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Huge Impact of Wavelets in Astronomy

3000 astronomical papers 
with the word “Wavelet” 
in the abstract, and in ALL 
domains of astrophysics.

76 papers already published in 
2008 with the word “Wavelet” 
in the abstract, and 15 in the 
title!
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ABSTRACT
The effects of particle discreteness in N-body ΛCDM simulations are still an intensively debated 
issue. In this paper we explore such effects, taking into account the scatter caused by the randomness 
of the initial conditions and focusing on the statistical properties of the cosmological density field. 
For this purpose, we run large sets of ΛCDM simulations and analyze them using a wide variety of 
diagnostics, including new and powerful wavelet statistics. Among other facts, we point out 
(1) that dynamical evolution does not propagate discreteness noise up from the small scales at which 
it is introduced and 
(2) that one should aim to satisfy the condition ε  2d, where ε is the force resolution and d is the 
interparticle distance. We clarify what such a condition means and how to implement it in modern 
cosmological codes.



2-

COSMOS data :
Maps of the Universe’s Dark matter scaffolding,   Massey et al, Nature, 

Vol. 445, pp. 286-290, 2007

Baryonic and non-baryonic matter 
comparison at large scale

The total projected mass map from WL (dominated 
by dark matter) is shown as contours. It is 
compared to 3 independent baryonic tracers : 
stellar mass (in blue), galaxy number density seen 
in optical and near-IR light (in green) and the hot 
gas seen in x-rays (in red).



This broad success of the wavelet transform is due to the fact that 
astronomical data generally gives rise to complex hierarchical 
structures, often  described as fractals. 

Using multiscale approaches such as the wavelet transform, an image 
can be decomposed into components at different scales, and  the 
wavelet transform is therefore well-adapted to the study of 
astronomical  data. 

Wavelet Transform in Astronomy
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ISOTROPIC UNDECIMATED WAVELET TRANSFORM
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Isotropic Undecimated Wavelet Transform
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Dynamic Range Compression
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Undecimated  WT (7/9 filters)
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Comparison between the undecimated isotropic WT 
and the standard UWT



Undecimated WT: h=16[1,4,6,4,1], g=Id-h Isotropic WT
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Problems
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MODIFIED Isotropic Undecimated Wavelet Transform
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 J.-L. Starck, J. Fadili and F. Murtagh, "The Undecimated Wavelet Decomposition and its Reconstruction” , IEEE Trans. on Image Processing,  16,  2, pp 297--309, 2007.
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Reconstruction using Scaling Functions



MODIFIED  ISOTROPIC UNDECIMATED WT
h = h1d#h1d,  g =Id-h*h  
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Haar Transform with Smooth Reconstruction Filters



Compressed  Sensing

* E. Candès and T. Tao, “Near Optimal Signal Recovery From Random Projections: Universal 
Encoding Strategies? “,  IEEE Trans. on Information Theory, 52, pp 5406-5425, 2006.
* D. Donoho, “Compressed Sensing”, IEEE Trans. on Information Theory, 52(4), pp. 1289-1306, April 2006.
* E. Candès, J. Romberg and T. Tao, “Robust Uncertainty Principles: Exact Signal Reconstruction 
from Highly Incomplete Frequency Information”,  IEEE Trans. on Information Theory, 52(2) pp. 489 - 509, Feb. 2006.

“Signals with exactly K components different from zero can be 
recovered perfectly from ~ K log N incoherent measurements”

⇒Application: Compression, tomography, ill posed inverse problem.

A non linear sampling theorem

Reconstruction via non linear processing: 



Reconstruction via non linear processing: 

Compressed Sensing Reconstruction 

Measurements:

In practice,  x is sparse in a given dictionary:

and we need to solve: 

the number of required measurements is : 2



Compressed Sensing presents several interesting properties for 
data compress:

•Compression is very fast ==> good for on-board applications.
•Very robust to bit loss during the transfer.
•Decoupling between compression/decompression.
•Data protection.
•Linear Compression.

Compressed Sensing For Data Compression

But clearly not as competitive to JPEG or JPEG2000 to 
compress an image.



      

Typical Astronomical Data related to CS
   -  (radio-) Interferometry:        = Fourier transform
                                                  = Id  (or Wavelet transform)                                         
   -  Period detection in temporal series
             = Id
            = Fourier transform
   -  Gamma Ray Instruments (Integral) - Acquisition with coded masks

CS gives another point of view on some existing methods
  - Inpainting:          = Id

New problems that can be addressed by CS
==>   Data compression: the case of Herschel satellite

s.t.

Compressed Sensing Impact in astronomy



(Radio-) Interferometry

 J.L. Starck, A. Bijaoui, B. Lopez, and C. Perrier, "Image Reconstruction by the Wavelet Transform Applied to Aperture Synthesis",  
Astronomy and Astrophysics, 283, 349--360, 1994.

Wavelet - CLEAN minimizes well the l0 norm  

But recent l0-l1 minimization algorithms would be clearly much faster.



INTEGRAL/IBIS Coded Mask

Excess 1 
Position (SPSF fit)
Identification
 Modelling

Excess 2 
Position (SPSF fit)
Identification
 Modelling



 Stéphane Schanne, CEA 
ECLAIRs

- ECLAIRs  france-chinese satellite ‘SVOM’ (launch in 2013)
  Gamma-ray detection in energy range  4 - 120 keV
  Coded mask imaging (at 460 mm of the detector plane)
- detector 1024 cm2 of Cd Te (80 x 80 pixels)
- mask   (100 x 100 pixels)

masque 

blindage 

structure 

détecteur 

thermique 

électronique 

boîtier 

blanc = opaque, rouge = transparent



Where M is the mask: M(i,j) = 0  ==> missing data
                                    M(i,j) = 1  ==> good data

Interpolation of Missing Data: Inpainting
•M. Elad, J.-L. Starck, D.L. Donoho, P. Querre, “Simultaneous Cartoon and Texture Image Inpainting using Morphological Component Analysis (MCA)", 
ACHA, Vol. 19, pp. 340-358,  2005.
•M.J. Fadili, J.-L. Starck and  F. Murtagh, "Inpainting and Zooming using Sparse Representations",  in press.

s.t.



Where M is the mask: M(i,j) = 0  ==> missing data
                                    M(i,j) = 1  ==> good data

Interpolation of Missing Data: Inpainting
•M. Elad, J.-L. Starck, D.L. Donoho, P. Querre, “Simultaneous Cartoon and Texture Image Inpainting using Morphological Component Analysis (MCA)", 
ACHA, Vol. 19, pp. 340-358,  2005.
•M.J. Fadili, J.-L. Starck and  F. Murtagh, "Inpainting and Zooming using Sparse Representations",  in press.
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Jalal Fadili’s web page (http://www.greyc.ensicaen.fr/~jfadili).



Inpainting : 

 Original map Masked map Inpainted map

Power spectrum Bispectrum



This space telescope has been designed to 
observe in the far-infrared and sub-millimeter 
wavelength range.
Its launch is scheduled for the beginning of 2009. 
The shortest wavelength band, 57-210 microns, is 
covered by PACS (Photodetector Array Camera and 
Spectrometer).

Herschel data transfer problem:
-no time to do sophisticated data compression on 
board.
-a compression ratio of 6 must be achieved.

==> solution:  averaging of six successive images 
on board

CS may offer another alternative.

HERSCHEL



The proposed Herschel compression scheme



The coding scheme

Good measurements must be incoherent with the basis  in which  the data are assumed to be sparse. 

Noiselets (Coifman, Geshwind and Meyer,  2001) are an orthogonal basis that is shown to be highly 
incoherent  with a wide range of practical sparse representations (wavelets, Fourier, etc).

 
Advantages:
 Low computational cost  (O(n))
 Most astronomical data are sparsely represented in a wide range of wavelet bases
  
 



The decoding scheme



Six consecutive observations of the same field can be 
decompressed together:



Sensitivity: CS versus mean of 6 images

CS

Mean



Resolution: CS versus Mean

Simulated image Simulated noisy image with flat and dark

Mean of six images Compressed sensing reconstructed images

Resolution limit versus SNR



CS and Herschel Status

• CS compression is implemented in the 
Herschel on-board software (as an option).

• CS Tests in flight will be done.
• Software developments required for an 

efficient decompression (taking into account 
dark, flatp-field, PSF, etc).

• The CS decompression is fully integrated in 
the data processing pipeline.

43



Data Fusion: JPEG versus Compressed Sensing

One of the 10 observations  

Averaged of the 10 JPEG compressed images (CR=4) Reconstruction from the 10  compressed sensing images (CR=4)

Simulated source



One observation 10 observations 20 observations 100 observations

Compression Rate: 25

JPEG2000 Versus Compressed Sensing



Conclusions on CS

Compressed Sensing gives us a clear direction for:
   - (radio-) interferometric data reconstruction
   - periodic signals with sampled irregularly
   - gamma-ray image reconstruction
   
CS provides an interesting framework and a good theoretical 
support for our inpainting work.

CS can be a good solution for on board data compression.

CS is a highly competitive solution for compressed data 
fusion.

http://fr.arxiv.org/abs/0802.0131PREPRINT:


