Sparsity and the Cosmic Microwave Background

Jean-Luc Starck CEA, IRFU, Service d'Astrophysique, France jstarck@cea.fr http://jstarck.free.fr

Collaborators: J. Bobin, F. Sureau, F. Fadili, A. Rassat

PLANCK CMB MAP

Statistical Properties of the CMB fluctuation

INVERSE PROBLEMS AND SPARSE RECOVERY

•Denoising

Weak Sparsity or Compressible Signals

Weak Sparsity or Compressible Signals

Weak Sparsity or Compressible Signals

A signal s (n samples) can be represented as sum of weighted elements of a given dictionary

The wavelet coefficients encode edges and large scale information.

1% largest coefficients in wavelet space (the others are set to 0)

1% of the wavelet coefficients concentrate 99.96% of the energy: This can be used as a *prior*.

Reconstruction, after throwing away 99% of the wavelet coefficients

The sky as seen by Planck

Component Separation: more problems

The beam:

$$\forall i; x_i = b_i \star \left(\sum_j a_{ij} s_j\right) + n_i$$
$$\mathcal{H} \left(\mathbf{AS}\right) + \mathbf{N}$$

Globally: $\mathbf{X} = \mathcal{H}(\mathbf{AS}) + \mathbf{N}$ where \mathcal{H} is the multichannel convolution operator

Spectral behavior varies spatially for some components (dust, synchroton):

Detected Compact Sources in Planck

Component Separation

Component Separation Pipeline

 Point sources processing: Mask+[inpainting] or fitting. Mask: Commander, Sevem Fitting: NILC, SMICA

 Resolution: 1) Downgrade the frequency maps at the same resolution Commander: 40amin Sevem: 10 and 7 acmin
 2) Deconvolution to 5acmin: SMICA-NILC

- Choice of channels: Commander (30-353GHz), NILC (44-857GHz), Sevem and SMICA (30-857GHz).

- Separation principle

- Full sky modelling (Commander): MODEL with 4 components: CMB, low-frequency emission, CO emission and thermal dust emission.

- Template fitting (Sevem) in two regions: Clean the 100 and 143 Ghz map by:

$$T_c(\boldsymbol{x}, \boldsymbol{v}) = d(\boldsymbol{x}, \boldsymbol{v}) - \sum_{j=1}^{n_t} \alpha_j t_j(\boldsymbol{x}),$$

where templates are difference maps (30–44), (44–70), (545–353) and (857–545).

Component Separation

- Separation principle

- Internal Linear Combination (ILC), used by WMAP :

- CMB spectrum is assumed to be known: a
- Modelling: X = as + R

Solution ILC :

$$\hat{s} = \operatorname{Argmin}_{s} \left(X - as \right) R_{X}^{-1} \left(X - as \right)^{T}$$

$$\hat{s} = \frac{1}{a^T R_X^{-1} a} a^T R_X^{-1} X$$

Nilc = ILC in the wavelet domain

one ILC per wavelet scale and per region. No localization at the coarsest scales and uo to 20 regions at the finest scale.

Smica = ILC in spherical harmonic domain

+ modeling of the covariance matrix at low l, (l < 1500)

Component Separation

- Separation principle

- Internal Linear Combination (ILC), used by WMAP :

- CMB spectrum is assumed to be known: a
- Modelling: X = as + R

Solution ILC :
$$\hat{s} = \operatorname{Argmin}_{s} (X - as) R_X^{-1} (X - as)^T$$

$$\hat{s} = \frac{1}{a^T R_X^{-1} a} a^T R_X^{-1} X$$

Well known in statistics as the BLUE (Best Linear Unbiased Estimator) method.

Nilc = ILC in the wavelet domain

one ILC per wavelet scale and per region. No localization at the coarsest scales and uo to 20 regions at the finest scale.

Smica = ILC in spherical harmonic domain

+ modeling of the covariance matrix at low l, (l < 1500)

Commander-Ruler, Sevem, NILC, Smica

Planck Collaboration: Planck 2013 results. XII. Component separation

INPAINTING

Constraint Realization Inpainting

<u>Sparsity & Morphological Diversity</u> <u>Morphological Component Analysis (MCA)</u>

•J.-L. Starck, M. Elad, and D.L. Donoho, Redundant Multiscale Transforms and their Application for Morphological Component Analysis, Advances in Imaging and Electron Physics, 132, 2004.

•J.-L. Starck, M. Elad, and D.L. Donoho, Image Decomposition Via the Combination of Sparse Representation and a Variational Approach, IEEE Trans. on Image Proces., 14, 10, pp 1570--1582, 2005.

Sparsity Model: we consider a signal as a sum of K components s_k , each of them being sparse in a given dictionary :

$$Y = X_1 + X_2$$

 X_1 can be well approximated with few coefficients in a given domain.

 X_2 can be well approximated with few coefficients in **another** domain.

$$min_{X_1,X_2} \parallel Y - (X_1 + X_2) \parallel^2 + C_1(X_1) + C_2(X_2)$$

 $C_1(X_1) = \| \Phi_1 X_1 \|_1 \qquad C_2(X_2) = \| \Phi_2 X_2 \|_1$

Galaxy SBS 0335-052 10 micron GEMINI-OSCIR

Galaxy SBS 0335-052 10 micron GEMINI-OSCIR

Revealing the structure of one of the nearest infrared dark clouds (Aquila Main: d ~ 260 pc)

Herschel (SPIRE+PACS) Column density map (H₂/cm²)

Dense cores form primarily in filaments Morphological Component Analysis: (P. Didelon based on Herschel Column density map Starck et al. 2003) Filaments Cores Wavelet component (H_2/cm^2) + Curvelet component (H_2/cm^2) 10² 10² 1022

<u>A. Menshchikov</u>, Ph.<u>André. P. Didelon, et al</u>, "Filamentary structures and compact objects in the Aquila and Polaris clouds observed by Herschel", A&A, 518, id.L103, 2010. lundi 9 mars 15

10²

3D MCA

Dictionary RidCurvelets + 3D UDWT.

A, Woiselle, J.L. Starck, M.J. Fadili, <u>"3D Data Denoising and Inpainting with the Fast Curvelet transform"</u>, **J. of Mathematical Imaging and Vision (JMIV)**, 39, 2, pp 121-139, 2011. lundi 9 mars 15

Morphological Component Analysis & Sparse Point Source Removal

$$Y = X + B * P + N$$

$$\left\{\tilde{X}, \tilde{P}\right\} = \arg\min_{X, P} ||Y - X - B * P||_{\Sigma}^{2} + \lambda_{1}||P||_{1} + \lambda_{2}||\mathcal{S}X||_{1}$$

Sureau et al, Compact Source Removal for Full-Sky CMB Data using Sparsity, ADA7, Corsica, 14-18 May 2012. Online at <u>http://ada7.cosmostat.org/proceedings.php</u>, id. 14

lundi 9 mars 15

Morpho-Spectral Diversity

 $\min_{\alpha} \|\alpha\|_p \text{ s.t } \mathbf{X} = \sum_{\gamma \in \Gamma} \alpha_{\gamma} \psi_{\gamma}$

 $egin{array}{lll} \Phi_{\mathbf{A}} = \left[\Phi_{\mathbf{A},\mathbf{1}}, \Phi_{\mathbf{A},\mathbf{2}}
ight] \ \Phi_{\mathbf{S}} \end{array}$

Spatial Dictionary Spectral Dictionary

$\Psi = [\Phi_{\mathbf{A},\mathbf{1}} \otimes \Phi_{\mathbf{S}}, \Phi_{\mathbf{A},\mathbf{2}} \otimes \Phi_{\mathbf{S}}]$

Sparse Component Separation: the GMCA Method

A and S are estimated alternately and iteratively in two steps :

J. Bobin, J.-L. Starck, M.J. Fadili, and Y. Moudden, "Sparsity, Morphological Diversity and Blind Source Separation", IEEE Trans. o Image Processing, Vol 16, No 11, pp 2662 - 2674, 2007.
J. Bobin, J.-L. Starck, M.J. Fadili, and Y. Moudden, <u>"Blind Source Separation: The Sparsity Revolution"</u>, Advances in Imaging and Electron Physics, Vol 152, pp 221 -- 306, 2008.

X = AS

1) Estimate S assuming A is fixed (iterative thresholding) :

$$\{S\} = \operatorname{Argmin}_{S} \sum_{j} \lambda_{j} \|s_{j} \mathbf{W}\|_{1} + \|\mathbf{X} - \mathbf{AS}\|_{F, \Sigma}^{2}$$

2) Estimate A assuming S is fixed (a simple least square problem) :

$$\{A\} = \operatorname{Argmin}_A \|\mathbf{X} - \mathbf{AS}\|_{F, \Sigma}^2$$

GMCA & WMAP-9yr

J. Bobin, J.-L. Starck, F. Sureau and S. Basak, "Sparse component separation for accurate CMB map estimation", Astronomy and Astrophysics, 550, A73, 2013.

J. Bobin, F. Sureau, P. Paykari, A. Rassat, S. Basak and J.-L. Starck, "WMAP 9-year CMB estimation using sparsity", Astronomy and Astrophysics, Volume 553, id.L4, 10 pp, 2013.

WMAP9 CMB Map

Sparse Planck Map

QUALITY MAP

Expected power in a given wavelet band :

$$P_j = \frac{1}{4\pi} \sum_{\ell} \ell(\ell+1) \parallel a_{\ell,0}^{(\psi_j)} \parallel^2 C_{\ell}$$

Quality coefficient :

$$q_{j,k} = P_j / \left(D_{j,k} - N_{j,k} \right)$$

$$Q_k = 1 - \max_j q_{j,k}$$

QUALITY MAPS

Galactic plane region:NILC-PR1

(37.5, 0.0) Gelectic

Galactic plane region:SEVEM-PR1

(37.5, 0.0) Gelectic

Galactic plane region:SMICA-PR1

(37.5, 0.0) Gelectic

Galactic plane region:PR1-GMCA

(37.5, 0.0) Gelectic

(70.0, 80.0) Galactic

Coma: CMB Map: SEVEM-PR1

Coma: CMB Map: GMCA-PR1

(70.2, 85.8) Galactic

(70.0, 88.0) Galactic

Coma: 217GHz PR1-HFI - NILC-PR1

Coma: 217GHz PR1-HFI - SMICA-PR1

(70.0, 86.6) Galaxtin

Coma: 217GHz PR1-HFI - SEVEM-PR1

-270

36

270

(VCD, MLO) Delector

CMB & ANOMALIES

- Anomalies in WMAP CMB maps:
- Low Power in CMB Quadrupople (Hinshaw 96, Spergel 03).
- North /South Asymmetry (Erikson 04).
- Planarity of low multipoles, 'Axis of Evil' (Tegmark 03, de Oliveira-Costa 04, Land & Maguiejo 05).
- Small scale cold spot in southern hemisphere (Vielva 2004).
- Few hot spots.

Anomalies confirmed by Planck

Integrated Sachs-Wolfe Effect (ISW)

Measure of Time Variation in the Gravitational Potential on **large** scales (linear)

Detect by cross-correlating with local tracers of mass

Can ISW explain some of the CMB anomalies (Francis & Peacock, 2010)?

Even if you don't believe in these, you should still remove secondary anisotropies, ..., if you can.

==> Galactic Mask problem when analyzing the largest scales.

Interpolation of Missing Data: Sparse Inpainting

Where M is the mask: $M(i,j) = 0 \implies$ missing data $M(i,j) = 1 \implies$ good data

 $\min_{\alpha} \|\alpha\|_{1} \quad \text{subject to} \quad Y = M\Phi\alpha$ $X = \Phi\alpha \qquad \Phi = \text{Spherical Harmonics}$ $\|\alpha\|_{1} = \sum_{k} |\alpha_{k}|$

J.-L. Starck, A. Rassat, and M.J. Fadili, "Low-1 CMB Analysis and Inpainting", Astronomy and Astrophysics , 550, A15, 2013.

J.-L. Starck, D.L. Donoho, M.J. Fadili and A. Rassat, <u>"Sparsity and the Bayesian Perspective"</u>, Astronomy and Astrophysics , 552, A133, 2013.

Interpolation of Missing Data: Sparse Inpainting

Where M is the mask: $M(i,j) = 0 \implies$ missing data $M(i,j) = 1 \implies$ good data

 $\min_{\alpha} \|\alpha\|_{1} \quad \text{subject to} \quad Y = M\Phi\alpha$ $X = \Phi\alpha \qquad \Phi = \text{Spherical Harmonics}$ $\|\alpha\|_{1} = \sum_{k} |\alpha_{k}|$

J.-L. Starck, A. Rassat, and M.J. Fadili, "Low-1 CMB Analysis and Inpainting", Astronomy and Astrophysics , 550, A15, 2013.

J.-L. Starck, D.L. Donoho, M.J. Fadili and A. Rassat, <u>"Sparsity and the Bayesian Perspective"</u>, Astronomy and Astrophysics , 552, A133, 2013.

Large CMB Scale Analysis

J.-L. Starck, A. Rassat, and M.J. Fadili, "Low-1 CMB Analysis and Inpainting", Astronomy and Astrophysics, 550, A15, 2013. lundi 9 mars 15

Inpainting

Sparsity and WMAP

ISW & CMB ANOMALIES

Reconstructed ISW temperature quad/oct due to 2MASS and NVSS galaxies

⁴⁴

Inpainting & CMB ANOMALIES

After subtraction of ISW signal, several anomalies no longer significant

- => Quadrupole low power
- => Quad/oct anomaly.
- => Axis of Evil (AoE) statistic and even/odd mirror parity.

A. Rassat and J-L. Starck, <u>"On Preferred Axes in WMAP Cosmic Microwave Background Data after Subtraction of the</u> <u>Integrated Sachs-Wolfe Effect</u>", **Astronomy and Astrophysics**, 557, id.L1, pp 7, 2013.

A. Rassat, J-L. Starck, and F.X. Dupe, <u>"Removal of two large scale Cosmic Microwave Background anomalies after</u> subtraction of the Integrated Sachs Wolfe effect", Astronomy and Astrophysics , 557, id.A32, pp 15, 2013.

==> ISW could be a possible explanation of these anomalies in WMAP/Planck data, yet other hypotheses remain possible (e.g. exotic physics) as well.

Sparsity and CMB

- Sparsity is very efficient for
 - Inverse problems (denoising, deconvolution, etc).
 - Inpainting
 - Component Separation.
 - Wiener Wiltering.
- Next Steps
 - Polarization.
 - Lessons for Future Projects
 - Importance of blind challenges.
 - Open source, at least in the consortium, has to become the norm.

iSAP Version V3.0 Interactive Sparse Astronomical Packages

Multiresolution on the Sphere: MRS/Version 3.1

J.-L. Starck, P. Abrial, Y. Moudden and M. Nguyen, Wavelets, Ridgelets and Curvelets on the Sphere, Astronomy & Astrophysics, 446, 1191-1204, 2006.

- 1. Wavelet transforms
 - Continuous Wavelet Transform (Mexican Hat)
 - Orthogonal Wavelets
 - Undecimated isotropic wavelet transform (Spline, Meyer and Needlet filters).
 - Pyramidal wavelet transform
- 2. Ridgelet and Curvelet Transforms
- 3. Denoising using Wavelets and Curvelets
- 4. Gaussianity tests: Skewness, Kurtosis, Moment of order 5 and 6, Max, Higher Criticism
- 5. Astrophysical Component Separation (ICA on the Sphere): JADE, Fast ICA, GMCA.
- 6. Sparse Inpainting.

Polarized Spherical Wavelets and Curvelets: SparsePol/Version 1.0

J.-L. Starck, Y. Moudden and J. Bobin, "Polarized Wavelets and Curvelets on the Sphere", Astronomy and Astrophysics, 497, 3, pp 931--943, 2009.

Multi-scale Variance Stabilizing Transform on the Sphere: MS-VSTS/Version 1.0

J. Schmitt, J.L. Starck, J.M. Casandjian, J. Fadili, I. Grenier, <u>"Multichannel Poisson Denoising and Deconvolution on the Sphere : Application to</u> the Fermi Gamma Ray Space Telescope, Astronomy and Astrophysics , 546, id.A114, pp10, 2012.

http://www.cosmostat.org/software.html

Jean-Luc Starck Fionn Murtagh

Astronomical Image and Data Analysis

Second Edition

Jean-Luc Starck Fionn Murtagh Jalal Fadili

SPARSE IMAGE and SIGNAL PROCESSING

Wavelets, Curvelets, Morphological Diversity

CAMBRIDGE