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Inverse Problems in Astrophysics

•Part 1: Introduction inverse problems and image deconvolution  

•Part 2: Introduction to Sparsity and Compressed Sensing

•Part 3: Wavelets in Astronomy: from orthogonal wavelets and to the Starlet transform.

•Part 4: Beyond Wavelets

•Part 5: Inverse problems and their solution using sparsity: denoising, deconvolution, 
inpainting, blind source separation.

•Part 6: CMB &  Sparsity  

•Part 7: Perspective of Sparsity & Compressed Sensing in Astrophsyics



WMAP-Planck CMB Map 
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- Cosmic Microwave Background (CMB) and Planck
 
- Part 1: Joint WMAP-Planck CMB Map Reconstruction 
    Joint Planck and WMAP CMB Map Reconstruction (arXiv:1401.6016), A&A,563, Id. A105, 2014.

- Part 3: Large Scale Anomalies Studies
    Planck CMB Anomalies: Astrophysical and Cosmological Foregrounds and the Curse of Masking (arXiv:
1405.1844), JCAP, 08 id 006,  2014.

- Part 4: Primordial Pk Power Spectrum Reconstruction
    PRISM: Sparse Recovery of the Primordial Power Spectrum (arXiv:1406.7725), A&A, 566, id.A77, 2014. 
        PRISM: Sparse recovery of the primordial spectrum from WMAP9 and Planck datasets, arXiv:1406.7725, in press.
     





Statistical Properties of the CMB fluctuation

Cosmological Parameters

Search for specific signatures predicted by 
inflation models  

constraints on inflation 
models (fnl)

power spectrum

gravitationnal potential 
mapping 
                   +

Statistical analysis of the weak lensing 
effect 

Large scale analysis
Topology of the univers, 
inflation, ISW, etc

Constraint on dark 
energy

Integrated Sachs-Wolfe Effect (ISW)

Theory  Data  
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Planck Component Separation



Detected Compact Sources in Planck



Caché dans les autres emissions du ciel



ILL POSED INVERSE PROBLEM

Need to add constraint

minA,X =⇥ Y �AX ⇥2 s.t. C(X, A)

Y = A X  + N



 Planck Component Separation Principle
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      - Bayesian method: MODEL at low resolution with 4 components: 
              CMB,  
              low-frequency emission, 
            CO emission
             thermal dust emission
             + parameter interpolation to full resolution

where templates are difference maps (30−44), (44−70), (545−353) and (857−545).

      - Template fitting in two regions: Clean the 100 and 143 Ghz map by:



 Planck Component Separation Principle
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   - Internal Linear Combination (ILC), used by WMAP :

-  CMB spectrum is assumed to be known: a

- Modelling: X = as+R

Well known in statistics as the  BLUE (Best Linear Unbiased Estimator) method.

ŝ = Argmins (X � as)R�1
X (X � as)T

ŝ =
1

aTR�1
X a

aTR�1
X X

Solution ILC :

Nilc = ILC in the wavelet domain 
           one ILC per wavelet scale and per region. No localization at the coarsest   
           scales and up to 20 regions at the finest scale.
Smica = ILC in spherical harmonic domain        
              + modeling of the covariance matrix at low l,( l < 1500)  



Commander-Ruler, Sevem, NILC, Smica



PLANCK PR1 CMB MAP  



Full Sky Sparse WMAP + Planck-PR1 Map

       • J. Bobin, F. Sureau, J.-L. Starck, A. Rassat and P. Paykari, "Joint Planck and WMAP CMB Map Reconstruction", 
Astronomy and Astrophysics , 563, id.A105, 17 pp, 2014.

The anisotropies of the Cosmic microwave background (CMB) as observed by Planck. The CMB is a snapshot of the oldest light in our Universe, imprinted on 
the sky when the Universe was just 380 000 years old. It shows tiny temperature fluctuations that correspond to regions of slightly different densities, 
representing 
Credits: ESA and the Planck Collaboration
the seeds of all future structure: the stars and galaxies of today.
La plus belle carte du fond diffus cosmologique
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qj,k = Pj/ (Dj,k �Nj,k)

Pj =
1
4�

�

⇥

⇥(⇥ + 1) � a
(�j)
⇥,0 �2 C⇥

Qk = 1�max
j

qj,k

QUALITY MAP

Expected power in a given wavelet band :

Quality coefficient : 
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QUALITY MAPS
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Power Spectrum
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CMB & ANOMALIES 
! Anomalies in WMAP CMB maps:
! Low Power in CMB Quadrupople (Hinshaw 96, Spergel 03).
! North /South Asymmetry (Erikson 04).
! Planarity of low multipoles,  ‘Axis of Evil’ (Tegmark 03, de Oliveira-

Costa 04, Land & Maguiejo 05).
! Small scale cold spot in southern hemisphere (Vielva 2004).
! Few hot spots.

Anomalies confirmed by Planck



INPAINTING for large scale studies  

 Mask 30% of the sky and use Wiener Inpainting



How aggressive should be the mask ?
Errors on Anamolies Measurements versus Mask Size



 

Kurtosis & Masking
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Fsky=11%. Kurt=-0.14 Fsky=17%. Kurt=-1.39 Fsky=33%. Kurt=0.83

Fsky=64%. Kurt=0.37Fsky=53%. Kurt=0.59Fsky=34%. Kurt=0.65

Fsky=76%. Kurt=0.34 Fsky=87%. Kurt=0.27 Fsky=100%. Kurt=0.25

Kurtosis versus Mask Size (Scale 7, l=[17,70])

A. Rassat, J.-L. Starck, P. Paykari, F. Sureau J. Bobin, “Planck CMB Anomalies: Astrophysical and Cosmological Foregrounds 
and the Curse of Masking”, arXiv:1405.1844, JCAP, in press, 2014.



Normalized Skewness & Kurtosis



Sparsity & CMB Conclusions

28http://www.cosmostat.org/prism.html
http://www.cosmostat.org/planck_wpr1.html
http://www.cosmostat.org/gmca_mainpage.html

Sparsity is very efficient for Component Separation
• High quality and full sky CMB map, from WMAP and Planck  data.
•Masking is even not necessary anymore for large scale studies.

    Joint Planck and WMAP CMB Map Reconstruction (arXiv:1401.6016), A&A,563, Id. A105, 2014.

CMB full sky analysis at large scales:
•After kDq  ISW and kSZ  subtraction,   octopole planarity, AoE, mirror parity the 
quadrupole/octopole alignment and cold spot are not anomalous.

    Planck CMB Anomalies: Astrophysical and Cosmological Foregrounds and the Curse of Masking (arXiv:
1405.1844), JCAP, 2014.

PRISM method for Pk reconstruction:  No  detection of any strong deviation from 
WMAP9  or Planck PR1 near-scale invariant fiducial primordial power spectra.
   PRISM: Sparse Recovery of the Primordial Power Spectrum (arXiv:1406.7725), A&A, 566, id.A77, 2014. 
      PRISM: Sparse recovery of the primordial spectrum from WMAP9 and Planck datasets, arXiv:1406.7725, A&A,2014.
     

 



WMAP-Planck CMB Map 
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- Intro: Cosmic Microwave Background (CMB) and Planck
 
- Part 1: Joint WMAP-Planck CMB Map Reconstruction 
    Joint Planck and WMAP CMB Map Reconstruction (arXiv:1401.6016), A&A,563, Id. A105, 2014.

- Part 3: Large Scale Anomalies Studies
    Planck CMB Anomalies: Astrophysical and Cosmological Foregrounds and the Curse of Masking (arXiv:
1405.1844), JCAP, 08 id 006,  2014.

- Part 4: Primordial Pk Power Spectrum 
Reconstruction
    PRISM: Sparse Recovery of the Primordial Power Spectrum (arXiv:1406.7725), A&A, 566, id.A77, 2014. 
        PRISM: Sparse recovery of the primordial spectrum from WMAP9 and Planck datasets, arXiv:1406.7725, in press.
     



Importance of P(k)

Inflation is currently the most favoured model
Simplest models predict a near scale-invariant power spectrum

Why is P(k) important?
 - Distinguish between different models of inflation
 - Cosmological parameters is sensitive to shape of P(k)

Estimation of P(k)?
 - Reconstruction 
 - Parametric methods

" " " " "
Hunt & Sarkar 2014



 

Planck PR1 Official P(k)
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�C� =

�
�

��k

M���T��kPk + N�

�
Z�

http://www.cosmostat.org/prism.html



 

P(k) reconstruction : An Inverse Problem
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Formally, the observed pseudo-power spectrum computed from masked CMB maps 
can be linked to the underlying primordial power spectrum  through a linear relation 
of the form:

where T and M are a linear operators encoding respectively the angular transfer function of CMB anisotropies and the 
effects of masks and beams, and  Z is a multiplicative noise term.

The recovery of the primordial power spectrum is performed by solving an optimization problem of the form:

�C� =

�
�

��k

M���T��kPk + N�

�
Z�

min
X

1
2
� C� � (MTX + N�) �2

2 +� � �tX �0 ,

Sparse recovery:

P. Paykari, F. Lanusse, J.-L. Starck, F. Sureau, J. Bobin, “PRISM: Sparse Recovery of the Primordial Power Spectrum”, A&A, 
566, id A77,  2014,  arXiv:1402.1983.

http://www.cosmostat.org/prism.html



 

PRISM & Planck PR1 Data

33http://www.cosmostat.org/prism.html



 

PRISM & Planck PR1 Data

34http://www.cosmostat.org/prism.html



Sparsity and the Bayesian Contreversy
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P (Y/↵) = e�kY�M�↵k2
2

min
↵

�log (P (↵|Y )) =k Y �M�↵ k22 +� k ↵ k1,

P (�) = e�����1

P (�|Y ) = P (Y |�)P (�)

Y = MX = M�� with ���1 minimum

Bayes:

Maximum a Posteriori (MAP)

Gaussian noise prior:

Prior on the solution:

Severe Critics from Bayesian Cosmologists against CMB Sparse Inpainting 

Sparsity consists in assuming an anisotropy and a non Gaussian prior, which does not 
make sense for the CMB, which is Gaussian and isotropic.
 



But what is exactly the prior in the sparse analysis ?
Bayesian: each (spherical harmonic) coefficient is a realization of a stochastic 
process.
Sparsity: we see the data as a function, and the coefficients follows a given 
distribution. Even if each spherical harmonic coefficient is a realization of 
Gaussian variable, the distribution of all coefficients is not necessary Gaussian.

There is no assumption that the CMB is Gaussian or isotropic, but there is also no assumption that it is non 
Gaussian or anisotropic. In this sense, using the l1-regularized inpainting to test if the CMB is indeed Gaussian 
and isotropic may be better than other methods, including Wiener filtering, which in the Bayesian framework 
assumes Gaussianity and isotropy.



Compressed sensing and the Bayesian interpretation failure

==> The MAP solution verifies the distribution of the prior. 

The  critic  is that the l1 regularization is equivalent to assume that the solution is 
Laplacian and not Gaussian, which does not make sense in case  of CMB analysis. 

(Nikolova, 2007; Gribonval, 2011, Gribonval, 2012, Unser, 2012) 

but x does NOT follow a Laplacian distribution

The beautiful Compressed Sensing counter-example 



What Bayesian Perspective Cannot See !!!

For most Bayesian cosmologists, if a prior derives an algorithm, therefore to use this 
algorithm, we must have the coefficients distributed according to this prior.

But this is simply a false logical chain. 

What compressed sensing shows is that:

we can have prior A be completely true, but impossible to use for computation time 
or any other reason,  and can use prior B instead, and get the correct results! 

We need to take into account the operator involved in the inverse problem, and this requires 
much deeper mathematical developments than a simple and naive Bayesian interpretation. 

Compressed sensing theory shows that for some operators, beautiful geometrical phenomena 
allows us to recover perfectly the solution of an underdetermined inverse problem. Similar 
results were derived for a random sampling on the sphere.

Starck, Donoho, Fadili, Rassat, “Sparsity and the Bayesian Perspective”, Astronomy and Astrophysics, 552, A133, 
2013  [arXiv:1302.2758].


