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Morphological Component Analysis: MCA allows us to separate
features in an image which present different morphological aspects.
MCA is based on fast transform/reconstruction operators.

TRANSFORMS

. DCT

. Orthogonal WT: Mallat, 19809.

. Bi-orthogonal WT: Daubechies, Cohen, ... 1992

. Lifting Scheme: Swelden, 1996 ( JPEG 2000 Norm).

REDUNDANT TRANSFORMS

eLocal DCT (Joverlapping] blocks + DCT)
eUndecimated Wavelet Transform
Isotropic Undecimated Wavelet Transform
*Ridgelet Transform
*Curvelet Transform




. Relation between the Undecimated Wavelet

Transform and the Isotropic Wavelet Transform
=> New Filter Banks for undecimated WT

. The MCA algorithm

. MCA texture extraction

. MCA Inpainting

. Multichannel MCA
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/ ‘ The Isotropic Undecimated Wavelet Transform I \

e Filters do not need to verify the dealiasing condition. We need only the
exact restoration condition:

h(v)h(v) + §(v)g(v) = 1
e Filters do not need to be (bi) orthogonal.

e Filters must be symmetric.

e In 2D, we want h(z,y) = h(x)h(y) for fast calculation and more
important, k(x, y) must nearly isotropic.

h is derived from a Bj spline: hip(k) = [1,4,6,4,1|/16, and in 2D
hap = haphip =
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ISOTROPIC UNDECIMATED WAVELET TRANSFORM

Scale 1 Scale 2 Scale 3 Scale 4 Scale 5
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Undecimated Isotropic WT: I(k,])=c Jkl T 2]_=1W ok




Non Orthogonal Filter Bank
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‘ The Surprise I

Because the decomposition is redundant, there are many way to reconstruct
the original image from its wavelet transform. For a given (h,g) filter bank,

any filter bank (h,§) which verifies the equation A(v)h(v) + §(v)g(v) = 1
leads to an exact reconstruction. For instance, if we choose h = h (the
synthesis scaling function ¢ = ¢) we obtain a filter g defined by:

G=h+1d

ifh=1[1,4,6,4,1]/16, then g = [1,4,22,4,1|/16. g is positive. This
means that g is not related anymore to a wavelet function. The synthesis
scaling function related to g is defined by:

1~ x 1 =
§¢’(§) = ¢5(ﬂ?)+§¢(§)

. !
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‘ Reconstruction Using the Scaling Function I

J
s] = Z crxPri(k) + Z Z b5.1(k)w; 1

k k=1

~







h=};=[i,l’§,l’i],

16 4 8 4 16
g=Id-h*h=1d-]1,.8,28,56,70,56,28,8,1] /256
g=1d
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HAAR H filter with a Positive Synthesis Filter Bank
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h= PREPE
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Sparse Representation in a Dictionary

Given a signal s, we assume that it is the result of a sparse linear
combination of atoms from a known dictionary D.

A dictionary D 1s defined as a collection of waveforms ((Py )yer , and the goal 1s
to obtain a representation of a signal s with a linear combination of a small

number of basis such that:

=2, a9,

Or an approximate decomposition:

S=E o,¢, + R



Example - Composed Signal
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Example — Desired Decomposition
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Formally, the sparsest coefficients are obtained by solving the optimization problem:
(PO) Minimize | |a | | subjectto ,§ = ¢a
0

It has been proposed (7o relax and) to replace the 1, norm by the 1, norm (Chen, 1995):

(P1) Minimize ||OC||1 subjectto  § = ¢a

It can be seen as a kind of convexification of (PO).

It has been shown (Donoho and Huo, 1999) that for certain dictionary, it there
exists a highly sparse solution to (PO0), then it is identical to the solution of (P1).



We consider now that the dictionary is built of a set of L dictionaries related
to multiscale transforms, such wavelets, ridgelet, or curvelets.

Considering L transforms, and (X, the coetficients relative to the kth transform:

o=¢,...0, ] a={a,..a,}, s=¢a= E;qbkak

Noting T ,...T, the L transform operators, we have:

L
_1
a, =15, S =1, ay, § = Ek=lsk

A solution & 1s obtained by minimizing a functional of the form:
2

L
+ied,

-1
S — T o
k=1 k k

J(o) =

2



Different Problem Formulation

2 L
J(Sp5eeeyS;) = 2+)"2k=1HTkSka

L
S — S
Ek=1 k

.We do not need to keep all transforms 1n memory.

. There are less unknown (because we use non orthogonal
transforms).

.We can easily add some constraints on a given component



Morphological Component Analysis (MCA)

J(S}5...58;) =

L
-3 s
k=1 K

2 I L
A s, D)
k=1

C.(s,) = constraint on the component s,



An efficient algorithm 1s the Block-Coordinate Relaxation Algorithm
(Sardy, Bruce and Tseng, 1998):

. Initialize all §, to zero
. Iterate j=1,...,Niter
- [terate k=1,..,LL

- Update the kth part of the current solution by fixing all other parts and
minimizing:

J(s,) =

2

L
S — S.— S
Ei=1,i¢k i Tk )

Which is obtained by a simple soft thresholding of :

L
§ =8— E S,
r i=1,izk !

T AHTkSkHl
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c) A trous algorithm

b) Simulated image + noise

a) Simulated image (Gaussians-+lines)

B e

f) residual = e-b

e) coaddition c+d

d) Curvelet transform



b) a trous

“c) Ridgelet '+ Curvelet Coaddition b+¢




Separation of Texture from
Piecewise Smooth Content

The separation task: decomposition of an image

into a texture and a natural (piecewise smooth)
scene part.




| Dictionaries Choice '

For the texture description (i.¢. T; dictionary), the DCT seems to have good
properties. If the texture is not homogeneous, a local DCT should be
preferred.

The curvelet transform represents well edges in an images, and should be a
good candidate in many cases. The un-decimated wavelet transform could
be used as well. In our experiments, we have chosen images with edges, and
decided to apply the texture/signal separation using the DCT and the
curvelet transform.

- /
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| Numerical Consideration '

The DCT is denoted D and its inverse by D~ (with a clear abuse of
notations). The curvelet transform is denoted it by C and its inverse by C—1.
We have two unknowns - X, and X, - the texture and the piecewise smooth
images. The optimization problem to be solved is

min _ [DX,], +ICX,.|l, + M X - X, — X, I3 +TV{X,}.
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Detection




Interpolation of Missing Data

2 L
, T AEkﬂHTkSkHP

J(S}5...58;) = ||M(s — E;Sk)

Where M 1s the mask: M(1,)) = 0 ==> missing data
M(,)) =1 ==> good data

[f the data are composed of a piecewise smooth component + texture

JX,.X)=|MX-X,-X,)

>+ A|CX, || +|IDX || ) + y TV(X,)



. Initialize all §, to zero
. Iterate j=1,...,Niter
- [terate k=1,..,LL

- Update the kth part of the current solution by fixing all other parts and
minimizing:

J(s,) = HM(S_ Elez;ék S; — Sk) T )"HT SkH

Which is obtained by a simple soft thresholding of :

S = M(s - Ez Lizk l)
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Application in Cosmology

The Cosmic Microwave Background (CMB) is a relic radiation (with a temperature equals to 2.726 Kelvin)
emitted 13 billion years ago when the Universe was about 370000 years old.
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‘MCA and Blind Source Separation I

The overall goal of BSS is to recover unobserved signals, images or sources

S from mixtures X of these sources observed typically at the output of an

array of sensors. The simplest mixture model would take the fo
X = AS

where X, S and A are matrices of respective sizes n. x n, n, x n and
n. X ng. Multiplying S by A linearly mixes the n, sources into n,. observed

ProcCesSses.

. /
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4 N
Multichannel MCA I

As before, we assume that each source s is well represented (i.e.

sparsified) by a given transform, but now, the observed data X are no longer

the sum of sources, but a set of n. linear combinations of the . sources:

where ] = 1...n., A is the mixing matrix and, here, s, is the 1 x n array of

the k1 source samples.

. /




. Initialize all §; to zero
. [terate j=1,...,Niter
- Iterate k=1,..,.LL

- Update the kth part of the current solution by fixing all other parts and
minimizing:

2
J(s) =Dy = 5., + ATis

L

With D, = akT(X—E

Which is obtained by a simple soft thresholding of Dk

a's,)

=11k

- estimation of 4*assuming all §, and a4, , fixed

K 1 7
a = T Dksk
SiSk
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Conclusions

We have seen that the MCA method can be useful in different applications such
texture separation or inpainting.

.Redundant Multiscale Transforms and their Application for Morphological
Component Analysis, Advances in Imaging and Electron Physics, 132, 2004.

. Image Decomposition Via the Combination of Sparse Representation
and a Variational Approach, /[EEE Transaction on Image Processing, in press.

. Simultaneous Cartoon and Texture Image Inpainting using Morphological Component
Analysis (MCA), ACHA, 1n press.

The MMCA algorithm brings a very strong and robust component separation as
long as the MMCA hypothesis 1s verified (sources are sparsified in different
bases) 1.e. for morphologically diverse sources.

The next step will be to consider the following model:

i

n n K
S. = C. — —
’ Lk and X, = zAi,lSi = EAi,lECi,k
k .
i=1

i=1 k=1

More experiments available at http://jstarck.free.fr/mca.html



