
The quantity of astronomical data is
rapidly increasing. This is partly ow-
ing to large digitized sky surveys in
the optical and near infrared ranges.

These surveys, in turn, are due to the develop-
ment of digital imaging arrays such as charge-
coupled devices (CCDs). The size of digital arrays
is also increasing, pushed by astronomical re-
search’s demands for more data in less time.

Currently, projects such as the European DE-
NIS (Deep Near Infrared Survey of the Southern
Sky) and American 2MASS (Micron All Sky Sur-
vey) infrared sky surveys, or the Franco-Canadian
MegaCam Survey and the American Sloan Digi-
tal Sky Survey, will each produce on the order of
10 Tbytes of image data. The American Large-
Aperture Synoptic Survey Telescope, to be com-
missioned in 2007 and 2008, will produce ap-
proximately five Pbytes of data per year. In

addition, the advent of automatic plate-scanning
machines (including SuperCOSMOS in Edin-
burgh and several others) has made possible the
routine and massive digitization of photographic
plates. These machines let us digitize the enor-
mous amount of useful astronomical data repre-
sented in a photograph of the sky, and they have
opened up the full potential of large-area photo-
graphic sky surveys. However, transferring such
amounts of data over computer networks be-
comes cumbersome and, in some cases, practically
impossible. For example, transmitting a high-res-
olution Schmidt plate image over the Internet
would take hours. 

As astronomers face this enormous increase
in pixels and realize that the catalogs they pro-
duce by extracting information from these pixels
can be locally wrong or incomplete, their needs
follow two different paths. First, they need fast
access to informative pixel maps, which are
more intuitively understandable than the de-
rived catalogs. Second, they must be able to ac-
curately refine astrometry (for example, posi-
tional data) and photometry (for example,
accumulated flux data) or effectively detect
missed objects. 

Having briefly described the field’s scientific
needs, we can now look at how astronomers are
explicitly using resolution and scale to assist data
(image, tabular, and other) handling. These new
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vantage points help astronomers address the
field’s scientific needs. We first look at how res-
olution and scale are incorporated into scientific
image compression. Compression is tied to in-
formation delivery, thus leading us to discuss vi-
sualization environments, partial decompression,
and image-information summarization. We then
exemplify how we can mathematically express
information’s relevance in practical applications,
using entropy, and we consider storage issues
and transmission channels, all in the overall con-
text of data access and retrieval. 

Compression strategies

When astronomers transfer and analyze high-
resolution images, they can use different strate-
gies to compress the data:1,2

• Lossy compression: In this case, the compression
ratio is relatively low (less than 5 to 1).

• Compression without visual loss: This means you
cannot see the difference between the original
image and the decompressed one. Generally,
you can obtain compression ratios between 10
and 20 to 1.

• Good-quality compression: The decompressed
image contains no artifacts from the process,
but it does lose some information. In this case,
you can obtain compression ratios up to 40 to 1.

• Fixed compression ratio: For some technical rea-
son or another, you might decide to compress
all images with a compression ratio higher
than a given value, whatever the effect on the
decompressed image quality.

• Signal–noise separation: If noise is present in the
data, noise modeling can allow for very high
compression ratios just by including filtering
in wavelet space during the compression.

The optimal compression method might vary
according to the image type and selected strat-
egy. A major reason for using a multiresolution
framework is to obtain, in a natural way, pro-
gressive information transfer.

Signal–noise separation is particularly relevant
when supporting a region of interest in an im-
age. The JPEG 2000 standard, for example, sup-
ports a region of interest defined by a user- or
automatically defined mask.3 Noise analysis pro-
vides a natural, automated way to define the
mask, and we can carry out noise analysis at each
resolution scale. In the mask region, we use en-
coding that guarantees valid scientific interpre-
tation, which is based on acceptable pixel-value

precision on decompression. Outside the mask
region, wavelet coefficient filtering can go as far
as zeroing the coefficients—for example, apply-
ing infinite quantization. 

Using this principle of a mask region to define
interesting and relevant signals versus less rele-
vant regions, we can obtain compression ratios
of close to 300 to 1, with guaranteed fidelity to
the image’s scientifically relevant properties (as-
trometry, photometry, and faint features). JPEG
files, in contrast, rarely do better than approxi-
mately 40 to 1. 

In the case of JPEGs, various studies have con-
firmed that beyond a compression ratio of 40 to
1, this compression method generates blocky ar-
tifacts for 12 bit-per-pixel images.1 For the pyra-
midal median transform, the reconstruction ar-
tifacts appear at higher compression ratios—
beyond a ratio of 260 to 1 in our images. (The
pyramidal median transform is a pyramidal mul-
tiresolution algorithm based on the median
transform and implemented in an analogous way
to a wavelet transform.1,4) Figure 1 compares the
visual quality of a JPEG image and a pyramidal-
median-transform image.

Consider using a rigorously lossless wavelet-
based compressor, above and beyond the issues
of economy, storage space, and transfer time.
Wim Sweldens’ lifting scheme provides a con-
venient algorithmic framework for many wavelet
transforms.5 Predictor and update operators re-
place the low-pass and band-pass operations at
each resolution level when constructing the
wavelet transform. When the input data consist
of integer values, the wavelet transform no
longer consists of integer values, so we redefine
the wavelet transform algorithm to face this
problem. The predictor and update operators
use a floor-truncation function, and their lifting
scheme formulas let us carry this out without
losing information. 

The Haar wavelet transform’s4,6 lifting-scheme
implementation creates lower-resolution ver-
sions of an image that are mathematically exact
averaged and differenced versions of the next
higher resolution level.7 So, for aperture pho-
tometry and other tasks, lower-level resolution
can provide a partial analysis. We can use a low-
resolution-level image scientifically because its
big pixels contain the integrated average of flux
covered by the higher (or finer) resolution pixels.
We can thus use efficiently delivered low-reso-
lution images for certain scientific objectives,
opening up the possibility for an innovative way
to analyze distributed image holdings. 
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Image visualization based on
compression

With new technology developments, detec-
tors are furnishing larger images. For example,
current astronomical projects are beginning to
deal with images larger than 8,000 × 8,000 pixels
(ESO’s Very Large Telescope 8,000 × 8,000 pix-
els, the MegaCam detector and the UK’s Vista
telescope, 16,000 × 16,000 pixels). For comparison
with medical imaging, a digitized mammogram
film might lead to images of approximately 5,000
× 5,000 pixels. In addition to data compression
and progressive decompression, we must con-
sider a third concept, the region of interest. Im-
ages are becoming so large that displaying them
in a normal window (typically 512 × 512 pixels)
is impossible, and we must be able to focus on a
given area of the image at a given resolution.
Moving from one area to another or increasing a
particular area’s resolution is an active element
of decompression.

The principle of our Large Image Visualiza-
tion Environment (LIVE) toolset, based on mul-
tiresolution data structure technology, is to sup-
port image navigation and full-image display at
low resolution. Image navigation lets the user in-
crease resolution (that is, improve the quality of
an area of the image) or decrease it (return to the
previous image), implying a fourfold increase or
decrease in the size of what is viewed.

Figure 2 illustrates this concept, showing a
large image (approximately 4,000 × 4,000 pixels)
compressed into 500 × 500-pixel blocks (each

block forming part of an 8 × 8 grid), represented
at five resolution levels. The visualization win-
dow (256 × 256 pixels in our example) covers the
whole image at the lowest resolution level (250
× 250 pixels) but only one block at the full reso-
lution (or between one and four blocks, depend-
ing on the image’s position). The LIVE concept
consists of moving the visualization window into
this pyramidal structure without loading the
large image into memory. LIVE first visualizes
the image at low resolution, and the user can in-
dicate (using the mouse) which part of the visu-
alized subimage he or she wants to enhance. At
each step, the tool decompresses only wavelet
coefficients of the corresponding blocks and of
the new resolution level.

Decompression by scale and region

Supporting the transfer of very large images
in a networked (client-server) setting requires
compression and prior noise separation. Noise
separation greatly aids in compression, because
noise is axiomatically not compressible. 

We developed one prototype in the MR/1 soft-
ware package with a Java client8 and another9 us-
ing the Smithsonian Astrophysical Observatory’s
DS9 software, SAO DS9, to visualize large im-
ages (see http://hea-www.harvard.edu/RD/ds9).
In developing these prototypes, we examined
compression performance on numerous astro-
nomical images. Consider, for example, a 12,451
× 8,268-pixel image from the CFH12K detector

Figure 1. (a) An uncompressed image, which is a subimage extracted from a 1,024 × 1,024-pixel patch, in turn extracted
from a European Southern Observatory Schmidt photographic plate (number 7992v); (b) a JPEG compressed image at a
40:1 compression ratio; and (c) a pyramidal-median-transform image at a 260:1 compression ratio. 

(a) (b) (c)
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at the Canada-France-Hawaii Telescope
(CFHT), Hawaii. A single image is 412 Mbytes.
Given a typical exposure time—a few minutes or
less—we can quickly calculate the approximate
amount of data expected in a typical observing
night.

Some typical computation time requirements
follow. Using denoising compression, we com-
pressed the CFH12K image to 4.1 Mbytes—that
is, to less than 1 percent of its original size. Com-
pression took 13 minutes and 9 seconds on an
UltraSparc 10. Decompression to the fifth reso-
lution scale (that is, dimensions divided by 25)
took 0.43 seconds. For rigorously lossless com-
pression, compression to 97.8 Mbytes (23.75
percent of the original size) took 3 minutes and
44 seconds, and decompression to full resolution
took 3 minutes and 34 seconds. Decompression
to full resolution by block was near real time. 

We developed a user interface9 as a plug-in for
the SAO-DS9 image viewer for images that the
software package MR/1 compressed.8 This in-
terface lets the user load a compressed file and
choose not only the image’s scale but also its size
and the portion to be displayed, resulting in re-
duced memory and processing requirements. As-
trometry and SAO-DS9 functionality are still si-
multaneously available. Available functionality
includes 

• Compression: MR/1 includes compression and
decompression tools. It implements wavelet,
pyramidal-median, and lifting schemes, with
lossy or lossless options. It stores the final file
in a customized format.

• An image viewer: There are many astronomical
image viewers. We looked at JSky (because it is
written in Java) and SAOImage-DS9; we se-
lected the latter because it is well maintained
and easier for programmers to use. DS9 is a
Tcl/Tk application that uses the SAOTk widget
set. It also incorporates the new X Public Ac-
cess (XPA) mechanism to let external processes
access and control its data and graphical user in-
terface functions.

• An interface: DS9 supports external file formats
using an ASCII description file. It works with
the MR/1 compressed format but can load only
one scale of the image. The solution we selected
was a Tcl/Tk script file, which interacts with
XPA. The SAO team recommends Tcl/Tk,
which is free and portable. This interface lets the
user select a file, select the displayed window’s
maximum size, zoom in on a selected region
(inside the displayed window), and unzoom. 

Astronomers have used the Tcl/Tk script file
with DS9 and the decompressed module on So-
laris (Sun Microsystems Sparc platform), Linux
(Intel PC platform), and Windows NT and 2000
(with some tuning). It can also work on HP-UX
and ALPHA-OSF1. On a three-year-old PC,
the latency is approximately one second.

Figure 3 shows an example SAO-DS9 opera-
tion. The image shows a five-minute exposure
(five 60-second dithered and stacked images), R-
band filter, taken with a CFH12K wide-field
camera (100 million pixels) at the primary focus
of the CFHT in July 2000. Shown is a rich zone
of our galaxy, containing star formation regions,
dark nebulae (molecular clouds and dust re-
gions), emission nebulae, and evolved stars. 

Resolution scale in data archives

Unlike in Earth observation or meteorology,
astronomers do not want to delete data after

Figure 2. A large image compressed by blocks, represented at five
resolution levels. At each level, the visualization window is superim-
posed at a given position. At low resolution, the window covers the
whole image; at full resolution level, it covers only one block.
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they’ve interpreted it. Variable objects (super-
novas, comets, and so forth) prove the need for
astronomical data to be available indefinitely.
The unavoidable problem is the overwhelm-
ing quantity of data that we now collect. The
only basis for selecting what to keep long-term
(and at what resolution and refinement levels)
is to associate the data capture more closely
with information extraction and knowledge
discovery. 

Research in data warehousing is now begin-
ning to address this problem. Janne Skyt and
Christian Jensen10 discuss replacing aging,
low-interest detailed data with aggregated data.
Traditional databases are append-only, and dele-
tion is a logical rather than physical operation—
that is, the act of removing a link is not neces-
sarily the freeing up of storage space. A new
approach is based on a temporal vacuuming

specification, where access consists of both re-
moval specification and keep specification. Re-
moval is carried out in this new, storage-econo-
mizing approach in an asynchronous or lazy
manner. A set of temporal relations, vacuumed
according to specification, define a vacuumed
temporal database.

So far, so good: we have a conceptual frame-
work for keeping aggregated data long-term,
based on an aggregation specification. One ex-
ample is Web click-stream data,10 where the ag-
gregation is based on access hits. In astronomy
imaging, we have already noted how the Haar
wavelet transform, based on a lifting-scheme im-
plementation, provides functionality for data ag-
gregation. Aggregated flux uses “big” pixels, and
local flux conservation is guaranteed. 

Astronomers have yet to formally apply data
aggregation to the vacuuming of scientific data-
bases in practice. 

Multiple-resolution information and
entropy

Compression and resolution ought to be in-
herently linked to information content and, con-
sequently, to entropy. The latter provides quality
criteria (by asking, for example, if one compres-
sion result is better than another) and inherent
limits to data coding. We first look at a link we
developed between compression and entropy. 

Elsewhere, we introduced a theory of multi-
scale entropy filtering, based on three stages:11,12

1. Model the signal or image as a realization
(sample) from a random field, which has an
associated joint probability density function,
and compute entropy from this PDF, not
directly from the signal or image pixel in-
tensities themselves.

2. Use a basic vision model, which takes a sig-
nal, X, as a sum of components: X = S + B 
+ N, where S is the signal proper, B is the
background, and N is noise.

3. Extend this decomposition to further de-
compose entropy by resolution scale.

Stage 3 is based on defining the entropy in
wavelet transform space. The wavelet trans-
form’s direct-current component (or continuum)
provides a natural definition of signal back-
ground. A consequence of considering resolu-
tion scale is that it then accounts for signal cor-
relation. Stage 2 rests on a sensor (or data
capture) noise model. 

Figure 3. The Smithsonian Astrophysical Observatory’s DS9
software with the XLIVE-DS9 user interface. Image courtesy of 
Jean-Charles Cuillandre.
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For the resolution-scale-related decomposi-
tion, we have the following definition. Denot-
ing h as the information relative to a single
wavelet coefficient, we define

(1)

with h(wj,k ) = – ln p(wj,k ). l is the number of scales,
Nj is the number of samples in band (scale) j, and
p(wj,k) is the probability that the wavelet coeffi-
cient wj,k is due to noise. The smaller this prob-
ability, the more important the information rel-
ative to the wavelet coefficient. For Gaussian
noise, we get

(2)

where σj is the noise at scale j. (In the case of an
orthogonal or bio-orthogonal wavelet trans-
form using an L2 normalization, we have σj = σ
for all j, where σ is the noise standard devia-
tion in the input data.) We can introduce mul-
tiscale entropy into filtering and deconvolu-
tion, and, by implication, into feature and faint
signal detection.11 

Elsewhere, we have considered a range of ex-
amples based on simulated signals, the widely
used Lena image, and case studies from astron-
omy.11,12 Later, two of us extended this frame-
work to include both a range of noise models
other than Gaussian and the role of vision mod-
els.13 In the case of astronomy,14 we looked at
multiple band data, based on the Planck orbital
observatory (a European Space Agency mission,
planned for 2007, to study cosmic background
radiation). We then introduced a joint wavelet
and Karhunen-Loève transform (the WT-KLT
transform) to handle cross-band correlation
when filtering such data. We also looked at back-
ground-fluctuation analysis in astronomy, where
we might not be able to observe the presence of
astronomical sources but we know they are there
(for instance, owing to observations in other
parts of the electromagnetic spectrum).14

Multiscale entropy as a measure of
relevant information

Because multiscale entropy extracts the infor-

mation only from the signal, it was a challenge
to see if an image’s astronomical content was re-
lated to its multiscale entropy.

We studied the astronomical content of 200
images of 1,024 × 1,024 pixels extracted from
scans of eight different photographic plates car-
ried out by the MAMA digitization facility (In-
stitut d’Astrophysique, Paris) and stored at the
Strasbourg Data Center (Strasbourg Observa-
tory, France). We estimated the content of these
images in three ways, counting 

1. Objects in an astronomical catalog (United
States Naval Observatory A2.0 catalog) in
the image. The USNO catalog was origi-
nally obtained by source extraction from the
same survey plates we used in our study. 

2. Objects that the Sextractor15 object detec-
tion package found in the image. As in the
case of the USNO catalog, these detections
were mainly point sources (that is, stars as
opposed to spatially extended objects such
as galaxies).

3. Structures detected at several scales using
the MR/1 multiresolution-analysis package.7

Figure 4 shows the results of plotting these
numbers for each image against the image’s mul-
tiscale-signal entropy. The MR/1 package ob-
tained the best results, followed by Sextractor
and then by the number of sources extracted
from USNO. The latter two basically miss the
content at large scales, which MR/1 considers.
Unlike MR/1, Sextractor does not attempt to
separate signal from noise. 

We also applied Sextractor and multiresolu-
tion methods to a set of CCD images from CFH
UH8K, 2MASS, and DENIS near infrared sur-
veys. The results we obtained were similar to the
results presented in Figure 4. This lends support
to the quality of the results based on MR/1,
which considers noise and scale, and to multi-
scale entropy being a good measure of content
of such a class of images.

Subsequently, we looked for the relation be-
tween the multiscale entropy and an image’s op-
timal compression ratio, which we can obtain us-
ing multiresolution techniques. (By optimal
compression ratio, we mean a compression ra-
tio that preserves all the sources and does not de-
grade the astrometry [object positions] and pho-
tometry [object intensities].) Mireille Louys and
some of her colleagues have estimated this opti-
mal compression ratio using the MR/1 package’s
compression program.1
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Figure 5 shows the relation between multi-
scale entropy and the optimal compression ratio
for all images used in our previous tests, both
digitized-plate and CCD images. The power law
relation is obvious, letting us conclude that

• The compression ratio depends strongly on
the image’s astronomical content. Thus, com-
pressibility is also an estimator of the image’s
content.

• The multiscale entropy confirms, and lets us
predict, the image’s optimal compression ratio.

Multiscale entropy for image database
querying

We have seen that we must measure informa-
tion from the transformed data—not from the
data itself—so that we can consider a priori
knowledge of the data’s physical aspects. We
could have used the Shannon entropy (perhaps
generalized) to measure the information at a
given scale and derive the histogram’s bins from
the noise’s standard deviation. However, we
thought it better to directly introduce noise
probability into our information measure. This
leads, for Gaussian noise, to a physically mean-
ingful relation between the information and the
wavelet coefficients (see Equation 2). First of all,
information is proportional to the energy of the
wavelet coefficients normalized by the noise’s
standard deviation. Second, we can generalize
this to many other kinds of noise, including such
cases as multiplicative noise, nonstationary noise,
or images with few photons or events. Finally,
our experiments have confirmed that this ap-
proach gives good results.

In the work presented in the preceding sec-
tion, which was related to the semantics of nu-
merous digital and digitized photographic im-
ages, we took already prepared (external) results
and used two other processing pipelines to de-
tect astronomical objects in these images.
Therefore, we had three sets of interpretations
of these images. We then used multiscale en-
tropy to tell us something about these three sets
of results. We found that multiscale entropy pro-
vided interesting insight into the performances
of these different analysis procedures. Based on
strength of correlation between multiscale en-
tropy and the analysis result, we argue that this
provided evidence of one analysis result being
superior to the others. 

Finally, we used multiscale entropy to measure
optimal image compressibility. From our previ-
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Figure 4. Multiscale entropy versus the number of objects: the
number of objects obtained from (a) the United States Naval 
Observatory catalog, (b) the Sextractor package, and (c) the MR/1
package. 
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ous studies,1,11,13 we already had a set of images
with compression ratios consistent with the best
recoverability of astronomical properties. These
astronomical properties were based on positional
and intensity information—astrometry and pho-
tometry. Therefore, we had optimal compres-
sion ratios, and for the corresponding images,
we measured the multiscale entropy and found
a strong correlation. 

The breadth and depth of our applications
lend credence to the claim that multiscale en-
tropy is a good measure of image or signal con-
tent. The image data studied are typical not just
of astronomy but of other areas of the physical
and medical sciences. We have built certain as-
pects of the semantics of such data into our
analysis procedures. 

Could we go beyond this and directly use mul-
tiscale entropy in the context of content-based
image retrieval? Yes, if the user’s query is for data
meeting certain signal-to-noise ratio require-
ments, or with certain evidence (which we can
provide) of signal presence in noisy data. For
more general content-based querying, our work
opens up another avenue of research: in query-
ing large data collections, we can allow greater
recall at the expense of precision. Our seman-
tics-related multiscale entropy measure can rank
any large recall set. Therefore, we can use it in
an interactive image-retrieval environment. 

Total information of image and
accumulated accesses

The vast quantities of visual data collected now
and in the future present us with new problems
and opportunities. Critical needs in our software
systems include compression and progressive
transmission, support for differential detail and
user navigation in data spaces, and “thinwire”
transmission and visualization. The technological
infrastructure is just one side of the picture. 

Another side is a human’s limited ability to in-
terpret vast quantities of data. A study by David
Williams has quantified the maximum possible
volume of data that researchers at CERN can
conceivably interpret. This points to another,
more fundamental justification for addressing
the critical technical needs we’ve indicated. This
is that the related themes of selective summa-
rization and prioritized transmission are in-
creasingly becoming a key factor in human un-
derstanding of the real world, as mediated
through our computing and networking base.
We must receive condensed, summarized data

first, which will then give us more detail, added
progressively, to help us better understand the
data. A hyperlinked and networked world makes
this need for summarization more acute. We
must consider resolution scale in our informa-
tion and knowledge spaces. These are key as-
pects of progressive transmission.

Iconized and quick-look functionality imply a
greater reliance on, and increased access to, low-
resolution versions of images and other data. We
have considerable expertise in the information
content and hence compressibility of single im-
ages.11,12 However, what is the total system’s
compressibility, for both storing and transfer-
ring files, when many users benefit from varying
low-resolution versions of the data? We are in-
terested in ensemble averages over large-image
collections, many users, and many storage and
transfer strategies. In other words, we are inter-
ested in the compressibility and information
content of single-image files and the topology of
search, feedback, and access spaces.

Researchers have traditionally applied coding
theory to single image files. Jean Carlson at UC
Santa Barbara and John Doyle at Caltech have
provided an enhanced framework,16,17 raising
such questions as how do we link progressively
coded images as separate files, and how do we
group the resolution and scale components in
single files? They point out that a Web layout
allows, first and foremost, the logical cutting of
1D objects, such as a large image, into pieces for
individual downloading. Such cutting embod-
ies some progressive multiresolution coding—
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Figure 5. Multiscale entropy of astronomical images versus the 
optimal compression ratio. Images that contain numerous sources
have a small ratio and a high multiscale entropy value. With
logarithmic numbers of sources, the relation is almost linear.
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that is, summary information first. Various Web
design models that could be of interest in this
context include simplified designs based on
chain structures, tree structures, more general
graph structures, and geometrical (or partition)
structures. 

We started by using resolution and scale in as-
tronomy images, and it has led us to consider op-
timal Web site designs. Doyle and his colleagues
find that this problem of visual information man-
agement is typical of complex systems that are
robust and have a certain tolerance to uncer-
tainty.17 Access patterns show inherently bursty
behavior at all levels, so we can’t apply traditional
Poisson models, which get smoothed out by data
aggregation or by aggregation over time. Con-
sequently, data aggregation, such as the use of
the flux-preserving Haar wavelet transform (dis-
cussed earlier), will not reduce the information
available. This is bad news from the viewpoint
of total efficiency in our image retrieval systems,
because such data aggregation will lead to evi-
dent gains in data storage but additional access
and transfer overheads. The good news is that
data aggregation does not go hand in hand with
destroying information. There is no theoretical
reason why we should not benefit from it in its
proper context. 

The virtual observatory in astronomy is
premised on the fact that all usable
astronomy data are digital (the term
“virtual” meaning using reduced or

processed online data). High-performance in-
formation cross-correlation and fusion, and long-
term availability of information, are required.

A second trend with major implications is that
of the Grid. The computational Grid aims to
provide an algorithmic and processing infra-
structure for the scientific “collaboratories” of
the future. The data Grid aims to allow ready
access to information from our tera- and
petabyte data stores. Finally, the information
Grid should actively and dynamically retrieve in-
formation, not just pointers to where informa-
tion might exist. 

The evolution of how we do science, driven
by these themes, is inextricably linked to the
problems and recently developed algorithmic so-
lutions we surveyed in this article.
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