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Huge Impact of Wavelets in Astronomy

3000 astronomical papers
with the word “Wavelet”
1in the abstract, and in ALL
domains of astrophysics.

76 papers already published in
2008 with the word “Wavelet”
in the abstract, and 15 1n the
title!

— Sun: active region oscillations (Ireland et al., 1999; Blanco et al., 1999),

determination of solar cycle length variations (Fligge et al., 1999), fea-
ture extraction from solar images (Irbah et al., 1999), velocity fluctuations
(Lawrence et al., 1999).

Solar system: asteroidal resonant motion (Michtchenko and Nesvorny,
1996), classification of asteroids (Bendjoya, 1993), Saturn and Uranus ring
analysis (Bendjoya et al., 1993; Petit and Bendjoya, 1996).

Star studies: Ca II feature detection in magnetically active stars (Soon
et al., 1999), variable star research (Szatmary et al., 1996).

Interstellar medium: large-scale extinction maps of giant molecular clouds
using optical star counts (Cambrésy, 1999), fractal structure analysis in
molecular clouds (Andersson and Andersson, 1993).

Planetary nebula detection: confirmation of the detection of a faint plan-
etary nebula around IN Com (Brosch and Hoffman, 1999), evidence for
extended high energy gamma-ray emission from the Rosette/Monoceros
Region (Jaffe et al., 1997).

Galaxy: evidence for a Galactic gamma-ray halo (Dixon et al., 1998).
QSO: QSO brightness fluctuations (Schild, 1999), detecting the non-
Gaussian spectrum of QSO Ly, absorption line distribution (Pando and
Fang, 1998).

Gamma-ray burst: GRB detection (Kolaczyk, 1997; Norris et al., 1994)
and GRB analvsis (Greene et al.. 1997: Walker et al.. 2000).

Black hole: periodic oscillation detection (Steiman-Cameron et al., 1997;
Scargle, 1997)

Galaxies: starburst detection (Hecquet et al., 1995), galaxy counts (Aus-
sel et al., 1999; Damiani et al., 1998), morphology of galaxies (Weistrop
et al., 1996; Kriessler et al., 1998), multifractal character of the galaxy
distribution (Martinez et al., 1993a).

Galaxy cluster: sub-structure detection (Pierre and Starck, 1998; Krywult
et al., 1999; Arnaud et al., 2000), hierarchical clustering (Pando et al.,
1998a), distribution of superclusters of galaxies (Kalinkov et al., 1998).
Cosmic Microwave Background: evidence for scale-scale correlations in
the Cosmic Microwave Background radiation in COBE data (Pando et al.,
1998b), large-scale CMB non-Gaussian statistics (Popa, 1998; Aghanim
et al., 2001), massive CMB data set analysis (Gorski, 1998).

— Cosmology: comparing simulated cosmological scenarios with observations

(Lega et al., 1996), cosmic velocity field analysis (Rauzy et al., 1993).
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Discreteness Effects in ACDM Simulations: A Wavelet-Statistical View
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and
Institute for Theoretical Physics, University of Zurich, CH-8057 Zurich, Switzerland

ABSTRACT

The effects of particle discreteness in N-body ACDM simulations are still an intensively debated
issue. In this paper we explore such effects, taking into account the scatter caused by the randomness
of the initial conditions and focusing on the statistical properties of the cosmological density field.
For this purpose, we run large sets of ACDM simulations and analyze them using a wide variety of
diagnostics, including new and powerful wavelet statistics. Among other facts, we point out

(1) that dynamical evolution does not propagate discreteness noise up from the small scales at which
it is introduced and

(2) that one should aim to satisty the condition € 2d, where ¢ is the force resolution and d is the
interparticle distance. We clarify what such a condition means and how to implement it in modern
cosmological codes.
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nature

COSMOS data :

Maps of the Universe’s Dark matter scaffolding, Massey et al, Nature,

Vol. 445, pp. 286-290, 2007
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aetsss Baryonic and non-baryonic matter
comparison at large scale

The total projected mass map from WL (dominated
by dark matter) is shown as contours. It is |
compared to 3 independent baryonic tracers

in optical and near-IR light (in green) and the hot §
gas seen in x-rays (in red).




Wavelet Transform in Astronomy

This broad success of the wavelet transform i1s due to the fact that
astronomical data generally gives rise to complex hierarchical
structures, often described as fractals.

Using multiscale approaches such as the wavelet transform, an 1image
can be decomposed into components at different scales, and the
wavelet transform is therefore well-adapted to the study of
astronomical data.




Wavelet Transform in Astronomy

‘ The Filter Bank .

In order to get an exact reconstruction, two conditions are required for the
filters:

e Dealiasing condition: h(v -+ %)iz(z/) +g(v + %)é(u) 0

e Exact restoration: h(v)h(v) + §(v)g(v) = 1
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Wavelet Transform in Astronomy
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‘ The Isotropic Undecimated Wavelet Transform I

Filters do not need to verify the dealiasing condition. We need only the

exact restoration condition:

h()h(v) + §)i(v)

Filters do not need to be (bi) orthogonal.

Filters must be symmetric.

In 2D, we want h(z,y) — h(x)h(y) for fast calculation and more

important, h(x,y) must nearly isotropic.

h is derived from a By spline: hyp(k)
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Wavelet Transform in Astronomy
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The Isotropic Wavelet and Scaling Functions

1 ) ) ) ) )

Ba(z) = E(\.L 2P <4|lz—-1P46|z|°-alz+12+|z+2/)

P(z,y) Bs(z)B3(y)
1 T y 1 = y
—(=, = — T —(=. =
41,)(2,2) ¢(z,u) 4<)"(2.2)

""'/\"
\
— i -
N |




ISOTROPIC UNDECIMATED WAVELET TRANSFORM

Scale 1 Scale 2 Scale 3 Scale 4 Scale 5
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NGC2997




Isotropic Undecimated Wavelet Transform

I x. 1 x
@ = B, —spline, —y(=) =—@(>) - ¢(x) /
: 2727 27 I(k,D)=cjp, + Ej=1W ik

~

h=[1,4,6,411/16, g=56-h, h=g=4




Dynamic Range Compression

J
Iy = log(cy k) + ngn(-wj,k,l)logﬂ wj g | +e€)
j=1

Left - Hale-Bopp Comet image. Middle - histogram equalization results, Right -

wavelet-log representations.




Comparison between the undecimated isotropic WT
and the standard UWT

Coarsest scale
(astro filters)

Coarsest scale
(7/9 filters)







Problems  I(k,])

Data restoration: ringing artefacts may appear around strongest

sources, which is due to the negative part of the wavelet function.

Large scale structure thresholding may create artefacts.




MODIFIED Isotropic Undecimated Wavelet Transform

J.-L. Starck, J. Fadili and F. Murtagh, "The Undecimated Wavelet Decomposition and its Reconstruction”, IEEE Trans. on Image Processing, 16, 2, pp 297--309, 2007.
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Reconstruction using Scaling Functions

J
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MODIFIED ISOTROPIC UNDECIMATED WT
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Haar Transform with Smooth Reconstruction Filters
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Compressed Sensing

* E. Candés and T. Tao, “Near Optimal Signal Recovery From Random Projections: Universal

Encoding Strategies? “, IEEE Trans. on Information Theory, 52, pp 5406-5425, 2006.

* D. Donoho, “Compressed Sensing”, IEEE Trans. on Information Theory, 52(4), pp. 1289-1306, April 2006.
* E. Candes, J. Romberg and T. Tao, “Robust Uncertainty Principles: Exact Signal Reconstruction

from Highly Incomplete Frequency Information”, IEEE Trans. on Information Theory, 52(2) pp. 489 - 509, Feb. 2006.

A non linear sampling theorem

“Signals with exactly K components different from zero can be
recovered perfectly from ~ K log N incoherent measurements”

Replace samples with few linear projections y — @.CL‘
Y

M x 1

measurements

sparse y — @CE

signal

K

nonzero

K < M << N entries

Reconstruction via non linear processing: 1111 H.'L' || 1 S.t. y o @:C
T

= Application: Compression, tomography, ill posed inverse problem.




Compressed Sensing Reconstruction
Measurements: Yk = <17 9k>

Reconstruction via non linear processing: min ||:BH 1 Ss.t. y = @A:E
X

In practice, xis sparse in a given dictionary: [ — (I)Of

and we need to solve: miIlHOéHl s.t. y = 0,0«
8

te.e = max ‘ <9i, ¢j>‘

12V}

the number of required measurements is : 771 > C.;ﬁ@,q).S. log n




Compressed Sensing For Data Compression

Compressed Sensing presents several interesting properties for
data compress:

Compression is very fast ==> good for on-board applications.
*VVery robust to bit loss during the transfer.

‘Decoupling between compression/decompression.

Data protection.

Linear Compression.

But clearly not as competitive to JPEG or JPEG2000 to
compress an image.




Compressed Sensing Impact in astronomy

y = Ox

Typical Astronomical Data related to CS
- (radio-) Interferometry: ® = Fourier transform
d=1Id (or Wavelet transform)
- Period detection in temporal series
O =14
@& = Fourier transform
- Gamma Ray Instruments (Integral) - Acquisition with coded masks

CS gives another point of view on some existing methods
- Inpainting: & =1d

min || allg st y=MPa= Mz
84

New problems that can be addressed by CS
==> Data compression: the case of Herschel satellite




(Radio-) Interferometry

)

. !
e
R

J.L. Starck, A. Bijaoui, B. Lopez, and C. Perrier, "Image Reconstruction by the Wavelet Transform Applied to Aperture Synthesis",
Astronomy and Astrophysics, 283, 349--360, 1994.

Wavelet - CLEAN minimizes well the 1, norm

But recent 1,-1, minimization algorithms would be clearly much faster.




INTEGRAL/IBIS Coded Mask
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ECLAIRs

6=9 - ECLAIRs france-chinese satellite ‘SVOM’ (launch in 2013)
. Gamma-ray detection in energy range 4 - 120 keV
Coded mask imaging (at 460 mm of the detector plane)
- detector 1024 cm? of Cd Te (80 x 80 pixels)
- mask (100 x 100 pixels)

masque -3 I /\ blanc = opaque, rouge = transparent

1005 5—3——

blindage

structure

détecteur

thermique

électronique

boitier
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Interpolation of Missing Data: Inpainting

*M. Elad, J.-L. Starck, D.L. Donoho, P. Querre, “Simultaneous Cartoon and Texture Image Inpainting using Morphological Component Analysis (MCA)",
ACHA, Vol. 19, pp. 340-358, 2005.
*M.J. Fadili, J.-L. Starck and F. Murtagh, "Inpainting and Zooming using Sparse Representations”, in press.

©) =Idyx min || @ || y=Mba =Mz
(8

Where M is the mask: M(i,j) =0 ==> missing data
M(i,j) =1 ==> good data

-1.37¢+03 I T +1.42e+03




Interpolation of Missing Data: Inpainting

*M. Elad, J.-L. Starck, D.L. Donoho, P. Querre, “Simultaneous Cartoon and Texture Image Inpainting using Morphological Component Analysis (MCA)",
ACHA, Vol. 19, pp. 340-358, 2005.
*M.J. Fadili, J.-L. Starck and F. Murtagh, "Inpainting and Zooming using Sparse Representations”, in press.

O, =1dy moin |al|le, s.t. y =Mz

Where M is the mask: M(i,j) = 0 ==> missing data
M(1,j) =1 ==> good data

(n+1) _ S¢>}A(ﬂ) $(ﬂ') + M |y — $(ﬂ’)
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Inpainted with the curvelet dictionary (80% data missing)
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Jalal Fadili’s web page (http://www.greyc.ensicaen.fr/~jfadili.




- '
|.:.-|~.$'.'|

Ty -

150 200 250

Wer spectru

original ma

inpainting method

e e e R |

|

s

rm

Bispé

T T F T T

T v v

ctrum

original
inpainted
masked

1 L

100

1000

10000




HERSCHEL

This space telescope has been designed to
observe in the far-infrared and sub-millimeter
wavelength range.

Its launch is scheduled for the beginning of 2009.
The shortest wavelength band, 57-210 microns, is
covered by PACS (Photodetector Array Camera and
Spectrometer).

Herschel data transfer problem:

-no time to do sophisticated data compression on
board.

-a compression ratio of 6 must be achieved.

==> solution: averaging of six successive images
on board

. [Evropean Space Agen_iy': s :

. -Agence spafiale européenne s 3

CS may offer another alternative.




The proposed Herschel compression scheme

2D Noiselet
Transform

+

Projections

6 consecutive Coding
shifted images

(On board)

min [afls, st. [y — F(Or®a)|l, < ¢
(2]

r = P«
Decoding Decoded data

(On the ground)




The coding scheme

Noiselet
Projections
L Transform J y

Good measurements must be incoherent with the basis in which the data are assumed to be sparse.

Noiselets (Coifman, Geshwind and Meyer, 2001) are an orthogonal basis that is shown to be highly
incoherent with a wide range of practical sparse representations (wavelets, Fourier, etc).

Advantages:

Low computational cost (O(n))
Most astronomical data are sparsely represented in a wide range of wavelet bases




The decoding scheme

min [[alle, st. [ly — ©x®alle, < ¢

X

r = Pao

Physical priors

oM =8, {(l’(hl) +d'el (yﬂ — IAG)(I)a(hl))}

1. Set the number of iterations I,;,4x and threshold *y(o) = ||<I>T®Tyﬁ\|oo. 2(0) is set to zero.
2. While 'y(h) is higher than a given lower bound vin
e Compute the measurement projection of g(h—1).
y(h’) — IA@)x(h_l)_
e Estimate the current coefficients a(?):
ah) — Sw(h) {a(h—l) +dTET [yii _ y(h)] }

e Get the new estimate of z by reconstructing from the selected coefficients a/(P) :
z(h) = dah).

3. Decrease the threshold v(") following a given strategy.




min |lalle, s-t. ||y — OrPa|le, <€

X

r = Pa

Physical priors

Six consecutive observations of the same field can be
decompressed together:

( h

Spam § o™ + Z e (y = @&7(”))

i=1,..6
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Detection Rate

Sensitivity: CS versus mean of 6 images
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Simulated image

Resolution: CS versus Mean

Mean of six images

Resolution limit versus SNR

Simulated noisy image with flat and dark

Compressed sensing reconstructed images

SNR —-17.3 —9.35 -3.3 0.21 2.7 4.7 6.2 7.6 8.7
Intensity 900 2250 4500 6750 9000 11250 13500 15750 18000
MO6 3 3 3 3 3 3 3 3 3
CS 2.33 2.33 2 2 2 2 2 2 2

THE CS-BASED COMPRESSION ENTAILS A RESOLUTION GAIN EQUAL TO A 30% OF THE SPATIAL
RESOLUTION PROVIDED BY MO6.




CS and Herschel Status

e CS compression 1s implemented 1n the
Herschel on-board software (as an option).

e CS Tests in flight will be done.

e Software developments required for an
efficient decompression (taking into account

dark, flatp-field, PSF, etc).

e The CS decompression 1s fully integrated in
the data processing pipeline.

43




Data Fusion: JPEG versus Compressed Sensing

Simulated source One of the 10 observations

Averaged of the 10 JPEG compressed images (CR=4) Reconstruction from the 10 compressed sensing images (CR=4)




JPEG2000 Versus Compressed Sensing

Compression Rate: 25

One observation 10 observations 20 observations 100 observations

\/

Compressed Sensing versus JPEG2000 - Compression Rate : 4%
40

—— JPEG2000
— Compressed Sensing
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Conclusions on CS

Compressed Sensing gives us a clear direction for:
- (radio-) interferometric data reconstruction
- periodic signals with sampled irregularly
- gamma-ray image reconstruction

CS provides an interesting framework and a good theoretical
support for our inpainting work.

CS can be a good solution for on board data compression.

CS is a highly competitive solution for compressed data
fusion.

PREPRINT: nttp:/ifrarxiv.org/abs/0802.0131




