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Abstract

The notion of a multiresolution support is introduced. This is a sequence of boolean

images, related to signi�cant pixels at each of a number of resolution levels. The

multiresolution support is then used for noise suppression, in the context of image

�ltering, or iterative image restoration. Algorithmic details, and a range of practical

examples, illustrate this approach.

1 Introduction

1.1 General Ideas and Plan of Paper

The human visual system picks out objects of interest at di�erent scales. In recent years,

therefore, image processing has sought to make use of multiscale or multiresolution repre-

sentations. A range of theories are available such as quadtree and pyramid representations,

scale-space �ltering, and the wavelet transform. For the �rst two of these, reference may

be made to Lindeberg [20].

In this paper, a computationally e�cient wavelet transform algorithm is used to gen-

erate a sequence of multiresolution views of the image. Following this, in each of the

wavelet planes, a support is de�ned, i.e. a boolean image where signi�cant pixels have a 1

or true value, and all other pixels a 0 or false value. Contiguous areas of 1-valued pixels

are associated with objects in the image being analyzed, at the given resolution or scale.

The set of support images, at each resolution level, is called the multiresolution support.

The multiresolution support is an important data structure, which provides a powerful

framework for noise �ltering, and for restoration with noise suppression. The procedure

used is to determine statistically signi�cant wavelet coe�cients, and from this to specify

the support. Thus a statistical image model is used as an integral part of the image

processing. The support is used subsequently to hand-craft the �ltering or restoration

(or, although not treated in this paper, object detection). Statistical image models are

available in astronomical image processing, and our examples are based on images from

this �eld. We will discuss implementation strategies, and experimental results.

This paper is structured as follows. Section 2 introduces the multiresolution support,

and discusses how it can be used to determine noise in the image. Section 3 deals with

noise �ltering, and we �nd that use of the multiresolution support o�ers a powerful and

versatile way to handle noise of di�erent distributions. Section 4 covers image restoration

methods. A list of the principal notation used precedes the references. Two appendices

provide further detail on some central aspects of the paper.

1.2 Related Work

Astronomical images { especially when relating to scenes and objects outside our solar

system { have properties which make them quite di�erent from images in industrial vision

or remote sensing. Astronomical images for the most part contain point sources (stars and

other approximately point symmetric objects) and extended objects (galaxies, nebulae,

etc. which are often faint). These objects may be superimposed. Edges and alignments
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rarely play a role. For astronomical image restoration issues, the reader may consult the

articles in [44] and [14].

An established and successful approach to image restoration and �ltering on non-

astronomical imagery is to use regularization with a smoothness constraint ([17], [21]).

This leads to de�nition of a functional to be optimized, with consideration given to im-

portant image properties such as edges. Adaptive choice of the regularization has been

used in [13] and [16]. As mentioned, astronomical images contain \edges with no exten-

sion" (point sources) and di�use objects. A Tikhonov optimization criterion does not do

justice to such objects. Instead we propose an e�ective heuristic restoration and �ltering

approach in this �eld.

\Regularization" as used in this paper involves use of a multiresolution support. A

support constraint in the space of wavelet coe�cients is in keeping with our vision of

the image: superimposed and variably-sized point sources and extended objects. The

optimization problem is formulated in algorithmic terms, and the greedy solution method

is reminiscent of another widely used astronomical restoration method, termed CLEAN

(predominent in radio astronomy; it consists of iteratively �tting a point spread function,

and moving ux from the given \dirty" image to the output \cleaned" image). Similar to

CLEAN and to [45], we can argue that our adaptive approach is straightforward, easy to

implement, and robust.

Smoothing without reference to astronomical content is used in [35] and [26]. Filtering

as described in this paper aims at protection of the objects in the image, so that pho-

tometric (intensity-related), astrometric (position-related) and morphological information

remains faithful (by design) to the input image data.

Previous work of ours has dealt with the choice of e�ective wavelet transform (see [3]

and [4]); and a discussion of common noise models ([41], [32]). This paper will deal with

the adaptive, local regularization implied by constraining the operations of restoration

and �ltering to respect the multiresolution constraint data-structure.

2 Multiresolution Support

2.1 De�nition

We will say that a multiresolution support of an image describes in a logical or boolean

way if an image I contains information at a given scale j and at a given position (x; y). If

M

(I)

(j; x; y) = 1 (or = true), then I contains information at scale j and at the position

(x; y).

Such a support results from the data, the treatment (noise estimation, etc.), and from

knowledge on our part of the objects contained in the data (size of objects, linearity, etc.).

The multiresolution support of an image is computed in several steps: compute the

wavelet transform of the image; booleanize each scale which yields the multiresolution

support; and introduce a priori knowledge by modifying the support.

The last step depends on the knowledge we have of our images. For instance, if we

know there is no interesting object smaller or larger than a given size in our image, we can

suppress, in the support, anything which is due to that kind of object. This can often be
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done conveniently by the use of mathematical morphology. In the most general setting,

we naturally have no information to add to the multiresolution support.

2.2 Multiresolution Support from the Wavelet Transform

There are more than ten widely-used wavelet transform algorithms [3],[7],[11],[25],[29],[31],[40].

We chose the �a trous algorithm [15],[37],[41] for the following reasons:

1. The transform is carried out in direct space. No artifacts arise due to periodization.

2. The computational requirement is reasonable, as are memory and storage require-

ments. One property inuencing the computational requirement is that the scaling

functions are compact.

3. In two dimensions, the transform is practically isotropic (point symmetric).

4. The transform is known at each pixel, allowing reconstruction without any error,

and without interpolation. We can follow the evolution of the transform from one

scale to the next.

5. Invariance under translation is completely veri�ed.

Details of the algorithm are given in Appendix 1. The wavelet transform of an image

by this algorithm produces at each scale j, a set fw

j

g which we will call a wavelet plane

throughout the following discussion. This has the same number of pixels as the image. The

original image c

0

can be expressed as the sum of all the wavelet planes and the smoothed

array c

p

c

0

= c

p

+

p

X

j=1

w

j

(1)

and a pixel at position x; y can be expressed also as the sum all the wavelet coe�cients at

this position, plus the smoothed array:

c

0

(x; y) = c

p

(x; y) +

p

X

j=1

w

j

(x; y) (2)

The multiresolution support will be obtained by detecting at each scale the signif-

icant coe�cients. We will see in the next section how to �nd these coe�cients. The

multiresolution support is de�ned by:

M(j; x; y) =

(

1 if w

j

(x; y) is signi�cant

0 if w

j

(x; y) is not signi�cant

(3)
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2.3 Signi�cant Coe�cients

2.3.1 Statistically Signi�cant Level

Images generally contain noise. Hence the wavelet coe�cients are noisy too. In most

applications, it is necessary to know if a coe�cient is due to signal or to noise. Generally

noise in astronomical images follows a Gaussian or a Poisson distribution.

The wavelet transform yields a set of resolution-related views of the input image.

A wavelet image plane at level j has coe�cients given by w

j

(x; y). If we obtain the

distribution of the coe�cient w

j

(x; y) for each plane, based on the noise, we can introduce

a statistical signi�cance test for this coe�cient. The procedure is the classical signi�cance-

testing one. LetH

0

be the hypothesis that the image is locally constant at scale j. Consider

�rst the case of Gaussian noise. The distribution of w

j

(x; y) is Gaussian, with zero mean

and standard deviation �

j

. We have the probability density

p(w

j

(x; y)) =

1

p

2��

j

exp

w

j

(x;y)

2

=2�

2

j

(4)

Rejection of hypothesis H

0

depends (for a positive coe�cient value) on:

P = Prob(w

j

(x; y) < W ) =

1

p

2��

j

Z

+1

w

j

(x;y)

exp

�W

2

=2�

2

j

dW (5)

and if the coe�cient value is negative, we reject if

P = Prob(w

j

(x; y) > W ) =

1

p

2��

j

Z

w

j

(x;y)

�1

exp

�W

2

=2�

2

j

dW (6)

Given a threshold, �, if P > � the null hypothesis is not excluded. Although non-null, the

value of the coe�cient could be due to noise. On the other hand, if P < �, the coe�cient

value cannot be due only to the noise alone, and so the null hypothesis is rejected. In this

case, a signi�cant coe�cient has been detected.

Given stationary, Gaussian noise, it su�ces to compare w

j

(x; y) to k�

j

. Often k is

chosen as 3. If w

j

(x; y) is small, it is not signi�cant and could be due to noise. If w

j

(x; y)

is large, it is signi�cant:

if j w

j

j � k�

j

then w

j

is signi�cant

if j w

j

j < k�

j

then w

j

is not signi�cant

(7)

If the noise in the data I is Poisson, the transform [2]

T (I(x; y)) = 2

r

I(x; y) +

3

8

(8)

acts as if the data arose from the Gaussian white noise model, with unit standard deviation.

In this case, we will take the wavelet transform of T (I), and w

(I)

j

(x; y) will be signi�cant

if w

(T (I))

j

(x; y) is above a given threshold. (Here the superscript on the wavelet coe�cients

indicates the image on which the wavelet transform was carried out.) Generalization of

transform (8) for combined Poisson and Gaussian noise is discussed in [32].

So we need to estimate, in the case of Gaussian, Poisson, or additive Poisson and

Gaussian, noise models, the noise standard deviation at each scale.
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2.3.2 Noise Standard Deviation Estimation at Each Scale

The appropriate value of �

j

in the succession of wavelet planes is assessed from the stan-

dard deviation of the noise �

I

in the original image and from study of the noise in the

wavelet space. This study consists of simulating an image containing Gaussian noise with

a standard deviation equal to 1, and taking the wavelet transform of this image. Then

we compute the standard deviation �

e

j

at each scale. We get a curve �

e

j

as a function of

j, giving the behavior of the noise in the wavelet space. (Note that if we had used an

orthogonal wavelet transform, this curve would be linear.) Due to the properties of the

wavelet transform, we have �

j

= �

I

�

e

j

. The standard deviation of the noise at a scale j of

the image is equal to the standard deviation of the noise of the image multiplied by the

standard deviation of the noise of the scale j of the wavelet transform.

An alternative, here, would be to estimate the standard deviation of the noise �

1

of the

�rst plane from the histogram of w

1

. The values of the wavelet image w

1

are due mainly

to the noise. A histogram shows a Gaussian peak around 0. A 3-sigma clipping is then

used to reject pixels where the signal is signi�cantly large. The standard deviation of the

noise �

j

is estimated from �

1

. This is done from the study of noise variation between two

scales, as described above.

2.4 Conclusion

In order to visualize the support, we can create an image S de�ned by:

S(x; y) =

p

X

j=1

2

j

M(j; x; y) (9)

Figure 1 shows such a multiresolution support visualization of an image of galaxy NGC

2997.

The multiresolution support allows us to integrate, in a visualizable manner, and in a

way which is very suitable for ancillary image alteration, information coming from data,

knowledge, and processing. We will see below how we can use it in image �ltering and in

image restoration.

3 Filtering

3.1 Filtering from Signi�cant Coe�cients

It has been seen in Section 2.3.1 how signi�cant wavelet coe�cients are detected in an

image. Reconstruction, after setting non-signi�cant coe�cients to zero, at full resolution

leads to adaptive �ltering [40]. The restored image is

~

I(x; y) = c

p

(x; y) +

p

X

j=1

g(�

j

; w

j

(x; y))w

j

(x; y) (10)

with g de�ned by:
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g(�

j

; w

j

) =

(

1 if j w

j

j � k�

j

(signi�cant)

0 if j w

j

j < k�

j

(non-signi�cant)

(11)

3.2 Iterative Filtering from Signi�cant Coe�cients

In the method just described, we obtain an image

~

I by reconstructing the thresholded

coe�cients. A satisfactory �ltering implies that the error image E = I �

~

I, obtained as

the di�erence between the original image and the �ltered image, contains only noise and

no \structure". Such is not the case in practice with the approach described. However,

we can easily arrive at this objective by iterating a few times:

1. n 0.

2. Initialize the solution, I

(0)

, to zero.

3. Estimate the signi�cance level (e.g. 3-sigma) at each scale.

4. Determine the error, E

(n)

= I � I

(n)

(where I is the input image, to be �ltered).

5. Determine the wavelet transform of E

(n)

.

6. Threshold: only retain the signi�cant coe�cients.

7. Reconstruct the thresholded error image. This yields the image

~

E

(n)

containing the

signi�cant residuals of the error image.

8. Add this residual to the solution: I

(n)

 I

(n)

+

~

E

(n)

.

9. If j (�

E

(n�1) � �

E

(n))=�

E

(n) j > � then n n+ 1 and goto 4.

10. I

(n)

contains the �ltered image, and I � I

(n)

is our estimation of the noise.

At each iteration, we extract the residual image of signi�cant structures and we in-

troduce them into the solution. We generally used between 6 and 10 iterations. On

termination, we are certain that there are no further signi�cant structures in the residual

images.

If the noise associated with image I is Poisson, the signi�cant structures are extracted

as described in Appendix 2.

3.3 Iterative Filtering from a Multiresolution Support

From the iterative algorithm described in the preceding section, we reconstruct a �ltered

image

~

I such that, for all pixels, we have

j I(x; y)�

~

I(x; y) j < k�

I

(12)
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where �

I

is the standard deviation of the noise contained in the image. This �ltering is

e�ective, but does not always correspond to what is wanted. In astronomy, for example,

we would prefer not to touch a pixel if it generates a signi�cant coe�cient at all scales.

In general, we say that if a multiresolution coe�cient of the original image is signi�cant

(i.e. j w

(I)

j

(x; y) j > K, where K is the signi�cance threshold), then the multiresolution

coe�cient of the error image (i.e. w

(E

(n)

)

j

) must satisfy the following exactly:

w

(E

(n)

)

j

(x; y) = 0 if j w

(I)

j

(x; y) j > K (13)

To arrive at this objective, we use the multiresolution support of the image, and the

algorithm becomes:

1. n 0.

2. Initialize the solution, I

(0)

, to zero.

3. Determine the multiresolution support of the image.

4. Estimate the signi�cance level (e.g. 3-sigma) at each scale.

5. Determine the error, E

(n)

= I � I

(n)

(where I is the input image, to be �ltered).

6. Determine the multiresolution transform of E

(n)

.

7. Threshold: only retain the coe�cients which belong to the support.

8. Reconstruct the thresholded error image. This yields the image

~

E

(n)

containing the

signi�cant residuals of the error image.

9. Add this residual to the solution: I

(n)

 I

(n)

+

~

E

(n)

.

10. If j (�

E

(n�1) � �

E

(n))=�

E

(n) j > � then n n+ 1 and goto 4.

Thus the regions of the image which contain signi�cant structures at all levels are not

modi�ed by the �ltering. The residual will contain the value zero over all of these regions.

The support can also be enriched by any available a priori knowledge. For example, if

artifacts exist around objects, a simple morphological dilation of the support can be used

to eliminate them.

When the noise associated with image I is Poisson, we can apply Anscombe's trans-

formation as discussed above.

3.4 Example

Figure 2 shows a noisy spectrum (upper left, repeated lower right). For the astronomer,

the spectral lines { here mainly absorption lines extending downwards { are of interest.

The continuum may also be of interest, i.e. the overall spectral tendency. The spectral

lines are unchanged in the �ltered version (upper center, and upper right). To illustrate

the damage that can result from another wavelet transform, and another noise supression
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policy, the lower center (and lower right) version shows the result of applying Daubechies'

[9] coe�cient 8, a compactly-supported orthonormal wavelet. This was followed by thresh-

olding based on estimated variance of the coe�cients [10], but not taking into account the

image's noise properties as we have done (see [33]). One sees immediately that a problem-

(or image-) driven choice of wavelet and �ltering strategy is indispensible.

4 Deconvolution

4.1 Iterative Restoration Algorithms

Consider an image characterized by its intensity distribution (the \data") I(x; y), corre-

sponding to the observation of a \real image" O(x; y) through an optical system. If the

imaging system is linear and shift-invariant, the relation between the object and the image

in the same coordinate frame is a convolution:

I(x; y) = (O � P )(x; y) +N(x; y) (14)

P (x; y) is the point spread function (PSF) of the imaging system, and N(x; y) is an

additive noise. In practice O�P is subject to non-stationary noise which one can tackle by

simultaneous object estimation and restoration [18]. The issue of more extensive statistical

modeling will not be further addressed here (see [22], [23], [30]), beyond noting that

multiresolution frequently represents a useful framework, allowing the user to introduce a

priori knowledge of objects of interest.

Eq. 14 is always an ill-posed problem. If the noise is modeled as a Gaussian or Poisson

process, then an iterative approach for computing maximum likelihood estimates may be

used. The Richardson-Lucy method ([34], [24]; see also [1], [18]) uses such an iterative

approach:

O

(n+1)

 � O

(n)

[(I=I

(n)

) � P

�

]

I

(n)

 � P �O

(n)

(15)

where P

�

is the transpose of the PSF, and O

(n)

is the current estimate of the desired \real

image".

4.2 Noise Suppression based on the Wavelet Transform Decomposition

In using an iterative deconvolution algorithm such as Van Cittert or Richardson-Lucy, we

de�ne R

(n)

(x; y), the residual at iteration n:

R

(n)

(x; y) = I(x; y)� P (x; y) �O

(n)

(x; y) (16)

By using the �a trous wavelet transform algorithm ([40], [41], [42]), R

(n)

can be de�ned

by the sum of its p wavelet planes and the last smooth plane (see Appendix 1).

R

(n)

(x; y) = c

p

(x; y) +

p

X

j=1

w

j

(x; y) (17)
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where the �rst term on the right hand side is the last smoothed plane, and w denotes a

wavelet plane.

The wavelet coe�cients provide a mechanism to extract only the signi�cant struc-

tures from the residuals at each iteration. Normally, a large part of these residuals are

statistically non-signi�cant. The signi�cant residual is then:

�

R

(n)

(x; y) = c

p

(x; y) +

p

X

j=1

g(w

j

(x; y); �

j

) w

j

(x; y) (18)

�

j

is the standard deviation of the noise at scale j, and g is a function which is de�ned

by:

g(a; �) =

(

1 if j a j � k� (a signi�cant)

0 if j a j < k� (a non-signi�cant)

(19)

The standard deviation of the noise �

j

is estimated from the standard deviation of the

noise in the image as discussed above in Section 2.3.2.

4.3 Noise Suppression based on the Multiresolution Support

In the approach presented in the preceding section, a wavelet coe�cient is signi�cant

if it is above a threshold. Therefore a coe�cient which is less than this threshold is

not considered, even if a signi�cant coe�cient had been found at the same scale as this

coe�cient, during previous iterations; and consequently we were justi�ed in thinking that

we had found signal at this scale, and at this position. Arising out of this approach, it

follows that the wavelet coe�cients of the residual image could contain signal, above the

set threshold, which is ignored.

In order to conserve such signal, we use the notion of multiresolution support. When-

ever we �nd signal at a scale j and at a position (x; y), we will consider that this position

in the wavelet space belongs to the multiresolution support of the image.

Eq. (24) becomes:

�

R

(n)

(x; y) = c

p

(x; y) +

p

X

j=1

M(j; x; y) w

j

(x; y) (20)

An alternative approach was outlined in [32]: the support was initialized to zero, and

built up at each iteration of the restoration algorithm. Thus in eq. (23) above, M(j; x; y)

was additionally indexed by n, the iteration number. In this case, the support was speci�ed

in terms of signi�cant pixels at each scale, j; and in addition pixels could become signi�cant

as the iterations proceeded, but could not be made non-signi�cant. In practice, we have

found both of these strategies to be equally acceptable.
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4.4 Regularization of the Richardson-Lucy Algorithm

From eq. (16), we have I

(n)

(x; y) = P (x; y) � O

(n)

(x; y). Then R

(n)

(x; y) = I(x; y) �

I

(n)

(x; y), and hence I(x; y) = I

(n)

(x; y) + R

(n)

(x; y). The Richardson-Lucy equation is:

O

(n+1)

(x; y) = O

(n)

(x; y)[

I

(n)

(x; y) + R

(n)

(x; y)

I

(n)

(x; y)

� P (�x;�y)] (21)

and regularization leads to:

O

(n+1)

(x; y) = O

(n)

(x; y)[

I

(n)

(x; y) +

�

R

(n)

(x; y)

I

(n)

(x; y)

� P (�x;�y)] (22)

The standard deviation of the residual decreases until no more signi�cant structures

are found. Convergence can be estimated from the residual. The algorithm stops when a

user-speci�ed threshold is reached:

(�

R

(n�1) � �

R

(n))=(�

R

(n)) < � (23)

Regularization of other iterative restoration methods, e.g. Van Cittert or One-Step

Graditent, can be be carried out in an analogous fashion.

4.5 Example 1

A simulated Hubble Space Telescope Wide Field Camera image of a distant cluster of

galaxies was used to assess how well the suppression of noise, inherent in the wavelet-

based method, aids object detection. The image used was one of a number described in

[5], [12]. A spatially invariant PSF was used; the approximation to the known spatial

variance which was involved in doing this was mitigated by use of a 256 � 256 subimage

for test purposes. The simulated image allowed us to bypass certain problems, such as

cosmic ray hits and CCD detector faults, and to concentrate on the general bene�ts of

regularization of the type described in this article.

The procedure followed was to detect objects in the simulated image, and also in the

images restored by the wavelet-based (or regularized) Richardson-Lucy method, and the

basic Richardson-Lucy method. The Inventory package in MIDAS (Munich Image Data

Analysis System, a large image processing system, developed at the European Southern

Observatory) was used for this. Inventory detects objects by means of a local background

threshold, which was varied. Various other parameters were not used.

A set of 122 objects was found, using Inventory, in the original, unaberrated, noise-free

image (upper left, Figure 3). This agrees well with the fact that 124 objects were used

in the simulation (121 galaxies, 3 stars). With a somewhat di�erent threshold in the case

of the wavelet-based Richardson-Lucy method, 165 objects were obtained. With a very

much raised threshold (to exclude noise peaks) in the case of the basic Richardson-Lucy

method, 159 objects were obtained.

Detections of spurious objects were made in the case of both restorations. Given that

we have \ground truth" in this case, we simply selected the real objects among them. This
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was done by seeking good matches (less than 1 pixel separation) between objects found in

the restored images, and the objects found in the original, unaberrated noise-free image.

This led to 69 close matches, in the case of the wavelet-based Richardson-Lucy method;

and to 53 close matches, in the case of the basic Richardson-Lucy method.

There was thus a greater number of object detections, obtained with the wavelet-

based Richardson-Lucy method. These were also more accurate: the mean square error

was 0.349 pixel units as against 0.379 for the smaller number of detections obtained from

the basic Richardson-Lucy method. For bright objects, photometric plots using aperture

magnitudes were relatively similar in both cases; and for fainter objects neither were good.

While the wavelet-based Richardson-Lucy method acquited itself well in these respects,

its regularization property is clearly advantageous for object detection.

4.6 Example 2

We used the simulated elliptical galaxy available in the test image suite at anonymous

ftp address stsci.edu:/software/stsdas/testdata/restore. It is briey described in

[14]. This image is referred to there as \Galaxy Number 2". It has a simple elliptical

shape. The brightness pro�le includes both bulge and exponential disk components. It

has additional distortions introduced in isophote center, ellipticity and position angle. This

image was convolved with a Hubble Space Telescope Wide Field Camera (WF/PC-1) PSF,

and Poisson and readout noise (Gaussian) were added.

Under the assumption that the readout noise was small, we used a Poisson model

for all noise in the image. We set negative values in the blurred, noisy input image to

zero. This was the case in the background only, and was necessitated by the Anscombe

transformation used.

Figure 4a shows contours formed in the truth image, overplotted with contours yielded

by the regularized Richardson-Lucy method. Note that the truth image was not the one

used as input for restoration; rather, it was the image on the basis of which the blurred,

noisy input image was created. All contours in Figures 4a and 4b relate to identical in-

tensity values (4, 8, 12, 16, 20, 24). For the regularized restoration, a Poisson model was

used for clipping wavelet coe�cients. A 4 � threshold was chosen, above which (in wavelet

space) a value was taken as signi�cant. The multiresolution support algorithm was used, in

order to prevent any untoward alteration to the galaxy. The plot shown in Figure 4a corre-

sponds to just 5 iterations (unaccelerated) of the regularized Richardson-Lucy restoration

method. Figure 4b shows the same isophotes for the truth image, and those obtained by

restoration following 5 iterations of the unregularized Richardson-Lucy method. Allowing

further iterations (to convergence in the case of the regularized Richardson-Lucy method)

yielded relatively similar results in the case of the regularized restoration; but in the case

of the unregularized restoration, the �tting of a PSF to every noise spike made for a very

unsmooth image.
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5 Conclusion

The wavelet transform, and noise suppression strategies, must take properties of the input

image into account. If may even be necessary to take into account aspects related to the

physical nature of that which is imaged. We have studied the case of astronomical images,

and have proposed an e�ective framework for tackling problems related to restoration and

�ltering. As a byproduct, this framework also helps in object detection (and this is now

the topic of our continuing work in this �eld). The multiresolution support data structure

is an important image processing tool.

The wavelet transform used could be replaced with some other multiresolution algo-

rithm. However the �a trous algorithm has acquited itself well. The experimental results

demonstrate the usefulness of this broad framework.

Notation Used

(x; y) Pixel; position in image (integers).

j Multiresolution level or scale (integer).

M

(I)

(j; x; y) Multiresolution support. Sequence of boolean images.

Boolean image at each scale or level j is of same dimensions

as input image, with which the multiresolution support is

associated. When non-ambiguous, the superscript is not used.

c

j

Result of convolving wavelet with image at level j.

w

j

; w

j

(x; y) Wavelet coe�cient. We have: w

j

= c

j�1

� c

j

.

Wavelet coe�cients at level j de�ne a wavelet plane.

A superscript on w is used to indicate the image with

which the wavelet plane is associated, e.g. w

(I)

j

(x; y).

�

j

For a given image, proportional to the standard deviation

of wavelet coe�cients at scale j. See Section 2.3.2.

�

I

Standard deviation of values in the image, I .

g A �ltering function. See, e.g., Section 3.1.

I; I(x; y) Image.

~

I Filtered image.

E Error image. Di�erence between image and its �ltered version.

T An element-wise image transformation, de�ned in eq. (8).
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� Small convergence threshold; constant.

k, K Constants.

O;O(x; y) Observed, degraded image.

P; P (x; y) Point Spread Function.

� Convergence parameter.

R;R

(n)

(x; y) Residual image at iteration n. See, e.g., eq. (16).

�

R \Signi�cant residual". See eqs. (18), (20).

�(x) Low pass �lter; scaling function.

h(x) Low pass �lter.

 (x) Wavelet function.
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Appendix 1: The \

�

A Trous" Wavelet Transform Algorithm

In a wavelet transform, a series of transformations of an image is generated, providing

a resolution-related set of \views" of the image. The properties satis�ed by a wavelet

transform, and in particular the �a trous wavelet transform (\with holes", so called because

of the interlaced convolution used in successive levels: see step 2 of the algorithm below)

are further discussed in [4]. Extensive literature exists on the wavelet transform and its

applications ([6], [9], [27], [28]; [36]). The discrete �a trous algorithm is described in ([15],

[37]).

We consider sampled data, fc

0

(k)g, de�ned as the scalar product at pixels k of the

function f(x) with a scaling function �(x) which corresponds to a low pass �lter:

c

0

(k) =< f(x); �(x� k) > (24)

The scaling function is chosen to satisfy the dilation equation:

1

2

�(

x

2

) =

X

l

h(l)�(x� l) (25)

h is a discrete low pass �lter associated with the scaling function �. This means that

a low-pass �ltering of the image is, by de�nition, closely linked to another resolution level

of the image. The distance between levels increases by a factor 2 from one scale to the

next.

The smoothed data c

j

(k) at a given resolution j and at a position k is the scalar

product

c

j

(k) =

1

2

j

< f(x); �(

x� k

2

j

) > (26)

This is consequently obtained by the convolution:

c

j

(k) =

X

l

h(l) c

j�1

(k + 2

j�1

l) (27)
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The signal di�erence w

j

between two consecutive resolutions is:

w

j

(k) = c

j�1

(k)� c

j

(k) (28)

or:

w

j

(k) =

1

2

j

< f(x);  (

x� k

2

j

) > (29)

Here, the wavelet function  is de�ned by:

1

2

 (

x

2

) = �(x)�

1

2

�(

x

2

) (30)

Eq. (29) is the discrete wavelet transform, for a resolution level j.

For the scaling function, �(x), the B-spline of degree 3 was used in our calculations.

See [38], [39] for discussion of linear and other scaling functions. We have derived a simple

algorithm in order to compute the associated wavelet transform:

1. We initialize j to 0 and we start with the data c

j

(k).

2. We increment j, and we carry out a discrete convolution of the data c

j�1

(k) using

the �lter h. The distance between the central pixel and the adjacent ones is 2

j�1

.

3. After this smoothing, we obtain the discrete wavelet transform from the di�erence

c

j�1

(k)� c

j

(k).

4. If j is less than the number p of resolutions we want to compute, then go to step 2.

5. The set W = fw

1

; :::; w

p

; c

p

g represents the wavelet transform of the data.

The above �a trous algorithm has been discussed in terms of a single index, x, but is

easily extendable to two-dimensional space. The use of the B

3

spline leads to a convolution

with a mask of 5� 5:

0

B

B

B

B

B

@

1

256

1

64

3

128

1

64

1

256

1

64

1

16

3

32

1

16

1

64

3

128

3

32

9

64

3

32

3

128

1

64

1

16

3

32

1

16

1

64

1

256

1

64

3

128

1

64

1

256

1

C

C

C

C

C

A

In one dimension, this mask is: (

1

16

;

1

4

;

3

8

;

1

4

;

1

16

).

To facilitate computation, a simpli�cation of this wavelet is to assume separability in

the 2-dimensional case. In the case of the B

3

spline, this leads to a row by row convolution

with (

1

16

;

1

4

;

3

8

;

1

4

;

1

16

); followed by column by column convolution.

The most general way to handle the boundaries is to consider that c(k+N) = c(N�k).

But other methods can be used such as periodicity (c(k + N) = c(k)), or continuity

(c(k + N) = c(N)). Choosing one of these methods has little inuence on our general

restoration strategy. We used continuity.
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A series expansion of the original image, c

0

, in terms of the wavelet coe�cients is now

given as follows. The �nal smoothed array c

p

(x) is added to all the di�erences w

j

:

c

0

(k) = c

p

+

p

X

j=1

w

j

(k) (31)

This equation provides a reconstruction formula for the original image.

At each scale j, we obtain a set fw

j

g which we call a wavelet plane. This has the same

number of pixels as the image (which therefore is a limitation on the use of this particular

wavelet transform approach for image compression).

Appendix 2: Filtering Based on Poisson Noise

If the noise associated with image I is Poisson, the following transformation acts as if

the data came from a Gaussian process with a noise of standard deviation 1, subject to a

su�ciently large mean value of image I :

T (I(x; y)) = 2

q

I(x; y) + 3=8 (32)

Therefore the noise contained in e

(n)

= T (I) � T (I

(n)

) can be suppressed using the

same principle as the suppression of noise in E

(n)

= I � I

(n)

. Image e

(n)

is decomposed

into multiresolution coe�cients (in the case of the multiresolution strategy), and only the

signi�cant coe�cients, or the coe�cients associated with the multiresolution support, are

retained. The support is, of course, determined from T (I) and not from I . Reconstruction

then gives ~e

(n)

. We have the following relations:

e

(n)

(x; y) = T (I(x; y))� T (I

(n)

(x; y)) (33)

E

(n)

(x; y) = I(x; y)� I

(n)

(x; y)) (34)

Hence we have

[T (I(x; y))]

2

= [e

(n)

(x; y) + T (I

(n)

(x; y))]

2

(35)

= (e

(n)

(x; y))

2

+ 4(I

(n)

(x; y) +

3

8

) + 4e

(n)

(x; y)

r

I

(n)

(x; y) +

3

8

(36)

and

[T (I(x; y))]

2

= 4(I(x; y)+

3

8

) (37)

From these two equations, we deduce that I(x; y) can be expressed by:

I(x; y) =

1

4

[(e

(n)

(x; y))

2

+ 4(I

(n)

(x; y) +

3

8

) + 4e

(n)

(x; y)

r

I

(n)

(x; y) +

3

8

]�

3

8

(38)
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Now, replacing I by its expression in E

(n)

= I(x; y)� I

(n)

(x; y), we have:

E

(n)

(x; y) = e

(n)

(x; y)[

e

(n)

(x; y)

4

+

r

I

(n)

(x; y) +

3

8

] (39)

Filtering e

(n)

by thresholding non-signi�cant coe�cients, or coe�cients which are not

contained in the support, we obtain ~e

(n)

, and we then have

~

E

(n)

(x; y) = ~e

(n)

(x; y)[

~e

(n)

(x; y)

4

+

r

I

(n)

(x; y) +

3

8

] (40)

In image restoration with a Poisson model, a similar analysis can be carried out. In

this case the right hand side of eq. (34) de�nes the residual image, R

(n)

(x; y). The right

hand side of eq. (33) provides the image from which noise is suppressed.
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Figure Captions

Figure 1: Multiresolution support representation of a spiral galaxy.

Figure 2: Top row: original noisy spectrum; �ltered spectrum; both superimposed.

Bottom row: original; �ltered (using Daubechies coe�cient 8, and Donoho and Johnstone

\universal" thresholding); both superimposed.

Figure 3: Simulated HST Wide Field Camera image of a distant cluster of galaxies.

Four quadrants. Upper Left: original, unaberrated and noise-free. Upper Right: input,

aberrated, noise added. Lower Left: restoration, Richardson-Lucy method without noise

suppression, 60 iterations. Lower Right: restoration, Richardson-Lucy method with noise

suppression, 60 iterations. Intensities logarithmically transformed.

Figure 4: Isophotal contours corresponding to (left) \truth image", and regularized

Richardson-Lucy restoration; and (right) \truth image", and unregularized Richardson-

Lucy restoration.
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Figure 1: Multiresolution support representation of a spiral galaxy.
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Figure 3: [Landscape mode] Simulated HST Wide Field Camera image of a distant cluster

of galaxies. Four quadrants. Upper Left: original, unaberrated and noise-free. Upper

Right: input, aberrated, noise added. Lower Left: restoration, Richardson-Lucy method

without noise suppression, 60 iterations. Lower Right: restoration, Richardson-Lucy

method with noise suppression, 60 iterations. Intensities logarithmically transformed.
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Figure 4: Isophotal contours corresponding to (left) \truth image", and regularized

Richardson-Lucy restoration; and (right) \truth image", and unregularized Richardson-

Lucy restoration.
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