

# **Inverse Problems in Astrophysics**

- •Part 1: Introduction inverse problems and image deconvolution
- •Part 2: Introduction to Sparsity and Compressed Sensing
- •Part 3: Wavelets in Astronomy: from orthogonal wavelets and to the Starlet transform.
- •Part 4: Beyond Wavelets
- •Part 5: Inverse problems and their solution using sparsity: denoising, deconvolution, inpainting, blind source separation.
- •Part 6: CMB & Sparsity
- •Part 7: Perspective of Sparsity & Compressed Sensing in Astrophsyics

CosmoStat Lab

#### **Data Representation Tour**

• Computational harmonic analysis seeks representations of a signal as linear combinations of basis, frame, dictionary, element:



- Fast calculation of the coefficients  $\boldsymbol{\alpha}_k$
- Analyze the signal through the statistical properties of the coefficients

# What is a good sparse representation for data?

A signal s (n samples) can be represented as sum of weighted elements of a given dictionary





- · Fast calculation of the coefficients
- Analyze the signal through the statistical properties of the coefficients
- · Approximation theory uses the sparsity of the coefficients





# The Great Father Fourier - Fourier Transforms

Any Periodic function can be expressed as linear combination of basic trigonometric functions

(Basis functions used are sine and cosine)



$$X(f) = \int_{-\infty}^{\infty} x(t)e^{-2\pi i f t} dt$$
$$x(t) = \int_{-\infty}^{\infty} X(f)e^{2\pi i f t} df$$

$$x(t) = \int_{-\infty}^{\infty} X(f)e^{2\pi i f t} df$$

Time domain





#### •Alfred Haar Wavelet (1909):

The first mention of wavelets appeared in an appendix to the thesis of Haar

- With *compact support*, vanishes outside of a finite interval
- -Not continuously differentiable
- -Wavelets are functions defined over a finite interval and having an average value of zero.



$$f(x) = c_0 + \sum_{j=0}^{\infty} \sum_{k=0}^{2^{j}-1} c_{jk} \psi_{jk}(x).$$



$$\Psi(x) = \begin{cases} 1 & 0 \le x \le \frac{1}{2} \\ -1 & \frac{1}{2} < x \le 0 \end{cases}$$
 otherwis





$$\psi_{2,2} = \psi(4x - 2)$$
  $\psi_2$ 

$$\psi_{2,3} = \psi(4x - 3)$$

- ==> What kind of  $\psi(t)$  could be useful?
  - . Impulse Function (Haar): Best time resolution
  - . Sinusoids (Fourier): Best frequency resolution
- ==> We want both of the best resolutions

==> Heisenberg, 1930 Uncertainty Principle There is a lower bound for



 $\Delta t \cdot \Delta \omega$ 

#### SFORT TIME FOURIER TRANSFORM (STFT)

Dennis Gabor (1946) Used STF

To analyze only a small section of the signal at a time -- a technique called Windowing the Signal.

The Segment of Signal is Assumed Stationary

The Short Term Fourier Transform is defined by:

$$STFT(\nu, b) = \int_{\infty}^{+\infty} \exp(-j2\pi\nu t) f(t) g(t - b) dt$$

when g is a Gaussien, it corresponds to the Gabor transform.







# Candidate analyzing functions for piecewise smooth signals

• Windowed fourier transform or Gaborlets :

$$\psi_{\omega,b}(t) = g(t-b)e^{i\omega t}$$

• Wavelets:

$$\psi_{a,b} = \frac{1}{\sqrt{a}}\psi(\frac{t-b}{a})$$







#### The Continuous Wavelet Transform

$$W(a,b) = K \int_{-\infty}^{+\infty} \psi^*(\frac{x-b}{a}) f(x) dx$$

where:

- W(a,b) is the wavelet coefficient of the function f(x)
- $\psi(x)$  is the analyzing wavelet
- a > 0 is the scale parameter
- b is the position parameter

In Fourier space, we have:  $\hat{W}(a,\nu) = \sqrt{a}\hat{f}(\nu)\hat{\psi}^*(a\nu)$ When the scale a varies, the filter  $\hat{\psi}^*(a\nu)$  is only reduced or dilated while keeping the same pattern.





#### The Inverse Transform

The inverse transform is:

$$f(x) = \frac{1}{C_{\psi}} \int_{-\infty}^{+\infty} \int_{0}^{+\infty} \frac{1}{\sqrt{a}} W(a, b) \psi(\frac{x - b}{a}) \frac{dadb}{a^2}$$

where

$$C_{\psi} = \int_{-\infty}^{+\infty} \left| \; \hat{\psi}(t) \; 
ight|^2 rac{dt}{t} < +\infty$$

Reconstruction is only possible if  $C_{\psi}$  is defined (admissibility condition). This condition implies  $\hat{\psi}(0) = 0$ , i.e. the mean of the wavelet function is 0.







### Daubechies, 1988 and Mallat, 1989

#### **Daubechies:**

Compactly Supported Orthogonal and Bi-Orthogonal Wavelets

#### Mallat:

Theory of Multiresolution Signal Decomposition Fast Algorithm for the Computation of Wavelet Transform Coefficients using Filter Banks

#### Multiresolution Analysis

The multiresolution analysis (Mallat, 1989) results from the embedded subsets generated by the interpolations at different scales.

A function f(x) is projected at each step j on the subset  $V_j$   $(\ldots \subset V_3 \subset V_2 \subset V_1 \subset V_0)$ . This projection is defined by the scalar product  $c_{j,k}$  of f(x) with the scaling function  $\phi(x)$  which is dilated and translated:

$$c_{j,k} = \langle f(x), \phi_{j,k}(x) \rangle$$

$$\phi_{j,k}(x) = 2^{-j}\phi(2^{-j}x - k)$$

where  $\phi(x)$  is the scaling function.  $\phi$  is a low-pass filter.





#### Wavelets and Multiresolution Analysis

The difference between  $c_j$  and  $c_{j+1}$  is contained in the detail signal belonging to the space  $O_{j+1}$  orthogonal to  $V_{j+1}$ .

$$O_{j+1} \oplus V_{j+1} = V_j$$

The set  $\{\sqrt{2^{-j}}\psi(2^{-j}x-k)\}_{k\in\mathcal{Z}}$  form a basis of  $O_j$ .  $\psi(x)$  is the wavelet function.

the wavelet coefficients are obtained by:

$$w_{j,k} = \langle f(x), 2^{-j}\psi(2^{-j}x - k) \rangle$$



#### the Fast Wavelet Transform

As  $\phi(x)$  is a scaling function which has the property:  $\frac{1}{2}\phi(\frac{x}{2})=\sum_n h(n)\phi(x-n).$   $c_{j+1,k}$  can be obtained by direct computation from  $c_{j,k}$ 

$$c_{j+1,k} = \sum_{n} h(n-2k)c_{j,n}$$

and  $\frac{1}{2}\psi(\frac{x}{2}) = \sum_n g(n)\phi(x-n)$ .

The scalar products  $< f(x), 2^{-(j+1)}\psi(2^{-(j+1)}x - k) >$  are computed with:

$$w_{j+1,k} = \sum_{n} g(n-2k)c_{j,n}$$

Reconstuction by:

$$c_{j,k} = 2\sum_{n} h(k-2n)c_{j+1,n} + g(k-2n)w_{j+1,n}$$





| 64 | 48 | 16 | 32 | 56 | 56 | 48 | 24 |
|----|----|----|----|----|----|----|----|
| 56 | 24 | 56 | 36 | 8  | -8 | 0  | 12 |
| 40 | 46 | 16 | 10 | 8  | -8 | 0  | 12 |
| 43 | -3 | 16 | 10 | 8  | -8 | 0  | 12 |

The Orthogonal Wavelet Transform (OWT)

$$s_{l} = \sum_{k} c_{J,k} \phi_{J,l}(k) + \sum_{k} \sum_{j=1}^{J} \psi_{j,l}(k) w_{j,k}$$

Transformation



$$c_{j+1,l} = \sum_{h} h_{k-2l} c_{j,k} = (\overline{h} * c_j)_{2l}$$

$$w_{j+1,l} = \sum_{h} g_{k-2l} c_{j,k} = (\overline{g} * c_j)_{2l}$$

Reconstruction:

$$c_{j,l} = \sum_{k} \tilde{h}_{k+2l} c_{j+1,k} + \tilde{g}_{k+2l} w_{j+1,k} = \tilde{h} * \tilde{c}_{j+1} + \tilde{g} * \tilde{w}_{j+1}$$
$$\tilde{x} = (x_1, 0, x_2, 0, x_3, \dots, 0, x_j, 0, \dots, x_{n-1}, 0, x_n)$$



At two dimensions, we separate the variables x,y:

- vertical wavelet:  $\psi^1(x,y) = \phi(x)\psi(y)$
- horizontal wavelet:  $\psi^2(x,y) = \psi(x)\phi(y)$
- diagonal wavelet:  $\psi^3(x,y) = \psi(x)\psi(y)$

The detail signal is contained in three sub-images

$$w_{j}^{1}(k_{x}, k_{y}) = \sum_{l_{x}=-\infty}^{+\infty} \sum_{l_{y}=-\infty}^{+\infty} g(l_{x} - 2k_{x})h(l_{y} - 2k_{y})c_{j+1}(l_{x}, l_{y})$$

$$w_{j}^{2}(k_{x}, k_{y}) = \sum_{l_{x}=-\infty}^{+\infty} \sum_{l_{y}=-\infty}^{+\infty} h(l_{x} - 2k_{x})g(l_{y} - 2k_{y})c_{j+1}(l_{x}, l_{y})$$

$$w_{j}^{3}(k_{x}, k_{y}) = \sum_{l_{x}=-\infty}^{+\infty} \sum_{l_{y}=-\infty}^{+\infty} g(l_{x} - 2k_{x})g(l_{y} - 2k_{y})c_{j+1}(l_{x}, l_{y})$$









Original BMP 300x300x24 270056 bytes



JPEG2000 1:70 3876 bytes







# 

#### The à trous Algorithm

It exists however a very efficient way to implement it. The "à trous" algorithm consists in considering the filter  $h^{(j)}$  instead of h where  $h^{(j)}_l = h_l$  if  $l/2^j$  is an integer and 0 otherwise. For example, we have  $h^{(1)} = (\ldots, h_{-2}, 0, h_{-1}, 0, h_0, 0, h_1, 0, h_2, \ldots)$ . Then  $c_{j+1,l}$  and  $w_{j+1,l}$  can be expressed by:

$$egin{array}{lcl} c_{j+1,l} &=& (ar{h}^{(j)}*c_j)_l = \sum_k h_k c_{j,l+2^j k} \ && \ w_{j+1,l} &=& (ar{g}^{(j)}*c_j)_l = \sum_k g_k c_{j,l+2^j k} \end{array}$$

The reconstruction is obtained by:

$$c_j = rac{1}{2} ( ilde{h}^{(j)} * c_{j+1} + ilde{g}^{(j)} w_{j+1})$$

# **Passage from** $c_0$ **to** $c_1$ , and from $c_1$ **to** $c_2$



# 2D Undecimated Wavelet Transform

The à trous algorithm can be extended to 2D:

$$c_{j+1,k,l} = (\bar{h}^{(j)}\bar{h}^{(j)} * c_j)_{k,l}$$

$$w_{j+1,1,k,l} = (\bar{g}^{(j)}\bar{h}^{(j)} * c_j)_{k,l}$$

$$w_{j+1,2,k,l} = (\bar{h}^{(j)}\bar{g}^{(j)} * c_j)_{k,l}$$

$$w_{j+1,3,k,l} = (\bar{g}^{(j)}\bar{g}^{(j)} * c_j)_{k,l}$$

where hg \* c is the convolution of c by the separable filter hg (i.e convolution first along the columns per h and then convolution along the lines per g).









# Hard Threshold: 3sigma

OWT

| Redundancy   | 1     | 4     | 7     | 10    | 13    |
|--------------|-------|-------|-------|-------|-------|
| PSNR(dB)     | 28.90 | 30.58 | 31.51 | 31.83 | 31.89 |
| Square Error | 83.54 | 52.28 | 45.83 | 42.51 | 41.99 |

### **ISOTROPIC UNDECIMATED WT: The Starlet Transform**

- 'Isotropic transform well adapted to astronomical images.
- Diadic Scales.
- "Invariance per translation.

Scaling function and dilation equation:

$$\frac{1}{4}\varphi(\frac{x}{2}, \frac{y}{2}) = \sum_{l,k} h(l,k)\varphi(x - l, y - k)$$

Wavelet function decomposition:

$$\frac{1}{4}\psi(\frac{x}{2}, \frac{y}{2}) = \sum_{l,k} g(l,k)\varphi(x - l, y - k)$$

A trous wavelet transform:

$$w_{j}(x,y) = \langle f(x,y), \frac{1}{4^{j}} \varphi(\frac{x-l}{2^{j}}, \frac{y-k}{2^{j}}) \rangle$$

Generally, the wavelet resulting from the difference between two successive approximations is applied:

$$w_{j+1,k} = c_{j,k} - c_{j+1,k}$$

The associated wavelet is  $\psi(x)$ .

$$\frac{1}{2}\psi(\frac{x}{2}) = \phi(x) - \frac{1}{2}\phi(\frac{x}{2})$$

The reconstruction algorithm is immediate:

$$c_{0,k} = c_{J,k} + \sum_{j=1}^{J} w_{j,k}$$

# The Isotropic Wavelet and Scaling Functions

$$egin{array}{lcl} B_3(x) & = & rac{1}{12} (\mid x-2\mid^3 -4\mid x-1\mid^3 +6\mid x\mid^3 -4\mid x+1\mid^3 +\mid x+2\mid^3) \ \psi(x,y) & = & B_3(x) B_3(y) \ rac{1}{4} \psi(rac{x}{2},rac{y}{2}) & = & \phi(x,y) -rac{1}{4} \phi(rac{x}{2},rac{y}{2}) \end{array}$$



In the 2-dimensional case, we assume the separability, which leads to a row-by-row convolution with  $(\frac{1}{16}, \frac{1}{4}, \frac{3}{8}, \frac{1}{4}, \frac{1}{16})$ ; followed by column-by-column convolution.

# Boundaries

The most general way to handle the boundaries is to consider that  $c_{k+N}=c_{N-k}$  (mirror). But other methods can be used such as periodicity  $(c_{k+N}=c_k)$ , or continuity  $(c_{k+N}=c_N)$ .





The STARLET Transform
Isotropic Undecimated Wavelet Transform (a trous algorithm)

$$\varphi = B_3$$
 - spline,  $\frac{1}{2}\psi(\frac{x}{2}) = \frac{1}{2}\varphi(\frac{x}{2}) - \varphi(x)$ 

$$I(k,l) = c_{J,k,l} + \sum_{j=1}^{J} w_{j,k,l}$$

$$h = [1,4,6,4,1]/16, g = \delta - h, \tilde{h} = \tilde{g} = \delta$$



# **Dynamic Range Compression**

Images with a high dynamic range are also difficult to analyze. For example, astronomers generally visualize their images using a logarithmic look-up-table conversion.

Wavelet can also be used to compress the dynamic range at all scales, and therefore allows us to clearly see some very faint features. For instance, the wavelet-log representations consists in replacing  $w_{j,k,l}$  by  $\log(|w_{j,k,l}|)$ , leading to the alternative image

$$I_{k,l} = \log(c_{J,k,l}) + \sum_{j=1}^{J} \operatorname{sgn}(w_{j,k,l}) \log(\mid w_{j,k,l} \mid +\epsilon)$$



Left - Hale-Bopp Comet image. Middle - histogram equalization results, Right - wavelet-log representations.