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ABSTRACT. Morphological Component Analysis (MCA) is a new method which takes advantage
of the sparse representation of structured data in large overcomplete dictionaries to separate
features in the data based on the diversity of their morphology. It is an efficient technique in
such problems as separating an image into texture and piecewise smooth parts or for inpainting
applications. The MCA algorithm consists of an iterative alternating projection and thresholding
scheme, using a successively decreasing threshold towards zero with each iteration. In this article,
the MCA algorithm is extended to the analysis of spherical data maps as may occur in a number
of areas such as geophysics, astrophysics or medical imaging. Practically, this extension is made
possible thanks to the variety of recently developed transforms on the sphere including several
multiscale transforms such as the undecimated isotropic wavelet transform on the sphere, the
ridgelet and curvelet transforms on the sphere. An MCA-inpainting method is then directly extended
to the case of spherical maps allowing us to treat problems where parts of the data are missing or
corrupted. We demonstrate the usefulness of these new tools of spherical data analysis by focusing
on a selection of challenging applications in physics and astrophysics.

1. Introduction

A usual task in processing signals, images as well as spherical data maps, is to decompose
the data into its elementary building blocks. This can be formulated as an inverse problem
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where the data is assumed to have been generated according to the following model:

y =
∑
i

αiφi + η (1.1)

that is a linear combination of relevant waveforms φi ∈ Rn with weights αi . Here η
represents possible contamination by additive, typically Gaussian white noise. Given data
y ∈ Rn, one then wants to recover the underlying structures that is to say estimate a set
of waveforms φi that build the data and their corresponding weights α̃i . The solution to
this estimation problem will depend heavily on the available prior information. Of interest
here is the case where one is given a priori a set a waveforms from which to select a good
subset. This set may be a basis, a frame or several bases or frames grouped into a large
redundant dictionary.

Possible dictionaries in 1D and 2D include Fourier and related bases, wavelet bases,
as well as other more recent multiscale systems such as the ridgelet [17] and curvelet
frames [24, 52], etc. Depending on the morphology of the data, each of these dictionaries
will have different performance characteristics in a nonlinear approximation scheme. For
instance, sparse approximations of piecewise smooth signals or images with point singular-
ities are easily obtained using wavelets. However, these are no longer optimal in the case
of piecewise smooth images with singularities along smooth curves or edges. Such images
are more efficiently approximated using curvelets which are highly anisotropic and thus
exhibit high directional selectivity. Digital implementations of both ridgelet and curvelet
transforms and their application to image denoising are described in [52].

Available transforms in the spherical topology include the spherical harmonics and
several wavelet transforms. Software packages such as Healpix1 [36] or Glesp [29] provide
approximate digital spherical harmonic transform routines based on their specific pixeliza-
tion schemes. Schröder and Sweldens [49] have developed an orthogonal wavelet transform
on the sphere based on the Haar wavelet function which then suffers from the poor frequency
domain localization properties of the primitive Haar function and from the problems in-
herent in orthogonal decomposition (e.g., lack of translation invariance). A few articles
describe continuous wavelet transforms on the sphere [2, 18, 39, 59, 9] which have been
extended to directional wavelet transforms [60, 45]. Although useful for data analysis,
these continuous transforms lack an inverse transform and hence are clearly not suitable for
restoration or synthesis purposes.

In their pioneering work, Freeden and Maier [33, 34] gave a wavelet transform and
reconstruction scheme on the sphere which is based on the spherical harmonic transform.
Following this idea, Starck et al. [56] have proposed a new invertible isotropic undecimated
wavelet transform (UWT) on the sphere which preserves the same desirable properties as the
standard isotropic UWT for flat 2D maps [57]: The reconstruction is simple and immediate
since it is just the addition of all the wavelet bands with the coarsest scale. Based on this
new decomposition, other multiscale transforms such as the pyramidal wavelet transform,
the ridgelet transform and the curvelet transform have been successfully constructed on the
sphere [56]. Each of these decompositions on the sphere will sparsely represent parts of
the image based on their morphological properties. Wavelets will easily detect more or
less isotropic localized structures, while curvelets are better suited for efficiently detecting
highly anisotropic objects.

1http://www.eso.org/science/healpix.
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A data set y has an exact representation over any complete basis of the data space,
or several such exact representations in the case of redundant overcomplete dictionaries.
However, these representations are not equally interesting in terms of data modeling or
feature detection. In fact, a strong a priori is to favor representations of y that use only
a small number of waveforms leading to a more concise and possibly more interpretable
representation of the data. In fact, building sparse representations or approximations is the
(he)art of structured data processing: The design of good detection, denoising, restoration
and compression algorithms relies on the availability of good dictionaries and good selection
algorithms. Indeed, selecting the smallest subset of waveforms from a large dictionary, that
will linearly combine to reproduce the salient features of a given signal or image, is a
hard combinatorial problem. Several pursuit algorithms have been proposed that can help
build very sparse decompositions such as the greedy Matching Pursuit (MP) [42] algorithm
which refines the signal approximation by picking at each iteration the one waveform which
best correlates with the current approximation error. Basis Pursuit (BP) [20] is a global
procedure which seeks an approximation ỹ to y by solving the linear programming problem:

min
α

‖α‖�1 subject to y = �α , (1.2)

where the �1 norm measures sparsity in place of the �0 counting norm. In the presence of
noise, a noise-aware variant of BP, known as BPDN (for BP denoising), can be stated as a
convex quadratic programming problem and solved using the Interior Point method [20].
The BPDN problem can also be written in the augmented Lagrangian form:

min
α

‖y −�α‖2
�2

+ λ · ‖α‖�1 . (1.3)

Among all possible solutions, the chosen one has the minimum �1 norm. This choice of
�1 norm is very important. An �2 norm, as used in the method of frames [21], does not
favor sparsity [20]. A number of recent results prove that these algorithms will recover
the unique maximally sparse decomposition provided this solution is sparse enough and
the dictionary is sufficiently incoherent [25, 31, 37, 26, 35]. Nevertheless, in problems
involving large data sets (e.g., images, spherical maps), BP or MP synthesis algorithms
are computationally prohibitive. Morphological Component Analysis (MCA) is a recent
faster alternative described in [54] that constructs a sparse representation of a signal or
an image assuming that it is a combination of morphologically distinct features which are
sparsely represented in different dictionaries associated with fast transform algorithms. For
instance, images commonly combine contours and textures: The former are well accounted
for using curvelets, while the latter may be well represented using local cosine functions.
In searching for a sparse decomposition of a signal or image y, it is assumed that y is
a sum of K components (sk)1,...,K , where each can be described as sk = �kαk with a
possibly over-complete dictionary �k and a sparse vector of coefficients αk . It is further
assumed that for any given component the sparsest decomposition over the proper dictionary
yields a highly sparse description, while its decomposition over the other dictionaries,
�k′ �=k , is non sparse. Thus, the different �k can be seen as discriminating between the
different components of the initial signal. MCA achieves its sparse decomposition relying
on an iterative thresholding algorithm with a successively decreasing threshold [8] thus
refining the current approximation by including finer structures alternatingly in the different
morphological components. Based on MCA, it has also been shown that we can derive a
very efficient inpainting method [32].

This article: Motivated by the success of MCA in signal and image processing, the
purpose of this contribution is to take advantage of the variety of transforms on the sphere
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recently made available [56] to extend the applicability of MCA to the analysis of spherical
maps which are commonly recorded in a number of areas such as geophysics, astrophysics
or medical imaging. As in the case of Euclidean 2D images, we further extend the MCA
algorithm on the sphere in order to perform inpainting tasks on the sphere. The proposed
numerical tools are shown to be valuable in several selected applications in physics and
astrophysics. The construction of the undecimated isotropic wavelet and curvelet transforms
on the sphere is reviewed in the next section. Sections 3 and 4 describe the extension to the
sphere of the MCA algorithm and of its modification for inpainting purposes.

2. Transforms on the Sphere

2.1 Isotropic Undecimated Wavelet Transform on the Sphere

The undecimated isotropic transform on the sphere described in [56] is similar in many
respects to the regular à trous isotropic wavelet transform. It is obtained using a zonal
scaling function φlc (ϑ, ϕ) which depends only on colatitude ϑ and is invariant with respect
to a change in longitude ϕ. It follows that the spherical harmonic coefficients φ̂lc (l, m) ofφlc
vanish when m �= 0 which makes it simple to compute the spherical harmonic coefficients
ĉ0(l, m) of c0 = φlc ∗ f where ∗ stands for convolution:

ĉ0(l, m) = φ̂lc ∗ f (l,m) =
√

4π

2l + 1
φ̂lc (l, 0)f̂ (l, m) . (2.1)

A possible scaling function [57], defined in the spherical harmonics representation, is
φlc (l, m) = 2

3B3(
2l
lc
) where B3 is the cubic B-spline compactly supported over [−2, 2].

Denoting φ2−j lc a rescaled version of φlc with cut-off frequency 2−j lc, a multi-resolution
decomposition of f on a dyadic scale is obtained recursively:

c0 = φlc ∗ f
cj = φ2−j lc ∗ f = cj−1 ∗ hj−1 (2.2)

where the zonal low pass filters hj are defined by

Ĥj (l, m) =
√

4π

2l + 1
ĥj (l, m) =




φ̂ lc

2j+1
(l,m)

φ̂ lc
2j
(l,m)

if l < lc
2j+1 and m = 0

0 otherwise

. (2.3)

The cut-off frequency is reduced by a factor of 2 at each step so that in applications where this
is useful such as compression, the number of samples could be reduced by the same factor.
Using a pixelization scheme such as Healpix [36], this can easily be done by dividing by 2
the Healpix nside parameter when computing the inverse spherical harmonics transform. Of
course, this is only an approximate Sampling Theorem but it proved sufficient for numerical
purposes. However, in the present isotropic undecimated transform, no downsampling
is performed and the maps have the same number of pixels on each scale. Hence, the
orthogonality requirement is relaxed, which provides us with a higher degree of freedom
in the choice and design of the wavelet function ψlc to be used with the scaling function
φlc . As in the à trous algorithm, the wavelet coefficients can be defined as the difference
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between two consecutive resolutions, wj+1(ϑ, ϕ) = cj (ϑ, ϕ) − cj+1(ϑ, ϕ) which defines
a zonal wavelet function ψlc as

ψ̂ lc

2j
(l, m) = φ̂ lc

2j−1
(l, m)− φ̂ lc

2j
(l, m) . (2.4)

This particular decomposition is readily inverted by summing the coefficient maps on all
wavelet scales

f (ϑ, ϕ) = cJ (ϑ, ϕ)+
J∑
j=1

wj(ϑ, ϕ) (2.5)

where we have made the simplifying assumption that f is equal to c0. Obviously, other
wavelet functions could be used just as well. Also, because of the redundancy of the de-
scribed decomposition, the inverse transform is not unique and in fact this can profitably
be used to impose additional constraints on the synthesis functions (e.g., smoothness, pos-
itivity) used in the reconstruction [55].

2.2 Curvelets on the Sphere

The 2D ridgelet transform [17] was developed in an attempt to overcome some limitation
inherent in former multiscale methods (e.g., the 2D wavelet) when handling smooth images
with edges i.e., singularities along smooth curves. Ridgelets are translation invariant ridge
functions with a wavelet profile in the normal direction. Although ridgelets provide sparse
representations of smooth images with straight edges, they fail to efficiently handle edges
along curved lines. This is the framework for curvelets which were given a first mathemati-
cal description in [16]. Basically, the curvelet dictionary is a multiscale pyramid of localized
directional functions with anisotropic support obeying a specific parabolic scaling such that
at scale 2−j , its length is 2−j/2 and its width is 2−j . This is motivated by the parabolic
scaling property of smooth curves. Other properties of the curvelet transform and deci-
sive optimality results in approximation theory are reported in [16, 14]. Notably, curvelets
provide optimally sparse representations of manifolds which are smooth away from edge
singularities along smooth curves. Several digital curvelet transforms [24, 52, 22, 13] have
been proposed which attempt to preserve the essential properties of the continuous curvelet
transform and many articles [51, 54, 38, 58, 53] report on their successful application in
image processing experiments. The contourlet transform in [22] is a filter bank implemen-
tation of the curvelet transform. Candès et al. implement fast discrete curvelet transforms
in [13]. Their design is very close to the mathematical transformation as they resort to
a paving of the Fourier plane into pseudo-polar wedges delimited by dyadic concentric
squares. The so-called first generation discrete curvelet described in [24, 52] is a very dif-
ferent construction: It consists in applying the ridgelet transform to sub-images of a wavelet
decomposition of the original image. By construction, the sub-images are well localized
in space and frequency and the subsequent ridgelet transform provides the necessary di-
rectional sensitivity. This latter implementation in combination with the good geometric
properties of the Healpix pixelisation scheme, inspired the digital curvelet transform on the
sphere [56].

Partitioning using the Healpix representation. The Healpix representation [36] is a
curvilinear partition of the sphere into quadrilateral pixels of exactly equal area but with
varying shape. The base resolution divides the sphere into 12 quadrilateral faces of equal
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area placed on three rings around the poles and equator. Each face is subsequently divided
into nside2 pixels following a hierarchical quadrilateral tree structure. The geometry of the
Healpix sampling grid makes it easy to partition a spherical map into blocks of a specified
size. We first extract the twelve base-resolution faces, and each face is then decomposed into
smoothly (i.e., an apodizing window is used) overlapping blocks of side-length Bj pixels
in such a way that the overlap between two vertically adjacent blocks is a rectangular array
of size Bj × Bj/2, as in the 2D digital curvelet transform [24, 52, 53]. With this scheme
however, there is no overlapping between blocks belonging to different base-resolution
faces. This may result in blocking artifacts in different data processing tasks such as image
denoising via non linear filtering. A simple way around this difficulty, which however
results in greater redundancy, is to work with various rotations of the data with respect to
the sampling grid.

Ridgelet transform. The continuous ridgelet transform is the application of a 1D-wavelet
transform to the angular slices of the Radon transform [17]. A digital implementation
described in [53] consists in (i) first computing the 2D Fourier transform of the image,
(ii) next extracting lines going through the origin in the frequency plane, (iii) then computing
the 1D inverse Fourier transform of each of these lines, (iv) and finally computing the 1D
wavelet transform of the extracted lines. The first three steps implement the discrete Radon
transform method called the linogram. Other implementations of the Radon transform,
such as the Slant Stack Radon Transform [23], can be used as well, provided they offer an
exact reconstruction. Applying the ridgelet transform on sub-images as suggested in [15]
provides the means to localize and limit the extent of the ridgelet functions. More details
on the implementation of the digital ridgelet transform can be found in [52].

Curvelet transform. Finally, the proposed digital curvelet transform algorithm on the
sphere is as follows:

1. Apply the undecimated isotropic wavelet transform on the sphere with J
scales.

2. Initialize the block size B1 = Bmin.

3. For j = 1, . . . , J do,

• partition the subband wj with a block size Bj and apply the digital
ridgelet transform to each block,

• if j modulo 2 = 1 then Bj+1 = 2Bj ,

• else Bj+1 = Bj ,

where smaller j means smaller length scales and higher frequency bands. Doubling the
sidelength of the localizing window at every other dyadic sub-band (i.e., when the spatial
frequency has been divided by four ) approximately preserves the specific parabolic scaling
property of the continuous curvelets. Nevertheless, the proportionality factor between
width and length2 has to be decided on in practice. The proposed implementation uses
the default value Bmin = 16 pixels. Figure 1 shows the backprojection of a few curvelet
coefficients at different scales and orientations on the sphere. The digital curvelet transform
on the sphere is clearly invertible in the sense that each step of the overall transform is itself
invertible. The curvelet transform on the sphere has a redundancy factor of 16J +1 when J
scales are used, which may be a problem for handling huge data sets such as from the future
Planck-Surveyor experiment. This can be reduced by substituting the pyramidal wavelet
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transform to the undecimated wavelet transform in the above algorithm. More details on the
wavelet, ridgelet, curvelet algorithms on the sphere can be found in [56] and software related
to these new transforms is available from the web page http://jstarck.free.fr.

FIGURE 1 Curvelets on the Sphere — The above figures show the backprojection of various curvelet coefficients
at different scales and orientations on the sphere. Each map is obtained by setting all but one of the curvelet
coefficients to zero, and applying an inverse curvelet transform. Depending on the scale and the position of the
non zero curvelet coefficient, the reconstructed image presents a feature with a given width, length and orientation.

Local DCT on the sphere. The Healpix partitioning of the sphere into warped square
blocks allows for even more numerical local transformations on the sphere. For instance, a
local DCT on the sphere is readily obtained by applying the standard DCT to a complete set
of possibly overlapping blocks of maybe different sizes. This heuristic revealed useful in a
particular application described in Section 3.3. Although it is difficult to fully characterize
the geometry of such digital transformations on the sphere, they profitably enrich the set of
tools available for spherical data analysis.

3. MCA on the Sphere

3.1 Principle and Algorithm

For a given spherical map y modeled as a linear combination of K spherical maps sk ,
y = ∑K

k=1 sk , having different morphologies, MCA assumes that a dictionary of bases
{�1, · · · ,�K} exists such that, for each k, sk is sparse in �k while its representation in the
other �k′ ( k′ �= k) is not sparse: ∀k′ �= k, ||�T

k sk||0 < ||�T
k′sk||0, where ||x||0 denotes

the �0 pseudo-norm of the vector x .. The problem is to separate the mixture y into its
constitutive morphological components (sk)k=1,··· ,K relying on the discriminating power
of the different dictionaries �k . Ideally, the αk are the solutions to:

min
α1,..., αK

K∑
k=1

‖αk‖0 subject to y =
K∑
k=1

�kαk . (3.1)
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While sensible from the point of view of the desired solution, the problem formulated in
Equation (3.1) is nonconvex and combinatorial by nature. Its complexity grows exponen-
tially with the number of columns in the overall dictionary (NP-hard problem). Motivated
by recent equivalence results, e.g., in [25], the MCA algorithm seeks a solution to the
following minimization problem:

min
s1,...,sK

λ

K∑
k=1

‖αk‖1 +
∥∥∥∥∥y −

K∑
k=1

sk

∥∥∥∥∥
2

2

with sk = �kαk (3.2)

where an �1 sparsity measure is substituted to the �0 counting norm following a prescription
of the Basis Pursuit algorithm [20]. In the above, the equality constraint was relaxed and
again sk = �kαk . In the case where each �k is an orthonormal basis, a block-coordinate
solution to the above problem is given by the following set of coupled equations:

∀k, sk = rk − λk

2
�ksign

(
�T
k sk

)
with rk = s −

∑
k′ �=k

sk′ . (3.3)

This can be solved efficiently using the iterative Block-Coordinate Relaxation Method [11]
in conjunction with, at a given k, a soft-thresholding of the decomposition of rk over �k.
However, when nonunitary or redundant transforms are used, the above is no longer strictly
valid. Nevertheless, simple shrinkage still gives satisfactory results as explained in [30].
Finally, denoting by Tk and Rk the forward and inverse transforms associated with the
redundant dictionary �k, MCA seeks a solution to problem (3.2) with the following algo-
rithm:

1. Set the number of iterations Imax and the initial thresholds
(
λ
(0)
k

)
k
.

2. While λ(t)
k

is greater than a given lower bound λmin (e.g., can depend on the noise standard
deviation).

– Proceed with the following iteration to estimate components (sk)k=1,...,K at iteration t :
For k = 1, · · · ,K.

• Compute the residual term r
(t)
k

assuming the current estimates s̃(t−1)
k′ �=k of sk′ �=k ,

are fixed:
r
(t)
k

= y −∑
k′ �=k s̃

(t−1)
k′ .

• Estimate the current coefficients of s̃(t)
k

by thresholding with threshold λ
(t)
k

:

α̃
(t)
k

= δ
λ
(t)
k

(
Tkr

(t)
k

)
.

• Get the new estimate of sk by reconstructing from the selected coefficients α̃(t)
k

:

s̃
(t)
k

= Rkα̃
(t)
k

.
– Decrease the thresholds λk following a given strategy.

3.2 Thresholding Strategy

The operator δ in the above algorithm is a soft thresholding operator as a result of the
use of an �1 sparsity measure in approximation to the ideal �0 norm. In practice, hard
thresholding leads generally to better results [54]. The final threshold should vanish in the
noiseless case or it may be set to a multiple of the noise standard deviation in the presence
of noise as in common detection or denoising methods. The way the threshold is decreased
along the iterations of the proposed iterative thresholding scheme is paramount in terms
of performance of the MCA separation mechanism. The original algorithm [54] used a
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linear strategy:

λ(t) = λ(0) − (t − 1)
λ(0) − λmin

Imax − 1
(3.4)

whereλ(0) is the initial threshold, and Imax is the number of iterations. The first threshold can
be set automatically to a large enough value such as the maximum of all coefficients λ(0) =
maxk ‖Tky‖∞. But there is no way to estimate the minimum number of iterations yielding
a successful separation. Too small a number of iterations leads to bad separation while too
large a number is computationally costly. Further, experiments have clearly shown that the
optimal number of iterations depends on the data. We recently focused on devising some
new data adaptive thresholding strategies to speed up the MCA decomposition preserving
the quality of the component separation. Hereafter we describe two promising strategies,
namely MAD and MOM, in the case whereK = 2; generalizing toK ≥ 2 is straightforward.

MAD. Consider a map y such that y = s1 + s2 = �1α1 + �2α2 where s1 and s2
have similar �2 norm and αk=1,2 = �T

k=1,2sk=1,2 are sparse. When both �k=1,2 are

orthonormal bases, decomposing y in �1 leads to y�T
1 = α1 + �T

1 �2α2. Provided the
mutual coherence [12, 37, 25] of �1 and �2 is low, y2 has no particular structure in �1
and hence it is tempting to model �T

1 s2 as a Gaussian noise. Its standard deviation can be
estimated using a robust estimator such as the Median Absolute Deviation (MAD) [27]. It
follows that estimating the significant entries α̃1 in α1 is a denoising problem readily solved
by thresholding �T

1 y with a threshold kσ (typically k is in the range 3 to 4). The next step
is to project the residual y − s̃1 = y − �1α̃1 on �2 and so on. Clearly, the variance of
the residual decreases along iterations and so this provides a simple strategy to adaptively
control the threshold in the MCA algorithm. In practice, this strategy remains fruitful in the
case of redundant dictionaries. Donoho et al. in [28] have recently focused on an iterative
thresholding scheme applied to solving under-determined linear sparse problems in which
they use a similar rule to manage their decreasing threshold.

MOM. Let s̃(t)1 and s̃
(t)
2 denote the current estimates of components s1 and s2 at the t th

iteration of the MCA decomposition of y. The current residual is r(t) = y − s̃
(t)
1 − s̃

(t)
2 . In

the strategy coined MOM as in “Mean of Max,” the value of the threshold at iteration t is
given by:

λ(t) = 1

2

[∥∥∥�T
1

(
y − s̃

(t−1)
1 − s̃

(t−1)
2

)∥∥∥∞ +
∥∥∥�T

2

(
y − s̃

(t−1)
1 − s̃

(t−1)
2

)∥∥∥∞

]
(3.5)

which is easily computed at each step of the iterative process. When one considers more than
two dictionaries, one should take the mean of the two largest decomposition coefficients
of the full residual over two distinct dictionaries. The intuition underlying this strategy is
that the next significant coefficients to be selected should be attached to the dictionary in
which the projection of the full residual has coefficients of largest amplitudes. Assuming
the coefficients selected at iteration t are in �1, it can be shown, under some conditions
on the sparsity of the components and the mutual coherence of the dictionary [8], that the
proposed strategy fixes the threshold so that:∥∥∥�T

1 �2ᾱ
(t−1)
2

∥∥∥∞ < λ
(t)
1 <

∥∥∥ᾱ(t−1)
1

∥∥∥∞ , ᾱ
(t−1)
k=1,2 = αk=1,2 − α̃

(t−1)
k=1,2 (3.6)

hence avoiding false detections (upper bound) and ensuring that at least one coefficient
is selected (lower bound). This thresholding strategy can easily be made more or less
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conservative depending on the desired decomposition speed. With these new thresholding
strategies, MCA is a fast and robust algorithm to achieve sparse decompositions in re-
dundant dictionaries and a practical alternative to other well-known sparse decomposition
algorithms [8].

Example

The spherical maps shown on Figure 2 illustrate a simple numerical experiment. We applied
the proposed Morphological Component Analysis on the Sphere to synthetic data resulting
from the linear mixture of components, respectively, sparse in the spherical harmonics and
the isotropic wavelet representations. The method was able to separate the data back into
its original constituents. A more involved application is described in the next section.

FIGURE 2 Simple toy experiment with MCA on the sphere — The top map shows a linear combination of a
spherical harmonic function and a localized Gaussian-like function on the sphere. The bottom maps show the
resulting separated components that were obtained using the proposed Morphological Component Analysis on
the sphere.

3.3 Application in Physics

In Inertial Confinement Fusion (ICF) a spherical shell is irradiated by laser energy directly
or after the laser energy has been converted to soft X-rays [3]. Either way, the aim is to
implode the capsule which contains a shell of nuclear fusion fuel (deuterium and tritium)
ready to ignite if, after it has been imploded, its density is high enough and a hot spot in
its center becomes hot enough to cause a propagating nuclear burn wave to travel through
the rest of the fuel. This ultimate energy source will not work if during the implosion
hydrodynamic instabilities develop which can break apart the shell before it assembles at
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the center and a hot spot forms [41]. Hydrodynamic instabilities such as Rayleigh-Taylor
occur due to nonuniformities in the laser spatial profile or imperfections in the composition
of multiple surfaces which make up the layers of thin material that surround the nuclear
fuel. Very small amplitude imperfections initially can result in the ultimate failure of the
target due to the large compression ratios involved in ICF.

It is therefore extremely important to characterize the inner and outer surfaces of ICF
shell targets so as to know whether they are worthy of consideration for ICF implosions.
One day in a reactor setting tens of thousands of targets will have to be imploded daily so that
checking each one is totally out of the question. Instead, very good target fabrication quality
control processes have to be adopted so that confidence levels in proper performance will be
high. A major step along this path to fusion energy then is to understand why imperfections
occur and to correct the systematic elements and control the harm done by random sources.
Fine structures on the surfaces of spherical shells can be measured on the nanometer scale,
among others, by atomic force microscopy or phase shifting spherical diffractive optical
interferometry. An example of such measurements is shown on Figure 3. As can be
seen from the figure, there appears to be a superposition of global scale variations, isolated
bumps and scratches as well as artifacts which look like interference patterns on intermediate
scales of localization. The latter must be isolated and eliminated from consideration when
deciding the readiness of the target for implosion. We have achieved the morphological
feature separation by first doing an isotropic wavelet transform on the spherical data and
subtracting the coarsest scale information. MCA on the sphere was used on the rest of the
image using the undecimated wavelet and the local cosine transforms on the sphere. The
isolated bumps were thus identified and the measurement technique caused artifacts were
removed easily. The resulting bumps added to the coarsest scale, is the clean data with the
interference patterns and artifacts removed as shown in Figure 4. The spherical harmonic
decomposition of the cleaned image gives rise to coefficients of various �modes which will
be amplified by the implosion process which can now be assessed correctly using numerical
hydrodynamics simulation generated growth factors. If the bumps are clustered and not
randomly distributed, then systematic errors in the manufacturing process can be tracked
down. A code called MODEM has been put together to study such target surface data and
extract the localized bump statistics including their correlations in height, size and relative
location. For more details see [1].

FIGURE 3 Left: Surface structures of ICF spherical shells measured on the nanometer scale are a superposition
of global scale variations, isolated bumps and scratches as well as artifacts which look like interference patterns
on intermediate scales. Right: Coarsest scale of the undecimated isotropic wavelet transform of the surface
measurements of an ICF target.



740 P. Abrial, Y. Moudden, J.-L. Starck, B. Afeyan, J. Bobin, J. Fadili, and M. K. Nguyen

FIGURE 4 Top: Spherical map obtained by subtracting the coarse scale map on the right of Figure 3 from
the initial map on the left of Figure 3. Bottom: Component maps separated by the MCA method on the sphere:
Interference patterns and measurement artifacts were grabbed by the local cosine functions on the sphere (left)
while the isolated bumps were caught using the undecimated wavelet on the sphere (right). Adding back the coarse
scale on the right of Figure 3 to the latter map results in a clean map of the surface structures of an ICF spherical
shell with the interference patterns and artifacts removed.

4. Inpainting on the Sphere

4.1 Algorithm

Named after the expert recovery process used for the restoration of deteriorated master-
pieces, inpainting refers to a set of techniques used to alter images in a way that is unde-
tectable to people who are unaware of the original images. There are numerous applications
among which removing scratches or objects in digitized photographs, removing overlayed
text or graphics, filling-in missing blocks in unreliably transmitted images, predicting val-
ues in images for better compression or image upsampling. Inpainting algorithms strive to
interpolate through the gaps in the image relying on the available pixels, the continuation of
edges, the periodicity of textures, etc. The preservation of edges and texture, in other words,
discontinuities, across gaps has attracted much interest, and many contributions have been
proposed to solve this interpolation task. Nontexture image inpainting has received consid-
erable interest and excitement since the pioneering article by Masnou and Morel [43, 44]
who proposed variational principles for image disocclusion. A recent wave of interest in
inpainting has started from the recent contributions of Sapiro et al. [4, 5, 6], followed by
Chan and Shen [19]. In these works, authors point to the importance of geometry and
design anisotropic diffusion PDEs to fill in gaps by smooth continuation of isophotes. PDE
methods have been shown to perform well on piecewise smooth functions. A very different
approach is the inpainting algorithm based on MCA described in [32] which has proved
capable of filling in holes in either texture or cartoon content in 2D images. To make the
link between building sparse representations and inpainting, consider the effect of a rectan-
gular gap on the set of Fourier coefficients of a monochromatic sinewave: Because of the
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nonlocality of the Fourier basis functions it takes a large number of coefficients to account
for the gap, which is known as the Gibbs effect. Seeking a sparse representation of the
incomplete sine-wave outside the gap, that is without fitting the gap, enables the recovery
of the complete monochromatic sinewave. Following [32], an inpainting algorithm on the
sphere is readily built from the Morphological Component Analysis on the sphere described
in the previous section. Consider a discrete spherical data map y and a binary mapM such
that ones inM indicate that the corresponding pixels in y are valid data while zeros indicate
invalid data. The objective function of MCA [Equation (3.2)] can be modified as follows:

min
s1,...,sn

λ

K∑
k=1

‖αk‖1 +
∥∥∥∥∥M 	

(
y −

K∑
k=1

sk

)∥∥∥∥∥
2

2

with sk = �kαk . (4.1)

where 	 stands for entry-wise multiplication. Thus we are preventing the sparse model
under construction from attempting to fit the invalid data. Other constraints can be easily
imposed on the interpolated sparse components. For instance, in [32], a total variation
penalty is shown to enhance the recovery of piece-wise smooth components. Asking for
the regularity across the gaps of some localized statistics (e.g., enforcing that the empiri-
cal variance of a given inpainted sparse component be nearly equal outside and inside the
masked areas) are other possible constraints. In practice, because of the lack of accuracy
of some digital transformations we used in the spherical topology, additional constraints,
which may be relaxed close to convergence, were also found useful in some cases to stabilize
the described iterative algorithms. It is proposed that a solution to the above minimization
problem can be reached using the same iterative thresholding process as in the MCA al-
gorithm detailed in the previous section, with the only required modification consisting
in masking the full residual using M after each residual estimation. The MCA-inpainting
algorithm is as follows:

1. Set the number of iterations Imax and the initial thresholds λ(0).
2. While λ(t)

k
is greater than a given lower bound λmin (e.g., can depend on the noise standard

deviation).
– Proceed with the following iteration to estimate components (sk)k=1,...,K at iteration t :

For k = 1, · · · ,K.
• Compute the residual term r(t):

r(t) = y −∑
k s̃
(t−1)
k

.

• Estimate the current coefficients of s̃(t)
k

by thresholding with threshold λ
(t)
k

:

α̃
(t)
k

= δ
λ
(t)
k

(
Tk
(
M 	 r(t) + s̃

(t−1)
k

))
.

• Get the new estimate of sk by reconstructing from the selected coefficients α̃(t)
k

:

s̃
(t)
k

= Rkα̃
(t)
k

.
– Decrease the thresholds λk following a given strategy.

The different thresholding strategies described in the previous section can be used in the
proposed MCA inpainting iterative thresholding algorithm.

Example

A simple numerical experiment is shown on Figure 5. Starting with a full satellite view of
the Earth,2 an incomplete spherical map was obtained by randomly masking some of the

2Availbale from: http://www.nasa.gov/vision/earth/features/bmng_gallery_4.
html.
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pixels. In fact, as much as sixty percent of the pixels were masked. Using both the spherical
harmonics transform and the curvelet transform on the sphere within the proposed MCA
inpainting algorithm, it is possible to fill in the missing pixels in a visually undetectable
way. The residual map is shown at the bottom right of Figure 5.

FIGURE 5 Application of the proposed MCA-inpainting algorithm on the sphere. Top left: Original satellite
view of the Earth ( mean = 76.9, σ = 47.7 ). Top right: Incomplete map retaining 40 percent of the original
pixels. Bottom left: Inpainted map. Bottom right: Map of reconstruction errors ( mean = 0.0, σ = 2.86
empirically estimated from the reconstructed pixels only ).

4.2 Application in Astrophysics

A major issue in modern cosmology is the measurement and the statistical characterization
(spatial power spectrum, Gaussianity) of the slight fluctuations in the Cosmic Microwave

FIGURE 6 Left: CMB data map provided by the WMAP team. Areas of significant foreground contamination
in the galactic region and at the locations of strong radio point sources have been masked out. Right: Map
obtained by applying the proposed MCA-inpainting algorithm on the sphere to the former incomplete WMAP
CMB data map.
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Background radiation field. These are indeed strongly related to the cosmological scenarios
describing the properties and evolution of our Universe. Some 370 000 years after the ’Big
Bang’, when the temperature of the Universe was around 3000 K, thermal energy was no
longer sufficient to keep electrons and positively charged particles apart so they combined.
Photons were then set free in a nearly transparent Universe. Since the Universe further
expanded, these photons are now in the microwave range but they should still be distributed
according to a Black Body emission law. Indeed, before recombination, the Universe was
a highly homogeneous opaque plasma in near thermal equilibrium in which photons and
charged particles were highly interacting. Hence, the slight fluctuations in matter density
from which such large scale structures as galaxies or clusters of galaxies have evolved, are
also imprinted on the distribution of photons.

The Cosmic Microwave Background (CMB) was first observed in 1965 by Penzias
and Wilson confirming a prediction made by Gamow in the late 1940’s. But it was not until
the early 1990’s that evidence for small fluctuations in the CMB sky could finally be found
thanks to the observations made by COBE [50]. This was confirmed by several subsequent
observations and recently by NASA’s Wilkinson Microwave Anisotropie Probe.3 Full-
sky multi-spectral observations with unprecedented sensitivity and angular resolution are
expected from the ESA’s PLANCK4 mission, which is to be launched in 2008. The statistical
analysis of this data set will help set tighter bounds on major cosmological parameters.

There are nonetheless a few practical issues and notably that several other astrophys-
ical sources also emit radiation in the frequency range used for CMB observations [10].
Separating back the observed mixtures into maps of the different astrophysical contributions
in order to isolate the CMB properly is a difficult inverse problem for which methods and
algorithms are being actively designed (see, e.g., [47, 7, 46, 48] and references therein). The
estimated spherical CMB maps will inevitably be contaminated by some level of residual
contributions, most significantly in the galactic region and at the locations of strong radio
point sources. Therefore, it is common practice to mask out that part of the data (e.g., using
the mask shown on Figure 7 upper left, provided by the WMAP team) in order to reliably
assess the nongaussianity of the CMB field through estimated higher order statistics (e.g.,
skewness, kurtosis) in various representations (e.g., wavelet, curvelet, etc.) [51, 40]. But
the gaps in the data thus created need to be handled properly as the detection of nongaus-
sianity in CMB would have a major scientific impact. The proposed MCA-inpainting on
the sphere was used here successfully to fill in the masked regions in order to restore the
stationarity of the observed CMB field and lower the impact of the incompleteness of the
data set on the estimated measures of nongaussianity or any other non-local statistical test.
The experiment was conducted on several simulations of full-sky Gaussian CMB maps. A
typical CMB map (the CMB data map disclosed by the WMAP consortium) is shown on
Figure 6 along with the map obtained as a result of the inpainting process allowing for a
first visual assessment of the quality of the proposed method. Figure 7 shows the wavelet
decomposition of the inpainted map. We can see that the mask is not visible at all in the
different scales. Here we have applied the MCA-Inpainting algorithm with 200 iterations
and a single transform which was the Spherical Harmonic Decomposition. A more quanti-
tative evaluation of the proposed inpainting algorithm is reported on Figure 8 where plots of
the estimated measures of non-Gaussianity on both the original map and the inpainted map
are given. These reveal no significant discrepancy: We believe that the proposed method

3The WMAP data and mask we used here are available online at http://map.gsfc.nasa.gov/.
4http://astro.estec.esa.nl/Planck.
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FIGURE 7 Left: Mask provided by the WMAP team. The dark blue pixels indicate areas of high level
foreground contamination in the WMAP CMB data map. From top to bottom and left to right: Maps of the
wavelet decomposition on seven scales of the inpainted WMAP CMB map shown on the right of Figure 6. From the
visual point of view, the masked area cannot be distinguished anymore in the wavelet scales of the inpainted map.
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will help discriminate between truly non-Gaussian CMB and non-Gaussianity related to the
nonstationarity of incomplete maps. This will be further investigated in the future.

FIGURE 8 Horizontally is the scale number increasing for lower frequencies. Left: Skewness of the wavelet
coefficients in a given scale of the original complete simulated spherical CMB map (×) and of the inpainted map
(♦). Right: Kurtosis of the wavelet coefficients in a given scale of the original complete simulated spherical CMB
map (×) and of the inpainted map (♦). Error bars were estimated on a small set of fifteen simulated complete
CMB maps.

5. Conclusion

This article presented an extension of the Morphological Component Analysis method to
the case of spherical maps. This was made possible thanks to the wealth of multiscale
analysis tools and discrete transforms newly made available for the representation, analysis
and synthesis of data on the sphere. An inpainting algorithm on the sphere was also
described building on the ideas of MCA. The difficulties in porting MCA and the related
inpainting algorithm to the spherical topology are less theoretical than practical. Indeed, the
proposed algorithms are iterative and some of the digital transforms we used on the sphere
were insufficiently accurate. As quickly mentioned, additional constraints were sometimes
necessary to stabilize the convergence of the algorithms. However, lingering over such
practicalities is not the purpose of this article especially since they did not deeply affect
the algorithms. We reported on a few applications of the proposed methods to challenging
data analysis problems in physics and astrophysics. We expect these tools to be valuable in
many other applications such as in areas where very smooth and precise motion is required
(e.g., moving chips on a conveyor belt in an ultra clean room in the semiconductor industry):
Hundred micron scale balls or ball bearings are used which must not have any imperfections
on their surfaces above the nano-scale. Characterizing such tiny spherical objects with that
kind of precision requires optical or X ray techniques which inherently produce artifacts.
But since the morphology of the artifacts (interference pattern like repeated ring or arrays
of light and dark regions) is far different than the bumps and scratches one is trying to
avoid, they can be isolated using MCA techniques on the sphere and thus help assess
the manufacturing process and make the changes required to meet specifications. Similar
considerations are at play when treating ICF targets for laser fusion. The results reported
in this article allow us to expect that the described extensions of MCA and inpainting to
the sphere will bear much fruit in the study of CMB, non-Gaussianity, and related matters
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such as astrophysical component separation [7] in full-sky multichannel observations of the
celestial sphere in the microwave range.
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