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3 Observatoire de la Côte d’Azur, BP. 229, 06394 Nice Cedex 4, France
4 School of Computer Science, Queen’s University of Belfast, Belfast BT7 1NN, Northern Ireland
5 Observatoire Astronomique, 11 rue de l’Université, 67000 Strasbourg, France
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Abstract. The Multiscale Vision Model is a recent object
detection method, based on the wavelet transform. It al-
lows us to extract all objects contained in an image, what-
ever their size or their shape. From each extracted object,
information concerning flux or shape can easily be deter-
mined. We show that such an approach can be combined
with deconvolution, leading to the reconstruction of de-
convolved objects. We discuss the advantages of this ap-
proach, such as how we can perform deconvolution with a
space-variant point spread function. We present a range of
examples and applications, in the framework of the ISO,
XMM and other projects, to illustrate the effectiveness of
this approach.
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1. Introduction

Astronomical images contain typically a large set of point-
like sources (the stars), some quasi point-like objects
(faint galaxies, double stars) and some complex and dif-
fuse structures (galaxies, nebulae, planetary stars, clus-
ters, etc.). These objects are often hierarchically orga-
nized: star in a small nebula, itself embedded in a galaxy
arm, itself included in a galaxy, and so on.

A standard approach to source detection consists of
the following four steps:

– Background estimation;
– Noise estimation;
– Detection where flux > Background + k∗ Noise;
– Gaussian or PSF (point source function) fitting to

derive the photometry.
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Fig. 1. Example of astronomical data: a point source and an
extended source are shown, with noise and background. The
extended object, which can be detected by eye, is undetected
by a standard detection approach

Faint extended objects may be lost by this standard
approach. Figure 1 shows a typical example where a faint
extended object is under the detection limit. In order to
detect faint objects, whatever their sizes, Bijaoui (1993)
proposed the Multiscale Vision Model (MVM).

A vision model is defined as the sequence of opera-
tions required for automated image analysis. Taking into
account the scientific purposes, the characteristics of the
objects and the existence of hierarchical structures, astro-
nomical images need specific vision models. This is also the
case in many other fields, such as remote sensing, hydro-
dynamic flows, or biological studies. Specific vision models
have been implemented for these kinds of images.

We first introduce the MVM as defined in Bijaoui &
Rué (1995). Then we describe how deconvolution can be
combined with object reconstruction, and show that such
an approach improves the photometry of the reconstructed
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objects, helps with object identification, and can be very
helpful for deconvolution with a space-variant PSF.

2. Multiscale vision model

2.1. Introduction

The wavelet transform of an image by the à trous algo-
rithm produces, at each scale j, a set {wj}. This has the
same number of pixels as the image. The original image
c0 can be expressed as the sum of all the wavelet scales
and the smoothed array cp by the expression c0 = cp +∑p
j=1wj . A pixel at position x, y can be expressed also as

the sum of all the wavelet coefficients at this position, plus
the smoothed array: c0(x, y) = cp(x, y) +

∑p
j=1wj(x, y).

After applying the wavelet transform on the image,
we have to detect, to extract, to measure and to recognize
the significant structures. This is done by first computing
the multiresolution support of the image, and by apply-
ing a segmentation scale by scale. The wavelet space of a
2D direct space is a 3D one. An object has to be defined
in this space. A general idea for object definition lies in
the connectivity property. An object occupies a physical
region, and in this region we can join any pixel to other
ones. Connectivity in direct space has to be transported to
wavelet transform space (WTS). In order to define the ob-
jects we have to identify the WTS pixels we can attribute
to the objects. We describe in this section the different
steps of this method.

2.2. Definition

The Multiscale Vision Model (MVM) (Bijaoui & Rué
1995; Rué & Bijaoui 1997) described an object as a hier-
archical set of structures. It uses the following definitions:

– significant wavelet coefficient: a wavelet coefficient is
significant when its absolute value is above a given de-
tection limit. The detection limit depends on the noise
model (Gaussian noise, Poisson noise, and so on). See
Starck et al. (1998) for a full description of the noise
modelling;

– structure: a structure Sj is a set of significant con-
nected wavelet coefficients at the same scale j;

– object: an object is a set of structures;
– object scale: the scale of an object is given by the scale

of the maximum of its wavelet coefficients;
– interscale relation: the criterion allowing us to connect

two structures into a single object is called the “inter-
scale relation”;

– sub-object: a sub-object is a part of an object. It ap-
pears when an object has a local wavelet maximum.
Hence, an object can be composed of several sub-
objects. Each sub-object can also be analysed.

2.3. The multiresolution support and its segmentation

A multiresolution support of an image describes in
a logical or Boolean way if an image I contains
information at a given scale j and at a given position
(x, y). If M (I)(j, x, y) = 1 (or = true), then I contains
information at scale j and at the position (x, y). M
depends on several parameters:

– The input image;
– The algorithm used for the multiresolution decompo-

sition;
– The noise;
– All additional constraints we want the support to

satisfy.

Such a support results from the data, the treatment (noise
estimation, etc.), and from knowledge on our part of the
objects contained in the data (size of objects, linearity,
etc.). In the most general case, a priori information is not
available to us.

The multiresolution support of an image is computed
in several steps:

– Step one is to compute the wavelet transform of the
image;

– Binarization of each scale leads to the multiresolution
support (the binarization of an image consists of as-
signing to each pixel a value only equal to 0 or 1);

– A priori knowledge can be introduced by modifying
the support.

This last step depends on the knowledge we have of our
images. For instance, if we know there is no interesting
object smaller or larger than a given size in our image,
we can suppress, in the support, anything which is due to
that kind of object. This can often be done conveniently
by the use of mathematical morphology. In the most gen-
eral setting, we naturally have no information to add to
the multiresolution support.

The multiresolution support will be obtained by de-
tecting at each scale the significant coefficients. The mul-
tiresolution support is defined by:

M(j, x, y) =
{

1 if wj(x, y) is significant
0 if wj(x, y) is not significant. (1)

In the case of Gaussian noise, it suffices to compare the
wavelet coefficients wj(x, y) to a threshold level tj . tj is
generally taken equal to kσj , where σj is the noise stan-
dard deviation at scale j, and k is chosen between 3 and
5. The value of 3 corresponds to a probability of false
detection of 0.0027 for Gaussian statistics. If wj(x, y) is
small, then it is not significant and could be due to noise.
If wj(x, y) is large, it is significant:

if | wj | ≥ tj then wj is significant
if | wj | < tj then wj is not significant. (2)

Many other kinds of noise can be considered in the wavelet
space. See (Starck et al. 1998) for a review.
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Fig. 2. Example of connectivity in wavelet space: contiguous
significant wavelet coefficients form a structure, and following
an interscale relation, a set of structures form an object. Two
structures Sj, Sj+1 at two successive scales belong to the same
object if the position pixel of the maximum wavelet coefficient
value of Sj is included in Sj+1

Multiresolution support segmentation

The segmentation consists of labelling a boolean image (0
or 1). Each group of connected pixels having a “1” value
gets a label value between 1 and Lmax, Lmax being the
number of groups. This process is repeated at each scale
of the multiresolution support. We define a “structure”Sij
as the group of connected significant pixels which has the
label i at a given scale j.

2.4. Interscale connectivity graph

An object is described as a hierarchical set of structures.
The rule which allows us to connect two structures into a
single object is called “interscale relation”. Figure 2 shows
how several structures at different scales are linked to-
gether, and form objects. We have now to define the in-
terscale relation: let us consider two structures at two suc-
cessive scales, Skj and Slj+1. Each structure is located in
one of the individual images of the decomposition and cor-
responds to a region in this image where the signal is sig-
nificant. Denoting pm the pixel position of the maximum

wavelet coefficient value of Skj , Skj is said to be connected
to Slj+1 if Slj+1 contains the pixel position pm (i.e. the
maximum position of the structure Skj must also be con-
tained in the structure Slj+1). Several structures appearing
in successive wavelet coefficient images can be connected
in such a way, which we call an object in the interscale
connectivity graph.

2.5. Reconstruction

Hence, a set of structures defines an object
W = {Skj , ...Sk

′

j′ } which can be reconstructed separately
from other objects. The coaddition of all reconstructed
objects is a filtered version of the input data.

The reconstruction problem consists of searching for a
signal O such that its wavelet coefficients are the same as
those of the detected structures. If T describes the wavelet
transform operator, and Pw the projection operator in the
subspace of the detected coefficients (i.e. having set to zero
all coefficients at scales and positions where nothing was
detected), the solution is found by minimization of
J(O) =‖W − (Pw ◦ T )O ‖
whereW represents the detected wavelet coefficients of the
data. More details can be found in Bijaoui & Rué (1995).

3. Detection and deconvolution

3.1. Introduction

The PSF is not needed with MVM. This is an advan-
tage when the PSF is unknown, or difficult to estimate,
which happens relatively often when it is space-variant.
However, when the PSF is well-determined, it becomes a
drawback because known information is not used for the
object reconstruction. This can lead to systematic errors
in the photometry, which depends on the PSF and on the
source signal to noise ratio. In order to preempt such a
bias, a kind of calibration must be performed using sim-
ulations (Starck et al. 1999). This section shows how the
PSF can be used in the MVM, leading to a deconvolution.

3.2. The deconvolution problem

Consider an image characterized by its intensity distribu-
tion (the “data”) I(x, y), corresponding to the observation
of a “real image” O(x, y) through an optical system. If the
imaging system is linear and shift-invariant, the relation
between the object and the image in the same coordinate
frame is a convolution:
I(x, y) = (O ∗ P )(x, y) +N(x, y) (3)
P (x, y) is the PSF of the imaging system, and N(x, y)
is additive noise. In practice O ∗ P is subject to non-
stationary noise. We want to determine O(x, y) knowing
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I(x, y) and P (x, y). This inverse problem has led to a large
amount of work, the main difficulties being the existence
of: (i) a cut-off frequency of the PSF, and (ii) the noise.

Equations (3) is always an ill-posed problem. This
means that there is no unique least-squares solution of
minimal norm ‖ I(x, y) − P (x, y) ∗ O(x, y) ‖, and some
constraints must be added in order to regularize the
problem (Gonzalez 1993; Pratt 1991; Starck 1998). Once
the deconvolved image is obtained, it is generally difficult
to know what the noise level is in the deconvolved image,
and hence it becomes impossible to detect the objects
with a confidence interval. For this reason, astronomers
generally prefer to apply the detection on non-deconvolved
images. Another argument against deconvolution is that
is has been shown that some regularization methods
like MEM (Narayan & Nityananda 1986) affect the
photometry.

3.3. Object reconstruction using the PSF

A reconstructed and deconvolved object can be obtained
by searching for a signal O such that the wavelet coef-
ficients of P ∗ O are the same as those of the detected
structures. If T describes the wavelet transform operator,
and Pw the projection operator in the subspace of the de-
tected coefficients, the solution is found by minimization
of

J(O) =‖W − (Pw ◦ T )P ∗O ‖ (4)

where W represents the detected wavelet coefficients of
the data, and P is the PSF. In this approach, each object
is deconvolved separately. The flux related to the extent of
the PSF will be taken into account. For point sources, the
solution will be close to that obtained by PSF fitting. This
problem is also different from global deconvolution in the
sense that it is well constrained. Except for the positivity
of the solution which is always true and must be used, no
other constraint is needed. This is due to the fact that the
reconstruction is performed from a small set of wavelet
coefficients (those above a detection limit). The number
of objects are the same as those obtained by the MVM,
but the photometry and the morphology is different. The
astrometry may also be affected.

3.4. The algorithm

Any minimizing method can be used to obtain the solution
O. Since we did not find any problem of convergence, noise
amplification, or ringing effect, we chose the van Cittert
method on the grounds of its simplicity. For each detected
object, we apply the following algorithm:

On+1 = On + T −1(W − (Pw ◦ T )P ∗On) (5)

where T −1 is the inverse wavelet transform.

1. Set n to 0.

2. Find the initial estimation On by applying an inverse
wavelet transform to the set W corresponding to the
detected wavelet coefficients in the data.

3. Convolve On with the PSF P : In = P ∗On.
4. Determine the wavelet transform W (In) of In.
5. Threshold all wavelet coefficients in W (In) at position

and scales where nothing has been detected (i.e. Pw

operator). We get Wt(In).
6. Determine the residual W (R) = W −Wt(In).
7. Reconstruct the residual image Rn by applying an

inverse wavelet transform.
8. Add the residual to the solution: On+1 = On +Rn.
9. Threshold negative values in On+1.

10. If σ(Rn)/σ(O0) < ε then n = n+ 1 and go to step 3.
11. On+1 contains the deconvolved reconstructed object.

In practice, convergence is very fast (less than 20 iter-
ations). The reconstructed image (not deconvolved) can
also be obtained just by reconvolving the solution with
the PSF.

3.5. Space-variant PSF

Deconvolution methods generally do not take into ac-
count the case of space-variant PSF. The standard ap-
proach when the PSF varies is to decompose the image
into blocks, and to consider the PSF constant inside a
given block. Blocks which are too small lead to a prob-
lem of computation time (the FFT cannot be used), while
blocks which are too large introduce errors due to the use
of an incorrect PSF. Blocking artifacts may also appear.
Combining source detection and deconvolution opens up
an elegant way for deconvolution with a space-variant
PSF. Indeed, a straightforward method is derived by just
replacing the constant PSF at step 3 of the algorithm with
the PSF at the centre of the object. This means that it
is not the image which is deconvolved, but its constituent
objects.

3.6. Deconvolution and resolution

3.6.1. The intrinsic correlation function

In many cases, there is no sense in trying to deconvolve
an image at the resolution of the pixel (especially when
the PSF is very large). The idea to limit the resolution is
relatively old, because it is already this concept which is
used in the CLEAN algorithm (Högbom 1974). Indeed the
Clean-Beam fixes the resolution in the final solution. This
principle was also developed by Lannes (1987) in a differ-
ent form. This concept has been re-invented, first by Gull
& Skilling (1991) who have called the Clean-Beam the
Intrinsic Correlation Function (ICF), and more recently
by Magain (1998) and Pijpers (1999).

The ICF is usually a Gaussian, but in some cases it
may be useful to take another function. For example, if we
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want to compare two images I1 and I2 which are obtained
with two wavelengths or with two different instruments,
their PSFs P1 and P2 will certainly be different. The clas-
sic approach would be to deconvolve I1 with P2 and I2
with P1, so we are sure that both are at the same resolu-
tion. But unfortunately we lose some resolution in doing
this. Deconvolving both images is generally not possible
because we can never be sure that both solutions O1 and
O2 will have the same resolution.

A solution would be to deconvolve only the image
which has the worse resolution (say I1), and to limit the
deconvolution to the second image resolution (I2). Then,
we just have to take P2 for the ICF. The deconvolution
problem is to find Õ (hidden solution) such that:

I1 = P1 ∗ P2 ∗ Õ (6)

and our real solution O1 at the same resolution as I2 is
obtained by convolving Õ with P2. O1 and I2 can then be
compared.

Introducing an ICF G in the deconvolution equation
leads to just considering a new PSF P ′ which is the con-
volution of P and G. The deconvolution is carried out
using P ′, and the solution must be reconvolved with G
at the end. In this way, the solution has a constrained
resolution, but aliasing may occur during the iterative
process, and it is not sure that the artifacts will disap-
pear afer the re-convolution with G. Magain (1998) has
proposed an original alternative to this problem, by as-
suming that the PSF can be considered as the convolu-
tion product of two terms, the ICF G and an unknown
S, P = G ∗ S. Using S instead of P in the deconvolu-
tion process, and a sufficiently large FWHM value for
G, implies that the Shannon sampling theorem (Shannon
1948) is never violated. But the problem is now to calcu-
late S, knowing P and G, which is again a deconvolution
problem. Unfortunately, this delicate point was not dis-
cussed in the original paper. Propagation of the error on
the S estimation in the final solution has also until now
not been investigated, even if this issue seems to be quite
important.

3.6.2. ICF calculation

This section describes how to calculate the FWHM for a
given sampling, in order not to violate the Shannon sam-
pling theorem. Gaussian functions are generally chosen for
the ICF. The resolution to be achieved is fixed by its stan-
dard deviation σG, or its FWHM (FWHM=2.34σG).
Since the Fourier transform of a Gaussian of standard
deviation σG is also a Gaussian of standard deviation
σν = N

2πσG
, (N being the number of pixels), we can es-

timate the smallest FWHM which does not violate the
Shannon sampling theorem. In theory, a Gaussian can-
not respect it, but in practice we can consider that values
smaller than a given ε have no practical effect, and the

Table 1. ICF standard deviation

ε ICF σG ICF FWHM

10−3 1.18 2.77
10−4 1.37 3.20
10−5 1.53 3.57
10−7 1.81 4.23
10−10 2.16 5.05
10−20 3.05 7.15

Shannon sampling theorem is experimentally respected if

exp− u2

2σ2
ν

< ε when u >
N

2
. (7)

For u = N
2 , we have: exp−π

2σ2
G

2 < ε.
Then the smallest ICF standard deviation σG is given by

σG =

√
−2 log ε

π2
. (8)

Table 1 gives the σG values for different values of ε. If the
resolution to be achieved is smaller than σG, this means
that the solution sampling must be fainter than the data
sampling.

3.6.3. Undersampled point spread function

If the PSF is undersampled, it can be used in the same
way, but results may not be optimal due to the fact that
the sampled PSF varies depending on the position of the
source. If an oversampled PSF is available, resulting from
theoretical calculation or from a set of observations, it
should be used to improve the solution. In this case, each
reconstructed object will be oversampled. Equation (4)
must be replaced by
J(O) =‖W − (Pw ◦ T ◦ Dl)P ∗O ‖ (9)
where Dl is the averaging-decimation operator, consist-
ing of averaging the data in the window of size l × l, and
keeping only one average pixel for each l× l block.

4. Application to ISOCAM data

4.1. ISOCAM point source reconstruction

A simulation was performed in order to analyse how well
the flux is estimated. A point source (using ISOCAM
6 arcsec lens PSF) was simulated, with a constant
background (value of 100), and uniform Gaussian noise
(sigma = 1). The integrated flux of the sources varies
from 7 to 102. Table 2 gives the results of this simulation.
The first column gives the real flux, the second column
the flux found using MVM, and the third column the flux
found using MVM plus the deconvolution (MVMD). The
photometry is clearly improved using MVMD. Another
aspect of MVMD is that the error is relatively constant,
whatever the flux of the source.
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Fig. 3. Abell 1689: left, ISOCAM source detection (isophotes) overplotted on an optical image (NTT, band V ). The ISOCAM
image is a raster observation at 7 µm. Right, ISOCAM source detection using the PSF (isophotes) overplotted on the optical
image. Compared to the left panel, it is clearly easier to identify the detected infrared sources in the optical image

Fig. 4. XMM model simulation. Upper left, position of the point sources. The flux is the same on each radial line. Upper right,
simulated data with Poisson noise. The background is ∼ 0.1 counts/pixel. Bottom left and right shows respectively the result
of the detection by the MVM with and without the PSF model
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Table 2. Flux estimation from MVM and MVM + deconvolution (MVMD)

Real Flux MVM Flux MVMD Flux MVM Error MVM Error (%) MVMD Error MVMD Error (%)

7 7.35 5.96 5.00 14.82 0.35 1.03
12 12.66 12.62 5.51 5.21 0.66 0.62
17 17.57 18.41 3.37 8.30 0.57 1.41
22 21.68 23.42 1.41 6.46 0.31 1.42
27 26.18 28.43 3.00 5.31 0.81 1.43
32 30.74 33.44 3.93 4.51 1.25 1.44
37 35.28 38.45 4.64 3.93 1.71 1.45
42 39.91 43.46 4.95 3.49 2.08 1.46
47 44.60 48.47 5.09 3.13 2.39 1.47
52 49.24 53.48 5.29 2.85 2.75 1.48
57 53.93 58.49 5.37 2.61 3.06 1.49
62 58.67 63.49 5.36 2.41 3.32 1.49
67 63.42 68.50 5.33 2.24 3.57 1.50
72 68.14 73.51 5.35 2.09 3.85 1.51
77 72.93 78.51 5.27 1.96 4.06 1.51
82 77.70 83.52 5.23 1.85 4.29 1.52
87 82.47 88.52 5.20 1.75 4.52 1.52
92 87.24 93.53 5.16 1.66 4.75 1.53
97 92.02 98.53 5.13 1.58 4.97 1.53
102 96.84 103.5 5.05 1.50 5.15 1.53

4.2. Abell 1689 ISOCAM data

Figure 3 (left) shows the detections (isophotes) obtained
using the MVM method without deconvolution on
ISOCAM data. The data were collected using the 6 arcsec
lens at 6.75 µm. This was a raster observation with
10 s integration time, 16 raster positions, and 25 frames
per raster position. The noise is non-stationary, and the
detection of the significant wavelet coefficients was carried
out using the root mean square error map Rσ(x, y) by the
method described in Starck et al. (1999). The isophotes
are overplotted on an optical image (NTT, band V ) in
order to identify the infrared source. Figure 3 (right)
shows the same treatment but using the MVM method
with deconvolution. The objects are the same, but the
photometry is improved, and it is clearly easier to identify
the optical counterpart of the infrared sources.

5. Application to XMM simulations

5.1. Introduction

One case in astronomical imagery where the PSF varies
across the field of view (FOV) is with space X-ray tele-
scope observations. In order to illustrate our methods we
have selected one example from an ESA space mission,
the X-ray Multi-Mirror Telescope (XMM). One feature
of the X-ray images is that they are in a photon noise
regime – practically the incoming photons on the detec-
tor are counted one by one and their energy is recorded.
The resulting photon event list can be binned into an im-
age by choosing both the pixel size and the energy band.

The response of the telescope for incoming light from a
point source (the PSF) depends on the position of the
source across the FOV and also depends on the energy
passband. What makes the task of object detection and
reconstruction of the parameters difficult can be summa-
rized as follows:

– few photons spread over a large area;
– object classification problems (AGN/point-like or ex-

tended) due to the non-constant PSF, and
– source confusion – large extended objects overlayed

with many point-like sources.

5.2. Poisson noise modelling

If a wavelet coefficient wj(x, y) is due to noise, it can be
considered as a realization of the sum

∑
k∈K nk of in-

dependent random variables with the same distribution
as that of the wavelet function (nk being the number of
events used for the calculation of wj(x, y)). This allows
comparison of the wavelet coefficients of the data with the
values which can be taken by the sum of n independent
variables.

The distribution of one event in wavelet space is then
directly given by the histogram H1 of the wavelet ψ. Since
we consider independent events, the distribution of a coef-
ficient wn (note the changed subscripting for w, for conve-
nience) related to n events is given by n autoconvolutions
of H1:

Hn = H1 ⊗H1 ⊗ ...⊗H1. (10)

For a large number of events, Hn converges to a Gaussian.
More details can be found in Starck & Pierre (1998).
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Fig. 5. XMM model simulation. Results for the detections. The
cross-identification searching radius was set to 12′′ and the lim-
iting distance from the centre to 14′. The ratio of the detected
counts (SCTS(out)) to the input source counts (SCTS(in))
is shown as a function of SCTS(in) (upper panel) and as a
function of the off-axis distance (lower panel). The ratios of
1, 0.5 and 1.5 are indicated with continuous and dashed lines.
Also the objects with distance greater than 4′′ from their cor-
responding object are indicated with squares

5.3. Results

In our XMM example, we created simulated images in-
cluding most of the telescope effects – PSF blurring,
vignetting effect, particle and instrumental background.
Our objective was to test the ability of the method to
deconvolve images with a space-variant PSF. The im-
age contains a set of point sources at different positions
and with different fluxes. An energy band from 0.4 to
4.0 keV was used but this is irrelevant for our main aim.
Figure 4, upper left, shows the position of the sources.
On each radial line, the flux in the sources is identi-
cal, but the PSF becomes larger when the distance from
the centre increases and the number of lost photons due
to vignetting could well reach 50%. Fluxes run from 10
at left and counterclockwise with logarithmic step to
2000 ([10, 12, 15, 19, ..., 1002, 1261, 1588, 1999]). Figure 4,
upper right, shows the simulated data. The background
is 10−5 counts/pixel/second, so for 10 ks this corresponds
to ∼ 0.1 counts/pixel. Figure 4, bottom left and right,
show respectively the result of the detection by the MVM
with and without the PSF. Figure 5 shows the recovery
of fluxes for the input sources after correction for the vi-
gnetting effect.

One example of a “realistic” image, with extended
as well as point-like sources is shown in Fig. 6 and the

Fig. 6. Realistic X-ray image. The exposure time is 10 000 s, the
point-like sources are distributed according to a logN − log S
relation (Hasinger et al. 1998), there are 5 extended sources –
clusters of galaxies at 5 different redshifts (0.6, 1, 1.5, 1.8 and
2) with King β-model profiles and temperature 5 keV

reconstruction after deconvolution with MVM and PSF
in Fig. 7.

The recovery of the input logN− logS relation for the
point-like sources is shown in Fig. 8 together with the dis-
tribution and the numbers of missing input objects and
false detections.

Note that in order to perform the cross-identifications
with the input list we take all the input sources with pho-
ton counts greater than 13. That is a rather low limit and
it is the reason for the large number of missed detections.

More comprehensive analysis and comparison of this
method with other methods dedicated to detection of
objects in XMM-specific X-ray images can be found in
Valtchanov (2000).

6. Application to Chandra simulations

Our experiments on Chandra simulations allowed us to
look at the computational requirements of our method.
The detect toolkit (Dobrizycki et al. 1999) was designed
for analysis of Chandra X-ray Observatory data. We used
a simulation (see Fig. 9) from the HRC-I High Resolution
Camera imaging detector. The field of view of HRC-I is
31 arcmin × 31 arcmin. The background corresponds to
a 30 ks exposure. The simulation shows 6 repetitions of
an aligned set of unresolved sources of the same intensity.
From the first source, the following 5 are spaced at 0.5,
4, 5, 10 and 30 arcsec. From the last of these, at 60 arc-
sec distance, the same aligned pattern is repeated, but
a large extended source is superimposed. The extended
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Fig. 7. Realistic X-ray image. The detected objects with 4σ sig-
nificance are shown and the extended objects are indicated by
an arrow and the redshift

source is a Gaussian with sigma 25 arcsec. In addition to
the aligned set of sources just described, they are also dis-
played shifted to the right, in parallel, by 60 arcsec and
120 arcsec, providing three parallel rows. The first row is
much clearer: the sources have approximately 200 counts
each. The extended source has about 2500 counts. In the
second row, the sources are much weaker, having about
30 counts each. The third row is the same as the middle
row, except that the sources are changed to disks with
diameter 1 arcsec.

Detection of sources which are within 1 arcsec of each
other was not achieved by the detection methods described
in Dobrzycki et al. (1999) and will not be investigated here
either. This implies that of the six sources considered in
each half-row of the simulation, in effect four were used.
Figure 9 appears, therefore, to have a total of 24 compact
sources. Likewise the extended sources were not consid-
ered in Dobrzycki et al. (1999), nor by us.

In Dobrzycki et al. (1999), two methods for source de-
tection based on wavelet transforms are described. The
first, the celldetect method, is based on a sliding cell or
window. Its performance is good, finding 22 of the 24 non-
extended sources in the simulation. It is fast but requires
a considerable range of parameters to be set by the user.
A multiple scale binning procedure is used to handle very
large images. It allows for variation in bin size to cater for
off-axis detector spatial variation.

We selected an isolated point source, to which we fitted
a Gaussian, to define a very approximate PSF. We used
an 8 resolution scale B3 spline à trous wavelet transform,
with a Poisson noise model. We worked directly on the
2800 × 2800 array, with no preprocessing. In view of the

Fig. 8. Realistic X-ray image. The input logN − log S rela-
tion together with the distribution of the non-detected input
sources (blue histogram) and the distribution of the possible
false detections (in green). Note however that the extended
sources here are counted as false detections

Fig. 9. Simulated HRC-I image, original of dimensions 2800 ×
2800

faintness of some of the sources which we are trying to
detect, we set a very low threshold, 1.5 sigma.

Figure 10 shows ellipses fitted to sources detected.
Positions of detections are shown in Fig. 11, and an as-
sociated table of parameters contains information on the
objects detected. The approach used here, which is based
on resolution scale and noise modelling, and in addition
carries out deconvolution, requires very little by way of
user setting of parameters.

The analysis of Chandra data is made difficult by off-
axis variation in the PSF, which we have not taken into
account. Indeed, the PSF becomes bimodal when far off-
axis. The wavdetect procedure provided in the detect
image analysis software package is based on a Mexican
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Fig. 10. Source detections, marked
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Fig. 11. Source detections, labelled

hat wavelet function. Its storage requirements result in an
image size of 1024 × 1024 being recommended as the prac-
tical limit to be used. Our own code incorporates memory
management and we analyzed, without prior blocking, a
2800 × 2800 image.

Examination of a smaller field shown in Fig. 12 allows
us to go further, – to distinguish between sources which
are within 1 arcsec. Figures 13 and 14 show the objects
found and a sub-object analysis.

7. Conclusion

We have shown that the source detection can be combined
with a deconvolution when using wavelet based methods
such as the Multiscale Vision Model. This leads to the re-
construction of deconvolved objects. The main advantages

Fig. 12. Part of the larger Chandra simulation

4-1

3-2

3-3

2-1

Fig. 13. Locations of detected objects

Fig. 14. Locations of detected objects, following sub-object
analysis, with overplotted ellipses
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of this approach are:

– Faint extended objects can be detected as well as point
sources;

– The analysis does not require background estimation.
(We know that if the background varies spatially,
its estimation becomes a non-trivial task and may
produce large errors in object photometry);

– Objects are easier to identify in the deconvolved map;
– Morphological parameters (gallaxy ellipticity and so

on) are more accurate;
– Since each object is deconvolved separately, a spatially

variable point spread function can easily be taken into
account;

– Very large images can be deconvolved.

We may note that observing, in practice, requires con-
sideration of issues prior to, or beyond, what has been
considered in this work. Examples include: extensive de-
tector imperfections, the managing of multiple wavelength
observations, observations requiring knowledge of physi-
cal phenomena. All of these produce observational errors,
which we have not considered. Our aim has instead been to
futher deconvolution and detection technologies. Towards
this end, we have considered a wide range of practical ob-
serving cases, but certainly not all.

The software used in this paper is based on that de-
scribed in Starck et al. (1998) and is implemented in
the MR/1 multiresolution analysis environment available
through the website http://www.multiresolution.com
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