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Abstract Over the last decade, overcomplete dictionaries
and the very sparse signal representations they make pos-
sible, have raised an intense interest from signal process-
ing theory. In a wide range of signal processing problems,
sparsity has been a crucial property leading to high per-
formance. As multichannel data are of growing interest,
it seems essential to devise sparsity-based tools account-
ing for such specific multichannel data. Sparsity has proved
its efficiency in a wide range of inverse problems. Here-
after, we address some multichannel inverse problems is-
sues such as multichannel morphological component sep-
aration and inpainting from the perspective of sparse repre-
sentation. In this paper, we introduce a new sparsity-based
multichannel analysis tool coined multichannel Morpholog-
ical Component Analysis (mMCA). This new framework
focuses on multichannel morphological diversity to better
represent multichannel data. This paper presents conditions
under which the mMCA converges and recovers the sparse
multichannel representation. Several experiments are pre-
sented to demonstrate the applicability of our approach on
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a set of multichannel inverse problems such as morphologi-
cal component decomposition and inpainting.
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1 Introduction

This paper addresses several multichannel data recovery
problems such as multichannel morphological component
decomposition and inpainting. We first need to define with
care what multichannel data are. Such data are often phys-
ically composed of m observations (a color layer in color
images, an observation at a fixed frequency for multispectral
data and so on). One classical example of such multichannel
data are the hyperspectral data provided by satellite obser-
vations; a fixed geographic area is observed at m different
frequencies. More formally, we assume that each observa-
tion is made of t samples. We will write each observation
as a 1 × t row vector {xi}i=1,...,m. For convenience, those m

vectors are stacked in a m × t matrix X = [xT
1 · · ·xT

m]T . In a
wide range of applications, the data X are often degraded by
the acquisition system (convolution, missing data to quote a
few) and contaminated by additive noise of finite variance.
The various restoration problems we address in this paper
are modeled as follows:

Y = F(X) + N (1)

where F is the degradation mapping, X is the original mul-
tichannel data to be recovered and N models noise or model
imperfections. The mapping F will depend on the recovery
problem.

In the last decade sparsity has been one of the lead-
ing concepts in many areas of signal and image processing



J Math Imaging Vis

(restoration [1], feature extraction [2], source separation [3–
5], to name only a few). In a wide range of applications and
viewpoints, researchers have advocated the use of overcom-
plete signal representations. Indeed, the attractiveness of re-
dundant signal representations lies in their ability to sparsely
represent a large class of signals. Furthermore, overcomplete
representations allow more flexibility in signal representa-
tion and entail effectiveness at many signal processing tasks
such as restoration, separation, compression, estimation etc.
In neuroscience, the mammalian primary visual system has
been shown to be probably in need of overcomplete repre-
sentations [6].

In our representation, a monochannel row vector signal
x ∈ R

1×t is assumed to be the linear combination of T >

t signal waveforms or atoms {φi}i=1,...,T : x = ∑
i=1 αiφi ,

where αi = 〈φi, x〉 are called the decomposition coefficients
of x in the dictionary � = [φT

1 , . . . , φT
T ]T (the T × t matrix

whose lines are the atoms normalized to a unit �2-norm).
The signal x is said to be sparse in � if only a few of the
entries of the row vector α = [α1 · · ·αT ] are non-zero. We
define Λx , the support of x in �, as the set of indices of the
non-zero entries in α:

Λx = {i | |αi | �= 0}. (2)

From a heuristic viewpoint, the use of sparse representa-
tions are motivated by their ability to compactly represent
the structure in the data. For instance, in image processing,
a number of dictionaries have been designed that can cap-
ture very different features in an image: discrete cosine basis
for globally oscillating patterns, wave atoms for local oscil-
latory textures [7], wavelets for pointwise singularities [8],
curvelets for edges and contours [9, 10].

Returning to the problem in (1), a first and some-
what naive approach would consist in treating separately
m single-channel restoration problems.1 However, this is
clearly suboptimal since, as we pointed out earlier, the m

single channel observations share some joint structure re-
quiring a coherent processing of the m channels simultane-
ously. For instance, the color layers of color images have of-
ten similar patterns. Thus recovering each observation sep-
arately is far from being optimal. Such inter-observation
structures have to be properly modeled in order to enhance
multichannel data restoration. A first sparsity-based solu-
tion consists in assuming that each channel must share the
same sparsity pattern i.e. the same support in �. Such so-
lutions have been proposed for several applications in pre-
vious work on multichannel sparse decomposition includ-
ing [11, 12], in which all channels are constrained to have
a common sparsity pattern, and [13–15] in which a specific

1Note that this solution may only hold if the degradation mapping ap-
plies on each channel separately: F(X) = [F(x1)

T · · ·F(xm)T ]T .

sparsity measure is used. In this paper, we address a more
general problem as we assume no constraint on the sparsity
pattern of the different channels. We adopt a different point
of view and model inter-observation structures as sparse
patterns in a specific representation. The multichannel data
are no longer modeled as a concatenation of observations
that are individually sparse in a spatial/temporal represen-
tation but as a single signal that is sparse in a multichannel
representation.

Contributions In this paper we propose solving multichan-
nel data restoration problems within the paradigm of multi-
channel sparse representations. Section 2 introduces a new
sparsity-based framework for analyzing multichannel sig-
nals coined multichannel Morphological Component Analy-
sis (mMCA). In Sect. 2.2.1 we enlighten the connections
between mMCA and other extensions of sparse decompo-
sition problems to the multichannel case. Section 2.3 ex-
tends the MCA algorithm [16, 17] to the multichannel case
and introduces convergence results proving the efficiency
of mMCA in providing sparse decompositions. Two appli-
cations in data recovery issues of the proposed mMCA al-
gorithm are described: multichannel morphological compo-
nent decomposition in Sect. 3.1 and inpainting in Sect. 3.2.
We also put forward a mMCA-based adaptive restoration al-
gorithm to better match the sparse representation to the mul-
tichannel data at hand.

1.1 Notations and Definitions

We here define some useful quantities and notations. In the
multichannel case, the data X live in the tensor product
space of R

m and R
t : X ∈ R

m ⊗ R
t , where m is the num-

ber of channels. The upcoming proofs and results can be
extended easily to the case where X ∈ R

t1 ⊗ · · · ⊗ R
tp

︸ ︷︷ ︸
p

with

p ≥ 2. Multichannel data often consist of m “observations”
{xi}i=1,...,m from m channels, each lying in R

t . For conve-
nience, we use the following matrix notation:

X =
⎡

⎢
⎣

x1
...

xm

⎤

⎥
⎦ (3)

where each channel {xi}i=1,...,m is a 1× t row vector. A mul-
tichannel dictionary is no more than a set of vectors living
in R

m ⊗ R
t . For instance, a basis of R

m ⊗ R
t is readily ob-

tained as the tensor product of a basis of R
m,1 (say �) and

a basis of R
1,t (say �). Projecting X onto each atom of the

multichannel basis � = � ⊗ � is done as follows:

α = �T X�T . (4)

Let ψγ={i,j} = ξi ⊗ φj be an atom (i.e. element) of the mul-
tichannel dictionary � . This atom can be written in matrix
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form as: ψij = ξiφj which is an m × t rank-1 matrix. If
� or � is orthonormal then � is also orthonormal. In fact,
the scalar product between two multichannel atoms is such
that:2

〈ψip,ψjq〉 = 〈ξi, ξj 〉〈φp,φq〉. (5)

The mutual coherence (see [18] and references therein) of a
dictionary �, defined as follows:

μ� = max
p �=q

|〈φp,φq〉| (6)

is a measure of how its atoms look like each other. Handling
subsets of elements that belong to � will also be needed.
Let Λ = {{i1, j1}, . . . , {iT , jT }} be a set of index couples.
The active subdictionary obtained by restricting the dictio-
nary � to the atoms whose indices are the elements of Λ is
written �Λ. This notation will be useful to define the sup-
port of a signal X in � . Assume that X is K-sparse in �

then X = ∑
{i,j}∈Λx

αi,jψij = ∑
{i,j}∈Λx

αi,j ξiφj where Λx

is the support of X, and �Λx the corresponding active sub-
dictionary.

According to the definition of the scalar product between
two multichannel atoms given in (5), the mutual coherence
for multichannel dictionaries � = � ⊗ � is as follows:

0 ≤ μ� = max{μ�,μ�} < 1 (7)

for orthonormal � and �. In the next, the Frobenius norm
of a matrix X is ‖X‖2 = Trace(XT X). The �1 norm of X is
defined as the sum of the absolute values of the entries of
matrix X.

2 Morphological Component Analysis for Multichannel
Data

2.1 Morphological Diversity and Morphological
Component Analysis

2.1.1 An Introduction to Morphological Diversity

A monochannel signal x is said to be sparse in a waveform
dictionary � if it can be well represented from a few dictio-
nary elements. More precisely, let us define α such that:

x = α�. (8)

The entries of α are commonly called “coefficients” of x

in �. In that setting, x is said to be sparse in � if most en-
tries of α are nearly zero and only a few have “significant”

2In fact, by standard properties of the tensor product, one can easily
show that the Gram matrix of a tensor product is the tensor product of
the Gram matrices. That is, G� = G� ⊗ G�.

amplitudes. Particular �0-sparse signals are generated from
a few non-zero dictionary elements. Note that this notion of
sparsity is strongly dependent on the dictionary �; see e.g.
[19, 20] among others. As discussed in [2], a single basis is
often not well-adapted to large classes of highly structured
data such as “natural images”. Furthermore, over the past ten
years, new tools have emerged from modern computational
harmonic analysis: wavelets, ridgelets [21], curvelets [9, 10,
22], bandlets [23], contourlets [24], to name a few. It is quite
tempting to combine several representations to build a larger
dictionary of waveforms that will enable the sparse repre-
sentation of larger classes of signals. Nevertheless, when �

is overcomplete (i.e. T > t), the solution of (8) is generally
not unique. In that case, the authors of [19] were the first to
seek the sparsest α, in terms of �0-pseudo-norm, such that
x = α�. This approach leads to the following minimization
problem:

min
α

‖α‖0 s.t. x = α�. (9)

Unfortunately, this is an NP-hard optimization problem
which is combinatorial and computationally unfeasible for
most applications. The authors of [25] also proposed to con-
vexify the objective functional by substituting the convex �1

norm for the �0 pseudo-norm leading to the following linear
program:

min
α

‖α‖1 s.t. x = α�. (10)

This problem can be solved for instance using interior-
point methods. It is known as Basis Pursuit [25] in the sig-
nal processing community. Nevertheless, problems (9) and
(10) are seldom equivalent. Important research concentrated
on finding equivalence conditions between the two prob-
lems [19, 20, 26–28]. See also [29] for an extensive review.

In [2, 16], the authors proposed a practical algorithm
coined Morphological Component Analysis (MCA) aiming
at decomposing signals in overcomplete dictionaries made
of a union of bases. In the MCA setting, x is the linear com-
bination of D morphological components:

x =
D∑

i=1

ϕi =
D∑

i=1

αi�i (11)

where {�i}i=1,...,D are orthonormal bases of R
t . Morpho-

logical diversity then relies on the sparsity of those morpho-
logical components in specific bases. In terms of �0 norm,
this morphological diversity can be formulated as follows:

∀{i, j} ∈ {1, . . . ,D}; j �= i ⇒ ‖ϕi�
T
i ‖0 < ‖ϕi�

T
j ‖0.

(12)

In other words, MCA relies on the incoherence between the
sub-dictionaries {�i}i=1,...,D to estimate the morphological
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components {ϕi}i=1,...,D by solving the following convex
minimization problem:

{ϕi}1≤i≤D = arg min
{ϕi }1≤i≤D

∥
∥
∥
∥
∥
x−

D∑

i=1

ϕi

∥
∥
∥
∥
∥

2

2

+2λ

D∑

i=1

‖ϕi�
T
i ‖1. (13)

Note that the minimization problem in (13) is closely related
to Basis Pursuit Denoising (BPDN—see [25]). In [30], we
proposed a particular block-coordinate relaxation, iterative
thresholding algorithm (MCA/MOM) to solve (13). Theo-
retical arguments as well as experiments were given show-
ing that MCA provides at least as good results as Basis Pur-
suit for sparse overcomplete decompositions in a union of
bases. Moreover, MCA turns out to be clearly much faster
than Basis Pursuit. Then, MCA is a practical alternative to
classical sparse overcomplete decomposition techniques.

2.1.2 Morphological Diversity in Multichannel Data

In the previous paragraph, we gave a brief description of
morphological diversity in the monochannel case. In this pa-
per, we extend morphological diversity to the multichannel
case. In this particular setting, we assume that each observa-
tion or channel {xi}i=1,...,m is the linear combination of D

morphological components:

∀i ∈ {1, . . . ,m}; xi =
D∑

j=1

ϕij (14)

where each morphological component ϕij is sparse in a spe-
cific basis �j . Then each channel {xi}i=1,...,m is assumed
to be sparse in the overcomplete dictionary � made of the
union of the D bases {�i}i=1,...,D .

We further assume that each column of the data matrix
X is sparse in the dictionary � made of the union of D′
bases {�i}i=1,...,D′ to account for inter-channel structures.
The multichannel data X are then assumed to be sparse in the
multichannel dictionary � = [�1 · · ·�D′ ] ⊗ [�1 · · ·�D].
The multichannel data are then modeled as the linear combi-
nation of D × D′ multichannel morphological components:

X =
D∑

j=1

D′
∑

k=1

�jk (15)

where �jk is sparse in �k ⊗ �j . In this setting, separat-
ing two multichannel morphological components �ip and
�jq �=ip based on multichannel morphological diversity may
put on different faces:

– Spatial or temporal (resp. spectral) morphologies: in this
case i �= j and p = q (resp. i = j and p �= q). The mor-
phological components have the same spectral representa-
tion (resp. spatial basis) but one can discriminate between

them based on their spatial (resp. spectral) diversity. It
is easily seen that the coherence between subdictionaries
�p ⊗ �i and �p ⊗ �j (resp. �p ⊗ �i and �q ⊗ �i ) is
upper-bounded by μ� (resp. μ�).

– Both morphologies: i �= j and p �= q , the “separation”
task seems easier as the morphological components share
neither the same spectral basis nor the same spatial (or
temporal) basis. Note that in this case, the coherence be-
tween �p ⊗ �i and �q ⊗ �j is lower than μ�μ� ≤
max{μ�,μ�}.

Analyzing multichannel signals requires accounting for
their spectral and spatial morphological diversities. For
that purpose, the proposed multichannel extension to MCA
coined mMCA, which stands for multichannel Morphologi-
cal Component Analysis, aims at solving the following min-
imization problem:

min{�jk}

∥
∥
∥
∥
∥

X −
D∑

j=1

D′
∑

k=1

�jk

∥
∥
∥
∥
∥

2

2

+ 2λ

D∑

j=1

D′
∑

k=1

‖�T
k �jk�

T
j ‖1. (16)

In Sect. 2.2.1 we enlighten the connections between the
problem in (16) and the extension of BPDN to the multi-
channel case. We also provide straightforward multichannel
extensions of well-known recovery results. In Sect. 2.3 we
introduce an MCA-based block-coordinate relaxation, itera-
tive thresholding algorithm to solve (16). We give new the-
oretical conditions under which the mMCA algorithm pro-
vides the solution to the problem in (16).

2.2 Multichannel Overcomplete Sparse Recovery

2.2.1 General Multichannel Overcomplete Sparse
Representation

Solving the problem in (16) is a particular case of a more
general extension of the problem in (10) to the multichan-
nel case: decomposing data in an overcomplete multichan-
nel dictionary � = � ⊗ � (recall that � is a m × M over-
complete dictionary with M > m, � is a T × t overcomplete
dictionary with T > t). Similarly to (9), this requires solving
the following problem:

min
α

‖α‖�0 s.t. X = �α� (17)

where α is an M × T matrix and ‖α‖�0 refers to the number
of non-zero entries in α. The convex �1 minimization prob-
lem (10) can also be rewritten in the multichannel setting:

min
α

‖α‖�1 s.t. X = �α� (18)

where ‖α‖�1 = ∑
i,j |αij |. From the optimization viewpoint,

monochannel and multichannel problems are similar. Recall
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that in the case of a monochannel K-sparse signal to be de-
composed in a dictionary with coherence μ� , the two afore-
mentioned problems share the same unique solution when
the following condition holds [19]:

K <
1

2

(

1 + 1

μ�

)

.

The uniqueness and equivalence condition of the sparse
multichannel decomposition problem in (17) is then similar
to the monochannel case. Assume that X is K-sparse in the
multichannel dictionary � = � ⊗ �. The �0 sparse decom-
position problem in (17) has a unique solution and problems
in (17) and (18) are equivalent when:

K <
1

2

(

1 + 1

μ�

)

where μ� = max{μ�,μ�}.

In this framework, most results in the monochannel case [18,
20, 26–28, 31] can be straightforwardly extended to the mul-
tichannel case. Previous work on multichannel sparse de-
composition includes [32] which introduced the concept of
multichannel dictionary.

2.3 Multichannel Morphological Component Analysis

The problem at stake in (16) can be solved by extending
well-known sparse decomposition algorithms to the mul-
tichannel case (Basis Pursuit [25], Matching Pursuit [33,
34]), LARS/LASSO [35], Homotopy continuation [36, 37],
Polytope Faces Pursuit (PFP) [38] to quote a few). Extend-
ing MP and OMP to the multichannel case has been pro-
posed in [32]. Interestingly, most greedy sparse decomposi-
tion techniques are closely linked to variable selection. In-
deed, LARS/LASSO [35] and Homotopy continuation [36,
37] were first introduced in statistics to solve variable se-
lection problems with an �1 sparsity constraint. The afore-
mentioned greedy methods iteratively select one dictionary
atom at a time. Unfortunately, this stepwise selection of ac-
tive atoms is burdensome and the process may be sped up as
in [39] where a faster stagewise Orthogonal Matching Pur-
suit (StOMP) is introduced. It is shown to solve the �0 sparse
recovery problem in (9) with random dictionaries under mild
conditions.

Owing to the particular structure of the problem in (16),
extending the MCA algorithm [17] to the multichannel case
would lead to faster and still effective decomposition results.
Recall that in the mMCA setting, the data X are assumed to
be the linear combination of D × D′ morphological compo-
nents {�jk}j=1,...,D;k=1,...,D′ . We define Λjk as the support
(i.e. the indices of active atoms) of �jk in the subdictionary
�jk = �k ⊗ �j . As X is K-sparse in the whole dictionary,

∑
j,k Card(Λjk) = K . The data can be decomposed as fol-

lows:

X =
D∑

j=1

D′
∑

k=1

�jk =
D∑

j=1

D′
∑

k=1

∑

i∈Λjk

αjk[i]ψjk[i]. (19)

Substituting (19) in (16), the mMCA algorithm approaches
the solution to (16) by iteratively and alternately estimating
each morphological component �jk in a Block-coordinate
relaxed way (see [40]). Each matrix of coefficients αjk is
then estimated as follows:

αjk = arg min
αjk

‖Rjk − �k αjk�j‖2 + 2λ‖αjk‖�1 (20)

where Rjk = X − ∑
p,q �=j,k �qαpq�p is a residual term.

Since we are assuming that the subdictionaries {�j }j and
{�k}k are orthonormal, the problem in (20) is equivalent to
the following:

αjk = arg min
αjk

‖�T
k Rk�

T
j − αjk‖2 + 2λ‖αjk‖�1 (21)

which has a unique solution αjk = Δλ(�
T
k Rk�

T
j ) known as

soft-thresholding with threshold λ as follows:

Δλ(u[i]) =
{

0 if u[i] < λ,

u[i] − λ sign (u[i]) if u[i] ≥ λ.
(22)

For a fixed λ, mMCA selects groups of atoms based on their
scalar product with the residual Rjk . Assuming that we se-
lect only the most coherent atom (with the highest scalar
product) with the residual Rjk then one mMCA iteration
boils down to a stepwise multichannel Matching Pursuit
(mMP) step. In contrast with mMP, the mMCA algorithm
is allowed to select several atoms at each iteration. Thus,
when hard-thresholding is used instead of soft-thresholding,
mMCA is equivalent to a stagewise mMP algorithm. Allow-
ing mMCA to select new atoms is made by decreasing the
threshold λ at each iteration. The mMCA algorithm is sum-
marized below:

1. Set the number of iterations Imax and threshold λ(0).
2. While λ(h) is higher than a given lower bound λmin (e.g. can depend
on the noise variance, see Sect. 2.5),

For j = 1, . . . ,D and k = 1, . . . ,D′
• Compute the residual term R(h)

jk assuming the current

estimates of �pq �=jk , �̃
(h−1)
pq �=jk are fixed:

R(h)
jk = X − ∑

pq �=jk �̃
(h−1)
pq �=jk .

• Estimate the current coefficients of �̃
(h)
jk by thresholding

with threshold λ(h):
α̃

(h)
jk = Δλ(h) (�T

k R(h)
jk �T

j ).
• Get the new estimate of �jk by reconstructing from the

selected coefficients α̃
(h)
jk :

�̃
(h)
jk = �kα̃

(h)
k �j .

3. Decrease the threshold λ(h) following a given strategy.
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2.3.1 The Thresholding Strategy

In [30] we proposed a thresholding strategy that is likely to
provide the solution to the �0 sparse monochannel problem.
The strategy which goes by the name of MOM (for “Mean
of Max”) can be extended to the multichannel case. At each
iteration h the residual is projected onto each sub-dictionary
and we define:

m
(h−1)
jk =

∥
∥
∥
∥�T

k

(

X −
∑

p,q

�q α̃(h−1)
pq �p

)

�T
j

∥
∥
∥
∥

�∞
. (23)

The multichannel-MOM (mMOM) threshold is then com-
puted as the mean of the two largest values in the set
{m(h−1)

jk }j=1,...,D;k=1,...,D′

λ(h) = 1

2
{m(h−1)

j0k0
+ m

(h−1)
j1k1

}. (24)

In the next section, we show conditions under which
mMCA/mMOM selects atoms without error and converges
asymptotically to the solution of the multichannel �0 sparse
recovery problem in (17).

2.4 Recovering Sparse Multichannel Decompositions
Using mMCA

The mMOM rule defined in (23)–(24) is such that mMCA
will select, at each iteration, atoms belonging to the same
subdictionary �jk = �k ⊗ �j . Although it seems more
computationally demanding, the mMOM strategy has sev-
eral nice properties. We show sufficient conditions under
which (i) mMCA/mMOM selects atoms belonging to the
active atom set of the solution of the �0 sparse recovery
problem (Exact Selection Property), (ii) mMCA/mMOM
converges exponentially to X and its sparsest representa-
tion in � . Let’s mention that the mMCA/mMOM exhibits
an auto-stopping behavior, and requires only one parameter
λmin whose choice is easy and discussed in Sect. 2.5.

The next proposition states that mMCA/mMOM verifies
the Exact Selection Property (ESP) at each iteration.

Proposition 1 (Exact Selection Property) Suppose that X is
K-sparse such that:

X =
D∑

j=1

D′
∑

k=1

∑

i∈Λjk

αjk[i]ψjk[i]

where K = ∑
j,k Card(Λjk) satisfying K <

μ−1
Ψ

2 . At the h-

th iteration, assume that the residual R(h) is K-sparse such
that:

R(h) =
D∑

j=1

D′
∑

k=1

∑

i∈Λjk

βjk[i]ψjk[i].

Then mMCA/mMOM picks up coefficients belonging to the
support of X at iteration (h).

The proof is deferred to the appendix. When the previous
Exact Selection Property holds, the next proposition shows
that mMCA/mMOM converges exponentially to X and its
sparsest representation in � = [�1 · · ·�D′ ] ⊗ [�1 · · ·�D].

Proposition 2 (Convergence) Suppose that X is K-sparse
such that:

X =
D∑

j=1

D′
∑

k=1

∑

i∈Λjk

αjk[i]ψjk[i]

where K = ∑
j,k Card(Λjk).

If K <
μ−1

Ψ

2 then mMCA/mMOM converges exponentially
to X and its sparsest representation in � . More precisely,
the residual converges to zero at an exponential rate.

The proof to this second proposition is also given in the
appendix. Note that the above conditions are far from being
sharp. Exact Selection and convergence may still be valid
beyond the bounds retained in the latter two statements.

2.5 Handling Bounded Noise with mMCA

When bounded noise perturbs the data, the data are modeled
as follows:

X =
D∑

j=1

D′
∑

k=1

∑

i∈Λjk

αjk[i]ψjk[i] + Z (25)

where Z is a bounded noise: ‖Z‖ < ε. Sparse recovery then
needs to solve the following problem:

min
αjk

D∑

j=1

D′
∑

k=1

‖αjk‖�0 s.t.

∥
∥
∥
∥
∥

X −
D∑

j=1

D′
∑

k=1

�kαjk�j

∥
∥
∥
∥
∥

< ε.

(26)

Sparse recovery and stability conditions have been studied
in [41–43] in the monochannel case. More particularly, con-
ditions are proved in [41] under which OMP verifies an
Exact Selection Property in the presence of bounded noise
‖Z‖ < ε. They also showed that the OMP solution lies in a
�2 ball centered on the exact solution to the �0 sparse recov-
ery problem with a radius on the order of ε. Exhibiting sim-
ilar stability results in the mMCA setting is challenging and
will be addressed in future work. In the mMCA framework,
assuming the noise level is known, the mMCA/mMOM al-
gorithm stops when λ ≤ λmin with λmin = 3ε.
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Fig. 1 Multichannel
morphological component
separation: the original data X

2.6 Choosing the Overcomplete Dictionary

The choice of the overcomplete dictionary is a key step as it
determines where we will be looking for a sparse representa-
tion. It is the expression of some prior information we have
available on the signal. Interestingly, the �1 sparse recovery
problem can be seen in the light of a Bayesian framework.
Solving the following problem

min{αjk}

∥
∥
∥
∥
∥

X −
D∑

j=1

D′
∑

k=1

�kαjk�j

∥
∥
∥
∥
∥

2

+ 2λ

D∑

j=1

D′
∑

k=1

‖αjk‖�1 (27)

is equivalent, in a Bayesian framework, to making the as-
sumption among others of an independent sparse Laplacian
prior on the coefficients of each morphological component
in the sparse representation domain. Choosing the set of
subdictionaries is then equivalent to assuming some specific
prior for each morphological component.

Furthermore, the attractiveness of mMCA lies in its abil-
ity to take advantage of sparse representations which have
implicit fast analysis and synthesis operators without re-
quiring the explicit manipulation of each atom: wavelets,
curvelets [10], bandlets [23], contourlets [24], ridgelets [21],
wave atoms [7] to name a few. As a consequence, mMCA
is a fast non-linear sparse decomposition algorithm whose
computational complexity is dominated by that of the trans-
forms involved in the dictionary.

In the next image processing experiments, we will as-
sume that a wide range of images can be decomposed into
a piecewise smooth (contour) part and an oscillating texture
part. We will assume a priori that the contour part is sparse
in the curvelet tight frame, and the texture part is sparsely
described by the local discrete cosine transform (DCT) [8].3

However, all the results we previously proved were given
assuming that each subdictionary was an orthonormal basis.
When the selected subdictionaries are more generally tight
frames, the solution to (21) is no longer a simple threshold-
ing. Nevertheless, in [44] and [45], the authors showed that

3An alternative choice would be the wave atoms [7].

thresholding is the first step towards solving (21) when the
subdictionary is redundant. Rigorously, proximal-type iter-
ative shrinkage is shown to converge to a solution of (21).
In practice, even when the subdictionary is a tight frame
(for instance the curvelet frame) we will only use a single
thresholding step to solve (21).

The spectral dictionary � is chosen based on a spectral
sparsity assumption. The choice of the dictionary � relies
on sparsity prior information.

3 Applications to Some Sparse Multichannel Image
Inverse Problems

3.1 Multichannel Morphological Component Separation

In this section, we illustrate the ability of mMCA algorithm
at extracting the so-called morphological components. For
the sake of simplicity, the multichannel dictionary � = �⊗
� is such that � and � are both the union of the DCT-based
basis (�2 and �2) and an orthogonal wavelet transform (�1

and �1). Hereafter, the data X are assumed to be the linear
combination of 4 multichannel morphological components
corresponding to the following multichannel bases: �1 ⊗
�1, �2 ⊗ �1, �2 ⊗ �1 and �2 ⊗ �2.

Without loss of generality, the experiment above involves
mono-dimensional signals. Each multichannel morphologi-
cal component is made of 256 channels. Each channel has
256 entries. Each multichannel morphological component
{�ij }i=1,2;j=1,2 is the linear combination of multichannel
atoms belonging to {�i ⊗ �j }i=1,2;j=1,2 respectively. The
related coefficients {αjk}j=1,2;k=1,2 have been drawn ac-
cording to a Bernoulli-Gaussian distribution: the atoms are
active (i.e. non zero) with probability p = 5.10−3 with ran-
dom zero mean and unit variance Gaussian values. The left
panels of Figs. 2 to 5 show the 5th channel (rows of � ) and
200th column (columns of � ) of these synthetic morpho-
logical components.

The multichannel MCA algorithm is then used to esti-
mate the 4 aforementioned morphological components. The
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Fig. 2 Multichannel morphological component separation—
component related to �1 ⊗ �1: (a) The channel 5 of the original
morphological component. (b) Channel 5 of the estimated morpho-

logical component. (c) Multichannel sample 200 of the original mor-
phological component. (d) Multichannel sample 200 of the estimated
morphological component

Table 1 Recovery signal-to-noise ratio

�11 �12 �21 �22

Recovery SNR in dB 47.3 61.9 47.9 58.2

recovered multichannel morphological components are then
depicted on the right panels of Figs. 2 to 5. At first sight, the
pictured samples of the multichannel morphological compo-
nents are visually well estimated. More quantitatively, Ta-
ble 1 provides the recovery signal-to-noise ratio (dB).

Following the first visual impression, the mMCA algo-
rithm performs well at extracting multichannel morphologi-
cal components.

3.2 Multichannel Inpainting

In this section, we address the problem of multichannel im-
age inpainting. In this context, a set of samples are missing

(set to zero) in the data. According to the general inverse
problem framework in (1), the observed data are modeled as
follows:

Y = M� X + N (28)

where M is a multichannel binary mask that multiplies the
data matrix X entrywise. The entries of the multichannel
mask M take the value zero when the corresponding data
pixels are missing and one otherwise. In this setting, data
restoration is about recovering the missing pixels. Note that
a multichannel mask applies on the whole data X; the miss-
ing pixels may not be the same in each channel. In the mono-
channel case, image inpainting is an old “interpolation”
problem for which a wide range of techniques have been de-
vised: variational approaches [46–50], sparsity-based meth-
ods [17, 51, 52]. Interestingly, the MCA based inpainting
method described in [17] can be interpreted within the Ex-
pectation Maximization framework as shown in [53].
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Fig. 3 Multichannel morphological component separation—
component related to �1 ⊗ �2: (a) The channel 5 of the original
morphological component. (b) Channel 5 of the estimated morpho-

logical component. (c) Multichannel sample 200 of the original mor-
phological component. (d) Multichannel sample 200 of the estimated
morphological component

We first propose to extend this algorithm to the multi-
channel case. We assume that the multichannel data are the
linear combination of D × D′ multichannel morphological
components as described in (19). The sparsity driven in-
painting objective can be written as follows:

min{αjk}

∥
∥
∥
∥
∥

Y −M�
[

D∑

j=1

D′
∑

k=1

�kαjk�j

]∥
∥
∥
∥
∥

2

+ 2λ

D∑

j=1

D′
∑

k=1

‖αjk‖�1 . (29)

Let Mc denote the logical opposite of M such that Mc is
also a binary mask where entries equal to one indicate in-
valid or missing pixels while zeros indicate ones that are
present. Extending this inpainting algorithm to the multi-
channel setting boils down to a two-step iterative algorithm:

– Update the data estimate E-step: Y(h) = Y + Mc �
X(h−1)

– Sparse decomposition M-step: a mMCA decomposition
step of the current data estimate with the threshold λ(h).

The mMCA-based inpainting algorithm is summarized as
follows:

1. Set the number of iterations Imax and threshold λ(0).
2. While λ(h) is higher than a given lower bound λmin (e.g. can depend
on the noise variance as in Sect. 2.5),

a. Compute the hypercube estimate: Y(h) = Y +Mc � X̃(h−1).
b. Initialize to zero each residual morphological components

{�̃jk}(h−1).
For j = 1, . . . ,D and k = 1, . . . ,D′

• Compute the residual term R(h)
jk assuming the current

estimates of �pq �=jk , �̃
(h−1)
pq �=jk are fixed:

R(h)
jk = X − ∑

pq �=jk �̃
(h−1)
pq .

• Estimate the current coefficients of �̃
(h)
jk by thresholding

with threshold λ(h):
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Fig. 4 Multichannel morphological component separation—
component related to �2 ⊗ �1: (a) The channel 5 of the original
morphological component. (b) Channel 5 of the estimated morpho-

logical component. (c) Multichannel sample 200 of the original mor-
phological component. (d) Multichannel sample 200 of the estimated
morphological component

α̃
(h)
jk = Δλ(h) (�T

k R(h)
jk �T

j ).
• Get the new estimate of �jk by reconstructing from the

selected coefficients α̃
(h)
jk :

�̃
(h)
jk = �kα̃

(h)
jk �j .

c. Update the hypercube X̃(h) = ∑D
j=1

∑D′
j=1 �̃

(h)
jk .

3. Decrease the threshold λ(h) following mMOM strategy.

In the next subsection, we apply the multichannel inpainting
algorithm to Hyperspectral data.

3.2.1 Hyperspectral Data Inpainting

We deal with a hyperspectral data cube X. Unfortunately, as
usual when dealing with real data, multichannel pixels are
missing. In the experiment we carried out, the data X is a
Mars Orbiter4 hyperspectral cube composed of a 128 × 128

4See the Mars Orbiter website at http://mars.jpl.nasa.gov/mro/.

spatial observations measured at 64 different frequencies
(channels). X is then a 128 × 128 × 64 hyperspectral data
cube. Although the data are real hyperspectral data, the so
called missing pixels were synthetically picked out. We gen-
erated a hyperspectral mask such that a random propor-
tion of randomly selected pixels are missing. We used the
mMCA algorithm assuming the data are sparse in the dictio-
nary � = �⊗�. Each spectrum of the data is assumed to be
sparse in the orthogonal one-dimensional wavelet basis �.
Each spatial observation is nearly sparse in the orthogonal
bidimensional wavelet basis �. Figure 6(a) displays the 10-
th original channel. Figure 6(b) depicts the masked channel
with 50% missing pixels. Figure 6(c) shows the recovered
image using mMCA. The SNR between the inpainted image
and the original is 19.2 dB. Visually, mMCA does a good
job at recovering the spatial features of the data cube.

Figure 7(a) depicts the original spectrum at pixel {10,10}
of the data cube. The plot of Fig. 7(b) shows the masked
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Fig. 5 Multichannel morphological component separation—
component related to �2 ⊗ �2: (a) The channel 5 of the original
morphological component. (b) Channel 5 of the estimated morpho-

logical component. (c) Multichannel sample 200 of the original mor-
phological component. (d) Multichannel sample 200 of the estimated
morphological component

spectrum. From Fig. 7(c), it can be seen that the recovered
spectrum is well estimated by mMCA.

We repeated the same experiment with different frac-
tions of missing pixels. Figure 8 shows the evolution of
the SNR in dB between the original data and the recov-
ered hyperspectral data as the percentage of missing pixels
is increased from 5 to 75%. Even when 75% of the pix-
els are missing, mMCA is able to recover the data with
a SNR of 10 dB. Furthermore, we applied the monochan-
nel MCA-based inpainting algorithm [54] on each channel
separately. The dashed line in Fig. 8 displays the behav-
ior of this MCA-based recovery method. Clearly, mMCA
performs far better than MCA in this experiment. Account-
ing for interchannel structures then leads to tremendous en-
hancement in hyperspectral image inpainting. The transi-
tion from the monochannel to the multichannel setting re-
lies on the ability to account for spatial and spectral in-
formation. This experiment clearly demonstrates that the
mMCA algorithm is well suited to handle such particular

data as it performs well in terms of spectral and spatial fea-
ture recovery.

Relation to Compressed Sensing In signal processing,
every student learns that, owing to the Nyquist-Shannon
sampling theorem, the number of samples needed to recover
any signal is dictated by its bandwidth. That is, a bandlim-
ited signal whose bandwidth is Fx can be perfectly recon-
structed from Fx equispaced samples.

Very recently, an alternative sampling theory has emerged
which shows that signals can be recovered from far fewer
samples (measurements) than what the Nyquist-Shannon
sampling theorem states. This new theory, which goes by the
name of compressed/ive sensing/sampling was introduced
in the seminal paper [55]. It relies on the compressibility of
signals or more precisely on the property for some signals
to be sparsely represented. From the compressed sensing
(CS) viewpoint, sparse signals could be acquired “econom-
ically” (from a few samples) without loss of information.
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Fig. 6 Restoring Mars-Orbiter
hyperspectral data: spatial
feature recovery. (a) 10th
original channel. (b) Masked
channel—50% of the pixels are
missing. (c) Recovered channel
using mMCA

This has many important implications as it suggests new
ways of designing data acquisition and sampling protocols
and systems.

In the few next lines, we give a very brief introduc-
tion of compressed sensing in the monochannel case. As-
sume x ∈ R

t such that we “observe” or “measure” only
M < t samples {yk}k=1,...,M : yk = 〈x, θk〉. These measure-
ments are more conveniently represented in a matrix formu-
lation:

y = x� (30)

where � is the t × M measurement or sensing matrix. In
[56], the authors showed that assuming x has a K-sparse
representation in � (in [56], the sparse representation is the
Fourier domain) then x can be exactly recovered by solving
the following linear problem:

min
x

‖x�T ‖�1 s.t. y = x�. (31)

More precisely, Candès et al. showed in [56] that if M >

CK log(t) then the previous �1 minimization problem pro-
vides the exact signal x with C � 22(δ + 1) and probability
of success 1 − O(t−δ). In other words, this result defines
a new non-linear sampling theorem as pointed out in the
review paper [57].

Since the seminal work of Donoho et al. and Candès et
al., we have witnessed a flurry of research activity address-
ing theoretical and practical issues arising in CS, see [58–
62] to name a few.5

The observed data y defined in (30) can be considered
as subspace “projection” of the original data x. When the
sensing matrix � is a submatrix of the identity matrix I , the
entries of the observed data y are then a subset of the entries
of x. The sensing step is then equivalent to “masking” some
entries and keeping the others: the decoding step (estimat-
ing x from y) is then equivalent to the inpainting problem.
Inpainting can be viewed as a particular case of compressed
sensing.

4 Steps Ahead—Learning the Sparse Representation

4.1 Adaptive Multichannel Morphological Component
Separation

Throughout this paper, we focused on accounting for both
spectral and spatial coherences/structures to better solve in-

5A website at http://www.dsp.ece.rice.edu/cs/ is dedicated to Com-
pressed Sensing Resources.
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Fig. 7 Restoring Mars-Orbiter hyperspectral data: recovering the spectra. (a) Original spectrum at pixel {10,10}. (b) Masked spectrum—50% of
the samples are missing. (c) Recovered spectrum using mMCA. Abscissa: channel number. Ordinate: spectrum amplitude

Fig. 8 Recovering the hyperspectral data: SNR in dB between the
original data and the recovered hyperspectral data using mMCA (solid
line) and MCA on each channel separately (dashed line)

verse problems such as inpainting or morphological com-
ponent extraction issues. The choice of a particular multi-
channel representation relies on prior information. Recently,

new sparsity driven approaches in signal recovery have fo-
cused on devising adaptive processes. Adapting the repre-
sentation to the data has also been introduced in various
fields. Most adaptive approaches are based on different con-
cepts:

– Global: in various fields, adaptive schemes have been
proposed to globally update the representation (see e.g.
[63, 65]).

– Patch-based local: patch-based adaptive techniques have
already been applied to restoration problems (see e.g.
[64]).

– Adaptive search in tree-based bases: in the monochan-
nel case, adaptive dictionary learning processes have been
used (see e.g. [66, 67]) assuming that the sparse represen-
tation lies in a class of tree-based multiscale transforms
(e.g. wavelet and cosine packets [8], bandlets [23] to cite
only a few).

These sparsity-based adaptive techniques have provided
astounding results in various fields. In this section, we intro-
duced an adaptive version of the mMCA algorithm. In the
multichannel case, such an adaptive recovery would have
to be applied both on the spectral dictionary � and the
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Fig. 9 Adaptive multichannel morphological component separation:
the 256 × 256 original color image

spatial dictionary �. Adapting the spatial dictionary to the
data could be done by e.g choosing a decomposition tree
assuming � lies in a class of tree-based multiscale trans-
forms. When applicable, the same adaptive process can be
performed for �.

The data X are made of 3 observed channels correspond-
ing to each color layer (for instance red, green and blue)
which cannot be strictly called spectra. Hopefully, the forth-
coming results are still valid in a higher dimension problem.
In the mMCA framework, D′ = 1 and the data X are the lin-
ear combination of D multichannel morphological compo-
nents. In this section, each channel of the data X is the linear
combination of a texture part (assumed to be well sparsified
by a Discrete Cosine Transform) and a contour part (sparsely
represented by the curvelet tight frame). Figure 9 displays a
toy-example based color image X. We then propose recover-
ing the color morphological components using the proposed
mMCA method which seeks to adapt the color space to the
data X. In this context, we assume that � is a 3×3 invertible
matrix. Adapting the spectral basis � (i.e. the color space)
to the data then amounts to estimate an “optimal” matrix �.

The mMCA algorithm is then adapted such that at each
iteration h the matrix � is updated by its least-squares esti-
mate:

�(h+1) = arg min
�

∥
∥
∥
∥
∥

X − �

D∑

j=1

�
(h)
j �j

∥
∥
∥
∥
∥

2

. (32)

This problem has a unique minimizer defined as follows:

�(h+1) = X

[
D∑

j=1

�
(h)
j �j

]†

(33)

where [∑D
j=1 �

(h)
j �j ]† is the pseudo-inverse of the matrix

∑D
j=1 �

(h)
j �j .

The mMCA algorithm of Sect. 3.2 is then adapted as fol-
lows:

1. Set the number of iterations Imax and threshold λ(0).
2. While λ(h) is higher than a given lower bound λmin (e.g. can depend
on the noise variance),

a. For j = 1, . . . ,D

• Compute the residual term R(h)
j assuming the current

estimates of �{p}�={j}, �̃
(h−1)
p �=j are fixed:

R(h)
j = X − ∑

p �=j �̃
(h−1)
p .

• Estimate the current coefficients of �̃
(h)
j by thresholding

with threshold λ(h):
α̃

(h)
j = Δλ(h) (�(h)T R(h)

j �T
j ).

• Get the new estimate of �j by reconstructing from the

selected coefficients α̃
(h)
j :

�̃
(h)
j = �(h)α̃

(h)
j �j .

b. Update the spectral basis �:

�(h+1) = Y(h)[∑D
j=1 �

(h)
j �j ]†.

3. Decrease the threshold λ(h) following mMOM strategy.

The proposed Adaptive mMCA algorithm should be able
to better account for inter-channel structure or correlations.
In the next experiment, we compare a non-adaptive MCA-
based algorithm with the new adaptive mMCA algorithm
described below:

– Non-adaptive approach: a monochannel MCA is applied
to each channel separately. It then amounts to applying
the mMCA algorithm with the particular choice: � = I.

– Adaptive approach: a global adaptive mMCA is applied
to the whole data X.

The input toy-example image is displayed in Fig. 9. The
texture part is composed of a globally oscillating pattern; it
will be assumed to be well-sparsified by the DCT (�1 with
be the DCT-based basis). �2 is the curvelet tight frame for
the cartoon part. The decomposition results are illustrated in
Fig. 10. Visually, both approaches (MCA and mMCA) seem
to perform similarly providing good visual results. More
quantitatively, Table 2 summarizes the respective recovery
performances.

To conclude accounting for inter-channel structures great-
ly improves the decomposition task. In the next section, we
apply a similar adaptive scheme to the multichannel inpaint-
ing problem.
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Fig. 10 Adaptive multichannel
morphological component
separation—components
recovery: (a) Original color
texture component. (b) Original
color cartoon component.
(c) Color texture component
estimated with MCA. (d) Color
cartoon component estimated
with MCA. (e) Color texture
component estimated with
mMCA. (f) Color cartoon
component estimated with
mMCA

Table 2 Recovery signal-to-noise ratio

Recovery error SNR in dB Texture part Cartoon part

mMCA with � = I 15.7 22.9

Adaptive mMCA 16.3 23.6

4.2 Adaptive Color Image Inpainting

In the previous section, we emphasized on the improvement
led by adapting the spectral dictionary to data. Hereafter, we
consider the particular case of color image inpainting. The
data X are assumed to be made of three channels (i.e. cor-

responding to each color layer). We apply exactly the same
spectral dictionary update described in Sect. 4.1. In the con-
text of inpainting, the mMCA algorithm of Sect. 3.2 is then
adapted as follows:

1. Set the number of iterations Imax and threshold λ(0).
2. While λ(h) is higher than a given lower bound λmin (e.g. can depend
on the noise variance),

a. Compute Y(h) = Y +Mc � X̃(h−1).
b. Initialize to zero each residual morphological components

{�̃j }(h−1).
For j = 1, . . . ,D

• Compute the residual term R(h)
j assuming the current

estimates of �{p}�={j}, �̃
(h−1)
p �=j are fixed:
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Fig. 11 Recovering color
images. (a) Original Barbara
color image. (b) Masked
image—90% of the color pixels
are missing. (c) Inpainted image
using the original MCA
algorithm on each color channel.
(d) Inpainted image using the
adaptive mMCA algorithm

R(h)
j = Y(h) − ∑

p �=j �̃
(h−1)
p .

• Estimate the current coefficients of �̃
(h)
j by thresholding

with threshold λ(h):
α̃

(h)
j = Δλ(h) (�(h)T R(h)

j �T
j ).

• Get the new estimate of �j by reconstructing from the

selected coefficients α̃
(h)
j :

�̃
(h)
j = �(h)α̃

(h)
j �j .

c. Update the hypercube X̃(h) = ∑D
j=1 �̃

(h)
j .

d. Update the spectral basis �:

�(h+1) = Y(h)[∑D
j=1 �

(h)
j �j ]†.

3. Decrease the threshold λ(h) following mMOM strategy.

Figure 11(a) shows the original Barbara color image.
Figure 11(b) depicts the masked color image where 90% of
the color pixels are missing. Figure 11(c) portrays the recov-
ered image using mMCA in the original RGB color space
(which amounts to perform a monochannel MCA-based in-
painting on each channel). Figure 11(d) shows the image
recovered with the color space-adaptive mMCA algorithm.
The zoom on the recovered images in Fig. 12 shows that
adapting the color space avoids chromatic aberrations and
hence produces a better visual result. This visual impres-
sion is quantitatively confirmed by SNR measures, where
the color space-adaptive mMCA improves the SNR by 1 dB.

4.3 Relations with BSS

In the previous sections, the adaptive mMCA-based algo-
rithm has been devised to adapt the spectral dictionary � to
the data. Recall that this adaptive scheme can be recast as a
two-step iterative algorithm:

– Sparse coding: the first step amounts to get a sparse de-
composition of the data X in the multichannel dictionary
� ⊗ �.

– Spectral dictionary update: update the spectral dictio-
nary �.

Such a two-step iterative algorithm have a flavor of the
GMCA algorithm we proposed for solving Blind Source
Separation problems in [68]. In this paper, we also showed
that this kind of adaptive scheme is likely to provide sparser
representations. Even if the notion of source is a non-sense
(for instance in color imaging), it is always worth looking
for sparser representations. Indeed, we emphasized on the
mMCA’s ability to adapt to data leads to better recovery re-
sults.

5 Conclusion

We recalled the tremendous effectiveness of sparsity-based
methods in signal restoration. In this paper we empha-
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Fig. 12 Zoom on recovered
Barbara color image.
(a) Original Barbara color
image. (b) Masked
image—90% of the color pixels
are missing. (c) Inpainted image
using the original MCA
algorithm on each color channel.
(d) Inpainted image using the
adaptive mMCA algorithm

size on multichannel sparse dictionaries to better represent
multichannel data. Indeed, more than a concatenation of
monochannel signals, multichannel data are spatially and
spectrally structured. We introduce a general sparsity-based
framework coined multichannel Morphological Component
Analysis (mMCA) that accounts for the specific structure of
multichannel data. We enlighten the links between mMCA
and extensions of general sparse decomposition problems
to the multichannel case. New theoretical results are put
forward that prove the efficiency of mMCA in providing
sparse multichannel decompositions in dictionaries built as
a union of tensor products of orthonormal bases. Experi-
ments are given showing that the mMCA framework pro-
vides an effective tool for devising sparsity-based solutions
to some restoration problems such as multichannel morpho-
logical component separation and color image inpainting.
We also extend the mMCA algorithm to solve hyperspectral
data inpainting issues. An adaptive scheme is also proposed
to adapt the sparse representation to data. We illustrate the
astounding enhancement provided by such an adaptive al-
gorithm. Future work will be devoted to i) extending the
mMCA framework to deal with other inverse problems such
as multichannel deconvolution, ii) devising more adaptive
mMCA-based algorithm for multichannel data decomposi-
tion.

Acknowledgement The authors want to thank O. Forni for provid-
ing the Mars Observer hyperspectral data.

Appendix: Proofs

Let us first simplify a few notations. We define γ = {j, k} as
a couple of indices. The multichannel subdictionary �k ⊗
�j will be written �γ with γ = {j, k}. The notation ψγ [i]
will refer to the i-th atom of the multichannel subdictionary
�γ . Furthermore, the sparse representation of the multi-
channel data X will be written as follows:

X =
∑

γ

∑

i∈Λγ

αγ [i]ψγ [i]. (34)

Equivalently, the sparse decomposition of the residual term
at iteration h is written as follows:

R(h) =
∑

γ

∑

i∈Λγ

β(h)
γ [i]ψγ [i]. (35)

Note that the following proofs are still valid in the mono-
channel case which corresponds to the MCA algorithm.

Proof of Proposition 1 Let’s denote:

(γ �, i�) = arg max
γ,i∈Λγ

|〈R(h),ψγ [i]〉|,
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(γ †, i†) = arg max
γ �=γ �,i∈Λγ

|〈R(h),ψγ [i]〉|,

ω
(h)
γ � = |〈R(h),ψγ � [i�]〉|,

ω(h) = |〈R(h),ψγ † [i†]〉|.

Moreover, let β� = |β(h)
γ � [i�]| and β† = |β(h)

γ † [i†]|. By de-
finition, the mMOM thresholding rule in (24) selects new
coefficients such that:

∀i, γ ; ω
(h)
γ � ≥ |〈R(h),ψγ [i]〉| > ω(h).

To show that mMCA/mMOM agrees with the exact selec-
tion property, it is sufficient to show that:

|〈R(h),ψγ �[i]〉| < ω(h), ∀i ∈ Λc
γ � (36)

where Λc
γ � is the complement of the support Λγ � restricted

to the subdictionary �γ � .
On the one hand, we have:

ω(h) ≥ β† −
∑

p �=γ †

∑

j∈Λp

|β(h)
p [j ]||〈ψγ † [i†],ψp[j ]〉|

≥ ρβ� − Kβ�μΨ . (37)

Here we used |〈ψγ � [i],ψp[j ]〉| ≤ μΨ . We also supposed
that β† = ρβ� for 0 < ρ ≤ 1. One can easily prove that this
latter condition is sufficient for ω

(h)
γ � > ω(h) to hold.

On the other hand, a straightforward calculation leads to:

|〈R(h),ψγ �[i]〉|
≤

∑

p �=γ �

∑

j∈Λp

|β(h)
p [j ]||〈ψγ � [i],ψp[j ]〉|, ∀i ∈ Λc

γ �

≤ Kβ†μΨ

≤ Kρβ�μΨ (38)

where all coefficients of γ �-th component vanished because
�γ � is orthonormal.

From (37) and (38), we get that for (36) to hold, we need
that:

ρ − KμΨ > KρμΨ

or equivalently K < μ−1
Ψ

ρ
1+ρ

. For 0 < ρ ≤ 1, ρ
1+ρ

is a
strictly increasing function bounded above by 1/2, yield-
ing the bound of the proposition on K . This leads to (36)
validating the Exact Selection Property (ESP). �

Proof of Proposition 2 The proof is similar to that of
MP and OMP [18]. In fact, our mMCA/mMOM strategy
and its proof is a stagewise extension of the greedy MP.
mMCA/mMOM begins by setting R(0) = X. By hypothe-
sis in the proposition, at each step h ≥ 0 and component γ �,

mMCA/mMOM chooses correct atoms from Λγ � by hard-
thresholding, and then calculates a new residual such that:

R(h) =
∑

i∈Iγ �

〈R(h),ψγ �[i]〉ψγ � [i] + R(h+1)

where Iγ � ⊆ Λγ � , and �Iγ � is the restriction of � to the
atoms indexed by Iγ � . From the orthonormality of the atoms
in �Iγ � , it is easy to see that,

‖R(h+1)‖2 = ‖R(h)‖2 −
∥
∥
∥
∥

∑

i∈Iγ �

〈R(h),ψγ � [i]〉ψγ � [i]
∥
∥
∥
∥

2

≤ σ 2‖R(h)‖2 (39)

where σ 2 is the highest eigenvalue of I − G�Iγ �
,6 I is

the identity matrix of appropriate dimensions. From [18,
Lemma 2.3] with arguments relying on Gershgorin Disc
Theorem, and [18, Proposition 2.1], the squared singular
values of �Iγ � are bounded below by 1 − (Card(Iγ �) −
1)μΨ . It follows that σ 2 ≤ (Card(Iγ �) − 1)μΨ . Then, as
KμΨ < 1/2,

‖R(h+1)‖2 ≤ (Card(Iγ �) − 1)μΨ ‖R(h)‖2

≤ (K − 1)μΨ ‖R(h)‖2

≤ 1/2‖R(h)‖2

≤ · · ·
≤ 2−(h+1)‖X‖2 (40)

which completes the proof. �
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