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Abstract

We use a redundant wavelet transform analysis to detect clusters in high-dimensional
data spaces. We overcome Bellman’s “curse of dimensionality” in such problems by (i)
using some canonical ordering of observation and variable (document and term) dimen-
sions in our data, (ii) applying a wavelet transform to such canonically ordered data, (iii)
modeling the noise in wavelet space, (iv) defining significant component parts of the data
as opposed to insignificant or noisy component parts, and (v) reading off the resultant
clusters. The overall complexity of this innovative approach is linear in the data dimen-
sionality. We describe a number of examples and test cases, including the clustering of
high-dimensional hypertext data.



1 Introduction

Bellman’s (1961) [1] “curse of dimensionality” refers to the exponential growth of hypervolume
as a function of dimensionality. All problems become tougher as the dimensionality increases.
Nowhere is this more evident than in problems related to search in high-dimensional informa-
tion spaces. The final goal is information resource discovery or finding, the navigation of the
user search process is a primary means towards this end, and clustering or other structuring
is often a prerequisite for this. Clustering is part and parcel of information retrieval whether
it is algorithmic, and seeks to expedite the search process, or is cognitive and related to the
user’s understanding and intention.

In [2] (see also [3]), a constant computational time or O(1) approach to cluster analysis
was described. The computational complexity was, as is usual, defined in terms of the number
of observations. This work related to problem spaces of dimensionality 2, with generalization
possible to 3-dimensional spaces [4]. It may be helpful to distinguish this work from clus-
tering understood as mixture distribution modeling. Banfield and Raftery [5], for example,
discuss algorithms for optimal cluster modeling and fitting. Murtagh and Starck’s [2] work on
O(1) clustering algorithms is based on noise modeling. It can accurately be defined as data
background modeling.

In this article we describe an effective approach for clustering high-dimensional data. Many
wavelet transforms are of O(n) computational complexity for an n-length input data stream.
Examples include such orthonormal transforms as the Haar and Daubechies transforms (for
a very readable and well-based mathematical overview see [6]) and the redundant & trous
transform used below. In terms of the space dimensionality, therefore, the computational
complexity is O(n), or linear. The computational complexity is independent of the number
of items that we are studying and hence this is O(1) or constant-time. Such “items” could be
document-term co-occurrences, or existence of hyperlinks. All other processing we carry out
is local and is dominated by the aforementioned computational complexity.

The “trick” we use to achieve these breakthrough results is derived from data visualization.
We take the document-term or hyperlink array as a 2-dimensional image. In general, an array
is a mapping from the Cartesian product of observation set, I, and attribute set, J, onto the
reals, f : I x J — R, while an image (single frame) is generally defined for discrete spatial
intervals X and Y, f : X xY — IR. A table or array differs from a 2-dimensional image,
however, in one respect. There is an order relation defined on the row- and column-dimensions
in the case of the image. To achieve invariance we must induce an analogous ordering relation
on the observation and variable dimensions of our data table.

A natural way to do this is to seek to optimize contiguous placement of large (or nonzero)
data table entries. Note that array row and column permutation to achieve such an optimal
or suboptimal result leaves intact each value x;;. We simply have row and column, ¢ and j, in
different locations at output compared to input. Methods for achieving such block clustering
of data arrays include combinatorial optimization ([7, 8, 9]) and iterative methods ([10, 11]).
In an information retrieval context, a simulated annealing approach was also used in [12].
Further references and discussion of these methods can be found in [13, 14, 15]. Treating the
results of such methods as an image for visualization purposes is a very common practice (e.g.
[16]).

A further class of methods has been studied by [17]. This work is based on matrix reorder-
ing schemes such as the Reverse Cuthill-McKee method. These matrix reordering schemes
are used to diagonalize large sparse matrices in the context of analysis methods such as corre-



spondence analysis and latent semantic indexing. The matrix reordering schemes themselves
may be very fast. Berry et al. [17] discuss such a method which, in the case of a very sparse
matrix, is of computational complexity proportional to the number of nonzero values in the
matrix. Other methods discussed include fast sparse matrix reorderings related to correspon-
dence analysis. Such a reordering method is used in the last example, that of the encyclopedia
data, discussed below.

2 Incidence Data and Wavelet Transforms

Consider co-occurrence data, or document-term dependence data. Contiguity of links, or of
data values in general, is important if we take the 2-way data array as a 2-dimensional image.
It is precisely this issue which distinguishes a data array from an image: in the latter data
type, the rows and columns are permutation invariant.

We can define permutation invariance by some appropriate means. We can use the output
of some matrix permuting method, such as the bond energy algorithm [7] or a permuting
method related to singular value decomposition [17].

The non-uniqueness of such solutions is not an important issue in this article. However
we must justify our approach since it does rely on an array permutation method selected
by the user. The resulting non-unique solution is acceptable because our ultimate goals are
related to data visualization and exploratory data analysis. Our problem-solving approach
is unsupervised rather than supervised, to use terms which are central in pattern recognition.
We seek an interpretation of our data, rather than the unique interpretation. Of course, the
unsupervised data analysis may well precede or be otherwise very closely coupled to supervised
analysis (discriminant analysis, statistical estimation, exact database match, etc.) in practice.

From a 2-way data array, a 2-dimensional image is created by considering a point at (z,y)
as defining the value 1 at that point, yielding the tuple (z,y,1); projecting onto a regular
discrete grid in the plane; and assigning the contribution of points to the image pixels by
means of the interpolation function, ¢, related to the chosen wavelet transform algorithm —
in our case, a Bj spline.

In a wavelet transform [18, 19], a series of transformations of an image is generated,
providing a resolution-related set of “views” of the image. The properties satisfied by a
wavelet transform, and in particular the & trous wavelet transform (with holes, so called
because of the interlaced convolution used in successive levels: see step 2 of the algorithm
below) are further discussed in [20].

The wavelet transform we use is the a trous (“with holes”) method (see e.g. [21]). It
is a redundant (i.e. non-pyramidal) method and has computational cost which is linear as
a function of the number of pixels in the input data. A summary of the & trous wavelet
transform is as follows. Index k ranges over all pixels.

1. Initialize 7 to 0, starting with an image c;(k).

2. Increment i, and carry out a discrete convolution of the data yielding ¢;—1 (k) using a
filter h (see below). The distance between a central pixel and adjacent ones is 2°71.

3. From this smoothing we obtain the discrete wavelet transform, w;(k) = ¢;—1(k) — ¢; (k).

4. If 7 is less than the number p of resolution levels wanted, return to step 2.



The set W = {wg, w1, ...,wp,cp}, where ¢, is a residual, represents the wavelet transform
of the data. The discrete filter h, when successively applied, realises convolutions with the
increasingly dilated B3 spline function. Implementation is carried out by taking the image
dimensions as separable and using the following: h = {1/16,3/8,1/4,3/8,1/16}.

The following additive decomposition of the input image follows directly from the above
algorithm:

co(k) =¢p + sz(k) (1)

Noise filtering of all wavelet resolution scales, followed by reconstitution of the (now fil-
tered) input data, is very effective in practice. It is premised on the following considerations.
Linkage or incidence or co-occurrence data of the sort considered here generally contains noise.
Hence the wavelet coefficients are noisy too. Therefore we ask ourselves if a wavelet coefficient
is due to signal (i.e. it is significant) or to noise. Many noise models can be considered, for
different types of data (e.g. multiplicative noise in the case of sonar or radar data, additive
noise containing Gaussian and low order Poisson components for widely-used CCDs, charge
coupled device detectors, etc.). In the examples discussed later in this paper we consider the
additive, stationary, low-count Poisson noise case, which corresponds to random shot noise.

A probability distribution function summarizes all possible eventualities, from the extreme
of a uniform arrangement of counts, through to the extreme of all counts being stacked in
one pixel. Based on this, a set of signal detection thresholds can be built up for each wavelet
resolution level. Murtagh and Starck [2] can be referred to for further details, including the
distribution functions for a wide range of numbers of counts.

Having the distribution of the wavelet coefficient for each resolution plane, based on the
noise, we can introduce a statistical significance test for this coefficient. This procedure is the
classical significance-testing one, where we test the null hypothesis that the image is locally
constant at the given resolution scale.

The multiresolution support (Starck et al., 1995) is the name we use for the data structure
resulting from noise filtering. It is based on the detection at each scale of the significant wavelet
coefficients. The multiresolution support is defined by:

1 if wj(z,y) is significant

M(j,z,y) = { 0 if wj(z,y) is not significant @

We will say that a multiresolution support of an image describes in a logical or boolean way
if an image I contains information at a given scale j and at a given position (z,y). The
algorithm to create the multiresolution support is therefore as follows:

1. Compute the wavelet transform of the image.

2. Estimate the noise standard deviation at each scale. Deduce the statistically significant
level at each scale.

3. Booleanization of each scale leads to the multiresolution support.

4. Modification using a priori knowledge is carried out if desired.



Note that step 4 allows us to incorporate expert knowledge into the data analysis operation.
If we know that a cluster of document-term dependency links is not of interest if it contains
a very small number of such links, then we can suppress in the support any cluster below a
user-specified cardinality. Mathematical morphology may be a useful tool for doing this.

Armed with our wavelet transform data structure, and our noise filtering procedures, we
now proceed to look at the use of this methodology in a range of practical cases.

3 Matrix Reordering

Our methodology rests on (i) permuting the rows and columns of an incidence array to some
standard form, and (ii) treating the permuted array as an image, analyzed subsequently by a
multiscale transform method.

A few comments on the computational aspects of array permuting methods follow [17].
Gathering larger (or nonzero) array elements to the diagonal can be viewed in terms of min-
imizing the envelope of nonzero values relative to the diagonal. This can be formulated and
solved in purely symbolic terms by reordering vertices in a suitable graph representation of the
matrix. A widely-used method for symmetric sparse matrices is the Reverse Cuthill-McKee
(RCM) method.

The complexity of the RCM method for ordering rows or columns is proportional to the
product of the maximum degree of any vertex in the graph represented by the array and
the total number of edges (nonzeroes in the matrix). For hypertext matrices with small
maximum degree, the method would be extremely fast. The strength of the method is its
low time complexity but it does suffer from certain drawbacks. The heuristic for finding
the starting vertex is influenced by the initial numbering of vertices and so the quality of
the reordering can vary slightly for the same problem for different initial numberings. Next,
the overall method does not accommodate dense rows (e.g., a common link used in every
document), and if a row has a significantly large number of nonzeroes it might be best to
process it separately; i.e., extract the dense rows, reorder the remaining matrix and augment
it by the dense rows (or common links) numbered last.

One alternative approach is based on linear algebra, making use of the extremely sparse
incidence data which one is usually dealing with. The execution time required by RCM may
well require at least two orders of magnitude (i.e., 100 times) less execution time compared to
such methods. However such methods, including for example sparse array implementations
of correspondence analysis, appear to be more competitive with respect to bandwidth (and
envelope) reduction at the increased computational cost.

Elapsed CPU times for a range of arrays are given in [17], and as an indication show
performances between 0.025 to 3.18 seconds for permuting a 4000 x 400 array.

4 A Case-Study: Fisher’s Iris Data

The iris data of Anderson used by Fisher [23] is a very widely-used benchmark dataset. The
data consists of 3 varieties of iris flower, each providing 50 samples. There are measurements
on 4 variables, petal and sepal length and breadth. The data matrix is therefore one of
dimensions 150 x 4.

To simulate a higher-dimensional problem, and to remain with the familiar properties of
the Fisher iris data, we generated a recoded version of the Fisher data. For each of the 150



samples, we took the 4 given measurements, and made a much larger vector from them —
as it happens a 147-valued binary (0 or 1) vector. This was done simply by taking each 0.1
interval of each variable as defining a new variable. You can check the veracity of this data
recoding by looking at a principal components analysis of the original data, i.e. the optimal
2-dimensional projection of the 4-dimensional space (Fig. 1); and a correspondence analysis of
the recoded data, i.e. an optimal 2-dimensional projection of the 147-dimensional space (Fig.
2).

While traditional methods have increased computational difficulty in dealing with higher-
dimensional spaces, this is just what a wavelet transform approach thrives on.

We will look at the analysis of the 150 x 147 Fisher data. First we permute rows and
columns since we will look for contiguously-formed clusters, and therefore we need a canonical
ordering of some sort to make this possible. Methods which give permuted results with the
contiguity-enforcing property were overviewed in Sections 1 and 3 above. The permuting
method used by us was to take a principal components analysis of the 150 x 147 data and
use the order of the principal component projections. (We did not use the correspondence
analysis result, even though this is more appropriate for the boolean data used as input, for
a minor technical reason: the correspondence analysis deleted columns among the 147 which
had zero totals, thus not providing a convenient 147-valued set of ranks for us to work on).
The reordered data used is shown in Fig. 3.

The & trous wavelet transform with 5 resolution scales and a residual gives the result
shown in Fig. 4. When added, these give a smoothed (with the scaling function used by the
a trous method) version of the input data. We suppose now that we are dealing with signal
in the form of clusters or clumps of samples/measurements, and further that this nice view of
our data is sullied by spurious information in the form of (low-count) Poisson noise, and we
filter our data.

The multiscale significant detections based on these assumptions are shown in the sequence
of images in Fig. 5.

The 5th scale, here, looks the most informative in terms of our set of 150 samples, divided
as we know into three classes each of 150. The samples are represented on the horizontal axis.
Taking the positive parts of this image, and taking everything above 0 as equal to 1 gives the
visualization shown in Fig. 6.

Reading off the sample numbers from the horizontal axis gave a credible result. For the
first Fisher cluster, corresponding to the upper right cluster, one substitution error was found.
The other Fisher clusters are a little less resolved, but — cf. the correspondence analysis output
of the 150 x 147 data shown in Fig. 2 — are quite consistent with the input.

In dealing with the curse of dimensionality, therefore, we have a method which is fast,
provides a good-quality result, and is not hampered by high dimensionality.

5 Ultrametric Spaces

It is interesting to look at the wavelet transform of spaces of known structure. Ultrametric
distance matrices can be represented, subject to an appropriate ordering of objects, with
quite particular relations between values as we move away from the diagonal. Lerman [24]
discusses ultrametric spaces in detail. Lerman’s Theorem 2 (1981, p. 45) describes properties
of ultrametric distance matrices. The result we are most interested in is in regard to matrix
reordering: an order can be found such that array elements are necessarily non-increasing as



we move away from the diagonal, and row and column array elements have a number of such
inequality properties. We will visualize these properties using a wavelet transform.

To derive ultrametric distances, we again took the Fisher iris data, in its original 150 x 4
form. We constructed a complete link hierarchical clustering, using the Euclidean distance
between the observation vectors. We read off the 150 x 150 ultrametric distances (ranks
were used, rather than agglomeration criterion values) from this dendrogram. Fig. 7 (left)
shows this ultrametric matrix. (The greyscale values have been histogram-equalized for better
contrast.) When we reorder the rows and columns (the matrix is symmetric of course) in ac-
cordance with the ordering of singletons used by the dendrogram representation we get the vi-
sualization shown in Fig. 7 (right). Again contrast stretching through histogram-equalization
was used.

Figures 8 and 9 show, respectively, the wavelet transforms of the arrays shown in Fig.
7. Three wavelet resolution levels have been used, together with the smooth data residual.
They are read from top left to bottom right. Fig. 9 shows a visual representation of Lerman’s
Theorem 2. Note that the unpermuted data (Fig. 7 left, and Fig. 8) would not usually, in
practice, have an order consistent with near separation of the more important clusters, as is
the case here.

6 Clustering of Document-Term Data

Experiments were carried out on a set of bibliographical data — documents in the literature
crossed by user-assigned index terms. This bibliographic data is from the journal Astronomy
and Astrophysics (Springer-Verlag). It is used currently to provide a cluster-based graphical
user interface to further information on these articles, and in many cases (if one’s library
subscribes to the journal) to the full online articles themselves. This document map can
be accessed at URL http://cdsweb.u-strasbg.fr/ Abstract.html. Further information on the
construction and maintenance of these document maps is available in [25, 26]. We looked at
a set of such bibliography relating to 6885 articles published in Astronomy and Astrophysics
between 1994 and early 1999. A sample of the first 10 records is as follows.

1994A&A...284L...11 102 167
1994A%A...284L...5W 4 5 14 16 52 69
1994A&A . ..284L...9M 29
1994A%A .. .284L. .16F 15 64
1994A&A...284....1B 32 49 71
1994A%A...284...12A 36 153 202
1994A&A...284...17H 3 10 74 82 103
1994A%A...284...28M 17 42 102
1994A&A...284...33D 58
1004A&A .. .284...448 111

A 19-character unique identifier (the bibcode) is followed by the sequence numbers of the
index terms. There are 269 of the latter. They are specified by the author(s) and examples
will be seen below towards the end of this section. The experiments to follow were based
on the first 512 documents in order to facilitate presentation of results. Fig. 10 shows the
512 x 269 incidence array used. We investigated the row and column permuting of this array,
based on the ordering of projections on the principal component, but limited clustering was



brought about. This was due to the paucity of index term “overlap” properties in this dataset,
i.e. the relatively limited numbers of index terms shared by any given pair of documents. For
this reason, we elected to base subsequent work on the contingency table. Fig. 11 shows this.
Actual values between pixels (document sequence numbers) 251 and 265 are shown as follows:

i1 0 0 00 0 0OOO O OOUOOTO
0 3 0 000 0 0O O0OO0OOUOTUOTODO
0 04 000 0 0 O0OOOO0OOTOTO
0 0 020 0O0O0OO0O1O0O0OO0OO0OUDO
0 0 0 030 000 0 O O0OO0OTOTUO
0 0 000 200 O0O0O0OO0OO0OTO0OTDO
0 0 0 000 200 01 00 0O
0O 0 0O 0O0OO0O O 6 00 0 0 0 0O
0 0 0 000 0603 0 0 0 0 OO
0 0 061 00 0O O O0OO5 O0OOO0OO0
0O 0 0O 0OOO 1 OO O 40 0 0O
0 0 0000 00O O O OT1 O0 OO
0o 0 0O 00O0OOO O0OOOO3 01
0 0 0 000 0O0OO0OOOOUO3 O
0 0 0000 OO OOOOT1 0 4

A principal components analysis of the 512 x 269 dataset is dominated by the O(m3), m =
269 diagonalization requirement. Calculating the principal component projections for the rows
takes linear (in document space) time. We used the order of principal component projections
to provide a standard permutation of rows and columns of the document contingency table.
The resulting permuted contingency table is shown in Fig. 12. Actual values between pixels
(document sequence numbers) 251 and 265 are as follows:

1 0 0 0O0OO O O OOOOTOODO
0 3 0000 0 OO0OOTO0OOTOTU OO
0 0300 1 OO O OO0OOOTUOTO
0 0 062 00O0O0O0OO0OO0OOOTODO
0 0 0020 0O0O0OO0OOOUOTUODO
0o 010 03 00 0O O0OO0OOO0OTUO 1
0 0 0000 20000 0 0 0O
0O 0 0O 0OOO O 2 00 00 0 00O
0 0 0000 OO 3 00O 1 O00O0
0 0 00OOO O OOT1O0TUOTO0OTU OO
0 0 0000 O0OOOOTI1TO0OO0OTUO0OTUDO
0O 0 0O00OOO O OOOTOMZ4O0 10
0 0 0000 O0OO1O0O0O0 2 00
0 0 0O 0OOO O OOOTOT1I 0 30
0 0 0001 00 O O0OOOO O 5

A first investigation was carried out on denoising of the permuted contingency table data
(i.e. Fig. 12). Clearly though, there is “porosity” here, such that the areas sought which
are significantly above the background are not fully contiguous. Denoising of Fig. 12 yielded
a view of the data which was almost entirely cleaned in non-diagonal areas. The diagonal



itself is given by the first principal component. We looked at the major cluster “knots” in
the denoised image but found it of limited usefulness to interpret them. We therefore took a
different tack.

Figs. 13 and 14 show, respectively, the results of a wavelet transform (the redundant &
trous transform is used) at wavelet resolution level 3 and the final smoothed version of the
data. The latter is a background or continuum. In both of these figures, more especially in the
continuum one, we have visual evidence for a cluster at the bottom left, another smaller one
about one-third of the way up the diagonal, and a large one centred on the upper right-hand
side of the image.

We are simply using the wavelet transform in this instance to facilitate analysis of a large,
permuted data array. We wish to find contiguous clusters. Such clusters will for the most
part be close to the diagonal. We recall that the contingency array used is symmetric, which
explains the symmetry relative to the diagonal in what we see.

We can interpret the clusters on the basis of their most highly associated index terms.
This in turn relates to the ordering of index terms on the first principal component axis in
this case. Applying an arbitrary cut-off (£0.2) to principal component projections, we find
the index terms most associated with the two ends of the first principal component as follows:

stars:circumstellar matter
X-rays:stars
stars:abundances
stars:evolution
stars:mass loss
stars:binaries:close
stars:late type
stars:activity
stars:magnetic fields
stars:coronae
stars:flare

radio continuum:stars
stars:chromospheres
stars:binaries

The other extremity of the first principal component axis is associated with the following
index terms:

ISM:molecules

galaxies:ISM
galaxies:kinematics and dynamics
galaxies:evolution
galaxies:spiral
galaxies:interactions
galaxies:structure
galaxies:abundances
galaxies:redshifts
galaxies:luminosity function,mass function
galaxies:compact



The distinction is clear — between stars, and stellar topics of inquiry, on the one hand,
and interstellar matter (ISM) and galaxies, i.e. topics in cosmology, on the other hand. This
distinction explains the two clusters clearly visible at the opposite ends of the diagonal in
Fig. 14 (and less so in the original permuted data, Fig. 12). The distinction between stellar
and cosmological foci of inquiry in the astronomical literature is a well-known one, which is
linked directly and indirectly to astronomical instrumentation and even to shifts of interests
of professional astronomers over the past few decades.

7 Application to Hypertext

From the Concise Columbia Encyclopedia (1989 2nd ed., online version) a set of data relating
to 12025 encyclopedia entries and to 9778 cross-references or links was used. This data was
rebinned 10-fold for computational convenience to produce the 1203 x 978 entries X links
array used here. The image in Fig. 15 shows part of this array, subsequent to row/column
permutation to force nonzero values as far as possible onto the diagonal. The permutation
method used was a sparse matrix method related to correspondence analysis diagonalization
(Berry et al., 1996).

Now we seek to find the most important “knots” or clusters. Fig. 16 is a filtered version,
i.e. with the effects of the noise removed on all resolution scales. We have achieved a very
great economy of information, pinpointing salient clusters which, in conjunction with the input
data, can be used for search navigation or for further more detailed analysis (for example,
causal network modeling).

In Figs. 15 and 16, the first coordinate runs from left to right, and the second from top
to bottom. We will explore one cluster found, approximately in the center of Figs. 15 and
16. With reference to the latter Fig., there is a three-some in the center, and we take the
leftmost of these isolated clusters. This leftmost cluster is of dimensions 2 x 2. This cluster,
and the original data, in this region looks like the following (respectively, first and second of
these data “chunks”):

o o o o o o o o o o
o o o0 o o o0 o o o o
o o o o o o o o o o
o o o0 o o o0 o o o o
o o o o 2 2 o0 0 O0 O
o o o o0 2 2 o0 0 O0 0
o o o o o o o o o o
o o o0 o o o0 o o o o
o o o o o o o o o o
o o o0 o o o0 o o o o
i o o o 1 O O O o0 O
o o o o o o o o o o
o o o o0 1t o0 1 o0 O O
o 2 o0 1 0 O O o0 o0 O
o o 1 2 1 0 0 0 1 O

10



The larger region with the other clusters in the three-some is as follows (again, filtered

data, and original data, respectively):
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Investigation of clusters is complicated by the fact that we have an incidence array of
dimensions 12025 x 9778, which we rebin to dimensions 1203 x 977, because of limitations
on available memory. Such rebinned data can be checked out more closely, on the basis of the
clustering carried out. We will not pursue further here the information navigation possibilities
which ensue.

To look further at a cluster or two, we instead returned to the original data. We took the
first 1203 x 977 values, based on the correspondence analysis reordering. About the lower
half of this array was very much diagonalized, and was therefore relatively straightforward to
analyze. (The clusters in fact formed a one-dimensional ordering or seriation, and therefore
were particularly easy to process.) The upper part of the array was more dispersed and this
is what we analyzed using our method. Fig. 17 shows this 500 x 450 array.

This part of the encyclopedia data was filtered using the wavelet and noise-modeling
methodology described in this paper. Since we are interested in crisp clusters here, this
filtered result was thresholded and a boolean image was created from this. Then, to remove
the influence of what had been blurred clusters, which are not of interpretative value to us
since again the relations in our data are non-fuzzy, we took the product (intersection) of the
original incidence data and the processed filtered data. The result is shown in Fig. 18.

Overall the recovery of the more apparent alignments, and hence visually stronger clus-
ters, is excellent. The first relatively long “horizontal bar” was selected — it corresponds to
column index (link) 1733 = geological era. The corresponding row indices (articles) are,
in sequence:

SILURIAN PERIOD
PLEISTOCENE EPOCH
HOLOCENE EPOCH
PRECAMBRIAN TIME
CARBONIFEROUS PERIOD
OLIGOCENE EPOCH
ORDOVICIAN PERIOD
TRIASSIC PERIOD
CENOZOIC ERA
PALEOCENE EPOCH
MIOCENE EPOCH
DEVONIAN PERIOD
PALEOZOIC ERA
JURASSIC PERIOD
MESOZ0OIC ERA
CAMBRIAN PERIOD
PLIOCENE EPOCH
CRETACEQUS PERIOD

One remark to be made is that the filtering program was asked to ignore any clusters
touching the array boundaries due to possible difficulties with interpretation — cf. lower left
alignments — and this is something which can be changed easily. We can see some preference
for vertical and horizontal alignments, over diagonal ones, which is reasonable — the former
represent clusters of encyclopedia entries and of cross-references. There is scope in our method
for fine-tuning this objective, for example to prioritize clustering of entries over those of cross-
references.

12



8 Conclusion

This paper describes a new set of linkages between wavelet transform analysis and multivari-
ate data analysis (see [27] for various other linkages, especially to dimensionality reduction
methods). Exhibits of wavelet transforms, for applications related to pattern recognition, data
enhancement, filtering, compression, data fusion, information characterization, and many oth-
ers, using a methodology similar to that used here, can be found at MR/1 [28].

The methodology developed here is fast and effective. It is based on the convergence of a
number of technologies: (i) data visualization techniques; (ii) the wavelet transform for data
analysis; and (iii) data matrix permuting techniques. We have discussed its use for large
incidence arrays. We introduced noise modeling of such data, and showed how noise filtering
can be used to provide as output a set of significant clusters in the data. Such clusters may be
overlapping. Further development of this work would be to investigate hierarchical clusters,
possibly overlapping, derived from the multiple scales.

We have also discussed this innovative methodology using a range of different datasets.
It is clearly related to other well-established data analysis methods, such as seriation (one-
dimensional ordering of observations), and nonparametric density estimation (the wavelet
transform can be viewed as performing such density estimation).

We can note also the potential use of our new methodology for use in graphical user
interfaces. The Kohonen self-organizing feature map, by now quite widely used for support of
clickable user interfaces [25, 26], presents a map of the documents (say), but not as explicitly
of the associated index terms. Our maps cater equally for both documents and index terms.
Furthermore, the way is open to the exploration of what can be offered by recent developments
in client-server based image storage and delivery (see some discussion in Chapter 7 of [3])
e.g. progressive transmission and foveation (i.e. progressive transmission in a local region)
strategies. This perspective opens up onto a line of inquiry which could be characterized as
multiple resolution information storage, access and retrieval.

Our approach responds well to current requirements for fast methods to process large
incidence arrays. Its main practical performance limitation is related to machine memory
storage for the arrays being produced and analyzed. Such a limitation can be bypassed by
processing segments of the incidence array in sequence (or in parallel). The array permuting
strategy used will be of major help in this regard also, since it focuses our attention on
particular — usually near-diagonal — parts of the reordered incidence array.
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Figure 1: Principal plane of the 4-dimensional Fisher data.
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Figure 2: Correspondence analysis, principal factors, of the Fisher data embedded in a high-
dimensional (147-dimensional) space.
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Figure 4: Wavelet transform of reordered Fisher data.
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Figure 5: Significant detections in wavelet transform of reordered Fisher data.

Figure 6: The support image of the 5th scale of the wavelet transform of the Fisher data.
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Figure 7: Left: ultrametric matrix of 150 observations, in given order — clusters 1, 2 and 3
correspond to sequence numbers 1-50, 51-100, 101-150. Right: ultrametric matrix of these
same observations, with the rows and columns permuted in accordance with a non-crossover
representation of the associated dendrogram.

Figure 8: Wavelet transform of array shown in Fig. 7 (left).
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Figure 9: Wavelet transform of array shown in Fig. 7 (right).

Figure 10: Rows: 512 documents, columns: 269 index terms.
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Figure 11: Contingency table of 512 documents.

Figure 12: Row/column-permuted contingency table of 512 documents, based on projections
onto first principal component.
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Figure 14: The final smoothed version of the data resulting from a wavelet transform of the
data shown in Fig. 12.
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Figure 15: Part of the encyclopedia link dependencies.
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Figure 16: Wavelet filtered version of the data in the approximate region shown in the previous
Fig.
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Figure 17: Part (500 x 450) of original encyclopedia incidence data array.
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Figure 18: End-product of the filtering of the array shown in the previous Figure.
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