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Abstract

The statistical analysis of the soon to come Planck satellite CMB data will help set tighter bounds on
major cosmological parameters. On the way, a number of practical difficulties need to be tackled, notably
that several other astrophysical sources emit radiation in the frequency range of CMB observations. Some
level of residual contributions, most significantly in the galactic region and at the locations of strong radio
point sources will unavoidably contaminate the estimated spherical CMB map. Masking out these regions is
common practice but the gaps in the data need proper handling. In order to restore the stationarity of a partly
incomplete CMB map and thus lower the impact of the gaps on non-local statistical tests, we developed an
inpainting algorithm on the sphere based on a sparse representation of the data, to fill in and interpolate
across the masked regions.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The analysis of the slight fluctuations in the Cosmic Microwave Background radiation field
(CMB), for which evidence was found for the first time in the early 1990s in the observations
made by COBE [1], is a major issue in modern cosmology, as these are strongly related to the
cosmological scenarios describing the properties and evolution of our Universe. In the ’Big
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Bang’ model, the map of CMB fluctuations is an imprint of primordial fluctuations in matter
density from a time when the temperature of the Universe in quasi-thermal equilibrium, was
high enough above 3000 K for matter and radiation to be tightly coupled. With gravity, the
density fluctuations collapsed into large scale structures such as galaxies or clusters of galaxies.
Due to the expansion of the nearly transparent Universe in which they were set free, the CMB
photons are now observed in the microwave range, while still being distributed according to an
almost perfect Black Body emission law. Full-sky multispectral observations of the CMB with
unprecedented sensitivity and angular resolution are expected from the ESA’s Planck mission,
which is to be launched in September 2008. The statistical analysis of this data set will help set
tighter bounds on major cosmological parameters. On the way, there are a number of practical
difficulties that need to be overcome and notably that several other astrophysical sources also
emit radiation in the frequency range used for CMB observations [2]. The task of separating the
observed mixture maps back into the different contributing astrophysical components in order to
isolate the CMB properly turns out to be a redoubtable and strenuous inverse problem for which
dedicated methods and algorithms are currently being actively designed (e.g., [3–5] and the
references therein). Some level of residual contributions, most significantly in the galactic region
and at the locations of strong radio point sources will unavoidably contaminate the estimated
spherical CMB maps. Therefore, it is common practice to mask out those parts of the data
(e.g. using the mask shown on Fig. 5, provided by the WMAP1 team) in order for instance to
reliably assess the non-Gaussianity of the CMB field through estimated higher order statistics
(e.g. skewness, kurtosis) in various representations (e.g. wavelet, curvelet, etc.) [6] or to estimate
the power spectrum of the CMB spatial fluctuations. But the gaps in the data thus created need to
be handled properly. In order to restore the stationarity of a partly incomplete CMB map and thus
drastically lower the impact of the missing patches on the estimated measures of non-Gaussianity
or on any other non-local statistical test, we developed an inpainting algorithm on the sphere to
fill in and interpolate across the masked regions. The grounds for our inpainting scheme are in
the notion of sparsity of the representation of a data set as is quickly discussed in Section 2. The
proposed gap-filling algorithm is described in Section 3. Several numerical experiments were
conducted on synthetic data in the context of CMB data analysis and the results of these are
reported in Section 4.

2. Sparsity and CMB data maps

Consider a vector of observations y ∈ Rn the entries of which are the pixels of some spherical
map, or the samples of some 1D signal or 2D image etc. in some other context. A common
processing task is then to decompose the data y into its elementary building blocks as in the
following generative model :

y =

∑
i

αiφi + η (1)

that is a linear combination of relevant waveforms φi ∈ Rn with weights αi . Here η represents
possible contamination by additive, typically Gaussian white noise. Given data y ∈ Rn , one
then wants to recover the underlying structures that is to say estimate a set of waveforms φi
that build the data and their corresponding weights α̃i . The solution to this estimation problem

1 http://map.gsfc.nasa.gov.
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will depend heavily on the available prior information. We will assume here, for instance,
that one is given a priori a basis, a frame or a large redundant dictionary of waveforms
from which to select a good subset. For data mapped to the sphere such as full-sky CMB
maps, available invertible transforms include the spherical harmonics and several wavelet
transforms. Software packages such as Healpix2 [7] or Glesp [8] provide approximate digital
spherical harmonic transform routines based on their specific pixelization schemes. Schröder
and Sweldens [9] have developed an orthogonal wavelet transform on the sphere; Freeden et al.
give a wavelet transform/reconstruction scheme on the sphere which is based on the spherical
harmonic transform [10]. Following this idea, Starck et al., [11] proposed an invertible isotropic
undecimated wavelet transform (UWT) on the sphere which preserves the same desirable
properties as the standard isotropic UWT for flat 2D maps [12]. Recently, building on the latter
and the Healpix geometry, other multiscale transforms such as the pyramidal wavelet transform,
the ridgelet transform and the curvelet transform were extended to handle spherical maps [11].

Any y ∈ Rn obviously has an exact representation over any complete basis of ∈ Rn or
several such exact representations in the case of redundant overcomplete dictionaries. However,
these representations are not equally interesting in terms of data modeling or feature detection
and there is a strong a priori in favor of sparse representations of y that use only a small
number of waveforms: exhibiting a sparse representation of the data y ∈ Rn suddenly makes
information more concise and possibly more interpretable. Still, building sparse representations
or approximations of structured data by solving

min
α

‖α‖`0 subject to y = Φα (2)

is about selecting the smallest subset of waveforms from a possibly redundant dictionary Φ, that
will linearly combine to reproduce the salient features of a given signal or image y, and in general
this is a hard combinatorial problem. A number of algorithms have been proposed in an attempt
to solve (2) directly or relaxed or approximate versions of this problem e.g.

BP : min
α

‖α‖`1 subject to y = Φα (3)

BPDN : min
α

1
2
‖y − Φα‖

2
`2

+ λ‖α‖`1 λ > 0 (4)

where sparsity is measured using `1 norm in place of the `0 counting norm. This large set of
algorithms includes the greedy Matching Pursuit (MP) [13], Basis Pursuit (BP) and Basis Pursuit
Denoising (BPDN) [14], LARS [15], Stomp [16], MCA [17] and Polytope Faces Pursuit [18].
A gradient descent algorithm to solve (4) is described in [19,20]. The conditions under which
each of these algorithms provides a unique sparse solution and the conditions under which these
solutions actually coincide with the optimal solution to problem (2) have been recently explored
by a number of authors (e.g., [21–23]). They showed that the proposed methods are able to
recover the sparsest solution provided this solution is indeed sparse enough and the dictionary is
sufficiently incoherent.

CMB data analysis is a challenging application for sparse signal processing methods. As
mentioned previously, CMB is well modeled as a mixture of different astrophysical contributions
which may have extremely sparse representation in different bases. For instance the map of
Sunyaev–Zeldovich galaxy clusters is well represented in an undecimated isotropic wavelet

2 http://www.eso.org/science/healpix.
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Fig. 1. `2 non-linear approximation relative error curve of a simulated CMB map in the spherical harmonics
representation (dotted line) and in the pixel representation (continuous line) as a function of the fraction of largest
coefficients in the truncated reconstruction series. The CMB map appears to have a sparser representation in the spherical
harmonics decomposition.

dictionary while the structured galactic dust clouds or the arcs in the map of synchrotron
radiation are sparsely represented using a dictionary of anisotropic waveforms such as curvelets.
Separating the different components can be formulated as a problem of building a sparse
representation for multichannel data in a large dictionary of morpho-spectral waveforms. This
was proposed in [4] and encouraging results are reported in [24]. Our concern here is with
correctly handling the gaps in the separated CMB map and interestingly this issue can also be
approached on the side of sparse data processing. Indeed, although the CMB proper is well
modeled as a realization of a stationary Gaussian random field on the sphere, it is not deprived
of structure and so the concept of sparsity is still valid. The power spectrum of the spatial
correlations in the CMB is not flat and the complex a`,m with 0 ≥ m ≥ ` of the CMB are
well modeled as independent Gaussian variables with variance C` rapidly decreasing towards
zero as the multipole number ` grows. Hence, the empirical distribution of all these coefficients
together is sparse. A convenient way to exhibit the sparsity of a specific representation of y is to
look at the `2 non-linear approximation relative error curve i.e. at the fractional reconstruction
error obtained as a function of N when a truncated reconstruction series, where only the N largest
coefficients are kept, is used as an approximation to the initial y. The graph on Fig. 1 shows that
the CMB has a sparse representation in the spherical harmonics decomposition. This important
feature of the CMB radiation field is what is strongly relied on in order to fill in the gaps in an
incomplete CMB map using the inpainting algorithm derived in the next section.

3. Full-sky CMB inpainting based on sparsity

Inpainting refers to a set of methods used to alter images in a way that is undetectable to people
who are unaware of the original images. There are numerous motivations for such tools among
which include removing scratches or objects in digitized photographs, removing overlayed text
or graphics, filling in missing blocks in unreliably transmitted images, predicting values in
images for better compression or image upsampling. Inpainting algorithms strive to interpolate
through the gaps in the image relying on the available pixels, the continuation of edges, the
periodicity of textures, etc. The preservation of edges and texture, in other words discontinuities,
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across gaps has attracted much interest, and many contributions have been proposed to solve
this interpolation task. Non-texture image inpainting has received considerable interest and
excitement since the pioneering paper by Masnou and Morel [25] who proposed variational
principles for image disocclusion. A recent wave of interest in inpainting has started from the
recent contributions of Sapiro et al. [26], followed by Chan and Shen [27]. In these works,
authors point to the importance of geometry and design anisotropic diffusion PDEs to fill in
gaps by smooth continuation of isophotes. PDE methods have been shown to perform well on
piece-wise smooth functions.

Another inpainting algorithm is the one described in [28]. This method relies strongly on the
ideas reviewed in the previous section of sparsity and the construction of sparse representations
in large redundant dictionaries, thus promoting a rather different approach of the inpainting
problem. To make the link between building sparse representations and inpainting, consider for
instance the effect of a rectangular gap on the set of Fourier coefficients of a monochromatic
sinewave: in the Fourier domain, the consequence is a spread of the spectral lines of the initial
sinewave due to convolution by the Fourier transform of the gap function. Also, due to the non-
locality of the Fourier basis functions it takes a large number of coefficients to account for the
inserted gap, which is something known as the Gibbs effect. The proposed inpainting algorithm
would deal with the present deconvolution problem in the spectral domain by, very schematically,
solving a detection problem: the complete monochromatic sinewave is recovered by iteratively
selecting the largest coefficients in the Fourier domain with which a sparse signal is built which
exactly fits the data outside the gap with no attempt to actually fit the zeros replacing missing
data in the gap.

Extending the method in [28] to handle incomplete maps on the sphere is straightforward.
Consider a discrete spherical data map y ∈ Rn and a diagonal n × n matrix M such that ones on
the diagonal of M indicate that the corresponding pixels in y are valid data while zeros indicate
invalid data. With a slight modification of the BP objective function (3) as follows:

BP : min
α

‖α‖`1 subject to MΦα = My (5)

we are preventing the sparse model under construction from attempting to fit the invalid data. We
are seeking a solution α to a linear system of equations with minimum `1 norm. It appears clearly
that features in the original data y which are associated with atoms in Φ that are orthogonal to
the pixel subspace defined by M are lost and cannot be recovered with the described method.
Different algorithms referred to in the previous section can be used to solve this minimization
problem. We propose that a satisfactory solution can be reached using an iterative thresholding
process as in [17,16]. The algorithm in [17] is simply modified so that the full residual is
multiplied by M after each residual estimation :

1. Set the number of iterations Imax, the initial threshold λ(0) and ỹ(0)
= 0.

2. While λ(t) is greater than a given lower bound λmin (e.g. may depend on the noise
standard deviation), proceed with the following iteration:
– Compute the residual term: r (t)

= y − ỹ(t−1)

– Thresholding: α(t)
= δλ(t)

(
Φ−1

(
Mr (t)

+ ỹ(t−1)
))

– Reconstruction: ỹ(t)
= Φα(t)

– Decrease the threshold λ(t+1) < λ(t) following a given strategy.

The way the threshold is decreased at each step is an important feature of the algorithm which
will determine the speed and the quality of the inpainting. Refer to [29] for suggestions and
comparisons of different strategies. Also, the current work is on improving the stability of our
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Fig. 2. Left: WMAP data. Right: WMAP inpainted map.

algorithm by enforcing additional constraints on the reconstructed map. For instance a total
variation penalty is shown in [28] to enhance the recovery of piece-wise smooth components.
Here, we ask instead for the regularity across the gaps of some localized statistics. Preliminary
results show an improved stability when we impose the condition that the empirical variance of
the coefficients on each scale of an undecimated wavelet packet decomposition of the sparse
inpainted map should be equal outside and inside the masked areas. These constraints are
enforced at each step t of the iterative algorithm given above on the current inpainted map Φα(t).
The right choice of an undecimated wavelet packet decomposition that is of a partition of the
multipole ` domain is another tunable feature of the algorithm which we are working on. It
appears that a suitable partition should achieve a compromise between the need for bands to be
large enough for the wavelet packet coefficients to be well localized in or out of the mask on the
sphere and the need for a fine partition in order to correctly adjust to our prior knowledge of the
CMB power spectrum.

4. Numerical experiments

A simple numerical experiment is shown on Fig. 2 starting with the full-sky CMB map
provided by the WMAP team and available at http://map.gsfc.nasa.gov/. This CMB map was
partially masked to discard pixels where the level of contamination by residual foregrounds
is expected to be the highest. Applying the described inpainting algorithm making use of the
sparsity of the representation of CMB in the spherical harmonics domain leads to the map shown
on the right of Fig. 2: the stationarity of the CMB field appears to have been restored and the
masked region is completely undetectable to the eye. Fig. 5 shows the wavelet decomposition of
the inpainted map allowing for further visual positive assessment of the quality of the proposed
method as again the masked regions are undetectable at all scales.

Power spectrum estimation and non-Gaussianity detection in incomplete CMB maps are
more than likely to suffer from the existence of gaps in the data.The numerical experiments
on simulated CMB maps we report here tend to show that the proposed inpainting method is able
to correctly fill in the missing data thus restoring the stationarity of the CMB field and is able to
lower the impact of the gaps on the estimation of non-local statistics. The algorithm was applied
on nearly a hundred simulated maps which were partly masked using the Wmap’s kp0 mask, with
around 100 iterations in the spherical harmonics representation. Fig. 3 compares the average
power spectra estimated from the complete initial maps, to the one retrieved from the masked
maps with a sky-coverage correction factor and from the inpainted maps. It appears clearly

http://map.gsfc.nasa.gov/
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Fig. 3. Power spectrum of the CMB estimated from complete simulated CMB maps (black), from masked maps corrected
for sky coverage (orange), inpainted maps (blue). The lower curves give the empirical variance (multiplied by 2 for visual
purposes) as a function of ` of the three estimators of the power spectrum. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Horizontally is the scale number increasing for lower frequencies. Left: skewness of the wavelet coefficients at a
given scale of the original complete spherical CMB map (o) and of the inpainted map (x). Right: kurtosis of the wavelet
coefficients at a given scale of the original complete spherical CMB map (o) and of the inpainted map (x). RMS error
bars were estimated on a small set of fifteen simulated complete CMB maps.

that inpainting enables a significant reduction of the bias of the spectral estimation compared
to the naive-coverage correction. However the cost is a slight increase of the variance of the
spectral estimator. Fig. 4 shows plots of the estimated skewness and kurtosis at each scale of
the undecimated spherical wavelet transform of both the original map and the inpainted one.
These statistics are used here as estimators of non-Gaussianity. The plots reveal no significant
discrepancy: we believe that the proposed method will help one to discriminate between truly
non-Gaussian CMB and non-Gaussianity related to the non-stationarity of incomplete maps.
This will be further investigated in the future.



296 P. Abrial et al. / Statistical Methodology 5 (2008) 289–298

Fig. 5. Top left: masked area. From top to bottom and left to right: the seven wavelet scales of the inpainted map. From the
visual point of view, the initially masked area cannot be distinguished anymore in the wavelet scales of the inpainted map.

5. Conclusion

This paper presented an inpainting algorithm on the sphere and its application to CMB data
analysis. This application relied strongly on the sparse representation of the CMB in the basis



P. Abrial et al. / Statistical Methodology 5 (2008) 289–298 297

of spherical harmonics. The preliminary results shown here allow us to expect that the described
inpainting method on the sphere will bear much fruit in the study of CMB, especially concerning
CMB power spectrum estimation and in testing for non-Gaussianity in the CMB sky. Thanks
to the wealth of multiscale analysis tools and discrete transforms newly made available for
the representation, analysis and synthesis of data on the sphere, we are able to build sparse
representations on the sphere of data maps featuring very different structures and morphologies.
Hence the proposed inpainting algorithm will easily be applied in other areas where structured
data is naturally collected on the sphere.
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