

•Part 1: Introduction inverse problems and image deconvolution

•Part 2: Introduction to Sparsity and Compressed Sensing

•Part 3: Wavelets in Astronomy: from orthogonal wavelets and to the Starlet transform.

•Part 4: Beyond Wavelets

•Part 5: Inverse problems and their solution using sparsity: denoising, deconvolution, inpainting, blind source separation.

•Part 6: CMB & Sparsity

•Part 7: Perspective of Sparsity & Compressed Sensing in Astrophysics

CosmoStat Lab

Multiscale Transforms

Critical Sampling

Redundant Transforms

(bi-) Orthogonal WT Lifting scheme construction Wavelet Packets Mirror Basis Pyramidal decomposition (Burt and Adelson) **Undecimated Wavelet Transform Isotropic Undecimated Wavelet Transform** Complex Wavelet Transform Steerable Wavelet Transform Dyadic Wavelet Transform Nonlinear Pyramidal decomposition (Median)

New Multiscale Construction

Contourlet Bandelet Finite Ridgelet Transform Platelet (W-)Edgelet Adaptive Wavelet Ridgelet Curvelet (Several implementations) Wave Atom

New Perspectives

Morphological Component Analysis (MCA)

•Redundant Multiscale Transforms and their Application for Morphological Component Analysis, Advances in Imaging and Electron Physics, 132, 2004, •Image Decomposition Via the Combination of Sparse Representation and a Variational Approach, IEEE Trans. on Image Process., 14, 10, pp 1570–1582, 2005 •Morphological Component Analysis: an adaptive thresholding strategy. IEEE Trans. on Image Processing, Vol 16, No 11, pp 2675–2681, 2007.

 $J(s_1,...,s_L) = \left\| s - \sum_{k=1}^L s_k \right\|_2^2 + \lambda \sum_{k=1}^L \left\| T_k s_k \right\|_p$

Morphological Component Analysis (MCA)

$$J(s_1,...,s_L) = \left\| s - \sum_{k=1}^L s_k \right\|_2^2 + \lambda \sum_{k=1}^L \left\| T_k s_k \right\|_p^2$$

Initialize all S_k to zero Iterate j=1,...,Niter

- Iterate k=1,..,L

Update the kth part of the current solution by fixing all other parts and minimizing:

$$J(s_k) = \left\| s - \sum_{i=1, i \neq k}^{L} s_i - s_k \right\|_2^2 + \lambda^{(j)} \left\| T_k s_k \right\|_p$$

Which is obtained by a simple hard/soft thresholding of : $S_r = s - \sum_{i=1, i \neq k}^{L} s_i$

- Decrease the threshold

 $\lambda^{(j)}$

3D Morphological Component Analysis

Advantages of model 1 (fixed dictionary) : extremely fast.

Advantages of model 2 (union of fixed dictionaries):

- more flexible to model 1.

- The coupling of local DCT+curvelet is well adapted to a relatively large class of images.

Advantages of model 3 (dictionary learning):

atoms can be obtained which are well adapted to the data, and which could never be obtained with a fixed dictionary.

Drawback of model 3 versus model 1,2:

We pay the price of dictionary learning by being less sensitive to detect very faint features.

Complexity: Computation time, parameters, etc