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Inverse Problems in Astrophysics

•Part 1: Introduction inverse problems and image deconvolution  

•Part 2: Introduction to Sparsity and Compressed Sensing

•Part 3: Wavelets in Astronomy: from orthogonal wavelets and to the Starlet transform.

•Part 4: Beyond Wavelets

•Part 5: Inverse problems and their solution using sparsity: denoising, deconvolution, inpainting, blind 
source separation.

•Part 6: CMB &  Sparsity  

•Part 7: Perspective of Sparsity & Compressed Sensing in Astrophsyics



Critical Sampling                            Redundant Transforms

               Pyramidal decomposition (Burt and Adelson)
   (bi-) Orthogonal WT                                 Undecimated Wavelet Transform
   Lifting scheme construction                      Isotropic Undecimated Wavelet Transform
   Wavelet Packets                                        Complex Wavelet Transform
    Mirror Basis                                             Steerable Wavelet Transform
                                                                     Dyadic Wavelet Transform
                                                                     Nonlinear Pyramidal decomposition (Median)

 Multiscale Transforms

New Multiscale Construction
Contourlet                                               Ridgelet
Bandelet                                                  Curvelet (Several implementations)
Finite Ridgelet Transform                       Wave Atom
Platelet
(W-)Edgelet                                                  
Adaptive Wavelet          



Wavelets and edges

• many wavelet coefficients are  
needed to account for edges  i.e. 
singularities along lines or curves :

• need dictionaries of strongly anisotropic 
atoms  :

 ridgelets, curvelets, contourlets, bandelettes, etc. 



SNR = 0.1





Undecimated Wavelet Filtering (3 sigma)



Ridgelet Filtering (5sigma)



Continuous Ridgelet Transform

Ridgelet function:

 The function is constant along lines. Transverse to these ridges, it is a wavelet. 

Ridgelet Transform (Candes, 1998):
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The ridgelet coefficients of an object f are given by analysis 

of the Radon transform via:
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Rf (a,b,θ) = Rf (θ,t)ψ( t − b
a∫ )dt



● Ridgelet transform: Radon + 1D Wavelet
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  Ridgelet Transform

θ
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image Radon domain

θ0

1D UWT
Rad. Tr.

1.     Rad. Tr.
2.     For each line, apply the same denoising 
     scheme  as before

d0



The partitioning introduces a redundancy, as a pixel belongs to 4 neighboring
blocks. 

Smooth partitioning

Image

Ridgelet
transform

LOCAL RIDGELET TRANSFORM



Poisson Noise and Line-Like Sources Restoration 
(MS-VST + Ridgelet)

Max Intensity
background = 0.01
vertical bar = 0.03
inclined bar = 0.04

simulated image of counts restored image 
from the left image of counts

underlying intensity image

 B. Zhang, M.J. Fadili and J.-L. Starck,  "Wavelets, Ridgelets and Curvelets for Poisson Noise 
Removal" ,ITIP,   Vol 17, No 7, pp 1093--1108, 2008.



Wavelet

Curvelet

Width = Length^2

The Curvelet Transform (1999)
     



The Curvelet Transform for Image Denoising,  IEEE Transaction on  Image Processing, 11, 6, 2002,
   - 2D Wavelet Tranforfm
   - Local Ridgelet Transform



J.-L. Starck, E. Candes, D.L. Donoho  The Curvelet Transform 
for Image Denoising,  IEEE Transaction on  Image Processing, 11, 6, 2002.

Width = Length^2 The Curvelet Transform (CUR01)

Redundancy 16J + 1 for J wavelet scales.
Complexity O(N2

(log N)

2
) for N ⇥N images.



NGC2997



Undecimated Isotropic WT:
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I(k, l) = cJ ,k,l + w j,k,lj=1
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PARTITIONING



The Fast Curvelet Transform, Candes et al, 2005

  CUR03 - Fast Curvelet Transform using the USFFT
  CUR04 - Fast Curvelet Transform using the Wrapping and 2DFFT





CONTRAST ENHANCEMENT USING THE CURVELET TRANSFORM

Curvelet coefficient

Modified
curvelet 
coefficient
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{
J.-L Starck, F. Murtagh, E. Candes and D.L. Donoho,  “Gray and Color Image Contrast Enhancement by the Curvelet Transform”,

IEEE Transaction on  Image Processing,  12, 6, 2003.
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Contrast Enhancement 





Comet 9P/Tempel-1:   Impact on July 4, 2005







- E. Pantin, J.-L. Starck, and F. Murtagh,  "Deconvolution and Blind Deconvolution in Astronomy", 
in  Blind image deconvolution: theory and applications, pp 277--317, 2007.

- J.-L. Starck, F. Murtagh, and M. Bertero, "The Starlet Transform in Astronomical Data Processing: 
Application to Source Detection and Image Deconvolution", Springer, Handbook of Mathematical Methods 
in Imaging, in press, 2011.

DECONVOLUTION



A difficult issue

Is there any representation that well represents the following image ? 



Going further

= +

Lines Gaussians

Redundant Representations

Curvelets Wavelets



Morphological Diversity
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φ = φ1,K,φL[ ], α = α1,K,αL{ }, s = φα = φkk=1

L
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•J.-L. Starck, M. Elad, and D.L. Donoho, Redundant Multiscale Transforms and their Application for Morphological Component Analysis, Advances in Imaging and Electron Physics, 
132, 2004.
•J.-L. Starck, M. Elad, and D.L. Donoho, Image Decomposition Via the Combination of Sparse Representation and a Variational Approach, IEEE Trans. on Image Proces.,  14, 
10,  pp 1570--1582, 2005.

•J.Bobin et al, Morphological Component Analysis: an adaptive thresholding strategy, IEEE Trans. on Image Processing, Vol 16, No 11, pp 2675--2681, 2007.

Sparsity Model 2:  we consider a signal as a sum of K 
components sk,                    ,  each of them being sparse in a 
given dictionary :



Morphological Component Analysis (MCA)

•Redundant Multiscale Transforms and their Application for Morphological Component Analysis, Advances in Imaging and Electron Physics, 132, 2004.
•Image Decomposition Via the Combination of Sparse Representation and a Variational Approach, IEEE Trans. on Image Proces., 14, 10,  pp 1570--1582, 2005
• Morphological Component Analysis: an adaptive thresholding strategy, IEEE Trans. on Image Processing, Vol 16, No 11, pp 2675--2681, 2007.

New Perspectives
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Morphological Component Analysis (MCA)
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. Initialize all          to zero

.  Iterate j=1,...,Niter
    - Iterate k=1,..,L
            Update the kth part of the current solution by fixing all other parts and minimizing:

    

   - Decrease the threshold 

Which is obtained by a simple hard/soft thresholding of :
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a) Simulated image (gaussians+lines)       b) Simulated image + noise                     c)  A trous algorithm            

     d)  Curvelet transform                            e) coaddition c+d                                            f) residual = e-b              
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a) A370 b) a trous

c) Ridgelet + Curvelet Coaddition b+c



Galaxy SBS 0335-052



Galaxy SBS 0335-052
10 micron
GEMINI-OSCIR 



Revealing the structure of one of the nearest
infrared dark clouds (Aquila Main: d ~ 260 pc)



 A. Menshchikov, Ph.André.  P. Didelon, et al, “Filamentary structures and compact objects in the Aquila and Polaris clouds observed by Herschel”,  A&A, 518, 
id.L103, 2010.



 

3D Morphological Component Analysis

39

Original (3D shells + Gaussians)

Shells
Gaussians

Dictionary
RidCurvelets + 3D UDWT.

- A . Woiselle, J.L. Starck, M.J. Fadili, "3D Data Denoising and Inpainting with the Fast Curvelet transform", JMIV, 39, 2, pp 121-139, 2011.
- A. Woiselle, J.L. Starck, M.J. Fadili, "3D curvelet transforms and astronomical data restoration", Applied and Computational Harmonic Analysis, Vol. 28, 
No. 2, pp. 171-188, 2010.

A. Woiselle



Simulated Cosmic String Map 



!!Training!basis.

€ 

ˆ D , ˆ Α ( ) = argmin
D∈C1
A∈C2

Y = DA( )

DL:!Matrix!Factoriza5on!problem

C1:!Constraints!on!the!Sparsifying!

dic5onary!D
C2:!Constraints!on!the!Sparse!codes

Dictionary Learning







S. Beckouche

Astronomical Image Denoising Using Dictionary Learning, S. Beckouche, J.L. Starck, and J. 
Fadili, A&A, submitted.



Local DCT Wavelet transform Curvelet transform

Sparsity Model 1: we consider a dictionary 
 which has a fast transform/reconstruction operator:

Piecewise smooth

Isotropic structures

Piecewise smooth, 
edge

Stationary textures

Locally oscillatory

Sparsity Model 2:  Morphological Diversity: 
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φ = φ1,K,φL[ ], α = α1,K,αL{ }, s = φα = φkk=1
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Sparsity Model 3:   we adapt/learn the dictionary directly from the data

G. Peyre, M.J. Fadili and J.L. Starck, , "Learning the Morphological Diversity", SIAM Journal of Imaging Science, 3 (3) , pp.646-669, 2010.

Model 3 can be also combined with model 2:



Advantages of model 1 (fixed dictionary) : extremely fast.  

Advantages of model 3 (dictionary learning):  
atoms can be obtained which are well adapted to the data, and which could 
never be obtained with a fixed dictionary.
Drawback of model 3 versus model 1,2:
We pay the price of dictionary learning by being less sensitive to detect very 
faint features.
Complexity: Computation time,  parameters, etc

Advantages of model  2 (union of fixed dictionaries): 
- more flexible to model 1. 
- The coupling of local DCT+curvelet is well adapted to a relatively large 
class of images.


