
Signal Processing 35 (1994) 195-211

	

195
Elsevier

Filtering and deconvolution by the wavelet transform

Jean-Luc Starck
Cisi-Ingenierie, 1360 route des Dolines, 06560 Valbonne, France and Observatoire de la Cole d'Azur B.P . 229 .

F-06304 Nice Cedex 4, France

Albert Bijaoui

Observatoire de to Core d'Azur, B .P . 229, F-06304 Nice C'edex 4 . France

Received 9 March 1992
Revised 4 September 1992, 5 January 1993 and 16 April 1993

Abstract. The wavelet transform gives information in both spatial and frequency domains and is a very useful tool for describing
the hierarchical structures. A new approach for filtering based on the wavelet transform is presented in this paper, and several
algorithms are proposed . A criterion of quality, which takes into account the resolution, is used to compare these algorithms . We
show that deconvolution can be done using filtered wavelet coefficients . By computing the wavelet from the point spread
function, we find a new transform algorithm and a reconstruction method related to it .

Zusammenfassung. Die Wavelettransformation liefert Informationen sowohl fiber den Raum- als auch fiber den Frequenz-
bereich and ist ein sehr ndtzliches Werkzeug zur Beschreibung hierarchischer Strukturen. Ein neuer Ansatz zur Filterung auf der
Grundlage der Wavelettransformation wird in diesem Beitrag vorgestellt, and es werden verschiedene Rechenverfahren
vorgeschlagen . Ein GiitemaB, das die Auflosung berficksichtigt, wird zum Vergleich dieser Algorithmen verwendet. Wir zeigen,
daB eine Entfaltung mittels gefilterter Waveletkoeffizienten durchgeffihrt werden kann . Indent wir die Wavelets aus der
Impulsantwort berechnen, finden wir einen neuen Transformationsalgorithmus and eine damit zusammenhangende Rekon-
struktionsmethode.

Resume . La transformee en ondelettes donne de ('information a la fois spatialement et frequenciellement . File est done on outil
extremement interessant pour decrire les structures hierarchiques . Une nouvelle approche du filtrage a partir des ondelettes est
presentee dans cet article, et diflerents algorithmes son proposes . Un critere de quality, qui tient compte de la resolution, est utilise
pour comparer ces algorithmes . On montre qu'une deconvolution peut aussi titre envisagee a partir des coefficients d'ondelettes
filtres. En calculant I'ondelette a partir de la reponse impulsionnelle, on nouvel algorithme de transformee en ondelettes est
propose, ainsi qu'une reconstruction au sens des moindres carres .

Keywords. Multiresolution analysis ; wavelet ; image processing; image restoration ; filtering ; deconvolution .

1. Introduction

The sky contains many kinds of non-stellar

components: planets and other objects belonging to

the solar system, planetary nebulae, interstellar

clouds, star clusters, galaxies, clusters of galaxies,

etc. Each of these components shows irregular pat-
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terns which are generally associated with a hier-

archical structure. For example, molecular clouds,

where clouds are thought to originate, have very

complex structures often described as fractals .

Many galaxies have sets of non-stellar compo-

nents which seem to he graded in an ordered

fashion. These hierarchical structures are connec-

ted with physical processes, in particular non-linear

ones such as those which give rise to turbulent

flows .
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Images of astronomical objects, even when ob-
tained by large telescopes, are generally noisy and
blurred. Many smoothing and restoration tech-
niques are currently used to enhance structural
features of images . The algorithms used are gener-
ally based on stationary statistical processes, but
astronomical images cannot be considered an
achievement of such a process. Consequently, one
cannot get an optimal restoration using the classi-
cal Wiener filtering, which is based on stationary
Gaussian processes [21] . Some adaptive filterings
[15] and many non-linear restoration methods [5]
furnish better results .

The continuous wavelet transform [9] allows
one to decompose a signal in a position-scale space
separating the components of different sizes . An
analysis of the significant features in this space
leads to adaptive filterings . In this paper we present
different methods which take into account the hier-
archy, i .e . the link between successive scales . First,
we make use of the wavelet transform in order to
introduce the various algorithms . After summariz-
ing how the transform can be used, we give as an
example a Wiener-type filtering . Adaptive filterings
are discussed and a comparison is done using
a multiresolution quality criterion . Finally, we de-
rive deconvolution methods adapted to hierarchi-
cal structures .

2. The wavelet transform

2.1 . The continuous wavelet transform

The Morlet-Grossmann definition of the con-
tinuous wavelet transform [9] for a 1-D signal
f(x) e L 2(R) is

W(a,h) - t- f

	

(x) q, *I v a
b\dx,

	

(1)

where z* denotes the complex conjugate of z, cb*(x)
sgnaF Pro¢ss'ng

is the analyzing wavelet, a ( > 0) is the scale para-
meter and b is the position parameter. The transform
is characterized by the following three properties :

The last property makes the wavelet transform very
suitable for analyzing hierarchical structures . It is
like a mathematical microscope with properties
that do not depend on the magnification .

In Fourier space, we have

W(a, v)

	

af(v)c *(av).

	

(4)

When the scale a varies, the filter l*(av) is only
reduced or dilated while keeping the same pattern .
Consider now a function W(a,b) which is the

wavelet transform of a given function f (x). It has
been shown [9, 11] that f (x) can be restored using
the formula

	 1

	

(xQb) daadb(x)= -

	

W(a,b)x

	

2 ,(5)
0

	

x \/ a

where

C

	

0 * (v)f(v) dvx =

Generally X(x) = O(x), but other choices can en-
hance certain features for some applications .

The reconstruction is only available if C x is de-
fined (admissibility condition). In the case of
x(x) _ ~r(x), this condition implies rc(0) = 0, i .e . the
mean of the wavelet function is 0 .

2.2. The discrete wavelet transform

For processing classical images, the sampling
is made in accordance with Shannon's [24]

Extensive literature exists on the wavelet trans-

U

a~~*(v)Q(v)dv . (6)form and its applications [3,6,17-19,23] . We sum-
marize here the main features which we make use of .

v.

1 . it is a linear transformation;
2. it is covariant under translations :

f(x)-*f(x-u), W(a,b)--* W(a,b-u) ; (2)

3. it is covariant under dilations :

J(x)-J(sx), W(a,b)-s -112 W(sa, sb) . (3)
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well-known theorem . The discrete wavelet trans-
form (DWT) can be derived from this theorem if we
process a signal which has a cut-off frequency. For
such images the frequency band is always limited
by the size of the camera aperture .

A digital analysis is provided by the discretisa-
tion of formula (1), with some simple consider-
ations on the modification of the wavelet pattern by
dilation. Usually, the wavelet function I*(.x) has no
cut-off frequency and it is necessary to suppress the
values outside the frequency band in order to avoid
aliasing effects . We can work in Fourier space,
computing the transform scale by scale . The num-
ber of elements for a scale can be reduced, if the
frequency bandwidth is also reduced . This is pos-
sible only for a wavelet which also has a cut-off
frequency . The decomposition proposed by Little-
wood and Paley [13] provides a very good illustra-
tion of the reduction of elements scale by scale . This
decomposition is based on an iterative dichotomy
of the frequency hand. The associated wavelet is
well localized in Fourier space where it allows
a reasonable analysis to be made though not in the
original space. The search for a discrete transform
which is well localized in both spaces leads to the
multiresolution analysis .

The multiresolution analysis [14] results from
the embedded subsets generated by the approxima-
tions of a given function f (x) at different scales . f (x)
is projected at each step j on the subset V; (j < 0) .
This projection is defined by the scalar product
c;(k) of f(x) with the scaling function 4'(x) which is
dilated and translated :

CA) _<f(x),2-JO(2-Jx-k)> .

	

( 7)

If we start from the set {c o (k)}, we compute all
the sets {c j (k)}, with j < 0, without directly com-
puting any other scalar product

c;(k) _ Y h(n - 2k)c;+t(n) .

	

(8)

At each step, the number of scalar products is
divided by 2 . Information is lost, and the signal is
smoothed step by step. The remaining information
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can be restored using the complementary subspace
W; of VI in VV,,. This subspace can be generated
by a wavelet function '(x) with translation and
dilation . We have

With this analysis, we have built the first part of
a filter bank [26]. In order to restore the original
data, Mallat [14] uses the properties of orthogonal
wavelets, but the theory has been generalized to
a large class of filters [4]. The restoration is per-
formed with

+ t (k) = 2 Y [c (I)h(k - 21) + w1(1)9(k - 21)],
r

1111

where h and g are the conjugate filters of h and g .
The set of filters must satisfy the following relations :

- Dealiazing condition :

h(v + I)h(v) + g(v + 1)g(v) = 0,

- Exact restoration :

h(v)h(v) + g(v)g(v) = 1 .

	

(13)

Many sets of filters were proposed especially for
coding and it was shown [6] that the choice of these
filters must be guided by the regularity of the scal-
ing and the wavelet functions. The complexity is
proportional to N. The algorithm provides a
pyramid of N elements .

There exists a set of extensions of the wavelet
transform to 2-D signals L14,20],etc.-

Dilate the wavelet function independently in two
dimensions.

- Use an isotropic wavelet function and only radial
dilation .

Vol . 3J. No . 3, February 1994

,P O = a
9(k)d (x - k) . (9)

We compute the scalar products < f(x),
2Jti(2Jx-k)> with

w;(k) _ Y q(n - 2k)ct+ , (n). (10)
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- Transform using an anisotropic wavelet with
a set of rotations [20] .

- Process separate variables, but with only one
scale for each coordinate .
In the case of separate variables, it is easy to

extend the theory of the multiresolution analysis
[14] . The scaling function O(x,y) can be written as

0 (x, Y) = 0 (x) 0 (Y).

	

(14)

Details are now given for three different wavelet
functions. The filter bank associated with separated
variables is similar to the 1-D case . The algorithm is
performed line by line then column by column
leading to four arrays decimated in x and y. The
available 1-D filters are used. If we wish to use
isotropic filters, we must exclude separated vari-
ables . It is possible to give relations for a non-
separable filter bank [7], but it is not evident how
to get an isotropic filter bank . The use of a quin-
cunx decimation allows us to work with only one
wavelet [7] .

The multiresolution analysis furnishes a remark-
able framework to code a signal, and more gener-
ally an image, with a pyramidal set of values . But
this analysis is not invariant under translations .
That has no importance for a signal coding which
does not modify the data, but the situation is not
the same in a strategy where we want to clean an
image of spurious features . In our paper, the prob-
lem of the redundancy is not critical, but we wish to
keep an isotropic vision. Therefore, we choose the
a trous algorithm [2,11, 25] instead of the filter
bank.

2.3 . The a trous algorithm

The discrete approach of the wavelet transform
can be done with the special version of the so-called
a trous algorithm (with holes) [11,25] . One as-
sumes that the sampled data {c o (k)} are the scalar
products at pixels k of the function f (x) with a scal-
ing function O(x) which corresponds to a low-pass
filter .

The first filtering is then performed by a twice
magnified scale leading to the {c,(k)} set. The
Signal Processing

signal difference {c o(k)} - {c 1 (k)} contains the in-
formation between these two scales and is the dis-
crete set associated with the wavelet transform cor-
responding to 0(x). The associated wavelet is there-
fore i(x) :

2 (2) = O (X) -
2
'0(2X) .

The distance between samples increasing by
a factor 2 from the scale (i - 1) (i > 0) to the next
one, c,(k) is given by

The coefficients {h(k)} derive from the scaling
function ¢(x) :

2~(2)=Eh(1)0(x-1) .

The B-spline of degree 3 scaling function was
used in our calculations. The algorithm allowing

Fr. 12 MM 1998 18 :15 :45

Fig . 1 . Galaxy NGC 2997 .

MIDASwnbn :82NOV

ci(k)=Yh(l)cl_t(k+2'-'1) (16)

and the discrete wavelet transform w 1 (k) by

wi(k) = c1 _ 1 (k) - ci (k) . (17)
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Fig. 2 . W avelet transform of the Galaxy .

one to rebuild the data frame is evident: the last
smoothed array is added to all the differences .

The above a trous algorithm is easily extensible to
the 2-D space. This leads to convolution with
a mask of 5 x 5 pixels for the wavelet connected to
B 3-spline. At each scale i, we obtain a set ,w,(k,I)}
(we will call it wavelet plane in the next), which has
the same number of pixels as the image .

Figure 2 shows the wavelet transform of a galaxy
(Fig. 1) . We compute only four planes, three
wavelet planes and the image at lower resolution .

3. The noise reduction from the wavelet transform

3.1 . The convolution from the continuous
wavelet transform

We will examine here the computation of a con-
volution by using the continuous wavelet transform
in order to get a framework for linear smoothings .
Let us consider the convolution product of two
functions :

f(x)=
f-

+ .f(u)g(x-u)dx .

	

(19)
r

We introduce two real wavelet functions ;P(x) and
x(x) such that

u

	

V

is defined. Wg(a, b) designs the wavelet transform of
g with the wavelet function '(x) :

x

W%(a,b)=

	

f+ g(x)o . .x	
a

b) d

	

(21)

v

We restore q(x) with the wavelet function x(x) :

1

	

x-b dadb
g(x) = C f f ' ` N's(a,b)x a-~ pz

n

	

V a

The convolution product can be written as

h(x) - C
fo asQ,J

	

II g (a,h)db

x-u-G\f

	

f(u)x	 Idu .

	

(23)
/a

Let us denote 2(x) = x( - x). The wavelet trans-
form Wf(a,b) off(x) with the wavelet y(x) is

+
W a,b

	

1

	

x-b
( ) _-

	

1(x)x -

	

dx.

	

(24)
V G -wa,

	

a

This leads to

I r4 "do ""
h($=

J

	

aJ

	

Wf(a,x-b)Wg (a,b)db .
C a a _,p

(25)

Then we get the final result

1 +'°

	

do
h(x)=C

Ia
Wj (a,x)®Wg(a,x) az .

	

(26)

In order to compute a convolution with the con-
tinuous wavelet transform :

- we compute the wavelet transform W1(a, h) of the
function f(x) with the wavelet function y(x) ;

Vol Is, No . 3. February 1994

(20)

(22)
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- we compute the wavelet transform W,(a, b) of the
function g(x) with the wavelet function O(x) ;

- we sum the convolution product of the wavelet
transforms, scale by scale .
The wavelet transform permits us to perform any

linear filtering . Its efficiency depends on the number
of terms in the wavelet transform associated with
g(x) for a given signal J'(x). If we have a filter where
the number of significant coefficients is small for
each scale, the complexity of the algorithm is pro-
portional to N. For a classical convolution, the
complexity is also proportional to N, but the num-
ber of operations is also proportional to the length
of the convolution mask. The main advantage of
the present technique lies in the possibility of hav-
ing a filter with long-scale terms without comput-
ing the convolution on a large window . If we
achieve the convolution with the FFT algorithm,
the complexity is in N log, N, the computing time is
longer than the one obtained with the wavelet
transform if we concentrate the energy on very few
coefficients .

3 .2 . The Wiener-like filtering in the wavelet space

Let us consider a measured wavelet coefficient w i
at the scale i. We assume that its value, at a given
scale and a given position, results from a noisy
process, with a Gaussian law of a mathematical
expectation W;, and a standard deviation Bi :

P(wr/Wi)=

	

1

	

e_ (- '_ W1J 2128

	

(27)
v12nBj

Now, we assume that the set of expected coefficients
Wi for a given scale also follows a Gaussian law,
with a null mean and a standard deviation S i :

=	1		W?i2s .'P
(
W

) v 22
	e-

7rS ;

The null mean value results from the wavelet prop-
erty

J ~ip *(x)dx=0 .

	

(29)

Signal Processing

(28)

We want to get an estimation of W, knowing w, .
Bayes' theorem gives

the probability P(W;lw i) is a Gaussian law with
a mean

The mathematical expectation of W ; is a ;w i .
With a simple multiplication of the coefficients by

the constant x;, we get a linear filter . The algorithm is
1 . Compute the wavelet transform of the data . We

get wi .
2. Estimate the standard deviation of the noise Bo

of the first plane from the histogram of wo . As
we process oversampled images, the values of
the wavelet image corresponding to the first
scale (w o ) are due mainly to the noise. The
histogram shows a Gaussian peak around 0. We
compute the standard deviation of this Gaus-
sian function, with a 3a clipping, rejecting pixels
where the signal could be significant.

3 . Set i to 0 .
4. Estimate the standard deviation of the noise B;

from Bo . This is done from the study of the
variation of the noise between two scales, with
an hypothesis of a white Gaussian noise .

5 . S; = s; - B; where s; is the variance of w i .
6 . 2, = S; /(S ; + B?) .
7. W; = a i w i .
8. i=i+1andgoto4 .
9. Reconstruct the picture from Wi .

P(W1)P(wi/W1) (30)P( Wi/wi) =
P(wi)

We get

1
P(W,/w ;) (W .

-n,W,)212p 2 (31)_

	

e

v 2nfli
where

S;
(32)a,

S? + B2'

m = a;w, (33)

and a variance

2

	

S ; B;
=

S? + Bz' (34)



We simulate an image by convolving the galaxy
NGC 2997 by a point spread function (PSF) .
A noise is added in order to get a signal-to-noise
ratio of 4 (see Fig. 3 at the right) . In Fig. 4 we
compare the image obtained after the multiresolu-
tion Wiener filtering to the original one (galaxy
convolved by the PSF, but without any noise) .

3.3 . The hierarchical Wiener filtering

In the above process, we do not use the informa-
tion between the wavelet coefficients at different
scales. We modify the previous algorithm by intro-
ducing a prediction w,, of the wavelet coefficient
from the upper scale . This prediction could be de-

8

8

2

0

J .-L . Starek, A . Bgaoui l Filtering and deconuolution by the wavelet transform

sa

	

IM

	

150

	

fm

Fig. 3 . Galaxy NGC 2997 (left), and noisy image (right) .
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termined from the regression [t] between the two
scales but better results are obtained when we only
set Wh to W;, 1 . Between the expectation coefficient
W; and the prediction, a dispersion exists where we
assume that it is a Gaussian law :

P(WW/wh) =

	

I	 e -(W,-»'a
T;

The relation which gives the coefficient W, knowing
w; and w h is

P(W,/w ; and w h ) =

8

8

8

8

8

8

8

8

2

I e_
21c#;

x	I	e -(W,-

	

(36)
21c T;

(35)

Fig. 4 . Original image (left), and image obtained after multiresolution Wiener filtering (right) .
Vol. 35, No. 3 . February 1994
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W is the barycentre of the three values w 1,wh ,0
with the weights TF , B ; , QF . The particular cases
are
- if the noise is important (S 1 <<B i ) and even if the

correlation between the two scales is good (T is
low), we get W11~ 0,

- if B;«S;«T then W -* w i ,

- if B;«T1<<S then W, - w i ,
- if T1 <<B;«S then W -. w h .

At each scale, by changing all the wavelet coeffi-
cients w ; of the plane by the estimate value W i , we

3.4. The adaptive filtering from the wavelet
transform

In the preceding algorithm we have assumed the
properties of the signal and the noise to be station-
ary . The wavelet transform was first used to obtain
an algorithm which is faster than classical Wiener
filtering. Then we took account of the correlation
between two different scales . In this way we got
a filtering with stationary properties . In fact, these
hypotheses were too simple, because in general the

R

R

S

2

Fig . 5 . Original image (left), and image obtained after hierarchical Wiener filtering (right) .
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get a hierarchical Wiener filter . The algorithm is

2 _ S; B
(37)

(1) Compute the wavelet transform of the data . We
get w t .

S2 + B,2 (2) Estimate the standard deviation of the noise B0

and

s;
(38)

of the first plane from the histogram of w o .
(3) Set i to the index associated with the last plane :

i =n.

S; +BZ (4) Estimate the standard deviation of the noise B;
from B o .

It is a Gaussian law with a mathematical expecta-
tion :

(5) SF = sF - B, where s, is the variance of w i .
(6) Set w,, to W , 1 and compute the standard devi-

ation T,1 of w, - w,, .

T
2

	

B
2

' (39) (7) W = T2/(BI? + Tie + Qa) W ,

+ BF/(BF + T12 + Q?)
wh .

(8) i=i-1 . If i>0goto4 .
(9) Reconstruct the picture .

We compare in Fig. 5 the image obtained after

B; + T; + Q ;
w +

B? + T? + Q?
w

with

2 T?B2-
Ql

	

S 2 (40) the hierarchical Wiener filtering to the original one .
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signal may not arise from a Gaussian stochastic
process . Knowing the noise distribution, we can
determine the statistically significant level at each
scale of the measured wavelet coefficients. If w1 (x) is
very weak, it is not significant and could be due to
noise- Then the hypothesis that the value W;(x) is
null is not forbidden . In the opposite ,-ase where
w;(x) is significant, we keep its value . If the noise is
Gaussian, we write

W_
0 if w 1 < kB 1 ,

	

(41)
'

	

wi if Iw,I > kB 1 .

	

(42)

Generally, we choose k = 3 .
With a filter bank we have a biunivocity between

the image and its transform, so that the thresholded
transform leads to only one restored image . Some
experiments show us that uncontrolled artifacts
appear for high-level thresholding (k = 3) . The
decimation done at each step on the wavelet
transform takes into account the knowledge of
the coefficients at further resolutions. The thre-
sholding sets to zero the intrinsic small terms which
play their part in the reconstruction . With the
lattice filter the situation is very different . No
decimation is done and the thresholding keeps
all significant coefficients . Where the coefficients
are set to zero, we do not put zero, but we say
that these values are unknown. The redundancy
is used to restore them. Before the thresholding
we have a redundant transform, which can be
decimated ; after the thresholding we get a set of
coefficients from which we wish to restore an
image .

If one applies the reconstruction algorithm, then
it is not guaranteed that the wavelet transform of
the restored image will give the same values for the
coefficients . This is not important in the case where
they are not significant, but otherwise the same
values must be found. If W" are the coefficients
obtained by the thresholding, then we require WI (x)
such that

PW1(x) = W;"(x),

	

(43)

where P is the non-linear operator which performs
the inverse transform, the wavelet transform, and
the thresholding. An alternative is to use the follow-
ing iterative solution which is similar to Van Cit-
tert's algorithm :

W1(x)= Wls)(x)+ W(n-1)(x)-PWn-t'(x)

(44)

for the significant coefficients (W~s'(x) # 0) and

Win,(x) = W,^- ' (x)

	

(45)

for the non-significant coefficients (W(' ) (x) = 0) .
The algorithm is the following one :

(1) Compute the wavelet transform of the data . We
get w; .

(2) Estimate the standard deviation of the noise Bo
of the first plane from the histogram of w o .

(3) Estimate the standard deviation of the noise B I
from Bo at each scale.

(4) Estimate the significant level at each scale, and
threshold .

(5) Initialize : W;ol(x) = WW(X) .
(6) Reconstruct the picture by using the iterative

method.
The thresholding may introduce negative values

in the resulting image . A positivity constraint can
be introduced in the iterative process by thre-
sholding the restored image . The algorithm con-
verges after five or six iterations . In Fig. 6, we can
see the resulting image after adaptive filtering .

We remark that point-like artifacts remain which
are the main defect of this adaptive filtering . The
number of independent wavelet coefficients is pro-
portional to (N/a)z (a is the scale) . The thresholding
does not cause all insignificant coefficients to van-
ish since a proportion depending on k remains. For
k = 3 the proportion of remaining coefficients for
a Gaussian process is around 0 .25%. The number
of remaining insignificant values is important for
scale 1 and it is reduced by a factor 4 from one scale
to another . This leads to point-like artifacts. We
can increase the value of k, but this leads to a great
smoothing of the large-scale structures. Further-
more, we may increase k only for scale 1 .

Vol . 35. No . 3, February 1994
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if I wi(x)I < kB, then L = kB,tl

.t.-L. Starck, A . Bijaoui Filtering and deconvolution by the wavelet transform11

Wa

Sa

0

3.5 . The hierarchical adaptive filtering

In the previous algorithm we do not use the
hierarchy of structures. We have explored many
approaches for introducing a non-linear hierarchi-
cal law in the adaptive filtering and we found that
the best way was to link the threshold to the
wavelet coefficient of the previous plane wa . We get

Wi(x) =
w, (x) if Iwt(x)I > L,to

	

if I w i (x) I < L

and L is a threshold estimated by

if I wi(x)I > kB i then L = kBi ,

where S h is the standard deviation of w a . The func-
tion t(a) must return a value between 0 and 1 .
A possible function for t is
-t(a)=0 if a>k,
-t(a)=1-ka if a<k .

Figure 7 shows the image resulting from hier-
archical adaptive filtering.

3 .6 . Comparison from a multiresolution quality
criterion

It is important to evaluate the quality of the
restoration . Very few quantitative parameters can
be extracted for that. The correlation between the
Signal Pro¢ssing

8

8

8

a w IN IN M

Fig. 6 . Original image (left), and image obtained after adaptive filtering (right) .

acn

original image I(4j) and the restored one 1(1,j)
gives a classical criterion . The correlation coeffi-
cient is

Cor-	 Y-f 1~_IIQ,))I(h))		(46)

=I 12 (I,1)yl 1 ~N I I 2 (I,))

The correlation is 1 if the images are identical, and
less if some differences exist . Another way to com-
pare two pictures is to determine the mean-square
error

1 N N

Em,= Nz

	

Mi,j)-I(t,A)

i=1j=1

E,2„ I can be normalized by

Enma-EN
ILj=I(I(l,I)-I(t,I))2 .

EN , Ej I 12(i j)

The signal-to-noise ratio (SNR) corresponding to
the above error is

SNRda = 10log la 2dB .

	

(49)
Enms

Table 1 indicates the correlation rate, the quadratic
error between the original image and the filtered
ones, and the SNR .

These criteria are not sufficient, they give no
information on the resulting resolution . A complete
criterion must take into account the resolution . We

(47)

(48)



Table I

Comparison between the original image and the filtered ones
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Fig . 7 . Original image (left), and image obtained after hierarchical adaptive filtering (right) .

	 Th ,holding- Hiervgdcal .nvesholamg
H'erarchieal w-,

than F

3

Fig. 8. Correlation between the wavelet coefficients of original
image and the filtered ones .

can compute for each dyadic scale the correlation
coefficient and the quadratic error between the
wavelet transforms of the original and the restored
images, so that we can compare for each resolution,

3

Fig. 9 . Reconstruction error .

the quality of the restoration . Figures 8 and 9 pres-
ent the same information, but scale by scale .

From Table 1, we conclude that the hierarchical
Wiener filtering gives on our image the best results .

Vol . 35. No . 3 . Fe bruary 1994

-'-- Nway Image
- Threaholdlng

Hierarchical T1,-1-wing
---MunlraedudonWiener

HierlWlenar
- - Median Fill .,
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Images Noisy
image

Multiresolution
Wiener

Thresholding Hierarchical
Thresholding

Hierarchical
Wiener

Median
filter

0.981612 0 .998624 0.994335 0 .991629 0.998855 0 .996716
SNR(dB) 14 .21 25 .59 19 .41 17 .55 26.39 21 .83
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We see from Figs. 8 and 9 that it is the best at all
scales. The hierarchical Wiener filtering has the
advantage of producing smooth images, without
any artefact. The hierarchical thresholding filtering
is, in our simulation, the worst method . It is, how-
ever, sometimes useful when the image contains
edges which are quite preserved in the filtering .

4. The deconvolution from the wavelet transform

4.1 . The direct deconvolution

Let us consider an image characterized by its
intensity distribution I(x,y) . It corresponds to the
observation of an object distribution O(X, Y)
through an optical system . We reduced the coord-
inates of the object to the one of the image . If the
imaging system is linear and shift-invariant, the
relation between the object and the image in the
same coordinates frame is a convolution :

I(x,y)=J+",O(X,Y)P(x-X,y-Y)dXdY .

P(x,y) is the point spread function (PSF) of the
imaging system . We want to determine O(X, Y)
knowing I(x, y) and P(x, y) . This inverse problem
led to a large number of papers from which it
follows that the main difficulties lie on the existence
of (i) a cut-off frequency of the PSF and (ii) an
intensity noise (see e .g. [5]) .

We remark that the equation can be written as

I(x,Y)=<O(X,Y),O(X-x,Y-y)),

	

(50)

where O(x, y) = P(- x, - y). The image is sam-
pled and we get an array I(n,m) such that

I(n,m)=<O(X,Y),O(X-n,Y-m)) .

	

(51)

If we want to restore O(X, Y) using the dual basis
associated to 0(x, y), we get

	*(U' V)

	

(52)
D (u, v) '

Signal Processing

where

D(u,v)=~ ~(u+k,v+1)h .

	

(53)
k,I

Taking into account the existence of a cut-off fre-
quency smaller than 2', for a well-sampled image

D(u, v) = I ~(u, v) 1 2 ,

so that

O(u, v) _1

	

(54)
0 (v)

We found the trivial inverse solution . This needs
P(u, v) $ 0. We remark that the concept of the dual
basis is only available for undersampled data. For
oversampled ones, there exists a dependency be-
tween the data which leads to perfect solution .
A classical solution to this problem lies in the
generalized inverse [22]. Landweber's iterative
scheme [12] is a typical solution . It corresponds to

Ot"0 (X, Y) = Ot" - ' t(X, Y) + cwP(X, Y)

['(X, Y) - O'"-'1(X, Y)

®P(X, Y)] .

	

(55)

where ru is a converging parameter generally taken
as 1 and P(x,y)= P( - x, - y). We start with
0 tm (X, Y) = I (X, Y).

In Fourier space we get

O n (u, v) = 6("- '"(u, v) + WP* (u, v)

x[I(u,v)-O(u,v)P(u,v)] .

	

(56)

Above the cut-off frequency P(u, v) = 0, so
6 (') (u, v) = Ot" - 1) (u, v) . If f(u,v) = 0, we always get
O (") (u, v) = 0 : the inversion does not add informa-
tion above the frequency cut-off. For small P(u, v)
values the convergence is slow .

The filterings seen above give smoothed images
where the noise is removed for the frequencies
above the cut-off one . We may use Landweber's
method with a positivity constraint in order to
deconvolve the image. The resulting algorithm is
(1) noise reduction with a hierarchical filtering ;
(2) iterative deconvolution with Landweber's

method.
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We plot in Fig. 10 the resulting image after 50
iterations . We remark that we get an enhancement
of the resolution and that we do not have any noise
in the restored image .

4.2 . Wavelets generated by the point spreadfunction

We remark that the PSF is similar to a scaling
function, and we may introduce a wavelet function
generated by this function . If the sampling step is 1,
the cut-off frequency v e is less than i . We admit that
P(u, v) is never null below this frequency . We set
¢(x, y) = P( - x, - y). Let us define h(a,u) such
that

~(2u , 2v)

	

(57)
On. V)

for I u I . 1 n I < ve/2, and h(u, v) = 0 for any other fre-
quencies where Iu1, IvI < 2' . For other frequencies
we set

The PSF is a scaling function associated to fast
multiresolution algorithms. In the direct space we
write
1~ x y

	

Xh(n,m)¢(.x-n.y-m) .
4

	

2'2 n .m
(60)

Fig . 10. Original object (left), and image deconvolved (right) .

This allows us to define wavelet transforms gen-
erated by the PSF with the relation

Vi (2u, 2v) = 0(u, v) ~(u, v),

	

(61)

where p(u + n, v + m) = 4(u, v).
In the square of side ]-4, +?[in the two di-

mensions, h(u,v) is necessarily limited in the inter-
val ] - ", + if in the two dimensions, so that its
Fourier transform h(n, m) has an infinite length. We
must process the transform in the Fourier space .
The algorithm is the following one :
(1) Compute the corresponding image FFT. We

name TO the resulting complex array .
(2) Set i to 0- We iterate.
(3) Take the inner product of T, with g(2'u, 2'v). We

get the complex array W; , 1 . The inverse FFT
gives the wavelet coefficients at the scale 2' .

(4) Take the inner product of T, with h(2'u, 2`v) . We
get the array

	

Its inverse FFT gives the
image at the scale 2' l ' . The frequency band is
reduced by a factor 2 .

(5) We increment i and we go back to Step 3 .
We decimate only the interpolation array scale

by scale . We get a pyramidal set of data for the
wavelet transform . The reconstruction can be done
using all the wavelet transform coefficients, or scale
by scale . In this last case, we use the relations

Ti , 1 (u, v) = h(2'u, 2'v) T;(u, v),

W;, t (u, v) _ 4(2'u, 2'v) T,(u, v) .

8

R

0 x

	

rm

	

ISO 0m m
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h(u + n, v + m) = h(u, v) . (58)

With this definition, we can always write

rb(2u, 2v) = h(u, v)(~(u, v) . (59)
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Knowing the arrays T i, t (u,v) and W; +t (u,v), we
can determine T;(u, v). We weight each equation
with the functions ph (2'u,2'v) and pq(2'u,2'v).
Using the least-mean-square estimator we get

Ph(u, v)h*(2'u, 2'v)
TO, v)-	 Ti+t(u,v)

D(2'u, 2'v)

t
+ Ps(uDv(

.'u, 2 )2
	 v)

Wi+ t (u, v),

where

D(u, v) = Ph(u, v) I h(u, v) h + P,,(u, v)I4(u, v)I i

This leads to the conjugate filters

h(u, v) = ph(u, v)h*(u, v)
D(u, v)

V) -
Ps(u, v)j * (uc, v)44

	

D(u,v)

a

a
a
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a
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a
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Fig. 11 . The scaling function ~ (left), and the wavelet i (right) .

Fig. 12 . The filter

We verify that the exact restoration condition for
a filter bank is true :

h(u,v)h(u,v)+g(u,v)g(u,v)= 1 .

But the dealiazing condition is not verified. We can
decimate the low-resolution image but we cannot
decimate the wavelet image . We get a pyramidal
algorithm but not a classical filter bank. Generally,
we choose

ph(u, v) = P, (u, v) = 1 .

In a first case, we considered the filter g(u, v)
resulting from the difference between the approx-
imations at two following scales :

g(u, v) = I - h(u, v).

In Fig . 11 we plot the chosen scaling function
derived from a B-spline of degree 3 in frequency
space and its resulting wavelet function . Their
conjugate functions are plotted in Fig . 12 . The

z

a

a

as

3

7

(left), and the filter g (right) .

J



reconstruction is done using

T; (u, v) = T„ t (u, v) + W„ t (u, v),

with the following weighting functions :

I

	

1
Ph(u,v)=h*(u v),

	

P,(u,V)

	

9*(u,v)

Then we considered the filter

s(u,v)=J1- h(u,v)12,

which leads to

h(u, u) = h*(u, v),

	

g(u,v)=r)*(u,v) .

We plot the resulting wavelet function in Fig . 13 .

4 .3. Deconvolution with the wavelet transform
generated by the PSF

We do the wavelet transform with a wavelet
function generated by the PSF . We get a pyramidal
set of data

wi(n,m)=22 . O(X y),o(2-n,2,-m)) .

For each scale we get

x
(7(n,m)= I2 z. O(x,Y),~ 2-n, Y2;-m

This allows to restore the data at the lower scale
2'

	

t .
We can apply on this pyramid the hierarchical

smoothing algorithms in order to reduce the noise .

.t.-L. Stank, A . Rijaoui / Filtering and deeonvolutian kv the wavelet transform
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We get at the lowest scale a set of interpolation
coefficients :

f (n, m) = <O (x, v ), 0 (x - n, y - m) > .

We come back to the inversion of this equation .
We saw that it was impossible to give a solution
such that

O(x,y) _ X J(n,m)¢(x-n,y-m) .

We may restore using Landweber's iterative
scheme.

We see in Fig . 14 the original object (left), and the
deconvolved image (right) after 50 iterations with
the Landweber algorithm . The wavelet coefficients
used for the deconvolution were those obtained
after the filtering by the hierarchical Wiener filter .
Compared to Fig. 10, the results are not signifi-
cantly better . So we can see that the use of the PSF
as the scaling function does not yield the best resto-
ration .

We considered below a regular PSF, without
zero-value before the cut-off frequency . If it is not
the case, we are not able to compute the filter
h(u, v), because the term 0(2u, 2v)/O(u, v) is unde-
fined for some frequencies . For instance, for the
aperture synthesis used in radio astronomical map-
ping, there always exists 'frequency holes' (i .e . we do
not have a full coverage of the u, v plane), and it is
impossible to restore the image by a simple inver-
sion. Nevertheless, the wavelet transform should be
used, but in a different way than has been de-
veloped in this paper [27] . The deconvolution

Fig. 13 . The scaling function ~ is shown on the left, and the wavelet ~ on the right .
Vol . 3,, No, r. February 1994
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Fig . 14 . Original object (left), and image obtained after deconvolution (right) .

Fig . 15 . PPS data of Voyager 2 on the Encke Division in Saturn's rings . On the left the real data with a resolution of 90 m, and on the
right the filtered signal. These plots give counts versus the radial distance from the center of Saturn .

has been done here with Landweber's algorithm
with a positivity constraint . Other regularization
constraints such as maximum entropy [8] or
Thikonov's [28] could also be introduced, which can
be achieved at the full restoration, or scale by scale.

5. Conclusion

In this paper we show some applications of the
wavelet transform for filtering and deconvolution .
We use discrete transforms derived from the lattice
Signal Processing

or pyramidal algorithms . The redundancy which
arises is used to take account of the interscale
constraint relations.

We show in Fig . 15 a current application of the
hierarchical Wiener filtering applied to a one-di-
mensional signal . No parameter was introduced to
get the smoothed signal and the noise has been well
reduced .

When images present hierarchical structures, as
is generally the case in astronomy, tools which take
into account this hierarchy are of significant inter-
est and allow one to optimize the restoration .
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