4N Inverse Problems in Astrophysics

*Part 1: Introduction inverse problems and image deconvolution

Part 2: Introduction to Sparsity and Compressed Sensing

*Part 3: Wavelets in Astronomy: from orthogonal wavelets and to the Starlet transform.
*Part 4: Beyond Wavelets

*Part 5: Inverse problems and their solution using sparsity: denoising, deconvolution, inpainting, blind
source separation.

*Part 6: CMB & Sparsity

*Part 7: Perspective of Sparsity & Compressed Sensing in Astrophsyics

CosmoStat Lab




Data Representation Tour

Computational harmonic analysis seeks representations of a signal as linear
combinations of basis, frame, dictionary, element :
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Fast calculation of the coefficients o,

Analyze the signal through the statistical properties of the coefficients




What is a good sparse representation for data?

A signal s (n samples) can be represented as sum of weighted elements of a given dictionary

Dictionary

(basis, frame)

Q= {¢1,...,0K}
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Fast calculation of the coefficients
Analyze the signal through the statistical properties of the coefficients

Approximation theory uses the sparsity of the coefficients
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The Great Father Fourier - Fourier
Transforms

Any Periodic function can be expressed as linear
combination of basic trigonometric functions

(Basis functions used are sine and cosine)

X(f)= f: x(t)e > dt

Jean-Baptiste-Joseph Fourier
(1768-1830)

x(0) = [ X (e df

Frequency domain {..
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®Alfred Haar Wavelet (1909):

The first mention of wavelets appeared in an appendix to the thesis of Haar
- With compact support, vanishes outside of a finite interval
-Not continuously differentiable
-Wavelets are functions defined over a finite interval and having .‘./’

=

an average value of zero.
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==> What kind of (¢) could be useful?
. Impulse Function (Haar): Best time resolution
. Sinusoids (Fourier): Best frequency resolution

==> We want both of the best resolutions

==> Heisenberg, 1930

Uncertainty Principle
There is a lower bound for




SFORT TIME FOURIER TRANSFORM (STFT)

®Dennis Gabor (1946) Used STF
To analyze only a small section of the signal at a time --

a technique called Windowing the Signal.
¢The Segment of Signal is Assumed Stationary
The Short Term Fourier Transform is defined by:

+oo

STFT(v,b) = / exp(—j2mut) £(£)g(t — b)dt

oo

when g is a Gaussien, it corresponds to the Gabor transform.

window
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Heisenberg Box
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Candidate analyzing functions for piecewise smooth
signals

Windowed fourier transform or Gaborlets :

Vup(t) = g(t=b)e™"

Wavelets : 1 L oW
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The Continuous Wavelet Transform I
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)f(z)dz

where:
e W (a,b) is the wavelet coefficient of the function f(x)
e (x) is the analyzing wavelet

e a (> 0) is the scale parameter

¢ b is the position parameter

In Fourier space, we have: W (a, v) = vaf()¢*(av)
When the scale a varies, the filter 1*(av) is only reduced or dilated while
keeping the same pattern.




Some typical mother wavelets
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The Inverse Transform '

The inverse transform is:

oo ptoo g z — b, dadb
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where

Reconstruction is only possible if Cy is defined (admissibility condition).
This condition implies 1/3(0) = (, i.e. the mean of the wavelet function is 0.




Yves Meyer

- -~

A Major Breakthrough

Daubechies, 1988 and Mallat, 1989

Daubechies:
Compactly Supported Orthogonal and Bi-Orthogonal Wavelets

Mallat:

Theory of Multiresolution Signal Decomposition

Fast Algorithm for the Computation of Wavelet Transform Coefficients
using Filter Banks




Multiresolution Analysis I

The multiresolution analysis (Mallat, 1989) results from the embedded
subsets generated by the interpolations at different scales.

A function f(x) is projected at each step j on the subset V;
G C Vs C V5 C V; C V). This projection is defined by the scalar

product ¢; 1, of f(z) with the scaling function ¢(z) which is dilated and
translated:

e = < f(x),d5r(x)>

dik(@) =277¢(27 7z — k)

where ¢(x) is the scaling function. ¢ is a low-pass filter.
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Wavelets and Multiresolution Analysis I

The difference between ¢; and ¢; 1 is contained in the detail signal
belonging to the space O;41 orthogonal to V1.

Ojn1 @ Vi1 =V,

The set {V2-94)(277x — k) } ez form a basis of O;. 1(z) is the wavelet
function.

the wavelet coefficients are obtained by:

wir = <f(x),27%Q27z—k) >
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the Fast Wavelet Transform .

As ¢(x) is a scaling function which has the property:
26(2) =3, h(n)¢(z — n). ¢jt1,% can be obtained by direct computation
from Cik

Cj—l—l,k = Z h(n — 2k)Cj;n

and 39(3) =32, 9(n)(z — n). ‘
The scalar products < f(z),2-0+0(2-0+0 g — k) > are computed with:

witik = Y g(n—2k)c;n

Reconstuction by:

Gk =2 hk—2n)cip1,n +g(k — 20)wjs1 p




Keep one sample out of two
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The Orthogonal Wavelet Transform (OWT)
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At two dimensions, we separate the variables x,y:
o vertical wavelet: ¥ (z,y) = ¢(x)9(y)
e horizontal wavelet: ¥?(z,y) = ¥(z)¢(y)
e diagonal wavelet: ¢3(z,y) = ¥ ()9 (y)
The detail signal is contained in three sub-images

+oo
wika,ky) = D Z Yh(ly

lg=—c0ly=

+oo
ke, ky) = ) Z h(le — 2ka)g(ly

lg=—00 lyz—oo

— 2ky)cjt1(lz, ly)

- 2ky)cj+1(lwa ly)

+oo
w?(kwaky) = Z Z (lo — 2ks)g(ly — 2ky)cjta (e, by)

lg=—ocly=—0c0




H G
H G H G
HH GH
Smoath Vertical
HG GG
Horizontal Diagonal







NGC2997 WT

NGC2997




JPEG/JPEG 2000

Original BMP

270056 bytes

JPEG2000 1:70
3876 bytes

JPEG 1:68
3983 bytes




| 1D undecimated wavelet transform I
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The a trous Algorithm I

It exists however a very efficient way to implement it. The “a trous”
algorithm consists in considering the filter h9) instead of h where hl(j ) = hy
if {/27 is an integer and 0 otherwise. For example, we have

Y = (... h_9,0,h_1,0,h0,0,h1,0,hy,...). Thencjyy; and wjiq
can be expressed by:

iy = (R we)i =" hrejpiain
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The reconstruction is obtained by:

¢j = §(h(j) x i1 + 0w 1)




Passage from ¢, to ¢1, and from c; to ¢, I
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2D Undecimated Wavelet Transform I

The a trous algorithm can be extended to 2D:

Ci+1,kl = (_ ) ¥ C;)k,z
Wit1,1,k1 = (g ) % )il
witiont = (BVGD %))y
Witk = (9 J)g * Cj )kl

where hg * cis the convolution of ¢ by the separable filter hg (i.e
convolution first along the columns per & and then convolution along the

lines per g).
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Hard Threshold: 3sigma

OWT UWT
Redundancy |1 4 7 10 13
PSNR(dB) 28.90 30.58 31.51 31.83 31.89
Square Error  (83.54 52.28 45.83 42.51 41.99




ISOTROPIC UNDECIMATED WT: The Starlet Transform

‘Isotropic transform well adapted to astronomical images.

‘Diadic Scales.
‘Invariance per translation.

Scaling function and dilation equation:

1
L9 2 Eh(lk)(p(x Ly-k)

Wavelet function decomposition:

1 Xy _ v
VG ggu,k)cp(x Ly-k)

A trous wavelet l y iy
transform: w,(x,y) =< f(x, y) (P( Y ) >




Generally, the wavelet resulting from the difference between two successive
approximations is applied:

Wit+1.k = Cik — Ci+1,k

The associated wavelet is ¢ (z).

S9(5) = 6@) - 29(5)

i
272

The reconstruction algorithm is immediate:

J

Cok =CJk+ Z Wy,
i=1




The Isotropic Wavelet and Scaling Functions I

Bs(x) = —(s-2[°~4lz—1F+6]z 4|z+1F +]z+2f)
Y(z,y) = Bs(z)Bs(y)
LoE Yy - _lyEy
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In the 2-dimensional case, we assume the separability, which leads to a

row-by-row convolution with (75, 1, 2, 7, 75); followed by

column-by-column convolution.




Boundaries

The most general way to handle the boundaries is to consider that
Cr+N = cN—k (mirror). But other methods can be used such as periodicity
(ck—i—N = ¢ ), Or continuity (Ck+N =cn).




NGC2997




ISOTROPIC UNDECIMATED WAVELET TRANSFORM

Scale 1 Scale 2 Scale 3 Scale 4 Scale 5




The STARLET Transform
Isotropic Undecimated Wavelet Transform (a trous algorithm)

1 x. 1 x
@ =B, —spline, —y(2)=—¢(2)-@(x) J
272 22 I(k,D)=c;y + Ej=le,k,l

h=[146411/16, g=0-h. h=g=




Dynamic Range Compression I

Images with a high dynamic range are also difficult to analyze. For
example, astronomers generally visualize their images using a logarithmic
look-up-table conversion.

Wavelet can also be used to compress the dynamic range at all scales, and
therefore allows us to clearly see some very faint features. For instance, the
wavelet-log representations consists in replacing w; i, ; by log(|w; k1),
leading to the alternative image

J
Iy =log(cy) + ngn wj k1) 1og(| wj ke | +€)
j=1




Left - Hale-Bopp Comet image. Middle - histogram equalization results, Right -

wavelet-log representations.




