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Abstract

We propose in this paper a new deconvolution approach, which uses both the wavelet transform and the curvelet transform
in order to bene2t from the advantages of each. We illustrate the results with simulations.
? 2003 Elsevier B.V. All rights reserved.
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1. Introduction

It has been shown [11] that, for denoising problems,
the curvelet transform approach outputs a PSNR com-
parable to that obtained via the undecimated wavelet
transform, but the curvelet reconstruction does not
contain as many disturbing artifacts along edges that
one sees in wavelet reconstructions. Although the
results obtained by simply thresholding the curvelet
expansion are encouraging, there is of course ample
room for further improvement. A quick inspection of
the residual images resulting from the Lena image 2l-
tering (a 3� hard thresholding has been applied with
both transforms) for both the wavelet and curvelet
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transforms shown in Fig. 1 reveals the presence of
very diDerent features. For instance, wavelets do not
restore long edges with high 2delity while curvelets
are challenged by small features such as Lena’s eyes.
Loosely speaking, each transform has its own area of
expertise and this complementarity may be of great
potential.
In [12], a denoising algorithm was proposed which

investigates this complementarity, by combining sev-
eral multiscale transforms in order to achieve very
high quality image restoration. For numerical reasons,
the choice is restricted to the transforms which have
a fast forward and inverse implementation. Consid-
ering K linear transforms T1; : : : ;TK (respectively
R1; : : : ;RK the inverse transforms, and we have
Rk = T−1

k for an orthogonal transform), the com-
bined 2ltering method (CFM) consists of minimizing
a functional such as the Total Variation (TV) or the
l1 norm of the multiscale coeHcients, but under a
set of constraints in the transform domains. Such
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Fig. 1. Residual following thresholding of the undecimated wavelet transform (left) and thresholding of the curvelet transform (right).

constraints express the idea that if a signi2cant coeH-
cient is detected by a given transform Tk at a scale j
and at a pixel index l, then the transformation of the
solution must reproduce the same coeHcient value at
the same scale and the same position. In short, the
constraints guarantee that the reconstruction will take
into account any pattern which is detected as signif-
icant by any of the K transforms. Given data y of
the form y = s + �z, where s is the image to recover
and z is standard white noise, the combined 2ltering
method consists of solving the following optimization
problem:

min S(s̃); subject to s∈C; (1)

where S(s̃) can be either an ‘1 penalty on the coeH-
cient (i.e. S(s̃)=

∑
k ‖Tk s̃‖‘1 ) or the Total Variation

norm, and C is the set of vectors s̃ which obey the
linear constraints

s̃¿ 0;

|Tk s̃−Tky|6 e for all k (2)

The second inequality constraint only concerns the set
of signi2cant coeHcients, i.e. those indices � such that
�� = (Tky)� exceeds (in absolute value) a threshold
t�. More details can be found in [12].
Several papers have been recently published, based

on the concept of minimizing the Total Variation un-
der constraints in the wavelet domain [6,3,8] or in the
curvelet domain [2]. CFM [12] can be seen as a gen-
eralization of these methods.
Section 2 introduces the deconvolution problem,

and discusses diDerent wavelet based methods and

Section 3 shows how a deconvolution can be derived
from a combined approach.

2. Wavelets and deconvolution

Consider an image characterized by its intensity
distribution I , corresponding to the observation of a
“real image” O through an optical system. If the imag-
ing system is linear and shift-invariant, the relation
between the data and the image in the same coordinate
frame is a convolution: I(x; y)=(P∗O)(x; y)+N (x; y),
where P is the point spread function (PSF) of the
imaging system, and N is additive noise. We want
to determine O(x; y) knowing I and P. This inverse
problem has led to a large amount of work, the main
diHculties being the existence of: (i) a cut-oD fre-
quency of the PSF, and (ii) the additive noise (see for
example [1]).
The wavelet based non-iterative algorithm, the

wavelet-vaguelette decomposition [5], consists of
2rst applying an inverse 2ltering (F = P−1 ∗ I =
O + P−1 ∗ N = O + Z where P̂−1(�) = 1=P̂(�)). The
noise Z =P−1 ∗N is not white but remains Gaussian.
It is ampli2ed when the deconvolution problem is
unstable. Then, a wavelet transform is applied on F ,
the wavelet coeHcients are soft or hard thresholded
[4], and the inverse wavelet transform furnishes the
solution.
The method has been re2ned by adapting the

wavelet basis to the frequency response of the inverse
of P [7]. This leads to a special basis, the Mirror
Wavelet Basis. This basis has a time-frequency tiling
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structure diDerent from the conventional wavelets
one. It isolates the frequency �s where P̂ is close to
zero, because a singularity in P̂−1(�s) inPuences the
noise variance in the wavelet scale corresponding
to the frequency band which includes �s. Because
it may not be possible to isolate all singularities,
Neelamani [9] has advocated a hybrid approach, and
proposes to still use the Fourier domain to restrict
excessive noise ampli2cation. These approaches are
fast and competitive compared to linear methods,
and the wavelet thresholding removes the Gibbs
oscillations. This presents however several draw-
backs: (i) the 2rst step (division in the Fourier
space by the PSF) cannot always be done prop-
erly (for example when the frequency cut-oD �c
is smaller than the Nyquist frequency, then P̂(�)
equals zero for all �¿�c), (ii) the positivity prior is
not used, and (iii) it is not trivial to consider non-
Gaussian noise.
As an alternative, several wavelet-based iterative

algorithms have been proposed [13], especially in
the astronomical domain where the positivity prior
is known to improve signi2cantly the result. The
simplest method consists of 2rst estimating the mul-
tiresolution support M (i.e. M (j; l) = 1 if the wavelet
transform of the data presents a signi2cant coeHcient
at band j and at pixel index l, and 0 otherwise) [10],
and to apply the following iterative scheme:

On+1 = On + P∗ ∗R[M:W(I − P ∗ On)] (3)

where P∗ is the transpose of the PSF (P∗(x; y) =
P(−x;−y)),W is the wavelet transform operator and
R is the wavelet reconstruction operator. At each iter-
ation, information is extracted from the residual only
at scales and positions de2ned by the multiresolution
support. M is estimated from the input data and the
correct noise modeling can easily be considered [10].
The positivity is introduced in the following way:

On+1 =Pc[On + P∗ ∗R[M:W(I − P ∗ On)]]; (4)

where Pc is the projection operator which enforces
the positivity (i.e. set to 0 all negative values).

3. The combined deconvolution method

Similar to the 2ltering, we expect that the combi-
nation of diDerent transforms can improve the quality

of the result. The combined approach for the decon-
volution leads to two diDerent methods.
If the noise is Gaussian and if the division by the

PSF in the Fourier space can be carried out prop-
erly, then the deconvolution problem becomes a 2lter-
ing problem where the noise is still Gaussian, but not
white. The combined 2ltering Algorithm can then be
applied using the curvelet transform and the wavelet
transform, but by estimating 2rst the correct thresh-
olds in the diDerent bands of both transforms. Since in
many cases the mirror wavelet basis may produce bet-
ter results than the wavelet basis, it is recommended
to use it instead of the standard undecimated wavelet
transform.
An iterative deconvolution method is more general

and can always be applied. Furthermore, the correct
noise modeling can much more easily be taken into ac-
count. This approach consists of detecting, 2rst, all the
signi2cant coeHcients with all multiscale transforms
used. If we use K transforms T1; : : : ;TK , we derive
K multiresolution supports M1; : : : ; MK from the input
image I using noise modeling.
For instance, in the case of Poisson noise, we ap-

ply the Anscombe transform to the data (i.e. A(I) =

2
√
I + 3

8). Then we detect the signi2cant coeHcients
with the kth transform Tk , assuming Gaussian noise
with standard deviation equal to 1, in TkA(I) in-
stead of Tk I . Mk(j; l)= 1 if a coeHcient in band j at
pixel index l is detected, and Mk(j; l) = 0 otherwise.
For the band J which corresponds to the smooth array
(i.e. coarsest resolution) in transforms such as the
wavelet or the curvelet transform, we forceMk(J; l)=1
for all l.
Following determination of a set of multiresolution

supports, we propose to solve the following optimiza-
tion problem:

min
Õ

TV(Õ);

subject to MkTk [P ∗ Õ] =MkTk I for all k;
(5)

where TV is the total-variation, i.e. an edge preserva-
tion penalization term de2ned by:

TV(Õ) =
∫

|∇Õ|p;
with p= 1:1. We chose p= 1:1 in order to approach
the case of p = 1 with a strictly convex functional.
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Fig. 2. Top, original image (phantom) and simulated data (i.e. convolved image plus Poisson noise). Bottom, deconvolved image by the
wavelet based method and the combined approach.

Minimizing with TV, we force the solution to be closer
to a piecewise smooth image.
The constraint imposes 2delity on the data, or more

exactly, on the signi2cant coeHcients of the data, ob-
tained by the diDerent transforms. Non-signi2cant (i.e.
noisy) coeHcients are not taken into account, prevent-
ing any noise ampli2cation in the 2nal algorithm.
A solution for this problem could be obtained by

relaxing the constraint to become an approximate one:

min
Õ

∑
k

‖MkTk I −MkTk [P ∗ Õ]‖2 + !TV(Õ): (6)

The solution is computed by using the projected
Landweber method [1]:

Õn+1 =Pc

[
Õn + �(P∗ ∗ QRn − !

@TV
@O

(Õn))
]
; (7)

where QRn is the signi2cant residual which is obtained
using the following algorithm:

• Set I n0 = I n = P ∗ Õn.

• For k = 1; : : : ; K do I nk = I nk−1 + Rk [Mk(Tk I −
Tk I nk−1)]

• The signi2cant residual QRn is obtained by: QRn =
I nK − I n.

This can be interpreted as a generalization of the
multiresolution support constraint to the case where
several transforms are used. The order in which
the transforms are applied has no eDect on the so-
lution. We extract in the residual the information at
scales and pixel indices where signi2cant coeHcients
have been detected.
� is a convergence parameter, chosen either by a

line-search minimizing the overall penalty function
or as a 2xed step-size of moderate value that guar-
antees convergence, and ! is the regularization hy-
perparameter. Since the noise is controlled by the
multiscale transforms, the regularization parameter
does not have the same importance as in standard de-
convolution methods. A much lower value is enough
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to remove the artifacts relative to the use of the
wavelets and the curvelets. The positivity constraint
can be applied at each iteration.
Fig. 2, top, shows the Logan–Shepp Phantom and

the simulated data, i.e. original image convolved by a
Gaussian PSF (full width at half maximum, FWHM=
3:2) and Poisson noise. Fig. 2, bottom, shows the de-
convolution with (left) a pure wavelet deconvolution
method (no penalization term) and (right) the com-
bined deconvolution method (parameter != 0:4).
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