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P e t a s c a l e
C o m p u t i n g

R e p r o d u c i b i l i t y  i n 
I m a g e  D e c o m p o s i t i o n

MCALab: Reproducible Research  
in Signal and Image Decomposition 
and Inpainting
Morphological component analysis of signals and images has far-reaching applications 
in science and technology, but some consider it problematic and even intractable. 
Reproducible research is essential to give MCA a firm scientific foundation. Researchers 
developed MCALab to demonstrate key MCA concepts and make them available to 
interested researchers.

R eproducibility is at the heart of scien-
tific methodology and all successful 
technology development. In theoreti-
cal disciplines, mathematics has set 

the gold standard, where formal proof in principle 
allows anyone to reproduce the cognitive steps 
leading to a theorem’s verification. In experi-
mental disciplines—such as biology, physics, or 
chemistry—experiments must be replicable for a 
result to be well established. Of course, a neces-
sary condition to truthfully replicate the experi-
ment is that the paper describe it in enough detail 
that other groups can mimic it. 

Computational science is a much younger field 
than mathematics, but is already of great impor-
tance for human welfare. However, it doesn’t yet 

rigorously adhere to the reproducibility notion. 
The “reproducible research” slogan is relatively 
new; it tries to create a gold standard for compu-
tational reproducibility by recognizing that a re-
search project’s real outcome isn’t the published 
article, but rather the entire environment that 
produced the results, including data, software, 
and documentation.1 A closely related concept is 
computational provenance. In scientific experiments, 
provenance helps researchers interpret and under-
stand results by examining the sequence of steps 
that led to them. In a sense, provenance’s potential 
uses exceed reproducibility, as the May/June 2008 
issue of CiSE attests.2

Inspired by Jon Clearbout, David Donoho be-
gan to practice reproducible research in the early 
1990s in computational harmonic analysis within 
the now-proliferating Matlab environment.3 In 
the signal-processing community, work by Mauro 
Barni and Fernando Perez-Gonzalez revitalized 
interest in reproducible research.4 In 2007, the  
International Conference on Acoustics, Speech, 
and Signal Processing devoted an entire special ses-
sion to reproducible signal-processing research.

Our reproducible research context is that of 
sparse-representation-based signal and image 
decomposition and inpainting. To achieve sig-
nal and image decomposition and inpainting, we  
use MCALab, a library of Matlab routines that 
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implements various algorithms.5-7 MCALab of-
fers the research community open source tools for 
sparse decomposition and inpainting, and can be 
used to reproduce the figures we present here and 
to redo them with parameter variations.

Problem Overview
Although mathematics has its million-dollar prob-
lems (the Clay Math Prizes), signal and image pro-
cessing problems exceed a billion dollars. Famous 
ones include the phase problem (loss of informa-
tion from a physical measurement) and the cocktail 
party problem (separate one sound from a mixture 
of other recorded sounds and background noises at 
a party). The “billion dollar” descriptor refers to 
the problems’ enormous significance to the world 
economy should they be solved, as well as the ex-
treme intellectual kick such a solution would nec-
essarily entail. These signal-processing problems 
seem to be intractable according to orthodox argu-
ments based on rigorous mathematics, and yet they 
keep cropping up in problem after problem.

One fundamental problem involves decom-
posing a signal or image into superposed con-
tributions from different sources; think of 
symphonic music—which might involve superpo-
sitions of acoustic signals generated by many dif-
ferent instruments—and imagine the challenge of 
separating these contributions. More abstractly, 
various forms of media content are superpositions 
of contributions from different content types. Our 
goal is to separate out each type’s contribution, 
which is a complex task. We can easily see a fun-
damental problem; for example, an n-pixel image 
created by superposing K different types offers us 
n data (the pixel values) but there may be as many 
as n · K unknowns (the contribution of each con-
tent type to each pixel). Traditional mathematical 
reasoning—in fact, the fundamental theorem of 
linear algebra—tells us not to attempt this be-
cause there are more unknowns than equations. 
On the other hand, if we have prior information 
about the underlying object, some rigorous results 
show that such separation might be possible using 
special techniques. We’re thus left with a situation 
that has grounds for both hope and skepticism.

The idea to morphologically decompose a signal 
into its building blocks is an important problem in 
signal and image processing. An interesting and 
complicated image-content separation problem is 
one that targets image decomposition to texture 
and piecewise-smooth (cartoon) parts. Since the 
pioneering contribution of the French mathema-
tician Yves Meyer on the G-space of oscillating 
patterns, we’ve witnessed a flurry of research  

activity in this application field. Successful meth-
ods for signal or image separation can be applied 
in a broad range of science and technology areas, 
including biomedical engineering, medical imag-
ing, speech processing, astronomical imaging, re-
mote sensing, and communication systems.

In morphological component analysis (MCA), 
we base decomposition on sparse signal repre-
sentation.5,8 MCA assumes that each signal is the 
linear mixture of several layers—or morphological 
components—that are morphologically distinct, 
such as sines and bumps. The method’s success 
relies on the assumption that for every signal 
atomic behavior to be separated, there’s a diction-
ary of atoms that enables its construction using a 
sparse representation. It’s then assumed that each 
morphological component is sparsely represented 
in a specific transform domain. And, when all 
transforms (each one attached to a morphologi-
cal component) are amalgamated in one diction-
ary, each one must lead to sparse representation 
over the part of the signal it’s serving, while be-
ing highly inefficient in representing the other 
content in the mixture. If such dictionaries are 
identified, the use of a pursuit algorithm search-
ing for the sparsest representation leads to the 
desired separation.

MCA can create atomic sparse representations 
containing (as a byproduct) a decoupling of the 
signal content. Researchers have extended MCA 
to simultaneous texture and cartoon images in-
painting.6 Other researchers have formalized the 
inpainting problem as a missing data-estimation 
problem.7 

Theory and Algorithms
Before describing of the MCALab library, we’ll 
first set a context by explaining basic terminology, 
reviewing the main theoretical concepts, and pro-
viding an overview of the algorithms. 

Terminology 
An atom is an elementary signal-representing 
template. Examples might include sinusoids, mo-
nomials, wavelets, and Gaussians. Using a collec-
tion of atoms as building blocks, we can construct 
more complex waveforms by linear superposition.

A dictionary Φ is an indexed collection of atoms  
(φγ)γ∈Γ, where Γ is a countable set. The interpre-
tation of the index γ depends on the dictionary; 
frequency for the Fourier dictionary (sinusoids), 
position for the Dirac dictionary (the standard unit 
vector basis, or kronecker basis), position scale for 
the wavelet dictionary, translation duration frequen-
cy for cosine packets, and position scale orientation  
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for the curvelet dictionary in two dimensions. In 
discrete-time finite-length signal processing, we 
can view a dictionary as a matrix whose columns are 
the atoms, which we can view as the column vec-
tors. When the dictionary has more columns than 
rows, it’s redundant, or overcomplete. Here, we’re 
mainly interested in overcomplete dictionaries. In 
the overcomplete case, the signal x = Φα amounts 
to an underdetermined system of linear equations. 

Given a dictionary, we must distinguish be-
tween analysis and synthesis operations. Analy-
sis operations associate each signal x to a vector 
of coefficients α attached to an atom: α = ΦTx. 
Synthesis operations reconstruct x by superpos-
ing atoms: x = Φα. Analysis and synthesis are 
very different linear operations. In the overcom-
plete case, Φ isn’t invertible and the reconstruc-
tion isn’t unique (we discuss this in more detail 
later).

Next, we assume that a given n-sample signal or 
image x consists of a sum of K signals or images,

 ( ) ,, ,x x xk k K kk

K

= =
= ∑1 1

,

that have different morphologies. Each xk is called 
a morphological component.

Inpainting restores missing image information 
based upon the still available (observed) cues from 
destroyed, occluded, or deliberately masked sub-
regions of the signal or image. Roughly speaking, 
inpainting is an interpolation of missing or oc-
cluded data. 

Fast Implicit Transforms and Dictionaries
Given recent advances in modern harmonic 
analysis, researchers have shown many novel  
representations—including the wavelet trans-
form, curvelet, contourlet, and steerable or com-
plex wavelet pyramids—to be very effective in 
sparsely representing certain kinds of signals and 
images. For decomposition purposes, we build the 
dictionary by taking the union of one or several 
(sufficiently incoherent) transforms, each of which 
generally corresponds to an orthogonal basis or a 
tight frame. 

From a practical viewpoint, given a signal x, 
we’ll need to compute its forward (or analysis) 
transform by multiplying it by ΦT. We also need 
to reconstruct any signal from its coefficients 
α. In fact, the matrix Φ and its adjoint ΦT (cor-
responding to each transform) are never ex-
plicitly constructed in memory. Rather, they’re 
implemented as fast implicit analysis and syn-
thesis operators taking a signal vector x, and  

returning ΦT x = Tx (such as Fourier or wavelet 
transforms), or taking a coefficient vector α and 
returning Φα (such as inverse Fourier or wavelet 
transforms). 

Signal and Image Decomposition
Suppose that the n-sample signal or image x 
is the linear superposition of K morphological 
components. The MCA framework aims at re-
covering the components (xk)k=1,…,K from their  
observed linear mixture (see Figure 1). This is 
obviously an ill-posed inverse problem. MCA as-
sumes that a dictionary can be built by amalgam-
ating several transforms (Φ1,…,ΦK) such that for 
each k the representation αk of xk in Φk is sparse 
but αk is not, or at least not as sparse, in other Φl ,  
l ≠ k. In other words, the subdictionaries (Φ1,…,ΦK) 
must be mutually incoherent. Thus, the diction-
ary Φk plays a role of a discriminant between con-
tent types, preferring the component xk over the 
other parts.

Choosing an appropriate dictionary is a key step 
toward creating a good sparse decomposition and 
inpainting. Thus, to represent isotropic structures 
efficiently, a qualifying choice is the wavelet trans-
form.9 The curvelet system is a good candidate for 
representing piecewise smooth (C2) images away 
from C2 contours.10 The ridgelet transform has 
proven highly effective for representing global 
lines in an image.11 The local discrete cosine 
transform (DCT) is well suited to represent lo-
cally stationary textures.9 These transforms are 
also computationally tractable, particularly in 
large-scale applications, and (as stated above) you 
should never explicitly implement Φ and T. The 
associated implicit fast analysis and synthesis op-
erators have typical complexities of O(n), with n 
being the number of samples or pixels (such as 
orthogonal or bi-orthogonal wavelet transform) 
or O(n log n) (such as ridgelet, curvelet, or local 
DCT transforms).

By definition, the augmented dictionary Φ =  
[Φ1…ΦK] will provide an overcomplete repre-
sentation of x. Again, because there are more 
unknowns than equations, the system x = Φα 
is underdetermined. In some idealized cases, 
we can use sparsity to find a unique solution.12 
Some researchers have proposed solving the un-
derdetermined system of equations and estimate 
the morphological components (xk)k=1,…,K by 
solving the following constrained optimization 
problem:

 min ,
, ,x x k
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is the penalty quantifying sparsity (the most inter-
esting regime is for 0 ≤ p ≤ 1), and
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the ℓ0 pseudonorm—that is, the number of non-
zero components.5,8 The constraint in this optimi-
zation problem accounts for the presence of noise 
and model imperfection. If there is no noise and the 
linear superposition model is exact (σ = 0), we can 
substitute an equality constraint for the inequality 
constraint. This formulation is flexible enough to  
incorporate external forces that direct the morpho-
logical components to better suit their expected 
content; these forces will fine-tune the separation 
process to achieve its task. As an example of a suc-
cessful external force, Jean-Luc Starck and col-
leagues proposed adding a total variation (TV) 
penalty to the cartoon part to direct this component 
to fit the piecewise-smooth model.8 This leads to

 min ,
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where s indexes the piecewise-smooth (cartoon) 
part, and γ the TV regularization parameter.

For the sake of completeness, we summarize 
Starck’s MCA algorithm—which relies on an  
iterative thresholding scheme with varying 
threshold—in Algorithm 1 (see Figure 2). THλ(α) 
denotes component-wise thresholding with thresh
old λ, hard thresholding (p = 0 in Equation 2), or 
soft thresholding (p = 1 in Equation 2). As far as 
the thresholding decreasing strategy is concerned, 
there are several alternatives. Researchers have, 
for example, advocated linear and exponential de-
crease.5,8 Other researchers proposed a more elab-
orated strategy, called MOM (for mean-of-max).13 
Here (and in MCALab toolbox version 1.1.0), only 
linear and exponential decrease are implemented. 
As Starck suggested, an approximation of the TV 
regularization is implemented in MCALab by 
soft thresholding the undecimated Haar wavelet 
coefficients with threshold γ.8 

MCA naturally handles data perturbed 
by additive noise ε with bounded variance 
σ εε

2 = <+Var[ ] .¥  In terms of the dictionary’s 

Figure 1. Illustration of the image decomposition problem with sparse representations. Each image x is 
a superposition of contributions from different content types (xLin, xGau, xTex). The goal is to separate out 
each type’s contribution from the observed x by exploiting that each content type is sparse in a dedicated 
dictionary.
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coefficient amplitude, MCA is an iterative coarse-
to-fine procedure and can handle bounded noise 
by simply stopping iteration when the residual is at 
the noise level. Assuming that we know the noise 
variance σε

2 , we can stop the algorithm at itera-
tion t when the ℓ2-norm of the residual satisfies

  r nt( ) .2 ≤ σε

Alternatively, we can use a strategy reminiscent of 
denoising methods by taking λmin = τ σε where τ 
is a constant (typically between 3 and 4). 

Signal and Image Inpainting
Assume we define the original signal/image on a 
bounded domain Ω. Then suppose we partially 
observe a signal/image x on a compact domain 
Ωo ⊂ Ω, no = Card (Ωo), where some samples  
are missing (those indexed by Ω\Ωo). By “mask” 
M we mean the diagonal n × n matrix where the 
observed samples are indicated by ones and the 
missing ones by zeros.

Elad algorithm. Michael Elad and his colleagues 
describe an inpainting algorithm that is a direct 
extension of MCA and can fill holes in images that 
are a superposition of a texture and cartoon layers.6 
Thus, we can extend Equation 2 to incorporate 
missing data through the mask M by minimizing

 min
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In our approach to solving this optimization prob-
lem, we need adapt the MCA Algorithm 1 only 
slightly, modifying the residual update rule to

 r x M xt
k
t

k

K( ) ( )+
=

= - ∑1
1

to account for the masking matrix M. The other 
steps of the algorithm remain unchanged.6 

Fadili algorithm. When taking p = 1 and dropping 
the TV-regularization term in Equation 3, the in-
painting problem can be formalized as a missing  
data-estimation problem.7 In this case, the research-
ers formulated the problem as a maximum penalized 
likelihood estimator with missing data and sparsity-
promoting penalties. They carefully characterized 
it and solved it using tools from nonsmooth convex 
optimization theory. A chief advantage of this al-
gorithm is its ability to estimate the noise variance. 
Let’s denote the relaxation parameter

 0 2
2

2
< < ∑m / Φkk

,

where

Φk 2

2

Figure 2. Algorithm 1 summarizes the morphological component analysis (MCA) algorithm, which relies 
on an iterative thresholding scheme with varying threshold. THλ(α) denotes component-wise thresholding 
with threshold λ, hard thresholding (p = 0 in Equation 2) or soft thresholding (p = 1 in Equation 2).

Algorithm 1. Morphological component analysis (MCA) component separation algorithm. 
Task: Signal/image decomposition, solve (2). 
Parameters: The signal/image x, the dictionary F = [F1 … FK], number of iterations Niter, g and index of the 
cartoon part, stopping threshold lmin, threshold update schedule. 
Initialization: 
	 • Initial solution x kk

( ) , .0 0= ∀  

	 • Initial residual r(0) = x. 
	 • Initial threshold: let k*= maxk Φk

T x
∞

, set l(0) = max
k k= ∗ Φk

T x
∞

.
Main iteration: 
For t = 1 to Niter 
	 • For k = 1 to K, 
		  - Compute marginal residuals r r xk

t t
k

( ) ( ) .= +

		  - Update k-th component coefficients by thresholding αk
t( ) = THl(t) ( ).( )Φk

T
k

tr

	 - Update k-th component xk
t

k k
t( ) ( ).= Φ α  

	 - If k is the cartoon part and g ≠ 0, TV penalty to xk
t( ) .  

	 • Update the residuals r(t + 1) = x - =∑ xk
t

k
K ( ).

1
	 • Update the threshold l(t + 1) according to the given schedule. 
	 • If l(t + 1) ≤ lmin then stop. 
End iteration
Output: Morphological components ( )( )

, ,xk
N

k K
iter

=1 .
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corresponds to the largest frame bound associated 
to Φk. We summarize this inpainting method in 
Algorithm 2 (see Figure 3); other variations are 
described elsewhere.7 

Algorithm comparison. The two inpainting algo-
rithms have differences and similarities: 

Target.•	  In the Elad algorithm formulation, the 
targets are the morphological components xk 
and component separation is a byproduct of the 
inpainting process. In Fadili, the problem is op-
timized with respect to the coefficients αk. This 
distinction obviously disappears when Φ is an 
orthobasis. 
Parameters.•	  In Elad’s MCA-based inpaint-
ing, the user provides the algorithm with a 
threshold-lowering schedule and a stopping 
threshold λmin; in Fadili, the user must give a 
fixed regularization parameter λ. In practice, 
it might be more difficult to choose λ than to 
choose the stopping threshold. 
Noise.•	  Both algorithms handle the presence 
of noise; Fadili’s formulation can estimate the 
noise variance along with inpainting. 
Optimization algorithms.•	  Despite apparent simi-
larities, the two formulations use different op-
timization frameworks. MCA is a heuristic 
algorithm, formed by hybridizing matching pur-
suit with block-coordinate relaxation. The for-
mulation of the Fadili algorithm uses an iterative 
thresholding proximal iteration with a rigorous 
convergence analysis guaranteed when p ≥ 1. 

We now describe the MCALab architecture, 
which implements the previously described  

algorithms and reproduces the experiments de-
scribed in the corresponding papers.

MCALab Architecture
MCALab is a library of Matlab routines that 
implements the algorithms we describe here  
for signal and image decomposition and inpaint-
ing. The library is available free of charge at  
www.morphologicaldiversity.org/mcalab.html. 
The current version of MCALab is 1.1.0 and has 
been successfully tested under Unix Solaris, Li-
nux, and Mac OS X (PPC and Intel) under Mat-
lab 6.x and 7.x. MCALab is distributed under the 
Cecill software license (www.cecill.info/index.
en.html), which doesn’t require advanced permis-
sion for noncommercial use. Figure 4 shows the 
MCALab package’s structure.

MCALab has two main directories—one for 
1D signals and another for 2D images. Each of 
these directories has the same architecture and 
contains the following subdirectories:

Dictionaries.•	  The MCALab110/xxx-D/ 

Dictionaries directory contains various fast 
implicit analysis and synthesis transforms in-
cluding those discussed earlier. 
Decomposition.•	  The MCALab110/xxx-D/ 

Decomposition directory contains the imple-
mentation of Algorithms 1 and 2. 
Datasets.•	  The MCALab110/xxx-D/Datasets 

directory contains signal and image datasets 
used to illustrate decomposition and inpainting. 
MCALab110/One-D/Datasets also contains a 
Matlab function that generates many artificial 
signals and reads some real signals. 

Figure 3. Algorithm 2 summarizes the EM-inspired inpainting algorithm, which relies on an iterative soft 
thresholding scheme. SHλ(α) denotes component-wise soft thresholding with threshold λ.

Algorithm 2. Inpainting algorithm inspired by expectation maximization (EM). 
Task: Signal/image inpainting. 
Parameters: Observed masked image x, the mask M, the dictionary F = [F1… FK], regularization parameter 
l, initial σε

( )0 , convergence tolerance d.
Initialization: Initial solution αk

( )0 = 0, ∀k .
Main iteration: 
Repeat 
• Update the residual r (t) = x - MFa(t).
• Update the coefficients a(t)

	 a(t + 1) = SoftThreshold lm (a(t) + µFTr(t)).

• If desired, update σε
2 1( )t+  according to
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DemoGUI.•	  The MCALab110/xxx-D/DemoGUI 
directory contains a GUI to decompose and in-
paint the user’s own data or data supplied with 
MCALab. 
Scripts.•	  The MCALab110/xxx-D/Scripts di-
rectory contains pedagogical examples with 
synthetic and real data that illustrate the use of 
MCA and inpainting algorithms.

The Scripts directory also includes examples of 
metadata structures to help users reproduce the 
results and get started with the package.

MCALab Dependencies 
As we mentioned earlier, MCALab requires im-
plementation of forward and inverse transforms. 
As it turns out, many of them—including or-
thogonal wavelet transform, discrete cosine, and  
sine transforms—are already implemented in 

WaveLab (http://playfair.stanford.edu/~wavelab). 
We therefore recommend that users download and 
install WaveLab for MCALab to work properly. 

MCALab also incorporates software for two 
other transforms not included in WaveLab: the 
wrapping version of the fast discrete curvelet 
transform (FDCT) implemented in CurveLab 
(www.curvelet.org)10 and the undecimated dis-
crete wavelet transform (UDWT) implemented 
in the Rice wavelet toolbox (www.dsp.rice.edu/
software/rwt.shtml). We slightly modified the 
FDCT Matlab functions fdct wrapping.m and 
ifdct wrapping.m (not the Matlab Mex files) to 
match our dictionary data structure and imple-
ment curvelets at the finest scale. We strongly 
recommend that users download this modified 
version or at least use our fdct wrapping.m and 
ifdct wrapping.m. Both of these transforms are 
available in the MCALabWithUtilities MCA
Lab version (the dashed rectangle in Figure 4) in 
the MCALabWithUtilities/CurveleToolbox 
and MCALabWithUtilities/UDWT subdirecto-
ries (for further details, see Contents.m in MCAL-
abWithUtilities). We also encourage users to 
read the transforms’ software license agreements, 
which are available on the respective Web sites.

Because MCALab has external library depen-
dencies, reproducibility and sensitivity to third-
party libraries are a legitimate concern. However, 
the dependencies are essentially on the transforms, 
and given our implementation of the dictionaries, 
these transforms are called as external functions 
from MCALab. So, no modification is necessary 
on the MCALab code if such transforms are cor-
rected or modified. Moreover, to make MCALab’s 
behavior with these transforms more robust, we 
tested MCALab with both WaveLab 802 and 805 
and CurveLab (versions 1.0, 2.0, 2.1.1, and 2.1.2) 
and obtained exactly the same results. 

MCALab Metadata Generation 
MCALab also generates metadata that contains 
necessary information to facilitate reproducibility 
and reusability. As Figure 5 shows, this metadata 
is generated as a Matlab structure object with 
fields that indicate

the version of Matlab and machine architecture;•	
the version of third-party libraries that gener-•	
ated a given result (here, for example, we used 
WaveLab 802, CurveLab 2.1.1, and RWT 1.2); 
and
all MCALab options, including the version (here, •	
1.1.0), the task (decomposition or inpainting), pa-
rameters, I/O, and the dictionary description. 

Figure 4. MCALab package architecture. MCALab has two directories—
one for 1D signals and another for 2D images. Each of these directories 
has the same organization.
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When we launch MCALab on the call 
MCAPath.m, this metadata object is initialized 
with the Matlab version, machine architecture, 
and external libraries versions. The object is then 
stored in the Utils/ directory. The MCALab 
decomposition and inpainting routines load and 
add additional information to this object. In ad-
dition to the resulting signals and images, the test 
scripts can either store this object or export it in 
HTML format it using the MCALab function 
metaoptions2html.m (see Figure 5). Examples 
of metadata Matlab structure objects that the tests 
scripts store are available in the toolbox in the 
.mat Matlab format (version 5 for compatibility 
with older Matlab versions). Another interesting 
alternative worth investigating in a future version 
would be to exploit the XML Publish function, 
which is offered by Matlab but only available with 
versions 7.x and later.

To encourage users to reproduce our results 
from the metadata structure, we’ve also written 
an MCALab function firefrommetadata.m 
that can reproduce the results from previously 
stored metadata with as little extra information as 

possible. For user convenience, MCALab includes 
two test scripts in MCALab110/xxx-D/Scripts 
that exemplify the use of firefrommetadata.m 
on some 1D and 2D examples. 

Documentation 
MCALab is documented and each MCALab func-
tion has help documentation. The README and 
INSTALL files provide some guidelines to help us-
ers access and install the software and get started 
in exploring the MCALab package resources. Us-
ers can also check the MCALab Web page, which 
contains links to our Web sites, the abstract of 
this article, references to other MCALab articles, 
a zipped archive of MCALab package, and an 
email address for remarks and bug reports.

Dictionaries and Data Structures
The functions in xxx-D/Dictionary subdirec-
tory provide fast implicit analysis and synthesis 
operators for all MCALab dictionaries. With 
the exception of FDCT with the wrapping im-
plementation,10 all MCALab dictionaries are 
normalized such that atoms have unit ℓ2-norm.  

Figure 5. Metadata generated by MCALab in HTML for the experiment shown in Figure 12. The black 
rectangle represents the corresponding Matlab structure of a metadata object.
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The FDCT implements a non-normalized Parse-
val tight frame. Thus, a simple rule to compute 
the ℓ2-norm of the atoms is

1/ redundancy of the frame .

Normalization has an important impact on 
the thresholding step involved in the decom-
position/inpainting engines. The threshold-
ing functions coded in MCALab take care of 
these normalization issues for the dictionaries 
it implements.

The data structure and the routines are inspired 
by those of the Atomizer (www-stat.stanford.
edu/~Atomizer), and we’ve implemented the dic-
tionaries in an object-oriented way. In addition,

the top-level routines are •	 FastLA and FastLS; 
each transform has a fast analysis and a fast syn-•	
thesis function, FasNAMEOFTRANSFORMAnaly-
sis and FasNAMEOFTRANSFORMSynthesis, 
respectively; 
four arguments (•	 NameOfDict, par1, par2, 
par3) specify a dictionary;
each parameter’s meaning is explained in the •	
corresponding routine;
each •	 FasNAMEOFTRANSFORMAnalysis com-
putes the transform coefficients—that is, the 
application of ΦT—of an image or a signal and 
stores them in a structure array; and 
we define the •	 List data structure and cor-
responding functions, which lets users create 
and easily manipulate overcomplete merged 
dictionaries. 

Users can easily implement their own diction-
aries and associate them with a new transform fol-
lowing the above development rules.

Decomposition and Inpainting Engines
This directory’s routines perform either signal 
or image decomposition and inpainting using the 
MCA-based Algorithm 1 or signal and image in-
painting using Algorithm 2. The set of routines  
is for dictionaries with fast implicit operators.  
We also designed it to return a metadata object 
that can be saved or exported in HTML format to 
facilitate result reproducibility. 

Scripts and GUI
The /MCALab110/xxx-D/Scripts and /MCAL-
ab110/xxx-D/DemoGUI is the MCALab tool-
box’s whole raison d’ être. The /MCALab110/
xxx-D/Scripts subdirectory contains a variety 
of scripts, each of which contains a sequence of 

commands, datasets, and parameters for generat-
ing figures from our own articles, as well as other 
exploratory examples. Users can run the same ex-
periments on their own data or tune the param-
eters by simply modifying the scripts. By studying 
these scripts, users can quickly learn the practical 
aspects of sparse-representation-based image de-
composition and inpainting, as well as how to use 
the MCALab software library.

The /MCALab110/xxx-D/DemoGUI routines 
implement a point-and-click GUI that lets us-
ers select data and masks (signals or images), and  
then decompose or inpaint them using MCA 
Algorithm 1. Only signals and images with  
two morphological components—and hence two  
dictionaries—can be processed with this GUI. It’s 
possible to select the type of dictionaries and their 
associated parameters par1, par2, or par3 for 
each morphological component. The main win-
dow is invoked via the command MCA1Demo (sig-
nals) or MCA2Demo (images). Upon initialization, 
one main window will appear with four plots, a 
menu, and an interactive area on the right. Two 
additional top-bar pull-down menus are specific 
to MCALab GUI and let users load data variables 
from the Matlab workspace. Thus, prior to using 
the GUI, the target signals, images, or masks must 
first be read from disk and loaded to the workspace 
using any Matlab input-data reading routine. If 
your goal is to decompose and not to inpaint, it’s 
sufficient to create a dummy variable of ones that 
are the same size as the data. By default, the GUI 
assumes the trivial mask (all ones). 

Examples of Reproducible  
Experiments
Table 1 summarizes the data description, diction-
aries, and algorithm parameters that we used in 
the following experiments.

Bumps and Local Cosines
In Figure 6a, the synthetic signal (dashed line) 
is a composite of two Gaussian bumps with dif-
ferent scales and two local cosine waves. In this 
synthetic signal, we know the ground truth de-
composition. We also added white Gaussian noise 
with σε = 0.429 (PSNR = 20dB). Based on the 
signal’s morphological content, we decomposed 
and denoised it using an overcomplete dictionary 
containing the local DCT and the undecimated 
wavelet transform (see Table 1 for the diction-
ary details). The standard deviation σε wasn’t 
supplied; the algorithm estimated it from the 
noisy data using the median absolution deviation 
(MAD) estimator.14
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Figures 6b through 6d show the results. In Figures 
6c and 6d, the dashed line shows the original signal, 
while the solid line represents the locally oscillating 
part and localized bumps, respectively, that MCA 
recovered. We plotted the addition of both recov-
ered components as a continuous line in Figure 6b 
superimposed on the original signal (dashed line). 

twinsine and dirac signals
Figure 7 shows our second example, which decom-
poses the TwinSine and Dirac signals. The synthetic 
signal of Figure 7a (dashed line) consists of three ran-
domly located spikes and the TwinSine signal: two 

cosines with frequencies separated by less than the 
Rayleigh distance.15 We analyzed this signal with an 
overcomplete dictionary formed by merging a four-
fold overcomplete DCT and a standard (Dirac) basis. 
Table 1 summarizes the experiment’s parameters 
and Figures 7b through 7d show the results. As 
Figures 7b and 7c show, MCA resolved the frequen-
cies of the oscillating (TwinSine) component and 
separated it properly from the spikes (Figure 7d). 
Some spurious frequencies remain in the oscillat-
ing part. The locations of the true frequencies cor-
respond to the dotted lines in Figure 7c; the crosses 
in Figure 7d indicate the original spikes. 

table 1. experimental setup for the 1d examples.

signal dictionaries task algorithm parameters

Bumps + Local 
cosines n = 1,024

LocalDCT
(square window, width = 32, no 
overlap)
Undecimated discrete wavelet 
transform (UDWT)
(Symmlet 6, coarsest scale 2)

Decomposition 
and denoising 
(Algorithm 1)

Niter = 100, σε:	estimated	
from data, γ = 0 (no total 
variation—TV), λmin = 4 σε , 
exponentially decreasing 
threshold

TwinSine + Diracs 
n = 1,024

GlobalDCT 
(fineness = 4) 
Dirac

Decomposition 
(Algorithm 1)

Niter = 200, γ = 0 (no TV), 
λmin = 0, linearly decreasing 
threshold

EEG-fMRIsignal 
n = 8,192

LocalDCT
(squarewindow, width = 32, 
overlap = 50% × width)
UDWT
(Symmlet 6, coarsest scale 2)

Decomposition 
and denoising 
(Algorithm 1)

Niter = 100, σε:	estimated	
from data, γ = 0 (no TV), 
λmin = 4 σε , exponentially 
decreasing threshold

Figure 6. Decomposing and denoising local sines and bumps signal. (a) Noisy signal with a peak signal-
to-noise ratio of 20 decibels, (b) a denoised morphological component analysis (MCA) with a PSNR of 
38.1 dB, (c) local cosines with a PSNR of 39.9 dB, and (d) bumps with a PSNR of 38.5 dB.
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EEG and fMRI
Finally, we applied MCA to a real signal acquired 
during a multimodal neuroimaging experiment. 
During this experiment, electroencephalography 
(EEG) and functional magnetic resonance im-
aging (fMRI) data are recorded synchronously 
to enable study of the spatio-temporal dynam-
ics of brain activity. However, this simultaneous 
acquisition of EEG and fMRI data faces a major 
difficulty: the currents induced by the MR mag-
netic fields yield strong artifacts that generally 
dominate the useful EEG signal. In a continu-
ous acquisition protocol, both modalities can re-
cord data. However, to exploit the EEG signal, 
we need a postprocessing step for EEG artifact 
reduction. 

Figure 8a shows an example of such a signal. 
The periods where the MR sequence is switched 
on are clearly visible, inducing strong oscillations 
on the EEG signal with an amplitude 10 to 20 
times higher that the expected EEG amplitude. 
This locally oscillating behavior is expected 
because of the shape of the MR scanner’s mag-
netic field gradients. Therefore, to get rid of the 
MR component and clean the EEG signal from 
these artifacts, we decomposed it using an over-
complete dictionary of local DCT (for the MR 
part) and the UDWT (for the EEG smooth and 
localized component). Table 1 shows the experi-
ment’s parameters and Figures 8c and 8d show its 

results. As a byproduct, we also cleaned the signal 
of measurement noise.

2D Examples of Reproducible  
Experiments
Table 2 summarizes the data description, diction-
aries, and algorithm parameters that we used in 
the following experiments.

Decomposition
We now describe our reproducible experiments 
on 2D image decomposition.

Boy with texture. In this experiment, we generated 
a synthetic image composed of a natural scene 
and a texture, giving us the ground truth parts 
to compare against.6,8 We used the MCA decom-
position Algorithm 1 with the curvelet transform 
for the natural scene part, and a global DCT 
transform for the texture; see Table 2 for details. 
The TV regularization parameter γ was fixed 
to 0.1. In this example (and for the Barbara ex-
ample we describe next) our results were better if 
we ignored the textured part’s very low frequen-
cies. The reason for this is the evident coherence 
between the two dictionaries’ elements at low  
frequencies—both claim the low-frequency con-
tent. Figure 9a and 9b show the original and re-
covered images (the addition of the texture and 
the natural parts); 9c and 9d show the original and 

Figure 7. Decomposing TwinSine and Dirac signals. (a) The morphological component analysis (MCA) 
recovery with a peak signal-to-noise ratio of 67.4488 decibels, (b) the MCA TwinSine component with a 
PSNR of 29.3687 dB, (c) the MCA discrete cosine transform coefficient, and (d) the MCA Dirac component 
with a PSNR of 30.5055 dB.
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Figure 8. Decomposing and denoising an electroencephalography (EEG) and functional magnetic 
resonance imaging (fMRI) signal. (a) The original EEG−fMRI signal, (b) the denoised signal, (c) the 
morphological component analysis (MCA) MRI magnetic-fi eld induced component, and (d) the MCA EEG 
component without the MRI.  (Data courtesy of GIP Cyceron, Caen, France.)
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table 2. experimental setup for the 2d examples.

image dictonaries task algorithm parameters

Boy + texture 
256 × 256

Curvelets (cartoon) 
(coarsest scale 2) 
GlobalDCT (texture) 
(low frequencies removed)

Decomposition 
(Algorithm 1)

Niter = 50, γ = 0.1 (TV on 
cartoon part), λmin = 0, 
exponentially decreasing 
threshold

Barbara
512 × 512

Curvelets (cartoon) 
(coarsest scale 2) 

LocalDCT(texture) 
(sine-bellwindow, width = 32, 
low frequencies removed)

Decomposition 
(Algorithm 1)

Inpainting
(Algorithm 1)

Niter = 300, γ = 2 (TV on 
cartoon part), λmin = 0, 
exponentially decreasing 
threshold

Niter = 300, γ = 0 (no TV), 
λmin = 0, linearly decreasing 
threshold

Risers
150 × 501

Curvelets (lines) 
(coarsest scale 2) 
Undecimated discrete wavelet 
transform (UDWT) (smooth and 
isotropic) 
(Symmlet 6, coarsest scale 2)

Decomposition 
and denoising
(Algorithm 1)

Niter = 30, σε:	estimated	
from data, γ = 2 (TV on 
UDWT part), λmin = 3 σε , 
exponentially decreasing 
threshold

Lines + Gaussians 
256 × 256 

Curvelets (lines)
(coarsest scale 3) 
UDWT (Gaussians) 
(Symmlet 6, coarsest scale 2)

Inpainting 
(Algorithm 1)

Inpainting
(Algorithm 2)

(Algorithm 2)
Niter = 50, γ = 0 (no TV), 
λmin = 0, linearly decreasing 
threshold 

No noise, d = 1E-6, λ = 0.3

Lena
512 × 512

Curvelets 
(coarsest scale 2)

Inpainting 
(Algorithm 1) 

Inpainting 
(Algorithm 2)

Niter = 300, γ = 0 (no TV), 
λmin = 0, exponentially 
decreasing threshold

no noise, d = 1E-6, λ = 10



56� Computing in Science & Engineering

reconstructed cartoon (natural) component; and 
9e and 9f show the original and MCA textures. 

Barbara. We also applied the MCA decomposition 
Algorithm 1 to the Barbara image. We used the 

curvelet transform for the cartoon part and a local 
DCT transform with a smooth sine window and a 
window size of 32 × 32 for the locally oscillating 
texture. We set the TV regularization parameter 
γ to 2. Figures 10a through 10d show the Barbara 

Figure 9. Decomposing the boy-texture image. (a) The original boy-texture image, (b) the recovered image 
by morphological component analysis, (c) the original cartoon part, (d) the MCA cartoon, (e) the original 
texture, and (f) the MCA texture.

(c) (d)

(e) (f)

(b)(a)
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image, the recovered cartoon component, and the 
reconstructed texture component. 

Risers. In this experiment, our goal was to illus-
trate MCA’s usefulness in a real-life application—
studying the mechanical properties of composite 
risers used in the oil industry. 

Figure 11a shows a multilayered riser record-
ed using a digital x-ray camera. The riser’s lay-
ers include a composite material layer, a layer of 
steel-made fibers with opposite lay angles, and 
lead-made markers used as a reference to calibrate 
the x-ray camera. The structures of interest are 
the curvilinear fibers. However, the markers that 
appear as black isotropic structures on the image 
hide the fiber structures that exist behind them. 
Our goal was to decompose this x-ray image into 
two components: one containing the curvilinear 
fiber structures and the other with the lead-made 

markers and the smooth background. Therefore, 
natural candidate dictionaries would be the curve-
let transform for the fibers, and the UDWT for 
the isotropic markers and the piecewise smooth 
background component. We added the TV pen-
alty to direct the image with the lead markers to 
fit the piecewise smooth model with γ = 3. We 
also denoised the image by setting λmin = 3σε.

Figure 11 shows the MCA separation. Figure 11b 
shows the isotropic and background component re-
covered by MCA, while Figure 11c shows the recov-
ered fibers. MCA clearly managed to eliminate the 
lead-made markers, while preserving the curvilin-
ear fibers structure and reconstructing the unob-
served fibers parts that were behind the markers. 

Inpainting
We now describe our reproducible experiments 
on image inpainting.

Figure 10. Decomposing the Barbara image. (a) The original Barbara image, (b) morphological component 
analysis (MCA), (c) the recovered cartoon component, and (d) the reconstructed texture component.

(a) (b)

(c) (d)



58� Computing in Science & Engineering

Barbara. Figure 12 shows the Barbara image and 
its inpainted results for three random masks of 
20 percent, 50 percent, and 80 percent missing 
pixels. The mask’s unstructured random form 
makes the recovery task easier, which is intui-
tively acceptable using a compressed sensing ar-
gument.16,17 Again, the dictionary contained the 
curvelet and local DCT transforms. The algo-
rithm not only recovered the geometric part (car-
toon), but also performs particularly well inside 
the textured areas. 

Lines and Gaussians. We applied the two inpaint-
ing algorithms to a synthetic image that is a 
composite of three Gaussians and three lines 
(see Figure 13a). Based on this morphological 
content, we chose the UDWT and the curve-
let transforms as candidate dictionaries. Table 2 
summarizes the parameters chosen for each algo-
rithm. Figure 13 shows the masked and filled-in 
images. Both inpainting algorithms performed 
well, although the result of Algorithm 2 is some-
what smoother. 

Lena. We repeated the same experiment with the 
512 × 512 Lena image. Figure 14b shows the 
masked image with 80 percent of the pixels miss-
ing. The mask contains large gaps. The dictionary 
contained the curvelet transform. Table 2 shows 
the parameters we chose for each algorithm.  
Despite the challenges entailed in the example’s 
large gaps, both inpainting algorithms performed 
well. Both managed to recover the most important 
details of the image that are hardly distinguishable 
in the masked image. The visual quality is con-
firmed by PSNR measures, as Figure 14 shows.

R eproducible computational research 
remains an exception rather than a 
common practice in most image and 
signal-processing community litera-

ture. Researchers can reproduce our results by 
running corresponding scripts in the MCALab 
package. We’ve also included other explorato-
ry examples—as well as a GUI—in MCALab.  
We recently released a C++ batch version of  

Figure 11. Decomposing a risers image. (a) The original multilayered riser image recorded using a digital 
x-ray camera, (b) the isotropic and background component recovered through morphological component 
analysis, and (c) the MCA recovered fibers.

(a)

(b)

(c)



January/February 2010 � 59

Figure 12. Inpainting results for the Barbara image. (a) The original image, (b) masked with 20 percent of 
the pixels missing, (c) inpainted using the morphological component analysis (Algorithm 1) with a peak 
signal-to-noise ratio of 35.3 decibels, (d) masked with 50 percent missing pixels, (e) inpainted using MCA 
with a PSNR of 31.7 dB, (f) masked with 80 percent of the pixels missing, and (g) inpainted using MCA 
with a PSNR of 26.5 dB.

(b)

(a)

(c)

(d) (e)

(f) (g)
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MCALab that is available for download at  
www.greyc.ensicaen.fr/~jfadili/demos/WaveRestore/
downloads/MCALabC1.1.tgz. We’re continu-
ing to develop MCALab and warmly welcome 
all constructive feedback, suggestions, and 
contributions.�
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