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TRANSFORMS

. DCT

.  Orthogonal WT: Mallat, 1989.

.  Bi-orthogonal WT: Daubechies, Cohen, … 1992

.  Lifting Scheme: Swelden, 1996 ( JPEG 2000 Norm).

•Local DCT ([overlapping] blocks + DCT)
•Undecimated Wavelet Transform
•Isotropic Undecimated Wavelet Transform  
•Ridgelet Transform
•Curvelet Transform

Morphological Component Analysis:  MCA allows us to  separate
features in an image which present different morphological aspects.
MCA is based on fast transform/reconstruction operators.

REDUNDANT TRANSFORMS



1. Relation between the Undecimated Wavelet
Transform and the Isotropic Wavelet Transform
=> New Filter Banks for undecimated WT

2. The MCA algorithm

3. MCA texture extraction

4. MCA Inpainting

5. Multichannel MCA
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Undecimated Isotropic WT:
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Undecimated WT: h=16[1,4,6,4,1], g=Id-h Isotropic WT
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Non Orthogonal Filter Bank
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Reconstruction
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g = Id − h * h = Id − [1,8,28,56,70,56,28,8,1]/256
˜ g = Id
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HAAR  H  filter  with  a  Positive  Synthesis  Filter  Bank 



Sparse Representation in a Dictionary

Given a signal s, we assume that it is the result of a sparse linear
 combination of atoms from a known dictionary D.
 

Or an approximate decomposition:

 

A dictionary D is defined as a collection of waveforms                , and the goal is
to obtain a representation of a signal s with a linear combination of a small 
number of basis such that:
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φγ( )γ ∈Γ
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s = αγφγ
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   Example – Composed Signal
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   Example – Desired Decomposition
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Formally, the sparsest coefficients are obtained by solving the optimization problem:  

(P0)   Minimize                         subject to   

It has been proposed (to relax and) to replace the l0 norm by the l1 norm (Chen, 1995):

(P1) Minimize                         subject to   

It can be seen as a kind of convexification of (P0).

It has been shown (Donoho and Huo, 1999) that for certain dictionary, it there
exists a highly sparse solution to (P0), then it is identical to the solution of (P1).
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We consider now  that the dictionary is built of a set of L dictionaries  related
to multiscale transforms,  such wavelets, ridgelet, or curvelets.

Considering L transforms, and         the coefficients relative to the kth transform:

Noting T1,...TL the L transform operators,  we have:

A solution       is obtained by  minimizing a functional of the form:
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φ = φ1,K,φL[ ], α = α1,K,αL{ }, s = φα = φkk=1
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Different Problem Formulation

.We do not need to keep all transforms in memory.

. There are less unknown (because we use non orthogonal
transforms).
.We can easily add some constraints on a given component
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Ck (sk ) =  constraint on the component 
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Morphological  Component  Analysis (MCA)



An efficient algorithm is the Block-Coordinate Relaxation Algorithm
(Sardy, Bruce and Tseng, 1998):

. Initialize all          to zero

. Iterate j=1,...,Niter

    - Iterate k=1,..,L

     - Update the kth part of the current solution by fixing all other parts and
     minimizing: 

Which is obtained by a simple soft thresholding of :
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a) Simulated image (Gaussians+lines)       b) Simulated image + noise                     c)  A trous algorithm            

     d)  Curvelet transform                            e) coaddition c+d                                            f) residual = e-b              



a) A370 b) a trous

c) Ridgelet + Curvelet Coaddition b+c



The separation task: decomposition of an image into a texture and a natural (piecewise smooth)
scene part.
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Separation of Texture from
Piecewise Smooth Content
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J(s1,K,sL ) = M(s− sk )k=1

L
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Where M is the mask: M(i,j) = 0  ==> missing data
                                    M(i,j) = 1  ==> good data

Interpolation of Missing Data

€ 

J(Xt ,Xn ) = M(X − Xt − Xn ) 2
2

+ λ( CXn 1 + DXt 1) + γ TV(Xn )

If the data are composed of a piecewise smooth component +  texture



. Initialize all          to zero

. Iterate j=1,...,Niter

    - Iterate k=1,..,L

     - Update the kth part of the current solution by fixing all other parts and
     minimizing: 

Which is obtained by a simple soft thresholding of :
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Application in Cosmology

WMAP

The Cosmic Microwave Background (CMB) is a relic radiation (with a temperature equals to 2.726 Kelvin) 
emitted 13 billion  years ago when the Universe was about 370000 years old. 











. Initialize all          to zero

. Iterate j=1,...,Niter

    - Iterate k=1,..,L

     - Update the kth part of the current solution by fixing all other parts and
     minimizing: 

Which is obtained by a simple soft thresholding of 
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Conclusions

The MMCA algorithm brings a very strong and robust component separation  as
long as the  MMCA hypothesis is verified (sources are sparsified in different
bases) i.e. for  morphologically diverse  sources.
The next step will be to consider the following model:

We have seen that the MCA method can be useful in different applications such
texture separation or inpainting.
.Redundant Multiscale Transforms and their Application for Morphological
Component Analysis, Advances  in Imaging and Electron Physics, 132, 2004.
. Image Decomposition Via the Combination of Sparse Representation
and a Variational Approach, IEEE Transaction on Image Processing, in press.
. Simultaneous Cartoon and Texture Image Inpainting using Morphological Component
Analysis (MCA), ACHA,  in press.
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More experiments available at http://jstarck.free.fr/mca.html


