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Abstract

We present in this paper a new method for "ltering an image, based on a new de"nition of its entropy. A large number
of examples illustrate the results. Comparisons are performed with other wavelet-based methods. ( 1999 Elsevier
Science B.V. All rights reserved.

Zusammenfassung

Wir stellen in dieser Arbeit eine neue Methode zur Filterung von Bildern vor, die auf einer neuen De"nition seiner
Entropie beruht. Eine gro{e Anzahl von Beispielen illustriert die Ergebnisse. Vergleiche zu anderen wavelet-basierten
Methoden werden angestellt. ( 1999 Elsevier Science B.V. All rights reserved.

Re2 sume2

Nous preH sentons dans cet article une meH thode nouvelle pour le "ltrage des images, baseH e sur une deH "nition nouvelle de
son entropie. Un grand nombre d'exemples illustrent les reH sultats. Des comparaisons sont e!ectueH es avec d'autres
meH thodes baseH es sur les ondelettes. ( 1999 Elsevier Science B.V. All rights reserved.

Keywords: Filtering; Image processing; Entropy

1. Introduction

The wavelet transform (WT) has been widely
used in recent times and furnishes a new approach
for describing and modeling the data. Using
wavelets, a signal can be decomposed into compo-
nents of di!erent scales. There are many 2D WT
algorithms [35]. The most well-known are perhaps
the orthogonal wavelet transform proposed by
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Mallat [23], and its bi-orthogonal version [11].
These methods are based on the principle of reduc-
ing the redundancy of the information in the trans-
formed data. Other WT algorithms exist, such as
the Feauveau algorithm [17] (which is an ortho-
gonal transform, but using an isotropic wavelet), or
the à trous algorithm which is non-orthogonal and
furnishes a very redundant dataset [20]. All these
methods have advantages and drawbacks. Follow-
ing the content of the data, and the nature of the
noise, each of these models can be considered as
optimal.

Once the vision model is chosen, the second
fundamental point is to estimate the noise behavior
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in the transformed data. Linear transforms have in
this case the advantage of allowing robust estima-
tion of noise variance. But again, di!erent strategies
can be employed, which include soft or hard thre-
sholding [16,14], and in these latter cases threshold
level estimation [32].

We review in the second section the algo-
rithms which can be used for a multiresolution
decomposition (we call these vision models in
the sequel), and which strategies can be used for
treating the noise, once the data have been
transformed. Then we introduce in Section 3
the Multiscale Entropy Filtering method (MEF),
and present a large number of examples. Results
of a set of simulations are presented and dis-
cussed in Section 4 in order to compare the
MEF method to other standard wavelet-based
methods.

2. Multiresolution and 5ltering

This section reviews di!erent strategies available
for wavelet coe$cient "ltering. A range of impor-
tant and widely used transform and "ltering
approaches are used.

2.1. The choice of the multiresolution transform

2.1.1. The (bi-)orthogonal wavelet transform
This wavelet transform [23], often referred to

as the Fast Wavelet Transform (FWT), is certainly
the most widely used among available discrete
wavelet transform algorithms. It is a non-redund-
ant representation of the information. An introduc-
tion to this type of transform can be found in
[38,13].

A large class of orthogonal wavelet functions are
available.

2.1.2. The Feauveau wavelet transform
Feauveau [17] introduced quincunx analysis

based on Adelson's work [2]. This analysis is not
dyadic and allows an image decomposition with

a resolution factor equal to J2. By this method, we
have only one wavelet image at each scale, and not
three as in the previous method.

2.1.3. The à trous algorithm [20]
The wavelet transform of an image by this algo-

rithm produces, at each scale j, a set Mw
j
N. This has

the same number of pixels as the image. Further-
more, using a wavelet de"ned as the di!erence
between the scaling functions of two successive
scales (1

2
t(x/2)"/(x)!/(x/2)), the original image

c
0

can be expressed as the sum of all the wavelet
scales and the smoothed array c

p
,

c
0
"c

p
#

p
+
j/1

w
j
, (1)

and a pixel at position x,y can be expressed also as
the sum of all the wavelet coe$cients at this posi-
tion, plus the smoothed array:

c
0
(x,y)"c

p
(x,y)#

p
+
j/1

w
j
(x,y). (2)

2.1.4. The multiresolution median transform
The median transform is non-linear, and o!ers

advantages for robust smoothing (i.e. the e!ects of
outlier pixel values are mitigated). The multiresolu-
tion median transform [37] (which is not a wavelet
transform) consists of a series (c

1
,2,c

p
) of smooth-

ings of the input image, with successively broader
kernels. Each resolution scale w

j
is constructed

from di!erencing two successive smoothed images
(w

j
"c

j~1
!c

j
). For integer input image values,

this transform can be carried out in integer arith-
metic only which may lead to computational sav-
ings. As in the case of the à trous algorithm, the
original image can be expressed by a sum of the
scales and the smoothed array.

2.2. Non-Gaussian noise

If the noise in the data I is Poisson, the trans-
formation [4]

t(I)"2SI#
3

8
(3)

acts as if the data arose from a Gaussian white
noise model, with p"1, under the assumption that
the mean value of I is su$ciently large. The arrival
of photons, and their expression by electron counts,
on CCD detectors may be modeled by a Poisson
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distribution. In addition, there is additive Gaussian
read-out noise. The Anscombe transformation has
been extended to take this combined noise into
account. The generalization of the variance stabiliz-
ing Anscombe formula is derived as [25]

t(I)"
2

gSgI#
3

8
g2#p2!gm, (4)

where g is the electronic gain of the detector, p and
m the standard deviation and the mean of the
read-out noise.

This implies that for the "ltering of an image with
Poisson noise or a mixture of Poisson and Gaus-
sian noise, we will "rst pre-transform the image
I into another one t(I) with Gaussian noise. Then
t(I) will be "ltered, and the "ltered image will be
inverse-transformed.

For other kinds of noise, modeling must be per-
formed in order to de"ne the noise probability
distribution of the wavelet coe$cients [35]. In the
following, we will consider only stationary Gaus-
sian noise.

2.3. Filtering in the wavelet space

We review in this section some important strat-
egies for treating the noise, once the data have been
transformed.

2.3.1. Hard thresholding
This consists of setting to 0 all wavelet coe$-

cients which have an absolute value lower than
a threshold ¹

j
(¹

j
"Kp

j
, where j is the scale of the

wavelet coe$cient, p
j

is the noise standard devi-
ation at the scale j, and K is a constant generally
chosen equal to 3). For an energy-normalized
wavelet transform algorithm, we have p

j
"p for

all j.
The appropriate value of p

j
in the succession of

wavelet scales is assessed from the standard devi-
ation of the noise p in the original signal and from
study of the noise in the wavelet space. This study
consists of simulating a signal containing Gaussian
noise with a standard deviation equal to 1, and
taking the wavelet transform of this signal. Then we
compute the standard deviation pe

j
at each scale.

We get a curve pe
j

as a function of j, giving the

behavior of the noise in the wavelet space. Due to
the properties of the wavelet transform, we have
p
j
"ppe

j
(see [34] for a description of how p can be

automatically calculated directly from the data).

2.3.2. Soft thresholding
Soft thresholding consists of replacing each

wavelet coe$cient w
j,k

( j being the scale index, and
k the position index) by the value w8

j,k
where

w8
j,k
"G

sgn(w
j,k

)(Dw
j,k

D!¹
j
) if Dw

j,k
D*¹

j
,

0 if Dw
j,k

D P. ¹
j
.

(5)

(6)

2.3.3. Donoho universal approach
Donoho [16,14] has suggested to take

¹
j
"J2 log(n)p

j
(where n is the number of pixels)

instead of the standard Kp value. This leads to
a new soft and hard thresholding approach.

Other threshold-based approaches are available.
SURE, Stein unbiased risk estimator [15,7] is
adaptive in that it is resolution dependent. The
SURE estimator can break down when the wavelet
coe$cients are mostly around zero. In contrast, the
Donoho universal hard and soft thresholding
approach may overly smooth the data, which is
pontentially recti"ed by the minimax criterion
proposed in [16]. Note also that Chipman et al.
[10] found that SURE create high frequency
artifacts.

2.3.4. Multiresolution Wiener xltering
Multiresolution Wiener "ltering [32] consists of

multiplying all coe$cients w
j,k

of a given scale j by

a
j
"S

j
/(S

j
#N

j
), (7)

where S
j
and N

j
are, respectively, the variance of

the signal and of the noise at the scale j (N
j
"p2

j
).

In the absence of any information about the signal,
we take S

j
equal to the di!erence between the

variance of the data w
j

and the variance of the
noise N

j
.

2.3.5. Hierarchical Wiener xltering
Hierarchical Wiener "ltering [32] tries to intro-

duce a prediction wh
j,k

into the estimation of w8
j,k

.

w8
j,k
"

H
j

N
j
#H

j
#Q

j

w
j,k
#

N
j

N
j
#H

j
#Q

j

wh
j,k

, (8)
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with

Q
j
"H

j
N

j
/S

j
, (9)

where H
j
is the variance of the image D obtained

by taking the di!erence of the scale j and the
following one j#1 (D"w

j
!w

j`1
, and H

j
"

(1/N)+
k
(D

k
!m

D
)2, where N is the number of pixels

and m
D

the mean of D). If a pyramidal transform is
used, the scale w

j`1
must be "rst interpolated to the

size of the scale of w
j
.

This prediction wh
j,k

is obtained from the coe$c-
ient at the same position but at the following scale.
In the case of the à trous algorithm wh

j,k
"w

j`1,k
,

while for a pyramidal transform, wh
j,k
"w

j`1,k@2
.

2.3.6. Hierarchical hard thresholding
The threshold used here, ¹

h
[32], is equal to

¹
j
"Kp

j
if Dw

j,k
D*¹

j
, and ¹

h
"¹

j
f (Dwh

j,k
/p

j`1
D)

otherwise. The function f (a) must return a value
between 0 and 1. A possible function for f is

f (a)"G
0 if a*k,

1!1
K
a if a(K.

If the predicted wavelet coe$cient has a high sig-
nal-to-noise ratio (SNR) (this means that there is
certainly some information at this position), the
threshold level becomes null, and the wavelet coef-
"cient will not be thresholded, even if its value is
small. The threshold level becomes adaptive.

3. Multiscale entropy 5ltering

3.1. Multiscale entropy dexnition

The term &entropy' is due to Clausius (1865),
and the concept of entropy was introduced by
Boltzmann into statistical mechanics, in order to
measure the number of microscopic ways that a
given macroscopic state can be realized. Shannon
[30] founded the mathematical theory of commun-
ication when he suggested that the information
gained in a measurement depends on the number of
possible outcomes out of which one is realized.
Shannon also suggested that the entropy can be
used for maximization of the bits transferred under

a quality constraint. Jaynes [22] proposed to use
the entropy measure for radio interferometric im-
age deconvolution, in order to select between a set
of possible solutions that which contains the
minimum of information, or following his entropy
de"nition, that which has maximum entropy. In
principle, the solution satisfying such a condition
should be the most reliable. A lot of work has been
done in the last 30 years on the use of entropy for
the general problem of data "ltering and decon-
volution [1,6,8,18,19,26,29,31,39]. The main en-
tropy functions used are:
f Burg [8]:

H
"
(X)"!

N
+
k/1

ln (X
k
), (10)

f Freiden [18]:

H
&
(X)"!

N
+
k/1

X
k
ln (X

k
), (11)

f Gull and Skilling [19]:

H
'
(X)"

N
+
k/1

X
k
!M

k
!X

k
lnA

X
k

M
k
B. (12)

Each of these entropies can be used in practice, and
they correspond to di!erent probability distribu-
tions that one can associate with an image [26].
(See [18,31] for descriptions.) The last de"nition of
the entropy has the advantage of having zero max-
imum when X equals the model M, usually taken as
a #at image. However, as discussed in [26,6,36], all
of these de"nitions present drawbacks.

The di!erent entropy functions (such as those
described here) which have been proposed for im-
age restoration have the property of being maximal
when the image is #at, and of decreasing when we
introduce some information. So minimizing the in-
formation is equivalent to maximizing the entropy,
and this has led to the well-known Maximum En-
tropy Method (MEM). For the Shannon entropy
(which is obtained from the histogram of the data),
this is the opposite. The entropy is null for a #at
image, and increases when the data contains some
information. So, if the Shannon entropy were used
for restoration, this would lead to a Minimum
Entropy Method.
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A discussion was raised in [36] about what
should be a good entropy measurement for signal
restoration, and we proposed that the following
criteria should be satis"ed:
1. The information in a #at signal is zero.
2. The amount of information in a signal is inde-

pendent of the background.
3. The amount of information is dependent on the

noise. A given signal > (>"X#Noise) does
not furnish the same information if the noise is
high or small.

4. The entropy must work in the same way for
a pixel which has a value B#e (B being the
background), and for a pixel which has a value
B!e.

5. The amount of information is dependent on the
correlation in the signal. If a signal S presents
large features above the noise, it contains a lot of
information. By generating a new set of data
from S, by randomly taking the pixel values in S,
the large features will evidently disappear, and
this new signal will contain less information. But
the pixel values will be the same as in S.

It is clear that among all entropy functions pro-
posed in the past, it is the Shannon one which best
respects these criteria. Indeed, if we assume that the
bin of the histogram is de"ned as a function of the
standard deviation of the noise, the "rst four points
are satis"ed, while none of these criteria are satis-
"ed with other entropy functions (and only one
point is satis"ed for Gull and Skilling entropy by
taking the model equal to the background).

Following on from these criteria, a possibility is
to consider that the entropy of a signal is the sum of
the information of each scale of its wavelet trans-
form [36], and the information of a wavelet coe$-
cient is related to the probability of it being due to
noise. Noting h the information relative to a single
wavelet coe$cient, we have

H(X)"
l
+
j/1

Nj

+
k/1

h(w
j,k

), (13)

with h(w
j,k

)"!ln p(w
j,k

). l is the number of scales,
and N

j
is the number of samples in the band

j (N
j
"N for the à trous algorithm). For Gaussian

noise, we get

h(w
j,k

)"w2
j,k

/2p2
j
, (14)

where p
j

is the noise at scale j. We see that the
information is proportional to the energy of the
wavelet coe$cients. The higher a wavelet coe$c-
ient, the lower will be the probability, and the
higher will be the information furnished by this
wavelet coe$cient. We can see easily that this
entropy ful"lls all our requirements. As for the
Shannon entropy, the information increases with
the entropy, and using such an entropy leads to
a Minimum Entropy Method.

Since the data is composed of an original signal
and noise, our information measure is corrupted by
noise, and we decompose our information measure
into two components, one (H

S
) corresponding to

the non-corrupted part, and the other (H
N
) to the

corrupted part. We have [36]

H(X)"H
S
(X)#H

N
(X). (15)

We will de"ne in the following H
S

as the signal
information, and H

N
as the noise information. It

must be clear that noise does not contain any
information, and what we call &noise information' is
a quantity which is measured as information by the
multiscale entropy, and which is probably not in-
formative to us.

If a wavelet coe$cient is small, its value can be
due to noise, and the information h relative to this
single wavelet coe$cient should be assigned to H

N
.

If the wavelet coe$cient is high, compared to the
noise standard deviation, its value cannot be due to
the noise, and h should be assigned to H

S
. h can be

distributed as H
N

or H
S

based on the probability
p
/
(w

j,k
) that the wavelet coe$cient is due to noise,

or the probability p
4
(w

j,k
) that it is due to signal. We

have p
4
(w

j,k
)"1!p

/
(w

j,k
). For the Gaussian noise

case, we estimate p
/
(w

j,k
) that a wavelet coe$cient is

due to the noise by

p
/
(w

j,k
)"Prob(='Dw

j,k
D)

"

2

J2pp
j
P

`=

@wj,k@

exp(!=2/2p2
j
) d=

"erfcA
Dw

j,k
D

J2p
j
B. (16)

For each wavelet coe$cient w
j,k

, we have to esti-
mate now the fractions h

/
and h

4
of h which should
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be assigned to H
/
and H

4
. Hence signal information

and noise information are de"ned by

H
4
(X)"

l
+
j/1

Nj

+
k/1

h
4
(w

j,k
),

(17)

H
/
(X)"

l
+
j/1

Nj

+
k/1

h
/
(w

j,k
).

The idea for deriving h
4
and h

/
is the following:

we imagine that the information h relative to
a wavelet coe$cient is a sum of small information
components dh, each of them having a probability
to be noise information, or signal information.
Hence, h

/
and h

4
are calculated by

h
/
(w

j,k
)"P

@wj,k@

0

p
/
(Dw

j,k
D!u)A

Lh(x)

Lx B
x/u

du (18)

is the noise information relative to a single wavelet
coe$cient, and

h
4
(w

j,k
)"P

@wj,k@

0

p
4
(Dw

j,k
D!u)A

Lh(x)

Lx B
x/u

du (19)

is the signal information relative to a single wavelet
coe$cient. For Gaussian noise, we have

h
/
(w

j,k
)"

1

p2
j
P

@wj,k@

0

u erfcA
Dw

j,k
D!u

J2p
j
Bdu , (20)

h
4
(w

j,k
)"

1

p2
j
P

@wj,k@

0

u erfA
Dw

j,k
D!u

J2p
j
Bdu. (21)

3.2. Filtering

The problem of "ltering or restoring data D can
be expressed by the following: We search for a solu-
tion DI such that the di!erence between D and
DI minimizes the information due to the signal, and
such that DI minimizes the information due to the
noise.

J(DI )"H
4
(D!DI )#H

/
(DI ). (22)

Furthermore, the smoothness of the solution can be
controlled by adding a parameter:

J(DI )"H
4
(D!DI )#aH

/
(DI ). (23)

In practice [9], we minimize for each wavelet
coe$cient w

j,k
:

j(w8
j,k

)"h
4
(w

j,k
!w8

j,k
)#ah

/
(w8

j,k
). (24)

j(w8
j,k

) can be obtained by any minimization routine.
In our examples, we have used a simple dichotomy.

Fig. 1 shows the result when minimizing the
functional j with di!erent a values, and a noise
standard deviation equal to 1. The corrected
wavelet coe$cient is plotted versus the wavelet
coe$cient. From the top curve to the bottom one,
a is, respectively, equal to 0, 0.1, 0.5, 1, 2, 5, 10. The
higher the value of a, the more the corrected
wavelet coe$cient is reduced. When a is equal to
0, there is no regularization and the data are
unchanged.

3.3. The regularization parameter

The a parameter can be used in di!erent ways:
f It can be "xed to a given value (user parameter):

a"a
6
. This method leads to a very fast "ltering

using the optimization proposed in the follow-
ing.

f It can be calculated under the constraint that the
residual should have some speci"c characteristic.
For instance, in the case of Gaussian noise, we
expect a residual with a standard deviation equal
to the noise standard deviation. In this case,
a"a

#
a
6
. The parameter "nally used is taken as

the product of a user parameter (defaulted to 1)
and the calculated value a

#
. This allows the user

to keep open the possibility of introducing an
under-smoothing, or an over-smoothing. It is
clear that such an algorithm is iterative, and will
always take more time than a simple hard thre-
sholding approach.

f We can permit more constraints on a by using
the fact that we expect a residual with a given
standard deviation at each scale j equal to the
noise standard deviation p

j
at the same scale.

Then rather than a single a we have an a
j

per
scale.

A more sophisticated way to "x the a value is to
introduce a distribution (or a priori knowledge) of
how the regularization should work. For instance,
in astronomical image restoration, the analyst
generally prefers that the #ux (total intensity)
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Fig. 1. Corrected wavelet coe$cient versus the wavelet coe$cient with di!erent a values (from the top curve to the bottom one, a is
respectively equal to 0, 0.1, 0.5, 1, 2, 5, 10).

contained in a star or in a galaxy is not modi"ed by
the restoration process. This means that the resid-
ual at positions of astronomical objects will ap-
proximately be equal to zero. All zero areas in the
residual map obviously do not relate to realistic
noise behavior, but from the user's point of view
they are equally important. For the user, all visible
objects in the "ltered map contain the same #ux as
in the raw data. In order to obtain this kind of
regularization, the a parameter is no longer a con-
stant value, but depends on the raw data. Hence we
have one a per wavelet coe$cient, which will be
denoted a

4
(w

j,k
), and it can be derived by

a
4
(w

j,k
)"a

j

1!¸(w
j,k

)

¸(w
j,k

)
, (25)

with ¸(w
j,k

)"MIN(1, Dw
j,k

D/k
4
p
j
), where k

4
is a user

parameter (typically defaulted to 3).
When ¸(w

j,k
) is close to 1, a

4
(w

j,k
) becomes equal

to zero, and there is no regularization anymore,
and the obvious solution is w8

j,k
"w

j,k
. Hence, the

wavelet coe$cient is preserved from any regulariz-

ation. If ¸(w
j,k

) is close to 0, a
4
(w

j,k
) tends toward

in"nity, then the "rst term in Eq. (24) is negligible,
and the solution will be w8

j,k
"0. In practice, this

means that all coe$cients higher than k
4
p
j

are
untouched as in the hard thresholding approach.
We also notice that by considering a distribution
¸(w

j,k
) equal to 0 or 1 (1 when DwD'Kp for in-

stance), the solution is then the same as a hard
thresholding solution.

3.4. The use of a model

Using a model in wavelet space has been success-
fully applied for denoising (see for example
[10,12,21]). If we have a model D

.
for the data, this

can also naturally be inserted into the "ltering
equation

J
.
(DI )"H

4
(D!DI )#aH

/
(DI !D

.
) (26)

or, for each wavelet coe$cient w
j,k

,

j
.
(w8

j,k
)"h

4
(w

j,k
!w8

j,k
)#ah

/
(w8

j,k
!w.

j,k
), (27)
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Fig. 2. Corrected wavelet coe$cient versus the wavelet coe$cient with di!erent a values.

where w.
j,k

is the corresponding wavelet coe$cient
of D

.
.

The model can be of quite di!erent types. It can
be an image, and in this case, the coe$cients
w.
j,k

are obtained by a simple wavelet transform of
the model image. It can also be expressed by a dis-
tribution or a given function which furnishes
a model wavelet coe$cient w. from the data. For
instance, the case where we want to keep intact
high wavelet coe$cients (see Eq. (25)) can also be
treated by the use of a model, just by calculating
w.
j,k

by

w.
j,k
"p

4
(w

j,k
)w

j,k
, (28)

when w
j,k

has a high signal-to-noise ratio, P
4
(w

j,k
) is

close to 1, and w.
j,k

is equal to w
j,k

(Fig. 2). Then
ah

/
(w8

j,k
!w.

j,k
) is equal to zero and w8

j,k
"w

j,k
, i.e.

no regularization is done on w
j,k

.
Other models may also be considered. When the

image contains contours, it may be interesting to
derive the model from the detected edge. Zero-
crossing wavelet coe$cients indicate where the
edges are [24]. By averaging three wavelet coe$-
cients in the direction of the detected edge, we get

a value w
!
, from which we derive the SNR S

e
of the

edge (S
e
"0 if there is no detected edge). The model

value w. is set to w
!

if a contour is detected, and
0 otherwise. This approach has the advantage to
"lter the wavelet coe$cient, and even if an edge is
clearly detected the smoothing operates in the di-
rection of the edge.

There is naturally no restriction on the model.
When we have a priori information of the con-
tent of an image, we should use it in order to
improve the quality of the "ltering. It is clear
that the way we use the knowledge of the pre-
sence of edges in an image is not a closed
question. The model in the entropy function
is an interesting direction to investigate in the
future.

3.5. The multiscale entropy xltering algorithm

The Multiscale Entropy Filtering algorithm
(MEF) consists of minimizing for each wavelet coef-
"cient w

j,k
at scale j,

j
.
(w8

j,k
)"h

4
(w

j,k
!w8

j,k
)#a

j
h
/
(w8

j,k
!w.

j,k
) (29)
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or

j
.4

(w8
j,k

)"h
4
(w

j,k
!w8

j,k
)#a

j
a
4
(w

j,k
)h

/
(w8

j,k
!w.

j,k
)

(30)

if the SNR is used. By default the model w.
j,k

is set to
0. There is no user parameter because the a

j
are

calculated automatically in order to verify the noise
properties. If an over-smoothing (or a under-
smoothing) is desired, a user parameter must be
introduced. We propose in this case to calculate the
a
j

in the standard way, and then to multiply the
calculated values by a user value a

6
defaulted to 1.

Increasing a
6
will lead to an over-smoothing, while

decreasing a
6

implies an under-smoothing.
Using a simple dichotomy, the algorithm be-

comes
1. Estimate the noise in the data p (see [28,34]).
2. Wavelet transform of the data.
3. Calculate from p the noise standard deviation

p
j
at each scale j.

4. Set a.*/
j

"0, a.!9
j

"200.
5. For each scale j do
1. 5.1. Set a

j
"(a.*/

j
#a.!9

j
)/2

1. 5.2. For each wavelet coe$cient w
j,k

of scale j,
"nd w8

j,k
by minimizing j

.
(w8

j,k
) or j

.4
(w8

j,k
)

1. 5.3. Calculate the standard deviation of the re-

sidual: p3
j
"J(1/N

j
)+Nj

k/1
(w

j,k
!w8

j,k
)2

1. 5.4. If p3
j
'p

j
then the regularization is too

strong, and we set a.!9
j

to a
j
, otherwise we

set a.*/
j

to a
j
(p

j
is derived from the method

described in Section 2.3).
6. If a.!9

j
!a.*/

j
'e then go to 5.

7. Multiply all a
j
by the constant a

6
.

8. For each scale j and for each wavelet coe$cient
w "nd w8

j,k
by minimizing j

.
(w8

j,k
) or j

.4
(w8

j,k
).

9. Reconstruct the "ltered image from w8
j,k

by the
inverse wavelet transform.

The minimization of j
.

or j
.4

(Step 5.2) can be done
by any method. For instance, a simple dichotomy
can be used in order to "nd w8 such that

Lh
4
(w!w8 )
Lw8

"!a
j

Lh
/
(w8 )

Lw8
. (31)

The idea to treat the wavelet coe$cients such
that the residual respects some constraint has also
been used in [27,3] using cross-validation.

3.6. Optimization

In the case of Gaussian noise, the calculation of
erf and erfc functions could lead to a signi"cant
time computation, when compared to a simple "l-
tering method. This can be easily avoided by
precomputing tables, which is possible due to the
speci"c properties of Lh

4
/Lw8 and Lh

/
/Lw8 . h

4
and

h
/

are functions of the standard deviation of the
noise, and we denote the reduced functions by
h3
4
and h3

/
, i.e. h

4
and h

/
for noise standard deviation

equal to 1. It is easy to verify that

Lh
4
(w

j,k
)

Lw8
"p

j

Lh3
4A

w
j,k
p
j
B

Lw8
, (32)

Lh
/
(w

j,k
)

Lw8
"p

j

Lh3
/A

w
j,k

p
j
B

Lw8
. (33)

Furthermore, Lh3
/
/Lw8 and Lh3

4
/Lw8 are symmetric

functions, Lh3
/
/Lw8 converges to a constant value

C (C"0.798), and Lh3
4
/Lw8 tends to C!w when w is

large enough ('5). In our implementation, we
precomputed the tables using a step-size of 0.01
from 0 to 5. If no model is introduced and if the
SNR is not used, the "ltered wavelet of coe$cients
is a function of a and w

j
/p

j
, and a second level of

optimization can be performed by precomputed
tables of solutions for di!erent values of a.

3.7. Examples

3.7.1. 1D data xltering
Figs. 3}5 show the results of the multiscale en-

tropy method on simulated data (2048 pixels).
From top to bottom, each "gure shows simulated
data, the noisy data, the "ltered data, and both
noisy and "ltered data overplotted. For the two
"rst "lterings, all default parameters were taken
(noise standard deviation and a

j
automatically cal-

culated, a
6
"1, and the chosen wavelet transform

algorithm is the à trous one). For the block signal
(Fig. 5), default parameters were also used, but the
multiresolution transform we used is the multi-
resolution median transform.
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Fig. 3. From top to bottom, simulated data, noisy data, "ltered data, and both noisy and "ltered data overplotted.
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Fig. 4. From top to bottom, simulated data, noisy data, "ltered data, and both noisy and "ltered data overplotted.
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Fig. 5. From top to bottom, simulated block data, noise blocks, "ltered blocks, and both noisy and "ltered blocks overplotted.
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Fig. 6. From top to bottom, real spectrum, "ltered spectrum, both noisy and "ltered spectrum overplotted, and di!erence between the
spectrum and the "ltered data. As we can see, the residual contains only noise.
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Fig. 7. (a) Simulated image, (b) simulated image and Gaussian noise, (c) "ltered image, and (d) residual image.

Fig. 6 shows the result after applying the MEF
method to a real spectrum (512 pixels). The last plot
shows the di!erence between the original and the
"ltered spectrum. As we can see, the residual con-
tains only noise. In this case, we used also default
parameters, but we introduce the SNR in the calcu-
lation of a.

3.7.2. Image xltering
A simulated 256]256 image containing stars

and galaxies is shown in Fig. 7 (top left). The

simulated noisy image, the "ltered image and the
residual image are, respectively, shown in Fig. 7 top
right, bottom left, and bottom right. We can see
that there is no structure in the residual image.

3.8. Comparison with other methods from
simulations

3.8.1. Simulation descriptions
A set of simulations have been realized based on

two images: the classical Lena 512]512 image, and
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Table 1
PSNR after "ltering the simulated image (Lena#Gaussian noise (sigma"5))

Method FWT-Haar FWT-7/9 Feauveau à trous MMT

Hard thresh. 34.63 35.95 33.27 35.20 34.82
Soft thresh. 32.35 33.83 30.67 32.30 32.43
Donoho hard thresh. 33.19 34.62 31.05 33.98 33.68
Donoho soft thresh. 30.69 32.09 28.73 30.76 31.19
Hierarchical thresh. } } } 35.26 34.89
Hierarchical Wiener } } } 33.35 31.91
Multiresol. Wiener } } } 33.42 31.93
Multiscale entropy 35.86 36.76 } 35.82 35.56

Table 2
PSNR after "ltering the simulated image (Lena#Gaussian noise (sigma"10))

Method FWT-Haar FWT-7/9 Feauveau à trous MMT

Hard thresh. 31.31 32.97 29.87 32.63 31.80
Soft thresh. 29.72 31.29 28.05 30.03 30.15
Donoho hard thresh. 29.94 31.55 27.68 31.33 30.88
Donoho soft thresh. 28.18 29.66 26.77 28.49 29.09
Hierarchical thresh. } } } 32.75 31.93
Hierarchical Wiener } } } 31.71 30.33
Multiresol. Wiener } } } 31.68 30.24
Multiscale entropy 32.12 33.39 } 32.41 31.95

Table 3
PSNR after "ltering the simulated image (Lena # Gaussian noise (sigma"30))

Method FWT-Haar FWT-7/9 Feauveau à trous MMT

Hard thresh. 26.82 27.97 26.00 28.58 28.19
Soft thresh. 26.27 27.67 25.85 26.85 27.27
Donoho hard thresh. 25.99 27.46 25.80 27.03 27.42
Donoho soft thresh. 25.29 26.78 25.80 25.85 26.58
Hierarchical thresh. } } } 28.97 28.42
Hierarchical Wiener } } } 28.08 27.96
Multiresol. Wiener } } } 27.25 26.81
Multiscale entropy 27.45 28.75 } 28.37 27.96

a 512]512 landscape image. From each image,
three images were created by adding Gaussian
noise with standard deviations of 5, 10, 30. These
six images were "ltered using di!erent multire-
solution methods and di!erent noise treatment
methods.

The multiresolution methods were:
1. Haar wavelet transform (FWT-Haar).
2. Mallat}Daubechies bi-orthogonal wavelet

transforms using the Dauchechies-Antonini 7/9
"lters [5] (FWT-7/9).

3. Feauveau wavelet transform.

J.-L. Starck, F. Murtagh / Signal Processing 76 (1999) 147}165 161



Table 4
PSNR after "ltering the simulated image (Landscape # Gaussian noise (sigma"5))

Method FWT-Haar FWT-7/9 Feauveau à trous MMT

Hard thresh. 32.50 33.02 30.48 32.49 31.79
Soft thresh. 30.35 30.97 28.27 29.87 29.59
Donoho hard thresh. 31.04 31.53 28.38 31.23 30.67
Donoho soft thresh. 28.80 29.40 26.70 28.46 28.45
Hierarchical thresh. } } } 32.51 31.82
Hierarchical Wiener } } } 30.59 30.32
Multiresol. Wiener } } } 30.65 30.35
Multiscale entropy 34.63 34.94 } 34.30 33.97

Table 5
PSNR after "ltering the simulated image (Landscape # Gaussian noise (sigma"10))

Method FWT-Haar FWT-7/9 Feauveau à trous MMT

Hard thresh. 29.32 30.00 27.38 29.88 28.91
Soft thresh. 27.89 28.66 26.18 27.78 27.45
Donoho hard thresh. 28.05 28.74 25.86 28.58 27.98
Donoho soft thresh. 26.53 27.32 25.32 26.50 26.52
Hierarchical thresh. } } } 29.99 28.99
Hierarchical Wiener } } } 29.59 28.04
Multiresol. Wiener } } } 29.64 28.04
Multiscale entropy 30.80 31.35 } 30.70 30.16

Table 6
PSNR after "ltering the simulated image (Landscape # Gaussian noise (sigma"30))

Method FWT-Haar FWT-7/9 Feauveau à trous MMT

Hard thresh. 25.44 26.01 24.80 26.55 25.90
Soft thresh. 25.03 25.88 24.75 25.33 25.10
Donoho hard thresh. 24.77 25.60 24.72 25.36 25.19
Donoho soft thresh. 24.26 25.29 24.725 24.61 24.51
Hierarchical thresh. } } } 27.07 26.21
Hierarchical Wiener } } } 26.52 25.83
Multiresol. Wiener } } } 25.89 25.24
Multiscale entropy 26.33 27.11 } 26.88 26.16

4. AE trous algorithm using a B-spline scaling func-
tion (see [33,35] for more details).

5. Multiresolution median transform (MMT)
[37].

The "rst two belong to the class of fast wavelet
transforms. The third is also a non-redundant
transform, but compared to the FWT, the wavelet
function is isotropic. The à trous algorithm is

redundant and isotropic, and "nally the MMT is
not a wavelet transform, but does allow a multi-
resolution representation.

Using these "ve transforms, we used eight di!er-
ent strategies for correcting the multiresolution co-
e$cients from the noise:
1. k-sigma hard and soft thresholding,
2. Donoho hard and soft thresholding,
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3. Multiscale entropy method,
4. Hierarchical hard thresholding,
5. Multiresolution Wiener "ltering,
6. Hierarchical Wiener "ltering.
The last three strategies have been used (up to now)
only with redundant transforms (à trous algorithm
and MMT in our case).

Finally, close to two hundred "ltered images
were created. Four resolution scales were used
for the "ltering, and the constant k for the hard
thresholding was always taken as equal to 4 for
the "rst scale, and 3 for the others. For the multi-
scale entropy method, the parameter a was deter-
mined by the program in order to get a standard
deviation of the residual (i.e. image minus "ltered
image) of the same order as the noise standard
deviation.

For each "ltered image, the PSNR (peak signal-
to-noise) ratio between the original image I and the
"ltered image F was calculated as

PSNR
$B
"10 log

10

255

NRMSE2
, (34)

where NRMSE is the normalized root mean square
error:

NRMSE2"
+

1*9
(I!F)2

+
1*9

I2
. (35)

We also calculated the correlation factor, but we
found that this does not furnish more information
than the PSNR. If the PSNR is an objective
measure, it is however not su$cient, because it does
not allow us to control whether artifacts are present
or not. Images were therefore also visually assessed,
in order to decide if artifacts are visible.

Results of the simulations are presented in
Tables 1}6.

3.9. Simulation analysis

3.9.1. Multiresolution algorithm
Filtering using the Haar transform always pro-

duces artifacts, even at low noise levels. When
using other "lters, artifacts appear only beyond
a given noise level. Improving the "lter set im-
proves the "ltered image quality, which is a well-
known result. When the noise increases, artifacts

appear, even with a good "lter set such as the
Antonini 7/9 one.
f Feauveau WT. The standard orthogonal WT

is always better than the Feauveau method for
"ltering.

f A" trous algorithm. This does not create artifacts
when thresholding, and results are signi"cantly
better (from the visual point of view) at high
noise levels, compared to orthogonal WT ap-
proaches. As opposed to the standard WT
method, this transform is isotropic and performs
better on isotropic structures compared to faint
contours. This is the reason for its success on
astronomical images where objects are di!use
and more or less isotropic (stars, galaxies, etc.).

f Multiresolution median transform. This transform
is non-linear, and noise estimation at the di!erent
scales cannot be carried out in the same rigorous
way as with linear transforms. For pure Gaus-
sian noise, there is clearly no interest in using this
transform, even if it respects well the morpho-
logy of the objects contained in the image. For
some other kinds of noise, the non-linearity can
be an advantage, and it can then be considered.

3.9.2. Conclusion
The Feauveau WT and the MMT are not com-

petitive for "ltering in the case of Gaussian noise.
FWT-7/9 allows better restoration of the edges
than the à trous algorithm, but the à trous algo-
rithm is more robust from the visual point of view.
The important point to be made is clearly that the
way the information is represented is fundamental.
At high noise levels, whatever the chosen "lter set,
we will always have more artifacts using the FWT
than with the à trous algorithm.

3.10. Noise treatment strategies

f The optimal method depends on the noise level. At
low noise levels, simple thresholding using an
orthogonal wavelet transform leads to very good
results. When the noise increases, artifacts ap-
pear. Non-orthogonal transforms produce better
results, and soft thresholding strategies lead to
more acceptable image quality.

f Donoho soft and hard thresholding versus the k-
sigma approach. Whatever the multiresolution
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Fig. 8. Filtered wavelet coe$cients versus wavelet coe$cients (for a noise standard deviation equal to 1) by four methods: hard
thresholding, soft thresholding, multiscale entropy "ltering, and multiscale entropy "ltering with a non-constant a (SNR depending)
value.

transform and the noise level, the k-sigma hard
(respectively soft) thresholding is always better
than the Donoho hard (respectively soft) thre-
sholding. Both PSNR ratio and visual aspect are
better using the k-sigma approach. This outcome
is not too surprising. Indeed the threshold, in the
Donoho approach, is increasing with the number
of pixels (justi"ed in order to have a "xed num-
ber of &artifacts'). For our 512]512 image, this
approach is equivalent to thresholding at 5p. But
then the thresholding level is too high, because
the main coe$cients between 3p and 5p are
signi"cant. The larger the image size, the stron-
ger will be the over-smoothing.

f Hierarchical thresholding. The modi"cation of
the thresholding level at a given scale using the
information at the following scale improves the
result. The PSNR is better, and the visual aspect
is similar to the hard thresholding. This proced-
ure could certainly be also introduced into or-
thogonal transforms.

f Quality of the multiscale entropy method. The
multiscale entropy method proposes a visually
good solution whatever the noise level. It is in
fact a method which preserves high wavelet coef-
"cients, and corrects other wavelet coe$cients in
an adaptive, soft, manner.

4. Conclusion

If a hard or a soft thresholding approach is used,
the k-sigma value should be preferred to the univer-

sal J(2 log(n)) value. Multiresolution Wiener "lter-
ing and hierarchical Wiener "ltering are not at all
competitive.

The multiscale entropy method is an adaptive
soft approach which is certainly the best when
considering both visual quality and the PSNR
criterion. At low noise levels, an FWT can be
used, which allows better restoration of edges
(assuming the image does contain edges!), and
at high noise levels, the à trous algorithm must
be chosen since otherwise artifacts related to
decimation appear. However, these artifacts are
less severe than those produced by poor thre-
sholding.

Fig. 8 shows how a wavelet coe$cient is modi-
"ed using a hard thresholding, a soft thresholding,
MEF method, and MEF method with a as a func-
tion of the SNR. As we can see, MEF methods are
intermediate between hard and soft thresholding,
but do not present any discontinuity as the hard
thresholding. This is the reason why good SNR is
obtained with the MEF method, while retaining
also good visual quality.
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