X

p(Y/X)p(X)

It is generally useful in practice log-likehood function, and we minimize:

J(X) = min
X
� log p(Y/X)p(X)

J(X) = min
X
� log p(Y/X)� log p(X)
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Log-Likehood Function  



The probability p(Y/X) is

p(Y/X) =

1p
2⇡�n

exp� (Y �HX)

2

2�2
N

and maximizing p(X/Y ) is equivalent to minimize

J(X) =

k Y �HX k2

2�2
n

Using the steepest descent minimization method, a typical iteration is

Xn+1
= Xn

+ �(Y �HtXn
)

The solution can also be found directly using the FFT by

ˆX(u, v) =
ˆh⇤

(u, v) ˆY (u, v)

ˆh⇤
(u, v)ˆh(u, v)
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Maximum Likehood with Gaussian Noise



If the object and the noise are assumed to follow Gaussian distributions with

zero mean and variance respectively equal to �X and �N , then Bayes solution

leads to the Wiener filter solution

ˆX(u, v) =
ˆh⇤

(u, v) ˆY (u, v)

| ˆh(u, v) |2 +

�2
N (u,v)

�2
X(u,v)
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Wiener



p(Y/X) =

Y

k

(HX)

Yk
k exp�(HX)k

Yk!

The maximum can be computed by derivating the logarithm:

@ ln p(Y/X)

@X
= 0

which leads to the result (assuming the PSF is normalized to the unity)

Y

HtX
Ht

= 1

Multiplying both side by Xk

Xk = [

Yk

(HX)k
Ht

]Xk

and using the Picard iteration leads to

Xn+1
k = [

Y

HXn
Ht

]kX
n
k

it is the Richardson-Lucy algorithm.
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Maximum Likehood with Poisson noise



We assume now that there exists a general operator, PC(.), which enforces a set of
constaints on a given object X, such that if X satisfies all the constraints, we have:

X = PC(X)

The main used constraints are:

• Positivity: the object must be positive. PCp(X(x, y)) =

�
X(x, y) if X(x, y) � 0
0 otherwise

• Support constraint: the objects belongs to a given spatial domain D.

PCs(X(x, y)) =

�
X(x, y) if (x, y) ⇥ D
0 otherwise

• Band-limited: the Fourier transform of the object belongs to a given frequency
domain. For instance, if Fc is the cut-o� frequency of the instrument, we want

to impose the object to be band-limited: PCf (X̂�) =

�
X̂� if � < Fc

0 otherwise

These constraints can be incorporated easily in the basic iterative scheme.
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Constraints



• Landweber:

Xn+1
= PC [X

n
+ µHt

(Y �HXn
)]

• Richardon Lucy Method:

Xn+1
= PC [X

n
[

Y

HXn
Ht

]]

• Tikhonov: Tikhonov solution:

r(JT (X)) = HtHX + µF t ⇤ FX �HtY

and applying the following iteration:

Xn+1
= Xn � �r(JT (X))

The constraint Tikhonov solution is therefore obtained by:

Xn+1
= PC [X

n � �r(JT (X))]
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  Iterative Regularized Methods



In the absence of any information on the solution X except its positivity,
a possible course of action is to derive the probability of X from its entropy,
which is defined from information theory. Then if we know the entropy E of
the solution, we derive its probability by

p(X) = exp(��E(X))

Given the data, the most probable image is obtained by maximizing p(X|Y ).
We need to minimize

log p(X|Y ) = � log p(Y |X) + �E(X)� log p(Y )

The last term is a constant and can be omitted.
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  Maximum Entropy Method (MEM)



Then, in the case of Gaussian noise, the solution is found by minimizing

J(X) =

X

pixels

(Y �HX)

2

2�2
+ �E(X) =

�2

2

+ �E(X)

which is a linear combination of two terms: the entropy of the signal, and a

quantity corresponding to �2
in statistics measuring the discrepancy between

the data and the predictions of the model. � is a parameter that can be viewed

alternatively as a Lagrangian parameter or a value fixing the relative weight

between the goodness-of-fit and the entropy E.

CosmoStat Lab

MEM and Gaussian Noise



The main idea of information theory (Shannon, 1948) is to establish a re-
lation between the received information and the probability of the observed
event

• The information is a decreasing function of the probability. This implies
that the more information we have, the less will be the probability asso-
ciated with one event.

• Additivity of the information. If we have two independent events E1 and
E2, the information I(E) associated with the happening of both is equal
to the addition of the information of each of them.

I(E) = k ln(p)

where k is a constant. Information must be positive, and k is generally fixed at
�1.
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  Information Theory



• Burg (1967)

E
b

(X) = �
X

pixels

ln(X)

• Frieden (1975)

E
f

(X) = �
X

pixels

X ln(X)

• Gull and Skilling (1984)

E
g

(X) =

X

pixels

X �M �X ln(X|M)

The last definition of the entropy has the advantage of having a zero maximum

when X equals the model M , usually taken as a flat image.
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  Other Entropy Functions



• The entropy is maximum for a flat image, and decreases when when we
have some fluctuations.

• The results varied strongly with the background level (Narrayan, 1986).

• Adding a value at a given pixel of a flat image does’t furnish the same
information that subtracting it. A consequence of this is that absorption
features (under the background level) are poorly reconstructed (Narrayan,
1986).

• Gull and Skilling entropy presents the di�culty of estimating a model.
Furthermore it has been shown (Bontekoe et al, 1994) that the solution
was dependent on this choice.

• a value of � which is too large gives a resulting image which is too regu-
larized with a large loss of resolution. A value which is too small leads to
a poorly regularized solution showing unacceptable artifacts.
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  Problems
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  Which image contains more information ?



Generally, functions � are chosen with a quadratic part which ensures a good
smoothing of small gradients (Green, 1990), and a linear behavior which cancels
the penalization of large gradients (Bouman and Sauer, 1993):

1. limt�0
�

�
(t)

2t = 1, smooth faint gradiants.

2. limt��
�

�
(t)

2t = 0, preserve strong gradiants.

3. �
�
(t)

2t is strictly decreasing.

Such functions are often called L2-L1 functions.
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   Penalized Gradients
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   Penalized Gradients
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  Conclusions on Part 1

 Richardson Lucy method Noise amplification
Maximum Entropy Method

CLEAN Method Problem to restore extended sources

Wiener

SIGNAL PROCESSING DOMAIN

Markov Random Field, TV

DECONVOLUTION METHODS IN ASTRONOMY

Problem to restore point sources, bias, etc



The image formation is expressed in the convolution integral

Y (x, y) =

Z +1

x1=�1

Z +1

y1=�1
h(x� x1, y � y1)X(x1, y1)dx1dy1 +N(x, y)

= (h ⇤X)(x, y) +N(x, y) = HX +N

where Y is the data, H the point-spread-function (PSF), and X is the solution.

In Fourier space we have:

ˆY (u, v) = ˆh(u, v) ˆX(u, v) + ˆN(u, v)

We want to determine X knowing h and X. The main di�culties are the

existence of:

• a cut-o↵ frequency of the point spread function.

• the noise.

It is in fact an ill posed problem, there is not an unique solution.
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Deconvolution
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Inverse Problems in Astrophysics

•Part 1: Introduction inverse problems and image deconvolution  

•Part 2: Introduction to Sparsity and Compressed Sensing

•Part 3: Wavelets in Astronomy: from orthogonal wavelets and to the Starlet transform.

•Part 4: Beyond Wavelets
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inpainting, blind source separation.
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•Part 7: Perspective of Sparsity & Compressed Sensing in Astrophsyics
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  Entering the 21th Century

             ==> paradigm shift in statistics/signal processing: 

                             20th century
   Shannon Nyquist sampling + band limited signals + linear l2 norm regularization 

                             21st century
      Compressed Sensing + sparse signals + non-linear l0-l1 norm regularization
     

  



2-

Weak Sparsity or Compressible Signals  

49

A signal s (n samples) can be represented as sum of weighted elements of a given dictionary  

Ex: Haar wavelet

Sorted index k’

Many small coefficients

Few large
 coefficients

Atoms
coefficients

Dictionary 
(basis, frame)

• Fast calculation of the coefficients 

• Analyze the signal through the statistical properties of the coefficients

• Approximation theory  uses  the sparsity of the coefficients



2-

Strict Sparsity: k-sparse signals

50



Minimizing the l0 norm









Local DCT

Wavelet transform

Curvelet transform Piecewise smooth, 
edge

Piecewise smooth

Isotropic structures

Stationary textures

Locally oscillatory

Sparsity Model 1: we consider a dictionary 
 which has a fast transform/reconstruction operator:



A Surprising Experiment*

FT
↓

Randomly throw away 83% 
of samples

* E.J. Candes, J. Romberg and T. Tao.



A Surprising Result*

Minimum - norm 
conventional linear 

reconstruction

FT

↓

* E.J. Candes, J. Romberg and T. Tao.



A Surprising Result*

FT

↓

Minimum - norm 
conventional linear 

reconstruction

l1 minimization

E.J. Candes 



XY

M ⇥N

M ⇥ 1 N ⇥ 1

K
K < M  N

Compressed  Sensing

* E. Candès and T. Tao, “Near Optimal Signal Recovery From Random Projections: Universal  Encoding Strategies? “,  
IEEE Trans. on Information Theory, 52, pp 5406-5425, 2006.
* D. Donoho, “Compressed Sensing”, IEEE Trans. on Information Theory, 52(4), pp. 1289-1306, April 2006.
* E. Candès, J. Romberg and T. Tao, “Robust Uncertainty Principles: Exact Signal Reconstruction  from Highly Incomplete 
Frequency Information”,  IEEE Trans. on Information Theory, 52(2) pp. 489 - 509, Feb. 2006.

“Signals with exactly K components different from zero can be 
recovered perfectly from ~ K log N incoherent measurements”

A non linear sampling theorem

Reconstruction via non linear processing: 

Measurement System

H

Replace samples with few linear projects: Y = H X 

Measurements sparse
signal

non zero
entries

min
X

kXk1 s.t. Y = HX



yk =
D
X,Hk

E

min
X

kXk1 s.t. Y = HX

X = �↵

m � Cµ2
H,�K log n

Reconstruction via non linear processing: 

Compressed Sensing Reconstruction 

Measurements:

In practice,  X is sparse in a given dictionary:

and we need to solve: 

the number of required measurements is : 

The mutual incoherence is defined as  

min
↵

k↵k1 s.t. Y = H�↵

µH,� =

p
N max

i,k

��
D
Hi,�k,

E��



min
↵

k↵k1 s.t. Y = H�↵

Y = HX = H�↵

H

Soft Compressed Sensing Definition

power-law
decay

sorted index

|�|

 Mutual coherence: 

Mutual coherence the degree of similarity between the sparsity and measurement systems.

Measurement System

Not 
Random !

Prior: Data Representation System

Reconstruction via non linear processing: 

µH,� = max

i,k

��
D
Hi,�k,

E��



Direct Space Curvelet Space

Weak Sparsity or Compressible Signals



Formally, the sparsest coefficients are obtained by solving the optimization problem:  

(P0)   Minimize                         subject to   

It has been proposed (to relax and) to replace the l0 norm by the l1 norm (Chen, 1995):

(P1) Minimize                         subject to   

It can be seen as a kind of convexification of (P0).

It has been shown (Donoho and Huo, 1999) that for certain dictionary, if there
exists a highly sparse solution to (P0), then it is identical to the solution of (P1).€ 

α 0

€ 

α 1

€ 

s = φα

€ 

s = φα

How to measure sparsity ?

==> Link the sparsity and the sampling through the Compressed Sensing.



min
�
���p

p subject to �Y �H���2 � ⇥

INVERSE PROBLEMS AND SPARSE RECOVERY

power-law decay

sorted index

|�|

Measurement System

H �

•Denoising  
•Deconvolution
•Component Separation
•Inpainting
•Blind Source Separation  
•Minimization algorithms 
•Compressed Sensing  

, and       is sparse�

Very efficient recent methods now exist to solve it (proximal theory)   



Denoising using a sparsity model

Denoising using a sparsity prior on the solution:

X is sparse in �, i.e. X = �↵ where most of ↵ are negligible.

↵̃ 2 arg min
↵

1
2
k Y � �↵ k2 +t k ↵ kp

p, 0  p  1.



↵̃(t+1) = HardThreshµt(↵̃(t) + µ�T (Y � �↵̃(t))), µ = 1/ k�k2 .

==>  Solution via  Iterative Hard Thresholding

p=0

↵̃ 2 arg min
↵

1
2 k Y � �↵ k2 + t2

2 k ↵ k0

1st iteration solution:

X̃ = � HardThresht(�T Y ) = ��,t(Y )

Exact for � orthonormal.



==>  Solution via  iterative Soft Thresholding

p=1

↵̃(t+1)
= SoftThreshµt(↵̃

(t)
+ µ�

T
(Y � �↵̃(t)

)), µ 2 (0, 2/ k�k2).

1st iteration solution:

˜X = � SoftThresht(�
T Y ) = ��,t(Y )

Exact for � orthonormal.




