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ABSTRACT

Reconstructing the cosmic microwave background (CMB) in the Galactic plane is extremely difficult due to the dominant foreground
emissions such as dust, free-free or synchrotron. For cosmological studies, the standard approach consists in masking this area where
the reconstruction is insufficient. This leads to difficulties for the statistical analysis of the CMB map, especially at very large scales
(to study for instance the low quadrupole, integrated Sachs Wolfe effect, axis of evil, etc.). We investigate how well some inpainting
techniques can recover the low-� spherical harmonic coefficients. We introduce three new inpainting techniques based on three differ-
ent kinds of priors: sparsity, energy, and isotropy, which we compare. We show that sparsity and energy priors can lead to extremely
high-quality reconstruction, within 1% of the cosmic variance for a mask with a sky coverage larger than 80%.
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1. Introduction

Because component separation methods do not provide good
estimates of the cosmic microwave background (CMB) in the
Galactic plane and at locations of point sources, the standard ap-
proach for a CMB map analysis is to consider that the data are
not reliable in these areas, and to mask them. This leads to an
incomplete coverage of the sky that has to be handled properly
for the subsequent analysis. This is especially true for analysis
methods that operate in the spherical harmonic domain where
localization is lost and full-sky coverage is assumed. For power
spectrum estimations, methods such as MASTER (Hivon et al.
2002) solve a linear ill-posed inverse problem that allows to de-
convolve the observed power spectrum of the masked map from
the mask effect.

For a non-Gaussianity analysis, many approaches to deal
with this missing data problem have been proposed. Methods to
solve this problems are called gap-filling or inpainting methods.

The simplest approach is to set the pixel values in the masked
area to zero. This is sometimes claimed to be a good approach
by assuming it does not add any information. However, this is
not correct, as setting the masked area to zero actually adds (or
removes) information, which again differs from the true CMB
values. A consequence of this gap-filling technique is the cre-
ation of many artificial high amplitude coefficients at the border
of the mask in a wavelet analysis or a leakage between differ-
ent multipoles in a spherical harmonic analysis. This effect can
be reduced with an apodized mask. A slightly more sophisti-
cated method consists of replacing each missing pixel by the
average of its neighbors and iterating until the gaps are filled.
This technique is called diffuse inpainting and has been used in
Planck-LFI data pre-processing Zacchei et al. (2011). It is ac-
ceptable for treatment of point sources, but is far from being a
reasonable solution for the Galactic plane inpainting in a CMB
non-Gaussianity analysis.

In Abrial et al. (2007; 2008), the problem was considered
as an ill-posed inverse problem, z = Mx, where x is the un-
known CMB, M is the masking operator, and z the masked CMB
map. A sparsity prior in the spherical harmonic domain was
used to regularize the problem. This sparsity-based inpainting
approach has been successfully used for two different CMB stud-
ies, the CMB weak-lensing on Planck simulated data (Perotto
et al. 2010; Plaszczynski et al. 2012), and the analysis of the in-
tegrated Sachs-Wolfe effect (ISW) on WMAP data (Dupé et al.
2011). In both cases, the authors showed from Monte-Carlo sim-
ulations that the statistics derived from the inpainted maps can
be trusted at a high confidence level, and that sparsity-based in-
painting can indeed provide an easy and effective solution to the
large Galactic mask problem.

It was also shown that sparse inpainting is useful for weak-
lensing data (Pires et al. 2009), Fermi data (Schmitt et al. 2010),
and asteroseismic data (Sato et al. 2010). The sparse inpaint-
ing success has motivated the community to investigate more
inpainting techniques, and other approaches have recently been
proposed.

Bucher & Louis (2012) and Kim et al. (2012) sought a solu-
tion that complies with the CMB properties, i.e. to be a homo-
geneous Gaussian random field with a specific power spectrum.
Good results were derived, but the approach presents the draw-
back that we need to assume a given cosmology, which may
not be appropriate for non-Gaussianity studies. For large scale
CMB anomaly studies, Feeney et al. (2011) and Ben-David et al.
(2012), building upon the work of de Oliveira-Costa & Tegmark
(2006), proposed to use generalized least-squares (GLS), which
coincide with the maximum-likelihood estimator (MLE) under
appropriate assumptions such as Gaussianity. This method also
requires an input power spectrum. In addition, when the covari-
ance in the GLS is singular, the authors proposed to regularize
it by adding a weak perturbation term that must also to ensure
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positive-definiteness. With this regularization, the estimator is
no longer a GLS (nor a MLE).

Because the missing data problem is ill-posed, prior knowl-
edge is needed to reduce the space of candidate solutions.
Methods that handle this problem in the literature assume priors,
either explicitly or implicitly. If we exclude the zero-inpainting
and the diffuse inpainting methods, which are of little interest for
the Galactic plane inpainting, the two other priors are:

• Gaussianity: the CMB is assumed to be a homogeneous and
isotropic Gaussian random field, therefore it is adequate to
use such a prior. In practice, methods using this prior require
the theoretical power spectrum, which has either to be esti-
mated using a method such as TOUSI (Paykari et al. 2012),
or a cosmology has to be assumed, which is an even stronger
assumption than the Gaussianity prior. We should also keep
in mind that the goal of non-Gaussianity studies is to check
that the observed CMB does not deviate from Gaussianity.
Therefore, we should be careful with this prior.
• Sparsity: the sparsity prior on a signal consists of assuming

that its coefficients in a given representation domain, when
sorted in decreasing order of magnitude, exhibit a fast decay
rate, typically a polynomial decay with an exponent that de-
pends on the regularity of the signal. Spherical harmonic co-
efficients of the CMB show a decay in O(�−2) up to � around
900 and then O(�−3) for larger multipoles. Thus, the sparsity
prior is advocated, and this explains its success for CMB-
related inverse problems such as inpainting or component
separation (Bobin et al. 2012).

We here revisit the Gaussianity and sparsity priors, and intro-
duce an additional one, the CMB isotropy, to recover the spher-
ical harmonic coefficients at low � (<10) from masked data.
We describe novel and fast algorithms to solve the optimization
problems corresponding to each prior. These algorithms origi-
nate from the field of non-smooth optimization theory and are
efficiently appliedto large-scale data. We then show that some
of these inpainting algorithms are very efficient to recover the
spherical harmonic coefficients for � < 10 when using the spar-
sity or energy priors. We also study the reconstruction quality as
a function of the sky coverage, and we show that a very good
reconstruction quality, within 1% of the cosmic variance, can be
reached for a mask with a sky coverage better than 80%.

2. CMB inpainting

2.1. Problem statement

We observe z = Mx, where x is a real-valued centered and
square-integrable field on the unit sphere S2, and M is a linear
bounded masking operator. The goal is to recover x from z.

The field x can be expanded as

x(p) =
+∞�

�=0

��

m=−�
a�,mY�m(p),

where a�,m =
�

S2
x(p)Y∗�m(p)dp,

where the complex-valued functions Y�m are the co-called spher-
ical harmonics, � is the multipole moment, and m is the phase
ranging from −� to �. The a�,m are the spherical harmonic co-
efficients of x. In the following we will denote S the spherical
harmonic transform operator and S∗ its adjoint (hence its inverse
since spherical harmonics form an orthobasis of L2(S2)).

If x is a wide-sense stationary (i.e., homogeneous) random
field, the spherical harmonic coefficients are uncorrelated,

E
�
a∗�,ma��,m�

�
= δ���δmm�C�,m.

Moreover, if the process is isotropic, then

E
�
|a�,m|2

�
= C�, −� ≤ m ≤ �,

where C� is the angular power spectrum, which depends solely
on �.

In the remainder of the paper, we consider a finite-
dimensional setting, where the sphere is discretized. x can be
rearranged in a column vector in Rn, and similarly for z ∈ Rm,
with m < n, and a ∈ Cp. Therefore, M can be seen as a ma-
trix taking values in {0, 1}, i.e., M ∈ Mm×n({0, 1}). The goal of
inpainting is to recover x from z.

2.2. a general inpainting framework

The recovery of x from z when m < n amounts to solving an
underdetermined system of linear equations. Traditional mathe-
matical reasoning, in fact the fundamental theorem of linear al-
gebra, tells us not to attempt this: there are more unknowns than
equations. However, if we have prior information about the un-
derlying field, there are some rigorous results showing that such
an inversion might be possible (Starck et al. 2010).

In general, we can write the inpainting problem as the fol-
lowing optimization program

find�x ∈ Argmin
x∈Rn

R(x) s.t. z −Mx ∈ C, (1)

where R is a proper lower-bounded penalty function reflecting
some prior on x, and C is closed constraint set expressing the
fidelity term. Typically, in the noiseless case, C = {x : z = Mx}.
This is what we focus on in the remainder of the paper. We
consider three types of priors, each corresponding to a specific
choice of R.

3. Sparsity prior

Sparsity-based inpainting has been proposed for the CMB in
(Abrial et al. 2007, 2008) and for weak-lensing mass map re-
construction in Pires et al. (2009, 2010). In Perotto et al. (2010),
Dupé et al. (2011) and Rassat et al. (2012), it was shown that
sparsity-based inpainting does not destroy CMB weak-lensing,
ISW signals or some large-scale anomalies in the CMB, and is
therefore an elegant way to handle the masking problem. The
masking effect can be thought of as a loss of sparsity in the
spherical harmonic domain because the information required to
define the map has been spread across the spherical harmonic
basis (leakage effect).

Optimization problem

If the spherical harmonic coefficients a of x (i.e. a = Sx) are as-
sumed to be sparse, then a well-known penalty to promote spar-
sity is the lq (pseudo- or quasi-)norm, with q ∈ [0, 1]. Therefore,
Eq. (1) becomes

find�a ∈ Argmin
a∈Cp

�a�qq s.t. z =MS∗a, (2)

where �a�qq =
�

i |ai|q, and where |z| =
�
�(z)2 + �(z)2 for z ∈ C.

For q = 0, the l0 pseudo-norm counts the number of non-zero en-
tries of its argument. The inpainted map is finally reconstructed
as�x = S∗�a.
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Fig. 1. Relative MSE per � in percent for the two sparsity-based inpaint-
ing algorithms, IHT (dashed red line) and DR (continuous black line).

Solving Eq. (2) when q = 0 is known to be NP-hard. This
is additionaly complicated by the non-smooth constraint term.
Iterative Hard thresholding (IHT), described in Appendix A, at-
tempts to solve this problem. It is also well-known that the l1
norm is the tightest convex relaxation (in the �2 ball) of the l0
penalty (Starck et al. 2010). This suggests solving Eq. (2) with
q = 1. In this case, the problem is well-posed: it has at least a
minimizer, and all minimizers are global. Furthermore, although
it is completely non-smooth, it can be solved efficiently with
a provably converging algorithm that belongs to the family of
proximal splitting schemes (Combettes & Pesquet 2011; Starck
et al. 2010). This can be done with the Douglas-Rachford (DR)
algorithm described in Appendix B.

Comparison between IHT and DR

We compared the IHT and DR sparsity-based inpainting algo-
rithms in 100 Monte-Carlo simulations using a mask with sky
coverage Fsky = 77%. In all our experiments, we used 150 it-
erations for both iterative schemes, β = 1 and αn ≡ 1 (∀n)
in the DR scheme (see Appendix B). For each inpainted map
i ∈ {1, · · · , 100}, we computed the relative mean squared-error
(MSE)

e
(i)[�] =

�
����aTrue
�,m − a(i)

�,m

����
2

C�

�

m

and the its version in percent per �

E[�] = 100 ×
�
e

(i)[�]
�

i
(%).

Figure 1 depicts the relative MSE in percent per � for the two
sparsity-based inpainting algorithms IHT (l0) and DR (l1). We
see that at very low �, l1-sparsity inpainting as provided by the
DR algorithm yields better results. We performed the test with
other masks and arrived at similar conclusions. Because we fo-
cus on low-�, only the l1 inpainting as solved by the DR algo-
rithm is considered below.

Fig. 2. Set B�.

4. Energy prior

Optimization problem

If we know a priori the power-spectrum (C�,m)�,m (not the an-
gular one, which implicitly assumes isotropy) of the Gaussian
field x, then using a maximum a posteriori (MAP) argument, the
inpainting problem amounts to minimizing a weighted �2-norm
subject to a linear constraint

find�x = argmin
x∈Rn

�Sx�C−1 s.t. z =Mx, (3)

where for a complex-valued vector a, �a�2
C−1 =

�
�,m
|a�,m|2
C�,m

, i.e.
a weighted �2 norm. By strong convexity, Problem Eq. (3) is
well-posed and has exactly one minimizer, therefore justifying
equality instead of inclusion in the argument of the minimum in
Eq. (3).

Since the objective is differentiable with a Lipschitz-
continuous gradient, and the projector Proj{x:z=Mx} on the linear
equality set is known in closed-form, one can use a projected
gradient-scheme to solve Eq. (3). However, it turns that the es-
timate of the descent step-size can be rather crude, which may
hinder the convergence speed. One can think of using an inexact
line-search, but this will complicate the algorithm unnecessarily.
This is why we propose a new algorithm in Appendix C, based
on the Douglas-Rachford splitting method, which is easy to im-
plement and efficient.

In all our experiments in the remainder of the paper, we used
150 iterations for this algorithm with β = 50 and αn ≡ 1 (∀n)
(see Appendix C). This approach requires the power-spectrum
C�,m as an input parameter. In practice, an estimate C̃� of the
power spectrum from the data using MASTER was used, and
we set C�,m = C̃�. The latter is reminiscent of an isotropy as-
sumption, which is not necessarily true.

5. Isotropy prior

5.1. Structural constraints on the power spectrum

Strictly speaking, we would define the set of isotropic homoge-
neous random processes on the (discrete) sphere as the closed set

Ciso :=
�
x : C�,m = C�, ∀ − � ≤ m ≤ �,� ,
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Fig. 3. Normalized critical thresholds at the sig-
nificance level 0.05 as a function of �.

where C�,m = E
����(Sx)�,m

���2
�

and C� is the angular power spec-
trum, which depends solely on �. Given a realization x of a ran-
dom field, we can then naively state the orthogonal projection
of x onto Ciso by solving
min
u∈Ciso
�u − x�2 .

This formulation of the projection constraint set is not straight-
forward to deal with for at least the following reasons: (i) the
isotropy constraint set involves the unknown true C� (through the
expectation operator), which necessitates resorting to stochastic
programming; (ii) the constraint set is not convex.

5.2. Projection with a deterministic constraint

An alternative to the constraint set Ciso would be to replace C�,m

and C� by their empirical sample estimates, i.e., C�,m by
���a�,m
���2

and C� by �C� = 1
2�+1
�

m

���a�,m
���2. However, this hard constraint

might be too strict in practice and we propose to make it softer
by taking into account the variability inherent to the sample es-
timates, as we explain now.

In a nutshell, the goal is to formulate a constraint set, where
for each �, the entries a�,m of the spherical harmonic coefficient
vector a deviate the least possible in magnitude (up to a certain
accuracy) from some pre-specified vector µ; typically we take

µ =
√

C� or its empirical estimate
�
�C�. Put formally, this reads

Cε =
�
x : a = Sx,

���
���a�,m
��� − µ�

��� ≤ ε, ∀�,m
�
.

Cε is a compact set, although not convex.
We now turn to the projection on Cε. We begin by noting that

this set is separable, i.e., Cε = ×�,mB�,
where B� is the band depicted Fig. 2. It turns out that for

fixed µ, B� is so-called prox-regular since its associated orthog-
onal projector is single-valued with a closed-form. Indeed, the
projector onto Cε is

ProjCε (x) = S∗
�
ProjB�

�
a�,m
��
�,m
, (4)

where

ProjB�
(a�,m) =




(µ� + ε)a�,m/
���a�,m
���

if
���a�,m
��� > µ� + ε

(µ� − ε)a�,m/
���a�,m
���

if
���a�,m
��� < µ� − ε

a�,m otherwise.

(5)

Choice of the constraint radius: to devise a meaningful choice
(from a statistical perspective) of the constraint radius ε, we first
need to derive the null distribution1 of

���a�,m
��� − µ�,∀(�,m), with

the particular case when µ� =
�
�C�. a�,m being the spherical

harmonic coefficients of a zero-mean stationary and isotropic
Gaussian process whose angular power spectrum is C�, it is easy
to show that

2
���a�,m
���2 ∼ C�χ

2(2) and

2Lµ2
� ∼ C�χ

2(2L), ∀� ≥ 2,

where L = 2� + 1. By the Fisher asymptotic formula, we then
obtain
���a�,m
��� d→

�
C�N

��
3
4 ,

1
4

�
and

µ�
d→
�

C�N
��

1 − 1
4L
, 1

4L

�
, ∀� ≥ 2,

where
d→ means convergence in distribution. Thus, ignoring the

obvious dependency between
���a�,m
��� and µ�, we obtain

���a�,m
��� − µ�

d→
�

C�N
��

3
4 −
�

1 − 1
4L
, L+1

4L

�
·

The distribution of this difference can be derived properly us-
ing the delta method in law, but computing the covariance matrix
of the augmented vector

�
a�,m
�
m

, remains a problem. The quality
of the above asymptotic approximation increases as � increases.

The upper and lower critical thresholds at the double-sided
significance level 0 ≤ α ≤ 1 are

ε± =
�

C�

��
3
4 −
�

1 − 1
4L
±
�

L+1
4L
Φ−1
�
1 − α2

��
,

whereΦ is the standard normal cumulative distribution function.
We depict in Fig. 3 the upper and lower critical thresholds

normalized by
√

C� at the classical significance level 0.05 as a
function of �. One can observe that the thresholds are not sym-
metric. This entails that different values of ε should be used
in Eq. (5). Furthermore, as expected, the two thresholds de-
crease in magnitude as � increases. They attain a plateau for �
that is sufficiently high (typically ≥ 100). It is easy to see that
1 That is the distribution under the isotropy hypothesis.
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Fig. 4. Six masks with Fsky ∈ {0.98, 0.93, 0.87, 0.77, 0.67, 0.57}. The masked area is in blue.

the two limit values are
√

3/4 − 1 + 1.96/
√

8 = 0.559 and√
3/4 − 1 − 1.96/

√
8 = −0.8269.

The isotropy-constrained inpainting algorithm is given is
Appendix D.

6. Experiments

6.1. a�,m reconstruction

In this section, we compare the different inpainting methods de-
scribed above: the DR-sparsity prior inpainting, the DR-energy
prior inpainting, and the isotropy prior inpainting. We also
test the case of no-inpainting by applying just an Fsky cor-
rection to the a�,m spherical harmonic coefficients of the map
(i.e., data a�,m are corrected with a correction term equal to
1/
√

(Fsky). We ran 100 CMB Monte-Carlo simulations with
a resolution corresponding to nside equal to 32, which is
precise enough for the large scales we are considering. We

considered six different masks with sky coverage Fsky of
{0.98, 0.93, 0.87, 0.77, 0.67, 0.57}.

Figure 4 displays these masks. Point source masks were not
considered here, since they should not affect a�,m estimation at
very low multipole. Each of these simulated CMB maps was
masked with the six masks. Figure 5 top right shows one CMB
realization masked with the 77% Fsky mask. Figure 5 middle
and bottom show the inpainting of the Fig. 5 top right image with
the four methods (i.e., using sparsity, energy, isotropy priors,
and Fsky correction). Figure 6 depicts the results given by the
�1 sparsity-based inpainting method for the six different masks.
We can clearly see that the quality of the reconstruction degrades
with decreasing sky coverage.

The a�,m coefficients of the six hundred maps (100 real-
izations masked with the six different masks) were then esti-
mated using the three inpainting methods and the Fsky correc-
tion methods. The approaches were compared in terms of the
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Fig. 5. Top: input-smoothed simulated CMB map (�max = 10) and the same map, but masked (Fsky = 77%) and not smoothed (i.e., input-simulated
data). Middle: inpainting of the top right image up to �max = 10, using a sparsity prior (left) and an energy prior (right). Bottom: inpainting of the
top right image up to �max = 10, using an isotropy prior (left) and a simple Fsky correction (right).

relative MSE and relative MSE per �; see end of Sect. 3 for their
definition.

Figure 7 shows the relative MSE for � = 2 to 5 versus the
sky coverage Fsky. The three horizontal lines correspond to 1%,
5%, and 10% of the cosmic variance (CV). Inpainting based on
the sparsity and energy priors give relatively close results, which
are better than the one assuming the isotropy prior or the Fsky
correction. It is interesting to notice that a very high quality re-
construction (with 1% of the CV) can be obtained with both the
sparsity- and energy-based inpainting methods up to � = 4 for
a mask with an Fsky exceeding 80%. If WMAP data do not al-
low us to study non-Gaussianity with such a small mask, Planck

component separation will certainly be able to achieve the re-
quired quality to enable make possible the useusing of such a
small Galactic mask. With a 77%-coverage Galactic mask, the
error increases by a factor 5 at � = 4 !

Figure 8 shows the same errors, but they are now plotted ver-
sus the multipoles for the six different masks. The �1 sparsity-
based inpainting method seems to be slightly better than the
one based on the energy prior, especially when the sky cover-
age decreases.

6.2. Anomalies in CMB maps

One of the main motivations of recovering full-sky maps is to
be able to study statistical properties such as Gaussianity and
statistical isotropy on large scales. Statistical isotropy is violated
if there exists a preferred axis in the map. Mirror parity, i.e.,
parity with respect to reflections through a plane: x̂ = x̂−2(x̂·n̂)n̂,
where n̂ is the normal vector to the plane, is an example of a
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Fig. 6. �1 sparsity-based inpainting of a simulated CMB map with different masks. Top: Fsky = 98% and 93%, middle: 87% and 77%, and bottom:
67% and 57%.

statistic where a preferred axis can be sought (Land & Magueijo
2005; Ben-David et al. 2012).

With full-sky data, one can estimate the S -map for a given
multipole in spherical harmonics by considering (Ben-David
et al. 2012):

S̃ �(n̂) =
��

m=−�
(−1)�+m

|a�m(n̂)|2
Ĉ�

, (6)

where a�m(n̂) corresponds to the value of the a�m coefficients
when the map is rotated to have n̂ as the z-axis. Positive (neg-
ative) values of S̃ �(n̂) correspond to even (odd) mirror parities
in the n̂ direction. The same statistic can also be considered
summed over all low multipoles one wishes to consider (e.g.,
focusing only on low multipoles as in Ben-David et al. 2012):

S̃ tot(n̂) =
�max�

�=2

S̃ �(n̂). (7)

It is convenient to redefine the parity estimator as S (n̂) =
S̃ tot(n̂) − (�max − 1), so that �S � = 0.

The most even and odd mirror-parity directions for a given
map can be considered by estimating (Ben-David et al. 2012)

S + =
max(S ) − µ(S )
σ(S )

, (8)

S − =
|min(S ) − µ(S )|

σ(S )
, (9)

where µ(S ) and σ(S ) are the mean and standard deviation of the
S map. The quantities S + and S − each correspond to different
axes n̂+ and n̂− and are the quantities which we consider when
discussing mirror parity in CMB maps.

To use inpainted maps to study mirror parity, it is crucial
that the inpainting method constitutes a bias-free reconstruction
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Fig. 7. Relative MSE (in per-
cent) per � versus sky coverage
for different multipoles. See text
for details.

Fig. 8. Relative MSE in percent per
sky coverage versus � for the six
masks.
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Fig. 9. Percentage difference between anomalous (i.e., high) odd mirror
parity scores (S −) before (i.e., full-sky) and after inpainting for three
different inpainting priors.

method, i.e., that it does not destroy existing mirror parities nor
that it creates previously inexistent mirror parity anomalies.

In order to test this, we considered three sets of 1000 sim-
ulated CMB maps using a WMAP7 best-fit cosmology with
nside = 32, one set for each inpainting prior. For each simu-
lation we calculated the mirror parity estimators S ±. We isolated
the anomalous maps, defined as those whose S ± value is higher
than twice the standard deviation given by the simulations. This
yielded 34 maps (3.4%) for the even mirror parity and 40 maps
(4%) for the odd mirror parity in the full-sky simulations.

Since recent work showed a potential odd-mirror anomaly
in WMAP data (Ben-David et al. 2012), we focused on testing
for potential biases in odd-mirror anomalies. Figure 9 shows the
percentage difference between the true S − value and the one es-
timated from the inpainted map. For this statistical test, the re-
sult does not depend on the inpainting method because the three
different priors give similar biases and error bars. For positive-
mirror anomalies, we find similar results (not shown in figure).
Similarly to the previous experiment, we can see that a very good
estimation of the parity statistic can be achieved for masks with
Fsky exceeding 0.8.

7. Software and reproducible research

To support reproducible research, the developed IDL code
will be released with the next version of ISAP (Interactive
Sparse astronomical data Analysis Packages) via the web site:
http://www.cosmostat.org

All experiments were performed using the default options

– Sparsity:

Alm = cmb_lowl_alm_inpainting(CMBMap,
Mask, /sparsity)

– Energy:

Pd = mrs_powspec( CMBMap, Mask)

P = mrs_deconv_powspec( pd, Mask)
Alm = cmb_lowl_alm_inpainting(CMBMap,
/Energy, Prea=P)

– Isotropy:

Pd = mrs_powspec( CMBMap, Mask)
P = mrs_deconv_powspec( Pd, Mask)
Alm = cmb_lowl_alm_inpainting(CMBMap,
/Isotropy, Prea=P)

8. Conclusion

We have investigated three priors to regularize the CMB in-
painting problem: Gaussianity, sparsity, and isotropy. To solve
the corresponding minimization problems, we also proposed fast
novel algorithms, based for instance on proximal splitting meth-
ods for convex non-smooth optimization. We found that both
Gaussianity and �1 sparsity priors lead to very good results. The
isotropy prior does not provide comparably good results. The
sparsity prior seems to lead to slightly better results for � > 2,
and more robust when the sky coverage decreases. Furthermore,
unlike the energy-prior based inpainting, the sparsity-based one
does not require a power spectrum as an input, which is a signif-
icant advantage.

Then we evaluated the reconstruction quality as a function
of the sky coverage and saw that a high-quality reconstruction,
within 1% of the cosmic variance, can be reached for a mask
with an Fsky exceeding 80%. We also studied mirror-parity
anomalies and found that mask with an Fsky exceeding 80% also
permitted nearly bias-free reconstructions of the mirror parity
scores. Such a mask seems unrealistic for a WMAP data anal-
ysis, but it could and should be a target for Planck component
separation methods. To know if this 80% mask is realistic for
Planck, we will need more realistic simulations including the
ISW effect, and residual foregrounds at amplitudes similar to
those achieved by the actual best Planck component separation
methods. Another interesting study will consist of comparing the
sparse inpainting to other methods such as the maximum likeli-
hood or the Wiener filtering (Feeney et al. 2011; Ben-David et al.
2012).
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Appendix A: Algorithm for the l0 problem

Solving Eq. (2) when q = 0 is known to be NP-hard. This is fur-
ther complicated by the presence of the non-smooth constraint
term. Iterative Hard thresholding (IHT) attempts to solve this
problem through the following scheme

an+1 = ∆H
λn

(an + S (z −MS∗an)) , (10)

where the nonlinear operator ∆H
λ is a term-by-term hard thresh-

olding, i.e. ∆H
λ (a) = (ρH

λ (ai))i, where ρH
λ (ai) = ai if |ai| > λ and

0 otherwise. The threshold parameter λn decreases with the iter-
ation number and is supposed to play a role similar to the cool-
ing parameter in simulated annealing, i.e. hopefully it allows to
avoid stationary points and local minima.

A15, page 9 of 10

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201220332&pdf_id=9
http://www.cosmostat.org


A&A 550, A15 (2013)

Appendix B: Algorithm for the l1 problem

It is now well-known that l1 norm is the tightest convex relax-
ation (in the �2 ball) of the l0 penalty (Starck et al. 2010). This
suggests solving Eq. (2) with q = 1. In this case, the problem
is well-posed: it has at least a minimizer, and all minimizers
are global. Furthermore, although it is completely non-smooth,
it can be solved efficiently with a provably convergent algo-
rithm that belongs to the family of proximal splitting schemes
(Combettes & Pesquet 2011; Starck et al. 2010).

In particular, we propose to use the Douglas-Rachford (DR)
splitting scheme. Let β > 0, (αn)n∈N be a sequence in ]0, 2[ such
that
�

t∈N αn(2−αn) = +∞. The DR recursion, applied to Eq. (2)
with q = 1, reads

an+ 1
2 = Proj{a:z=MS∗a} (an) ,

an+1 = an + αn

�
proxβ�·�1

�
2an+ 1

2 − an
�
− an+ 1

2
�
. (11)

proxβ�·�1 is the proximity operator of the l1-norm, which can be
easily shown to be soft-thresholding

proxβ�·�1 (a) = ∆S
β(a), (12)

where ∆S
β(a) = (ρS

β(ai))i and ρS
λ(ai) = sign(ai)max(0, |ai| − β).

Proj{a:z=MS∗a} is the orthogonal projector on the corresponding
set, and it consists of taking the inverse spherical harmonic
transform of its argument, setting its pixel values to the ob-
served ones at the corresponding locations, and taking the for-
ward spherical harmonic transform. It can be shown that the se-
quence (an+ 1

2 )n ∈ N converges to a global minimizer of Eq. (2)
for q = 1.

Appendix C: Algorithm for the l2 problem,

This scheme is based again on Douglas-Rachford splitting ap-
plied to solve problem Eq. (3). Its steps are

xn+ 1
2 = Proj{x:z=Mx} (xn) ,

xn+1 = xn + αn

�
proxβ�S(·)�2

C−1

�
2xn+ 1

2 − xn
� − xn+ 1

2

�
, (13)

where β and αn are defined as above, and the proximity operator
of the squared weighted �2-norm is

proxβ�S(·)�2
C−1

(x) = S∗
�
(Sx) ⊗

�
C

β +C

��
, (14)

where ⊗ stands for the entry-wise multiplication between two
vectors, and the division is also to be understood entry-wise.
The projector Proj{x:z=Mx} has a simple closed-form and consists
in setting pixel values to the observed ones at the corresponding

locations, and keeping the others intact. It can be shown that the
sequence (xn+ 1

2 )n∈N converges to the unique global minimizer of
Eq. (3).

Appendix D: Algorithm for isotropy inpainting

The isotropy-constrained inpainting problem can be cast as the
non-convex feasibility problem

find�x ∈ Cε ∩ {x : z =Mx}. (15)

The feasible set is nonempty since the constraint set is non-
empty and closed; the CMB is in it under the isotropy hypoth-
esis. To solve Eq. (15), we propose to use the von Neumann
method of alternating projections onto the two constraint sets,
whose recursion can be written

x(n+1) = Proj{x:z=Mx}
�
ProjCε

�
x(n)
��
. (16)

Using closedness and prox-regularity of the constraints, and by
arguments from Lewis & Malick (2008), we can conclude that
our non-convex alternating projections algorithm for inpainting
converges locally to a point of the intersection Cε∩ {x : z =Mx}
which is non-empty.
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