Inverse Problems in Astrophysics

-Part 1: Introduction inverse problems and image deconvolution
-Part 2: Introduction to Sparsity and Compressed Sensing
-Part 3: Wavelets in Astronomy: from orthogonal wavelets and to the Starlet transform. -Part 4: Beyond Wavelets
-Part 5: Inverse problems and their solution using sparsity: denoising, deconvolution, inpainting, blind source separation.
-Part 6: CMB \& Sparsity
-Part 7: Perspective of Sparsity \& Compressed Sensing in Astrophsyics

Data Representation Tour
Computational harmonic analysis seeks representations of a signal as linear combinations of basis, frame, dictionary, element :

$$
s_{i}=\sum_{\substack{k=1 \\ \text { coefficients }}}^{K} \alpha_{k} \phi_{k}
$$

Fast calculation of the coefficients α_{k}

- Analyze the signal through the statistical properties of the coefficients

What is a good sparse representation for data?

A signal s (n samples) can be represented as sum of weighted elements of a given dictionary

The Great Father Fourier - Fourier Transforms

Any Periodic function can be expressed as linear combination of basic trigonometric functions
(Basis functions used are sine and cosine)
$X(f)=\int_{-\infty}^{\infty} x(t) e^{-2 \pi i f t} d t$
$x(t)=\int_{-\infty}^{\infty} X(f) e^{2 \pi i f t} d f$
Time domain

Frequency domain

- Alfred Haar Wavelet (1909):

The first mention of wavelets appeared in an appendix to the thesis of Haar

- With compact support, vanishes outside of a finite interval
-Not continuously differentiable
-Wavelets are functions defined over a finite interval and having an average value of zero.

Haar wavelet

$==>$ What kind of $\psi(t)$ could be useful?
. Impulse Function (Haar): Best time resolution
. Sinusoids (Fourier): Best frequency resolution
$==>$ We want both of the best resolutions
==> Heisenberg, 1930
Uncertainty Principle
There is a lower bound for
$\Delta t \cdot \Delta \omega$

SFORT TIME FOURIER TRANSFORM (STFT)

Dennis Gabor (1946) Used STF

To analyze only a small section of the signal at a time -a technique called Windowing the Signal.
eThe Segment of Signal is Assumed Stationary
The Short Term Fourier Transform is defined by:
$S T F T(\nu, b)=\int_{\infty}^{+\infty} \exp (-j 2 \pi \nu t) f(t) g(t-b) d t$
when g is a Gaussien, it corresponds to the Gabor transform.

Heisenberg Box

$$
\sigma_{t}^{2} \sigma_{\omega}^{2} \geq \frac{1}{4}
$$

Candidate analyzing functions for piecewise smooth signals

- Windowed fourier transform or Gaborlets :

$$
\psi_{\omega, b}(t)=g(t-b) e^{i \omega t}
$$

- Wavelets :

The Continuous Wavelet Transform

$$
W(a, b)=K \int_{-\infty}^{+\infty} \psi^{*}\left(\frac{x-b}{a}\right) f(x) d x
$$

where:

- $W(a, b)$ is the wavelet coefficient of the function $f(x)$
- $\psi(x)$ is the analyzing wavelet
- $a(>0)$ is the scale parameter
- b is the position parameter

In Fourier space, we have: $\hat{W}(a, \nu)=\sqrt{a} \hat{f}(\nu) \hat{\psi}^{*}(a \nu)$
When the scale a varies, the filter $\hat{\psi}^{*}(a \nu)$ is only reduced or dilated while keeping the same pattern.

Some typical mother wavelets

Tvpical picture

The inverse transform is:

$$
f(x)=\frac{1}{C_{\psi}} \int_{-\infty}^{+\infty} \int_{0}^{+\infty} \frac{1}{\sqrt{a}} W(a, b) \psi\left(\frac{x-b}{a}\right) \frac{d a d b}{a^{2}}
$$

where

$$
C_{\psi}=\int_{-\infty}^{+\infty}|\hat{\psi}(t)|^{2} \frac{d t}{t}<+\infty
$$

Reconstruction is only possible if C_{ψ} is defined (admissibility condition).
This condition implies $\hat{\psi}(0)=0$, i.e. the mean of the wavelet function is 0 .

Yves Meyer

A Major Breakthrough

Daubechies, 1988 and Mallat, 1989

Daubechies:

Compactly Supported Orthogonal and Bi-Orthogonal Wavelets

Mallat:

Theory of Multiresolution Signal Decomposition
Fast Algorithm for the Computation of Wavelet Transform Coefficients using Filter Banks

Multiresolution Analysis

The multiresolution analysis (Mallat, 1989) results from the embedded subsets generated by the interpolations at different scales.
A function $f(x)$ is projected at each step j on the subset V_{j}
($\ldots \ldots \subset V_{3} \subset V_{2} \subset V_{1} \subset V_{0}$). This projection is defined by the scalar product $c_{j, k}$ of $f(x)$ with the scaling function $\phi(x)$ which is dilated and translated:

$$
\begin{aligned}
c_{j, k} & =<f(x), \phi_{j, k}(x)> \\
\phi_{j, k}(x) & =2^{-j} \phi\left(2^{-j} x-k\right)
\end{aligned}
$$

where $\phi(x)$ is the scaling function. ϕ is a low-pass filter.

Wavelets and Multiresolution Analysis

The difference between c_{j} and c_{j+1} is contained in the detail signal belonging to the space O_{j+1} orthogonal to V_{j+1}.

$$
O_{j+1} \oplus V_{j+1}=V_{j}
$$

The set $\left\{\sqrt{2^{-j}} \psi\left(2^{-j} x-k\right)\right\}_{k \in \mathcal{Z}}$ form a basis of $O_{j} . \psi(x)$ is the wavelet function.
the wavelet coefficients are obtained by:

$$
w_{j, k}=<f(x), 2^{-j} \psi\left(2^{-j} x-k\right)>
$$

the Fast Wavelet Transform

As $\phi(x)$ is a scaling function which has the property: $\frac{1}{2} \phi\left(\frac{x}{2}\right)=\sum_{n} h(n) \phi(x-n) . c_{j+1, k}$ can be obtained by direct computation from $c_{j, k}$

$$
c_{j+1, k}=\sum_{n} h(n-2 k) c_{j, n}
$$

and $\frac{1}{2} \psi\left(\frac{x}{2}\right)=\sum_{n} g(n) \phi(x-n)$.
The scalar products $<f(x), 2^{-(j+1)} \psi\left(2^{-(j+1)} x-k\right)>$ are computed with:

$$
w_{j+1, k}=\sum_{n} g(n-2 k) c_{j, n}
$$

Reconstuction by:

$$
c_{j, k}=2 \sum_{n} h(k-2 n) c_{j+1, n}+g(k-2 n) w_{j+1, n}
$$

(12) Keep one sample out o t two

64	48	16	32	56	56	48	24
56	24	56	36	$\mathbf{8}$	$\mathbf{- 8}$	$\mathbf{0}$	$\mathbf{1 2}$
40	46	$\mathbf{1 6}$	$\mathbf{1 0}$	$\mathbf{8}$	$\mathbf{- 8}$	$\mathbf{0}$	$\mathbf{1 2}$
43	$\mathbf{- 3}$	$\mathbf{1 6}$	$\mathbf{1 0}$	$\mathbf{8}$	$\mathbf{- 8}$	$\mathbf{0}$	$\mathbf{1 2}$

The Orthogonal Wavelet Transform (OWT)

$$
s_{l}=\sum_{k} c_{J, k} \phi_{J, l}(k)+\sum_{k} \sum_{j=1}^{J} \psi_{j, l}(k) w_{j, k}
$$

Transformation

$w_{j+1, l}=\sum_{h} g_{k-2 l} c_{j, k}=\left(\bar{g} * c_{j}\right)_{2 l}$

Reconstruction:

$$
\begin{aligned}
& c_{j, l}=\sum_{k} \tilde{h}_{k+2 l} c_{j+1, k}+\tilde{g}_{k+2 l} w_{j+1, k}=\tilde{h} * \breve{c}_{j+1}+\tilde{g} * \breve{w}_{j+1} \\
& \breve{x}=\left(x_{1}, 0, x_{2}, 0, x_{3}, \ldots, 0, x_{j}, 0, \ldots, x_{n-1}, 0, x_{n}\right)
\end{aligned}
$$

At two dimensions, we separate the variables x, y :

- vertical wavelet: $\psi^{1}(x, y)=\phi(x) \psi(y)$
- horizontal wavelet: $\psi^{2}(x, y)=\psi(x) \phi(y)$
- diagonal wavelet: $\psi^{3}(x, y)=\psi(x) \psi(y)$

The detail signal is contained in three sub-images

$$
\begin{aligned}
& w_{j}^{1}\left(k_{x}, k_{y}\right)=\sum_{l_{x}=-\infty}^{+\infty} \sum_{l_{y}=-\infty}^{+\infty} g\left(l_{x}-2 k_{x}\right) h\left(l_{y}-2 k_{y}\right) c_{j+1}\left(l_{x}, l_{y}\right) \\
& w_{j}^{2}\left(k_{x}, k_{y}\right)=\sum_{l_{x}=-\infty}^{+\infty} \sum_{l_{y}=-\infty}^{+\infty} h\left(l_{x}-2 k_{x}\right) g\left(l_{y}-2 k_{y}\right) c_{j+1}\left(l_{x}, l_{y}\right) \\
& w_{j}^{3}\left(k_{x}, k_{y}\right)=\sum_{l_{x}=-\infty}^{+\infty} \sum_{l_{y}=-\infty}^{+\infty} g\left(l_{x}-2 k_{x}\right) g\left(l_{y}-2 k_{y}\right) c_{j+1}\left(l_{x}, l_{y}\right)
\end{aligned}
$$

JPEG/JPEG 2000

The à trous Algorithm

It exists however a very efficient way to implement it. The "à trous" algorithm consists in considering the filter $h^{(j)}$ instead of h where $h_{l}^{(j)}=h_{l}$ if $l / 2^{j}$ is an integer and 0 otherwise. For example, we have $h^{(1)}=\left(\ldots, h_{-2}, 0, h_{-1}, 0, h_{0}, 0, h_{1}, 0, h_{2}, \ldots\right)$. Then $c_{j+1, l}$ and $w_{j+1, l}$ can be expressed by:

$$
\begin{aligned}
c_{j+1, l} & =\left(\bar{h}^{(j)} * c_{j}\right)_{l}=\sum_{k} h_{k} c_{j, l+2^{j} k} \\
w_{j+1, l} & =\left(\bar{g}^{(j)} * c_{j}\right)_{l}=\sum_{k} g_{k} c_{j, l+2^{j} k}
\end{aligned}
$$

The reconstruction is obtained by:

$$
c_{j}=\frac{1}{2}\left(\tilde{h}^{(j)} * c_{j+1}+\tilde{g}^{(j)} w_{j+1}\right)
$$

2D Undecimated Wavelet Transform

The à trous algorithm can be extended to 2 D :

$$
\begin{aligned}
c_{j+1, k, l} & =\left(\bar{h}^{(j)} \bar{h}^{(j)} * c_{j}\right)_{k, l} \\
w_{j+1,1, k, l} & =\left(\bar{g}^{(j)} \bar{h}^{(j)} * c_{j}\right)_{k, l} \\
w_{j+1,2, k, l} & =\left(\bar{h}^{(j)} \bar{g}^{(j)} * c_{j}\right)_{k, l} \\
w_{j+1,3, k, l} & =\left(\bar{g}^{(j)} \bar{g}^{(j)} * c_{j}\right)_{k, l}
\end{aligned}
$$

where $h g * c$ is the convolution of c by the separable filter $h g$ (i.e convolution first along the columns per h and then convolution along the lines per g)

Hard Threshold: 3sigma					
OWT					UWT
Redundancy	1	4	7	10	13
PSNR(dB)	28.90	30.58	31.51	31.83	31.89
Square Error	83.54	52.28	45.83	42.51	41.99

Isotropic transform well adapted to astronomical images.
Diadic Scales.
Invariance per translation.
Scaling function and dilation equation:

$$
\frac{1}{4} \varphi\left(\frac{x}{2}, \frac{y}{2}\right)=\sum_{l, k} h(l, k) \varphi(x-l, y-k)
$$

Wavelet function decomposition:

$$
\frac{1}{4} \psi\left(\frac{x}{2}, \frac{y}{2}\right)=\sum_{l, k} g(l, k) \varphi(x-l, y-k)
$$

A trous wavelet
transform:

$$
w_{j}(x, y)=<f(x, y), \frac{1}{4^{j}} \varphi\left(\frac{x-l}{2^{j}}, \frac{y-k}{2^{j}}\right)>
$$

Generally, the wavelet resulting from the difference between two successive approximations is applied:

$$
w_{j+1, k}=c_{j, k}-c_{j+1, k}
$$

The associated wavelet is $\psi(x)$.

$$
\frac{1}{2} \psi\left(\frac{x}{2}\right)=\phi(x)-\frac{1}{2} \phi\left(\frac{x}{2}\right)
$$

The reconstruction algorithm is immediate:

$$
c_{0, k}=c_{J, k}+\sum_{j=1}^{J} w_{j, k}
$$

$$
B_{3}(x)=\frac{1}{12}\left(|x-2|^{3}-4|x-1|^{3}+6|x|^{3}-4|x+1|^{3}+|x+2|^{3}\right)
$$

$$
\psi(x, y)=B_{3}(x) B_{3}(y)
$$

$$
\frac{1}{4} \psi\left(\frac{x}{2}, \frac{y}{2}\right)=\phi(x, y)-\frac{1}{4} \phi\left(\frac{x}{2}, \frac{y}{2}\right)
$$

$$
\left(\begin{array}{ccccc}
\frac{1}{16} & \frac{1}{4} & \frac{3}{8} & \frac{1}{4} & \frac{1}{16}
\end{array}\right) \otimes\left(\begin{array}{c}
1 / 16 \\
1 / 4 \\
3 / 8 \\
1 / 4 \\
1 / 16
\end{array}\right)=\left(\begin{array}{ccccc}
\frac{1}{256} & \frac{1}{64} & \frac{3}{128} & \frac{1}{64} & \frac{1}{256} \\
\frac{1}{64} & \frac{1}{16} & \frac{3}{32} & \frac{1}{16} & \frac{1}{64} \\
\frac{3}{128} & \frac{3}{32} & \frac{9}{64} & \frac{3}{32} & \frac{3}{128} \\
\frac{1}{64} & \frac{1}{16} & \frac{3}{32} & \frac{1}{16} & \frac{1}{64} \\
\frac{1}{256} & \frac{1}{64} & \frac{3}{128} & \frac{1}{64} & \frac{1}{256}
\end{array}\right)
$$

In the 2-dimensional case, we assume the separability, which leads to a row-by-row convolution with $\left(\frac{1}{16}, \frac{1}{4}, \frac{3}{8}, \frac{1}{4}, \frac{1}{16}\right)$; followed by
column-by-column convolution.

Boundaries

The most general way to handle the boundaries is to consider that $c_{k+N}=c_{N-k}$ (mirror). But other methods can be used such as periodicity ($c_{k+N}=c_{k}$), or continuity $\left(c_{k+N}=c_{N}\right)$.

ISOTROPIC UNDECIMATED WAVELET TRANSFORM

The STARLET Transform
Isotropic Undecimated Wavelet Transform (a trous algorithm)

$$
\begin{array}{ll}
\varphi=B_{3}-\text { spline, } \frac{1}{2} \psi\left(\frac{\mathrm{x}}{2}\right)=\frac{1}{2} \varphi\left(\frac{\mathrm{x}}{2}\right)-\varphi(x) \\
h=[1,4,6,4,1] / 16, \mathrm{~g}=\delta-\mathrm{h}, \tilde{\mathrm{~h}}=\tilde{\mathrm{g}}=\delta
\end{array} \quad I(k, l)=c_{J, k, l}+\sum_{j=1}^{J} w_{j, k, l}
$$

Dynamic Range Compression

Images with a high dynamic range are also difficult to analyze. For example, astronomers generally visualize their images using a logarithmic look-up-table conversion.
Wavelet can also be used to compress the dynamic range at all scales, and therefore allows us to clearly see some very faint features. For instance, the wavelet-log representations consists in replacing $w_{j, k, l}$ by $\log \left(\left|w_{j, k, l}\right|\right)$, leading to the alternative image

$$
I_{k, l}=\log \left(c_{J, k, l}\right)+\sum_{j=1}^{J} \operatorname{sgn}\left(w_{j, k, l}\right) \log \left(\left|w_{j, k, l}\right|+\epsilon\right)
$$

Left - Hale-Bopp Comet image. Middle - histogram equalization results, Right -wavelet-log representations.

