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Notations

For a real discrete-time �lter whose impulse response is h[n], �h[n] = h[� n]; n 2 Z is its time-
reversed version. The hat ^ notation will be used for the Fourier transform of square-integrable
signals. For a �lter h, its z-transform is written H (z). The convolution product of two signals in
`2(Z) will bewritten � . For the octaveband wavelet representation, analysis(respectively, synthesis)
�lters are denoted h and g (respectively, ~h and ~g). The scaling and wavelet functions usedfor the
analysis (respectively, synthesis) are denoted � (� ( x

2 ) =
P

k h[k]� (x � k); x 2 R and k 2 Z) and
 ( ( x

2 ) =
P

k g[k]� (x � k); x 2 R and k 2 Z) (respectively, ~� and ~ ). We also de�ne the scaled
dilated and translated version of � at scale j and position k as � j;k (x) = 2� j � (2� j x � k), and
similarly for  , ~� and ~ .

� J.-L. Starck is with the CEA-Saclay, DAPNIA/SEDI-SAP , Service d'Astroph ysique, F-91191 Gif sur Yvette,
France

yJ. Fadili is with the GREYC CNRS UMR 6072, Image ProcessingGroup, ENSICAEN 14050,Caen Cedex, France
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Glossary

WT Wavelet Trasnform
CWT Continuous Wavelet Transform
DWT Discrete (decimated) Wavelet Transform
UWT Undecimated Wavelet Transform
IUWT Isotropic Undecimated Wavelet Transform

1 De�nition of the Sub ject and its Imp ortance

Wavelets and related multiscale representations pervade all areasof signal processing.The recent
inclusion of wavelet algorithms in JPEG 2000{ the new still-picture compressionstandard{ testi�es
to this lasting and signi�cant impact. The reasonof the successof the wavelets is due to the fact
that wavelet basisrepresents well a large classof signals,and therefore allows us to detect roughly
isotropic elements occurring at all spatial scalesand locations. As the noisein the physical sciences
is often not Gaussian, the modeling, in the wavelet space,of many kind of noise (Poissonnoise,
combination of Gaussianand Poissonnoise, long-memory 1=f noise,non-stationary noise, ...) has
also beena key step for the useof wavelets in scienti�c, medical, or industrial applications (Starck
et al., 1998). Extensive wavelet packagesexist now, commercial (seefor example (MR/1, 2001))
or non commercial (seefor example (Wavelab 802, 2001; Wavelab 805, 2005)), which allows any
researcher, doctor, or engineerto analyzehis data using wavelets.

2 In tro duction

Over the last two decadesthere hasbeenabundant interest in wavelet methods. In many hundreds
of papers published in journals throughout the scienti�c and engineeringdisciplines, a wide range
of wavelet-basedtools and ideashave beenproposedand studied. Background texts on the wavelet
transform include (Daubechies, 1992;Strang and Nguyen, 1996;Mallat, 1998;Starck et al., 1998;
Cohen,2003). The most widely usedwavelet transform (WT) algorithm is certainly the decimated
bi-orthogonal wavelet transform (DWT) which is used in JPEG2000. While the bi-orthogonal
wavelet transform has led to successfulimplementation in image compression, results were far
from optimal for other applications such as �ltering, deconvolution, detection, or more generally,
analysisof data. This is mainly due to the lossof the translation-invariance property in the DWT,
leading to a large number of artifacts when an image is reconstructed after modi�cation of its
wavelet coe�cien ts. Later e�orts found that substantial improvements in perceptual quality could
be obtained by translation invariant methods based on thresholding of an undecimated wavelet
transform.

3 The Con tin uous Wavelet Transform

The continuouswavelet transform usesa single function  (x) and all its dilated and shifted version
to analyze signals. The Morlet-Grossmann de�nition (Grossmann et al., 1989) of the continuous
wavelet transform (CWT) for a 1-dimensionalreal-valued function 1 f (x) 2 L 2(R), the spaceof all

1We only consider here real wavelets. This can be extended to complex wavelets without too much di�cult y.
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square-integrable functions, is:

W (a;b) =
1

p
a

Z + 1

�1
f (x) 

�
x � b

a

�
dx (1)

where:

� W (a;b) is the wavelet coe�cien t of the function f (x),

�  (x) is the analyzing wavelet,

� a (> 0) is the scaleparameter,

� b is the position parameter.

The inversetransform is obtained by:

f (x) =
1

C 

Z + 1

0

Z + 1

�1

1
p

a
W (a;b) 

�
x � b

a

�
da db

a2 (2)

where:

C =
Z + 1

0

j ̂ j2

�
d� =

Z 0

�1

j ̂ j2

�
d� (3)

Reconstruction is only possibleif C is �nite (admissibilit y condition) which implies that  ̂ (0) = 0,
i.e. the meanof the wavelet function is 0. The wavelet is said to have a zeromoment property, and
appears to have a band-passpro�le. A closely related relation to the inversegiven in Eq. 2, is an
energyconservation formula, an analogueto Plancherel's formula (Mallat, 1998).
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Figure 1: Mexican hat function.

Fig. 1 shows the Mexican hat wavelet function, which is de�ned by:

 (x) = (1 � x2)e� x2=2 (4)

This is the secondderivative of a Gaussian. The lower-part of Fig. 2 shows the CWT of a 1D signal
(top plot of Fig. 2) computed with the Mexican Hat wavelet. This diagram is called a scalogram.
Its y-axis represents the scale,and its x-axis represents the position parameter b.
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Figure 2: Top: 1D signal. Bottom: CWT computed with the Mexican Hat wavelet, the y-axis
represents the scaleand the x-axis represents the position parameter b.

In practice we needto discretize the scalespace,and the CWT is computed for scalesbetween
amin and amax with a step � a. amin must be chosenenoughlarge to discretizeproperly the wavelet
function, and amax is limited by the number N of samplesin the data. For the experiment shown
in Fig. 2, amin wasset to 0:66 and sincethe dilated Mexican hat wavelet at scalea is approximately
supported in [� 4a;4a], we chooseamax = N

8 . The number of scalesJ is de�ned as the number of
voicesper octave multiplied by the number of octaves (the number of octaves is the integral part

of log2

�
amax
amin

�
. The number of voicesper octave is generally chosenequal to 12, which guaranties

a good resolution in scaleand the possibility to reconstruct the signal from its wavelet coe�cien ts.
We then have J = 12log2

�
amax
amin

�
, and � a = amax � amin

J � 1 .
The CWT algorithm is the following:
If the convolution is performed in the Fourier space(i.e.  a � D = IFFT(FFT ( a)FFT (D)),

whereFFT and IFFT denoterespectively the Fourier transform and its inverse),the data is assumed

to be periodic. In this case,the computation of the CWT requires O
�

12N (log2 N )2
�

operations

(Mallat, 1998). If the convolution is done in the direct space,we can chooseother ways to deal
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1: Set the valuesamin , amax , J . Thesevaluesdepend on both the chosenwavelet function  and
the number of samplesN .

2: Set � a = amax � amin
J � 1 and a = amin .

3: for a = amin to amax with step � a do

� Compute  a =  ( x
a )=

p
a.

� Convolve the input data D with � a to get W (a; :) = 1p
(a)

( � a � D ). The convolution

product can be done either in the direct spaceor in the Fourier space.

� a = a + � a

4: W contains the CWT of D .

with the borders. For instance,we may prefer to considermirror reexiv e boundary conditions (i.e.
for k = 0; :::; N � 1 we have D(� k) = D(k) and D(N + k) = D(N � 1 � k)).

The choice of the wavelet function is let to the user. As described above, the only constraint
is to have a function with a zero mean (admissibilit y condition). Hence,a large classof functions
veri�es it and we can adapt the analyzing tool, i.e. the wavelet, to the data. For oscillating data
such as audio signals or seismic data, we will prefer a wavelet function which oscillates like the
Morlet wavelet. While for other kind of data such as spectra, it is better to choose a wavelet
function with minimum oscillation and the Mexican hat would certainly be a good choice. The
wavelet function can also be complex, in which casethe wavelet transform will be complex. Both
the modulus and the phasewill carry information about the data.

Here, we have consideredonly 1D data. For higher dimensional data, we can apply exactly
the sameapproach as above. For 2D data for example, the wavelet function will be de�ned as a
function of �v e parameters (position (bx ; by), scale in the two directions (ax ; ay) and orientation
� ) and the wavelet transform of an image will be of dimension �v e. But The required memory
and the computation time would not be acceptablein most applications. Considering an isotropic
wavelet reducessigni�cantly to only three the dimensionality. A even more e�cien t approach is
the (bi-)orthogonal wavelet transform algorithm.

4 The (Bi-)Orthogonal Wavelet Transform

Many discretewavelet transform algorithms have beendeveloped (Mallat, 1998;Starck et al., 1998).
The most widely-known one is certainly the orthogonal transform, proposedby Mallat (1989) and
its bi-orthogonal version (Daubechies, 1992). Here, we will introduce the bi-orthogonal through
the two-channel iterated �lter bank framework.

Using the bi-orthogonal wavelet transform, a signal s can be decomposedas follows:

s(x) =
X

k

cJ [k]~� J;l (x) +
JX

j =1

X

k

~ j;k (x)wj [k] (5)

with � j;l and  j;l are the scaleddilated and translated versionof � and  , which are are respectively
the scaling function and the wavelet function. J is the number of resolution levels used in the
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decomposition, wj the wavelet (or detail) coe�cien ts at scale j , and cJ is a coarseor smooth
version of the original signal s. Thus, the algorithm outputs J + 1 subband arrays. The indexing
is such that, here, j = 1 corresponds to the �nest scale(high frequencies). Coe�cien ts cj [k] and
wj [k] are obtained by meansof the analysis �lters h and g:

cj +1 [l ] =
X

k

h[k � 2l ]cj [k]

wj +1 [l ] =
X

k

g[k � 2l ]cj [k] (6)

where h and g are such that:

1
2

� (
x
2

) =
X

k

h[k]� (x � k)

1
2

 (
x
2

) =
X

k

g[k]� (x � k) (7)

and the reconstruction of the signal is performed with:

cj [l ] = 2
X

k

�
~h[k + 2l]cj +1 [k] + ~g[k + 2l]wj +1 [k]

�
(8)

where the �lters ~h and ~g must verify the conditions of dealiasingand exact reconstruction:

ĥ�
�

� +
1
2

�
~̂h(� ) + ĝ�

�
� +

1
2

�
~̂g(� ) = 0

ĥ� (� )~̂h(� ) + ĝ� (� )~̂g(� ) = 1 (9)

or equivalently, in the z-transform domain:

H (� z� 1) ~H (z) + G(� z� 1) ~G(z) = 0

H (z� 1) ~H (z) + G(z� 1) ~G(z) = 1:

Note that in terms of �lter banks, the bi-orthogonal wavelet transform becomesorthogonal when
h = ~h and g = ~g, in which caseh is a conjugate mirror �lter.

In the decomposition, cj +1 and wj +1 are computed by successively convolving aj with the �lters
�h (low-pass) and g (high-pass). Each resulting channel is decimated by suppressionof one sample
out of two. The high-frequency channel wj +1 is left, and we iterate with the low-frequency part
cj +1 (upper part of Fig. 3). In the reconstruction, we restore the sampling by inserting a 0 between
each sample, then we convolve with the dual �lters ~h and ~g, we add the resulting coe�cien ts and
we multiply the result by 2. The procedureis iterated up to the smallest scale(lower part of Fig.
3).

Compared to the CWT, we have much lessscales,becausewe consider only dyadic scales, i.e.
scalesaj which are a power of two of the initial scalea0 (aj = 2j a0). Therefore, for a data set with
N samples,we will typically useJ = log(N ) � 1 scales.The algorithm is the following:
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Figure 3: Fast pyramidal algorithm associated to the bi-orthogonal wavelet transform. Top: Fast
analysis transform with a cascadeof �ltering with �h and �g followed by factor 2 subsampling.
Bottom: Fast inversetransform by progressively inserting zerosand �ltering with dual �lters ~h and
~g.

1: Set c0 = D, J = log(N ) � 1.
2: for j = 0 to J � 1 do

� Compute cj +1 = �h � cj , down-sampleby a factor 2.

� Compute wj +1 = �g � cj , down-sampleby a factor 2.

� j = j + 1

3: The set W = f w1; :::; wJ ; cJ g represents the wavelet transform of the data.

The discretebi-orthogonal wavelet transform (DWT) is alsocomputationally very e�cien t,requiring
O(N ) operations as compared to O(N logN ) of the fast Fourier transform (N is the number of
samplesin data). The most used �lters are certainly the 9/7 �lters (by default in the JPEG 2000
norm), which are given in table 1.

In the literature, the �lter bank can begiven such that it is normalized to a unit mass
P

k h[k] =
1, or to a unit `2-norm

P
k h[k]2 = 1.

The above DWT algorithm can be easily extended to any dimension by separable (tensor)
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h g ~h ~g
0 0.02674875741 0.02674875741 0

-0.04563588155 0.0168641184 -0.0168641184 0.04563588155
-0.02877176311 -0.0782232665 -0.0782232665 -0.02877176311
0.295635881557 -0.26686411844 0.26686411844 -0.295635881557
0.557543526229 0.60294901823 0.60294901823 0.557543526229
0.295635881557 -0.26686411844 0.26686411844 -0.295635881557
-0.02877176311 -0.0782232665 -0.0782232665 -0.02877176311
-0.04563588155 0.0168641184 -0.0168641184 0.04563588155

0 0.02674875741 0.02674875741 0

Table 1: 7/9 Filter bank (normalized to a unit mass).

products of a scaling function � and a wavelet  . For instance, the two-dimensional algorithm is
basedon separatevariables leading to prioritizing of horizontal, vertical and diagonal directions.
The scaling function is de�ned by � (x; y) = � (x)� (y), and the passagefrom one resolution to the
next is achieved by:

cj +1 [k; l ] =
+ 1X

m= �1

+ 1X

n= �1

h[m � 2k]h[n � 2l ]cj [m; n] =
� �h�h � cj

�
[k; l ] (10)

The detail signal is obtained from three wavelets:

� vertical wavelet :  1(x; y) = � (x) (y)

� horizontal wavelet:  2(x; y) =  (x)� (y)

� diagonal wavelet:  3(x; y) =  (x) (y)

which leadsto three wavelet subimagesat each resolution level. For three dimensional data, seven
wavelet subcubesare created at each resolution level, corresponding to an analysis in seven direc-
tions.

For a N � N image D, the algorithm is the following:

5 The Lifting Scheme

A lifting is an elementary modi�cation of perfect reconstruction �lters, which is usedto improve the
wavelet properties. The lifting scheme (Sweldensand Schr•oder, 1996) is a exible technique that
has beenusedin several di�eren t settings, for easyconstruction and implementation of traditional
wavelets (Sweldensand Schr•oder, 1996),and for the construction of wavelets on arbitrary domains
such as boundedregionsof Rd (secondgenerationwavelets (Sweldens,1997)) or surfaces(spherical
wavelets (Schr•oder and Sweldens, 1995)). To optimize the approximation and compressionof
signals and images, the lifting scheme has also been widely used to construct adaptive wavelet
baseswith signal-dependent liftings. For example, short wavelets are neededin the neighborhood
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1: Set c0 = D, J = log(N ) � 1.
2: for j = 0 to J � 1 do

� Compute cj +1 = �h�h � cj , suppressone sampleout of two in each dimension.

� Compute w1
j +1 = �g�h � cj , suppressone sampleout of two in each dimension.

� Compute w2
j +1 = �h�g � cj , suppressone sampleout of two in each dimension.

� Compute w3
j +1 = �g�g � cj , suppressone sampleout of two in each dimension.

� j = j + 1

3: The set W = f w1
1; w2

1; w3
1; :::; w1

J ; w2
J ; w3

J ; cJ g represents the wavelet transform of the data.

SPLIT P U
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Figure 4: The lifting scheme{ forward direction.

of singularities, but long wavelets with more vanishing moments improve the approximation of
regular regions.

Its principle is to compute the di�erence betweena true coe�cien t and its prediction:

wj +1 [l ] = cj [2l + 1] � P(cj [2l � 2L ]; :::; cj [2l � 2]; cj [2l ]; cj [2l + 2]; :::; cj [2l + 2L ]) (11)

A pixel at an odd location 2l + 1 is then predicted using pixels at even locations.
Computing the wavelet transform using lifting schemeconsistsof several stages.The idea is to

�rst compute a trivial wavelet transform (the Lazy wavelet) and then improve its properties using
alternating lifting and dual lifting steps. The transformation is done in three steps:

1. Split: This corresponds to Lazy wavelets which splits the signal into even and odd indexed
samples:

ce
j [l ] = cj [2l ]

co
j [l ] = cj [2l + 1] (12)

2. Predict: Calculate the wavelet coe�cien t wj +1 [l ] as the prediction error of co
j [l ] from ce

j [l ]
using the prediction operator P:

wj +1 [l ] = co
j [l ] � P(ce

j [l ]) (13)
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3. Up date: The coarseapproximation cj +1 of the signal is obtained by using ce
j [l ] and wj +1 [l ]

and the update operator U:

cj +1 [l ] = ce
j [l ] + U(wj +1 [l ]) (14)

The lifting stepsare easily inverted by:

cj [2l ] = ce
j [l ] = cj +1 [l ] � U(wj +1 [l ])

cj [2l + 1] = co
j [l ] = wj +1 [l ] + P(ce

j [l ]) (15)

Someexamplesof wavelet transforms via the lifting schemeare:

� Haar wavelet via lifting: the Haar transform can be performed via the lifting scheme by
taking the predict operator equal to the identit y, and an update operator which halves the
di�erence. The transform becomes:

wj +1 [l ] = co
j [l ] � ce

j [l ]

cj +1 [l ] = ce
j [l ] +

wj +1 [l ]
2

All computation can be done in-place.

� Linear wavelets via lifting: the identit y predictor used before is correct when the signal is
constant. In the sameway, we can usea linear predictor which is correct when the signal is
linear. The predictor and update operators are now:

P(ce
j [l ]) =

1
2

�
ce

j [l ] + ce
j [l + 1]

�

U(wj +1 [l ]) =
1
4

(wj +1 [l � 1] + wj +1 [l ])

It is easyto verify that:

cj +1 [l ] = �
1
8

cj [2l � 2] +
1
4

cj [2l � 1] +
3
4

cj [2l ] +
1
4

cj [2l + 1] �
1
8

cj [2l + 2]

which is the bi-orthogonal Cohen-Daubechies-Feauveau (1992) wavelet transform.

The lifting factorization of the popular (9/7) �lter pair leadsto the following implementation
(Daubechies and Sweldens,1998):

s(0) [l ] = cj [2l ]

d(0) [l ] = cj [2l + 1]

d(1) [l ] = d(0) [l ] + � (s(0) [l ] + s(0) )[l + 1]

s(1) [l ] = s(0) [l ] + � (d(1) [l ] + d(1) [l � 1])

d(2) [l ] = d(1) [l ] +  (s(1) [l ] + s(1) [l + 1])

s(2) [l ] = s(1) [l ] + � (d(2) [l ] + d(2) [l � 1])

cj +1 [l ] = us(2) [l ]

wj +1 [l ] =
d(2) [l ]

u
(16)

10



with

� = � 1:586134342

� = � 0:05298011854

 = 0:8829110762

� = 0:4435068522

u = 1:149604398 (17)

Every wavelet transform can be written via lifting.

In teger wavelet transform.

When the input data consist of integer values, the wavelet transform is not necessarilyinteger-
valued. For losslesscoding and compression,it is useful to have a wavelet transform which produces
integervalues. We canbuild an integerversionof every wavelet transform (Calderbank et al., 1998).
For instance, denoting bxc as the largest integer not exceedingx, the integer Haar transform (also
called \S" transform) can be calculated by:

wj +1 [l ] = co
j [l ] � ce

j [l ]

cj +1 [l ] = ce
j [l ] + b

wj +1 [l ]
2

c (18)

while the reconstruction is

cj [2l ] = cj +1 [l ] � b
wj +1 [l ]

2
c

cj [2l + 1] = wj +1 [l ] + cj [2l ] (19)

More generally, the lifting operators for an integer version of the wavelet transform are:

P(ce
j [l ]) = b

X

k

p[k]ce
j [l � k] +

1
2

c

U(wj +1 [l ]) = b
X

k

u[k]wj +1 [l � k] +
1
2

c (20)

where p and u are appropriate �lters associated to primal and dual lifting steps.
For instance, the linear integer wavelet transform2 is given by

wj +1 [l ] = co
j [l ] � b

1
2

�
ce

j [l ] + ce
j [l + 1]

�
+

1
2

c

cj +1 [l ] = ce
j [l ] + b

1
4

(wj +1 [l � 1] + wj +1 [l ]) +
1
2

c (21)

More �lters can be found in (Calderbank et al., 1998). In losslesscompressionof integer-valued
digital images,even if there is no �lter that consistently performs better than all the other �lters
on all images,it was observed that the linear integer wavelet transform performs generally better
than other integer wavelet transforms using other �lters (Calderbank et al., 1998).

2This integer wavelet transform is basedupon a symmetric, bi-orthogonal wavelet transform built from the inter-
polating Deslauriers-Dubuc scaling function where both the high-pass �lter and its dual has 2 vanishing moments
moments (Mallat, 1998).
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6 The Undecimated Wavelet Transform

The undecimated wavelet transform, UWT, consistsof keepingthe �lter bank construction which
providesa fast and dyadic algorithms, but eliminating the decimation step in the orthogonal wavelet
transform (Dutilleux, 1989;Holschneider et al., 1989): c1 = �h � c0 and w1 = �g � c0. By separating
even and odd pixels in c1 and w1, we get (cE

1 ; wE
1 ) and (cO

1 ; wO
1 ), and both parts obviously allow us

to reconstruct perfectly c0. The reconstruction can be obtained by

c0 =
1
2

(~h � cE
1 + ~g � wE

1 + ~h � cO
1 + ~g � wO

1 ): (22)

For the passageto the next resolution, both cE
1 and cO

1 are decomposed,leading, after the splitting
into even and odd pixels, to four coarsearrays associated with c2. All of the four data sets can
again be decomposedin order to obtain the third decomposition level, and so on.

c0

h

g

Scale 2

c

c

c

w

w

1

1

w

2e

2o

h

g

h

g
2,2

2,1

c
2e

2o

h

g

h

g

2e

2o

h

g

h

g

w

w

w

w

c

c

c

2,1

2,2

3,1

3,2

3,3

3,4

3,1

3,2

3,3

3,4

Scale 3Scale 1

Figure 5: 1D undecimated wavelet transform.

Figure 5 shows the 1D UWT (UWT) decomposition. The decimation step is not applied and
both w1 and c1 have the samesizeas c0. c1 is then split into cE

1 (even pixels) and cO
1 (odd pixels),

and the samedecomposition is applied to both cE
1 and cO

1 . cE
1 producesc2;1 and w2;1, while cO

1
producesc2;2 and w2;2. w2 = f w2;1; w2;1g contains the wavelet coe�cien ts at the secondscale,and
is also of the samesizeas c0. Figure 6 shows the 1D UWT reconstruction.

It is clear that this approach is much more complicated than the decimated bi-orthogonal
wavelet transform. There exists, however, a very e�cien t way to implement it, called the \�a trous"
algorithm (\�a trous", a French term, meaning with holes)(Holschneider et al., 1989;Shensa,1992).
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Figure 6: 1D undecimated wavelet reconstruction.

cj +1 [l ] and wj +1 [l ] can be expressedas

cj +1 [l ] = (�h(j ) � cj )[l ] =
X

k

h[k]cj [l + 2j k]

wj +1 [l ] = (�g(j ) � cj )[l ] =
X

k

g[k]cj [l + 2j k]; (23)

where h(j ) [l ] = h[l ] if l=2j is an integer and 0 otherwise. For example,we have

h(1) = (: : : ; h[� 2]; 0; h[� 1]; 0; h[0]; 0; h[1]; 0; h[2]; : : : )

The reconstruction is obtained by

cj [l ] =
1
2

h
(~h(j ) � cj +1 )[l ] + (~g(j ) � wj +1 )[l ]

i
: (24)

The �lter bank (h; g; ~h; ~g) needsonly to verify the exact reconstruction condition written in the
z-transform domain:

H (z� 1) ~H (z) + G(z� 1) ~G(z) = 1: (25)

This provides us with a higher degreeof freedom when designing the synthesis prototype �lter
bank.

The �a trous algorithm can be extendedto 2D, by:

cj +1 [k; l ] = (�h(j ) �h(j ) � cj ) [k; l ]

w1
j +1 [k; l ] = (�g(j ) �h(j ) � cj ) [k; l ]

w2
j +1 [k; l ] = (�h(j ) �g(j ) � cj ) [k; l ]

w3
j +1 [k; l ] = (�g(j ) �g(j ) � cj ) [k; l ]: (26)
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Figure 7: Passagefrom c0 to c1, and from c1 to c2 with the UWT �a trous algorithm.

where hg � c is the convolution of c by the separable �lter hg (i.e. convolution �rst along the
columns by h and then convolution along the rows by g). At each scale, we have three wavelet
images, w1; w2; w3, and each has the samesize as the original image. The redundancy factor is
therefore 3(J � 1) + 1 (Mallat, 1998).

7 The 2D Isotropic Undecimated Wavelet Transform

The Isotropic UndecimatedWavelet Transform, IUWT, algorithm is well known in the astronomical
domain, becauseit is well adapted to astronomical data whereobjects are more or lessisotropic in
most cases(Starck and Murtagh, 2002). Requirements for a good analysis of such data are:

� Filters must be symmetric (�h[k] = h[k], and �g[k] = g[k]).

� In 2D or higher dimension, h; g;  ; � must be nearly isotropic.

Filters do not needto be orthogonal or bi-orthogonal and this lack of the needfor orthogonality or
bi-orthogonality is bene�cial for designfreedom. For computational reasons,we also prefer to have
the separability; h[k; l ] = h[k]h[l ]. Separability is not a required condition, but it allows us to have
a fast calculation, which is important for a large data set.

This has motivated the following choice for the analysis scaling and wavelet functions (Starck
and Murtagh, 2002):

� 1(x) =
1
12

(j x � 2 j3 � 4 j x � 1 j3 +6 j x j3 � 4 j x + 1 j3 + j x + 2 j3)

� (x; y) = � 1(x)� 1(y)
1
4

 
� x

2
;

y
2

�
= � (x; y) �

1
4

�
� x

2
;
y
2

�
(27)
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Figure 8: Undecimated wavelet transform of the Einstein image.

where � 1(x) is the spline of order 3, and the wavelet function is de�ned as the di�erence between
two resolutions. The related �lters h and g are de�ned by:

h(1D ) [k] = [1; 4; 6; 4; 1]=16; k = � 2; : : : ; 2

h[k; l ] = h(1D ) [k] h(1D ) [l ]

g[k; l ] = � [k; l ] � h[k; l ] (28)

where � is de�ned as � [0; 0] = 1 and � [k; l ] = 0 for all (k; l ) di�eren t from (0; 0).
The following useful properties characterize any pair of even-symmetric analysis FIR (�nite

impulse response)�lters (h; g = � � h) such as those of Eq. 28:

Prop ert y 1 For any pair of even symmetric �lters h and g such that g = � � h, the following
holds:

(i) This FIR �lter bank implementsa frame decomposition, and perfect reconstruction using FIR
�lters is possible.
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(ii) The above �lters can not implement a tight frame decomposition.

See(Starck et al., 2007) for a proof.

Figure 9: Left, the cubic spline function � ; right, the wavelet  .  (x) is the di�erence betweentwo
resolutions.

Fig. 9 shows respectively the cubic spline scaling function � and the wavelet  .
From the structure of g, it is easilyseenthat the wavelet coe�cien ts are obtained just by taking

the di�erence betweentwo resolutions:

wj +1 [k; l ] = cj [k; l ] � cj +1 [k; l ] (29)

where cj +1 [k; l ] =
� �h(j ) �h(j ) � cj

�
[k; l ]. At each scalej , we obtain one subband f wj g (and not three

asin the undecimatedWT, denotedUWT above) which hasthe samenumber of pixels asthe input
image.

The reconstruction is obtained by a simple co-addition of all wavelet scales and the �nal
smoothed array, namely

c0[k; l ] = cJ [k; l ] +
JX

j =1

wj [k; l ] (30)

That is, the synthesis �lters are ~h = � and ~g = � , which are indeedFIR as expected from Property
1(i). This wavelet transformation is very well adapted to the analysis of images which contain
isotropic objects such as in astronomy (Starck and Murtagh, 2002) or in biology (Genovesio and
Olivo-Marin, 2003). This construction hasa closerelation to the Laplacian pyramidal construction
introduced by Burt and Adelson (Burt and Adelson, 1983) or the FFT-based pyramidal wavelet
transform (Starck et al., 1998).

Figure 10 shows the undecimated isotropic wavelet transform of the image Einstein using six
resolution levels. This transformation contains 6 bands, each one being of the same size as the
original image. The redundancy factor is therefore equal to 6. The simple addition of these six
imagesreproduce exactly the original image.
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Figure 10: Undecimated isotropic wavelet transform of the Einstein image. The addition of these
six imagesreproduce exactly the original image.

Relation between the UWT and the IUWT

Sincethe dealiasing�lter bank condition is not requiredanymore in the UWT decomposition, wecan
build the standard three-directional undecimated�lter bank using the non-(bi-)orthogonal \Astro"
�lter bank (h1D = [1; 4; 6; 4; 1]=16, g1D = � � h1D = [� 1; � 4; 10; � 4; � 1]=16 and ~h = ~g = � ). In two
dimensions,this �lter bank leadsto a wavelet decomposition with three orientations w1

j ; w2
j ; w3

j at
each scalej , but with the sameproperty as for the IUWT, i.e. the sum of all scalesreproducesthe
original image:

c0[k; l ] = cJ [k; l ] +
JX

j =1

3X

d=1

wd
j [k; l ] (31)

Indeed, a straightforward calculation immediately shows that (Starck et al., 2007):

w1
j + w2

j + w3
j = cj � cj +1 (32)

Therefore, the sum of the three directions reproducesthe IUWT detail band at scalej . Figure 11
shows the UWT of the galaxy NGC2997. When we add the three directional wavelet bands at a
given scale,we recover exactly the isotropic undecimatedscale. When we add all bands,we recover
exactly the original image. The relation betweenthe two undecimated decompositions is clear.
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8 Designing non-Orthogonal Filter Banks

A Surprising Result

Becausethe decomposition is non-subsampled,there are many ways to reconstruct the original
image from its wavelet transform3. For a given �lter bank (h,g), any �lter bank (~h,~g) which
satis�es the reconstruction condition of Eq. 25 leads to exact reconstruction. For instance, for
isotropic h, if we choose~h = h (the synthesis scaling function ~� = � ) we obtain a �lter ~g de�ned
by (Starck et al., 2007):

~g = � + h

Again, asexpectedfrom Property 1, the analysis�lter bank (h; g = � � h) implements a (non-tight)
frame decomposition for FIR symmetric h, where ~h = h and ~g = � + h are also FIR �lters. For
instance, if h = [1; 4; 6; 4; 1]=16, then ~g = [1; 4; 22; 4; 1]=16. ~g is positiv e (Starck et al., 2007). This
meansthat ~g is no longer related to a wavelet function. The synthesis scaling function related to
~g is de�ned by:

1
2

~ 
� x

2

�
= � (x) +

1
2

�
� x

2

�
(33)

Finally, note that choosing ~� = � , any synthesis function ~ which satis�es

~̂ (2� ) ̂ (2� ) = �̂ 2(� ) � �̂ 2(2� ) (34)

leadsto an exact reconstruction (Mallat, 1998)and ~̂ (0) can take any value. The synthesisfunction
~ doesnot needto verify the admissibility condition (i.e. to have a zero mean).

Figure 12 shows the two scaling functions ~� (x) (= � ) and ~ (x) used in the reconstruction in
1D, corresponding to the synthesis �lters ~h = h and ~g = � + h. Figure 13 shows the backprojection
of a wavelet coe�cien t in 2D (all wavelet coe�cien ts are set to zero,exceptone), when the non-zero
coe�cien t belongsto di�eren t bands. We can seethat the reconstruction functions are positive.

Finally, we have an expansionof a 1D signal s,

s(x) =
X

k

cJ [k]~� J;k (x) +
JX

j =1

X

k

wj [k] ~ j;k (x) (35)

where ~� and ~ are not wavelet functions (both of them have a non-zero mean and are positive),
but the wj are wavelet coe�cien ts.

Reconstruction from the Haar Undecimated Coe�cien ts

The Haar �lters (h = ~h = [1=2; 1=2]; g = ~g = [� 1=2; 1=2]) are not consideredas good �lters in
practice becauseof their lack of smoothness. They are however very useful in many situations such
as denoisingwhere their simplicit y allows us to derive analytical or semi-analytical detection levels
even when the noisedoesnot follow a Gaussiandistribution.

3 In frame theory parlance, we would say that the UWT frame synthesis operator is not injectiv e.
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Adopting the samedesignapproach asbefore,we can reconstruct a signal from its Haar wavelet
coe�cien ts choosing a smooth scaling function. For instance, if ~h = [1; 4; 6; 4; 1]=16, it is easy to
derive that the z transforms of thesethree �lters are respectively:

H (z) =
1 + z� 1

2
; G(z) =

z� 1 � 1
2

; ~H (z) =
z2 + 4z + 6 + 4z� 1 + z� 2

16
(36)

From the exact reconstruction condition in Eq. 25, we obtain:

~G(z) =
1 � ~H (z)H (z� 1)

G(z� 1)
(37)

In the caseof the spline �lter bank, this yields after somere-arrangement (where we used simple
convolution properties of splines),

~G(z) = � 2
1 � z3

�
1+ z� 1

2

� 5

1 � z� 1 = z3 1 + 6z� 1 + 16z� 2 � 6z� 3 � z� 4

16
(38)

which is the z-transform of the corresponding �lter ~g = [1; 6; 16; � 6; � 1]=16.
The Haar analysis �lters ful�ll the following property:

Prop ert y 2 Haar analysis �lters can implement a tight frame expansion (more precisely, one
scale of the Haar waveletUWT does). Perfect reconstruction with FIR synthesis�lters is possible.

Figure 14, upper left and right, depicts the coarsest scale and a wavelet scale of the Haar
transform whenthe input signal contains only zerovaluesexceptonesample(Dirac � [k]). Figure 14,
bottom left, portrays the backprojection of a Dirac at the coarsestscale(all coe�cien ts are set to
zero) and Figure 14, bottom right, shows the backprojection of a Haar wavelet coe�cien t. Sincethe
synthesis �lters are regular, the backprojection of a Dirac doesnot produceany block staircase-like
artifact. Finally, we would like to point out that other alternatives exist. For example the �lter
bank (h = [1=2; � 1=2] ,g = [� 1=4; 1=2; � 1=4], ~h = [1; 3; 3; 1]=8 and ~g = [1; 6; 1]=4 leads also to an
interesting solution where the synthesis �lters are both positive.

Another In teresting Filter Bank

A particular caseis obtained when ~̂� = �̂ and  ̂ (2� ) = �̂ 2(� )� �̂ 2 (2� )
�̂ (� )

, which leads to a �lter g equal

to � � h � h. In this case,the synthesis function ~ is de�ned by 1
2

~ ( x
2 ) = � (x) and the �lter ~g = � is

the solution to Eq. 25. We end up with a synthesisschemewhereonly the smooth part is convolved
during the reconstruction. Furthermore, for a symmetric FIR �lter h, it can be easily shown that
this �lter bank ful�lls the statements of Property 1.

Deriving h from a spline scaling function, for instance B 1 (h1 = [1; 2; 1]=4) or B3 (h3 =
[1; 4; 6; 4; 1]=16) (note that h3 = h1 � h1), since h is even-symmetric (i.e. H (z) = H (z� 1)), the
z-transform of g is then:

G(z) = 1 � H 2(z) = 1 � z4
�

1 + z� 1

2

� 8

=
�
� z4 � 8z3 � 28z2 � 56z + 186� 56z� 1 � 28z� 2 � 8z� 3 � z� 4�

=256 (39)
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which is the z-transform of the �lter g = [� 1; � 8; � 28; � 56; 186; � 56; � 28; � 8; � 1]=256. We get
the following �lter bank:

h = h3 = ~h = [1; 4; 6; 4; 1]=16

g = � � h � h = [� 1; � 8; � 28; � 56; 186; � 56; � 28; � 8; � 1]=256 (40)

~g = � (41)

With this �lter bank, there is a no convolution with the �lter ~g during the reconstruction. Only
the low-passsynthesis �lter ~h is used. The reconstruction formula is:

cj [l ] = (h(j ) � cj +1 )[l ] + wj +1 [l ] (42)

and denoting L j = h(0) � � � � � h(j � 1) and L 0 = � , we have

c0[l ] =
�
L J � cJ

�
[l ] +

JX

j =1

�
L j � 1 � wj

�
[l ] (43)

Each wavelet scaleis convolved with a low-pass�lter.
Figure 15 shows the analysis scaling and wavelet functions. The synthesis functions ~� and ~ 

are the sameas those in Figure 12.

9 Iterativ e Reconstruction

Denoting W the undecimated wavelet transform operator and R the reconstruction operator, and
thanks to the exact reconstruction formulae, we have the relation: � S = WR� S , where S is a
signal or image and � S its wavelet coe�cien ts (i.e. � S = WS). But we loose one fundamental
property of the (bi-)orthogonal WT. Indeed, the relation � = WR� is not true for all � sets. For
example, if we set all wavelet coe�cien ts to zero except one at a coarsescale, there is no image
such that its UWT would producea Dirac at a coarsescale. Another way to understand this point
is to consider the Fourier domain of a given undecimated scale. Indeed, wavelet coe�cien ts � j at
scalej obtained using the wavelet transform operator will contain information only localisedat a
given frequencyband. But any modi�cation of the coe�cien ts at this scale,such as a thresholding
(� T = � T (� ), where � T is the thresholding operator with threshold T and � T are the thresholded
coe�cien ts), will introduce somefrequencycomponents which should not exist at this scalej , and
we have � T 6= WR� T .

Reconstruction from a Subset of Coe�cien ts

Without lossof generality, weconsiderhereafterthe caseof 1D signals. If only a subsetof coe�cien ts
(for instance after thresholding) is di�eren t from zero, we would like to reconstruct an image ~S
such that its wavelet transform reproducesthe non-zero wavelet coe�cien ts. This can be cast as
an inverseproblem. We want to solve the following optimization problem min ~S k M (� T � W ~S) k2

2
where M j [k] is the multiresolution support of � , i.e. M j [k] = 1 if the wavelet coe�cien t � j [k] at
scalej and at position k is di�eren t from zero,and M j [k] = 0 otherwise. A solution can be obtained
using the Landweber iterativ e scheme(Starck et al., 1995;Starck et al., 1998):

~Sn+1 = ~Sn + RM
h
� T � W ~Sn

i
(44)
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If the solution is known to bepositive, the positivit y constraint canbeintroducedusingthe following
equation:

~Sn+1 = P+

�
~Sn + RM

h
� T � W ~Sn

i�
(45)

where P+ is the projection on the coneof non-negative images. This iterativ e schemecan also be
interpreted in terms of alternating projections onto convex sets (POCS). It has also proven very
e�ectiv e at many tasks such as imageapproximation and restoration when using the UWT (Starck
et al., 2007).

10 Future Directions

For 2D or 3D data set, wavelet basespresent some intrinsic limitations, becausethey are not
adapted to the detection of highly anisotropic elements, such as lines or curvilinear structures in an
image, or sheetsin a cube. Recently, other multiscale systemslike curvelets (Cand�esand Donoho,
1999b; Starck et al., 2002; Do and Vetterli, 2003; Candeset al., 2006) and ridgelets (Cand�es and
Donoho, 1999a)which are very di�eren t from wavelet-like systemshave beendeveloped. Curvelets
and ridgelets take the form of basis elements which exhibit very high directional sensitivity and
are highly anisotropic. A digital implementation of both the ridgelet and the curvelet transform
for image denoising has been described in (Starck et al., 2002). These new data representations,
combined with wavelets, have beenused in many applications such denoising(Starck et al., 2002;
Saevarsson et al., 2006; Hennenfent and Herrmann, 2006), deconvolution (Starck et al., 2003b),
contrast enhancement (Starck et al., 2003a), texture analysis (Starck et al., 2005; Ariv azhagan
et al., 2006), detection (Jin et al., 2005),watermarking (Zhang et al., 2006), component separation
(Starck et al., 2004), inpainting (Elad et al., 2006) or blind sourceseparation (Bobin et al., 2006;
Bobin et al., 2007).

To reach higher sparsity levels, the transforms just mentioned with a �xed geometry can be
replaced by adaptive representations using an optimized basis. Geometric transforms such as
wedgelets (Donoho, 1999) or bandlets (Le Pennec and Mallat, 2005; Mallat and Peyr�e, 2006)
allow to de�ne an adapted multiscale geometry. These transforms perform a non-linear search
for an optimal representation. They o�er geometrical adaptivit y together with fast and stable
algorithms. Recently, Mallat (Mallat, 2006)proposeda more biologically inspired procedurenamed
the grouplet transform, which de�nes a multiscale association �eld by grouping together pairs of
wavelet coe�cien ts.

Following Olshausenand Field (Olshausen and Field, 1996), one can push one step forward
the idea of adaptive sparserepresentation and requires that the dictionary is not �xed but rather
optimized to sparsify a set of exemplar signals/images. Such a learning problem corresponds to
�nding a sparsematrix factorization as exposedin the K-SVD framework (Aharon et al., 2006).
Explicit structural constraints such as translation invariance can also be enforcedon the learned
dictionary (Olshausen,2000;Blumensath and Davies, 2006).
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Figure 11: UWT of the galaxy NGC2997using the Astro �lter bank. The addition of three bands
at a given scaleis exactly the band related to the isotropic wavelet transform. Addition of all bands
reproducesexactly the original image.

Figure 12: Left, the ~� synthesis scaling function and right, the ~ detail synthesis function.
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Figure 13: Back projection: Each imagecorrespondsto the backprojection of onewavelet coe�cien t.
All thesereconstructed imagesare positive (no negative values). From left to right, the coe�cien t
belongs to the vertical, horizontal and diagonal direction. From top to bottom, the scale index
increases.
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Figure 14: Haar UndecimatedTransform: Upper Left, coarsestscalewhen the signal is � [k]. Upper
right, one wavelet scaleof the Dirac decomposition. Bottom left, backprojection of a Dirac at the
coarsestscale. Bottom right, backprojection of a Haar wavelet coe�cien t.

Figure 15: Left, the � analysis scaling function and right, the  analysis wavelet function. The
synthesis functions ~� and ~ are the sameas those in Figure 12.
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