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TOWARD REDUNDANCY

.  Orthogonal WT: Mallat, 1989.

.  Bi-orthogonal WT: Daubechies, Cohen, … 1992

.  Lifting Scheme: Swelden, 1996.
                 ===>  JPEG 2000 Norm

. Isotropic Undecimated Wavelet Transform (1990, in Astronomy)
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Undecimated Isotropic WT:
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Width = Length^2

The Curvelet Transform

From Redundancy to  Super-Redundancy:



Lena + Gaussian Noise 
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Critical Sampling                           Redundant Transforms

           Pyramidal decomposition (Burt and Adelson)
   (bi-) Orthogonal WT                                 Undecimated Wavelet Transform
   Lifting scheme construction                      Isotropic Undecimated Wavelet Transform
   Wavelet Packets                                        Complex Wavelet Transform
    Mirror Basis                                             Steerable Wavelet Transform
                                                                    Dyadic Wavelet Transform
                                                                     Nonlinear Pyramidal decomposition (Median)

 Multiscale Transforms

New Multiscale Construction

Contourlet                                               Ridgelet
Bandelet                                                  Curvelet
Finite Ridgelet Transform
Platelet
(W-)Edgelet
Adaptive Wavelet



1) From Curvelet Filtering to Wavelet/Curvelet Filtering
-The Curvelet Transform for Image Denoising,  IEEE Transaction on  Image Processing, 11, 6, 2002.
-Gray and Color Image Contrast Enhancement by the Curvelet Transform, ITIP,  12, 6, 2003.

-Astronomical Image Representation by the Curvelet Transform, Astron. and Astrophys., 398, 785, 2003.

-Very High Quality Image Restoration, in Signal and Image Processing IX, San Diego, 1-4 August, 2001,
Eds Laine, Andrew F.; Unser, Michael A.; Aldroubi, Akram, Vol. 4478, pp 9-19, 2001.

2) Extension to the Deconvolution Problem
 -Wavelets and Curvelets for Image Deconvolution,  Signal Processing, 83, 10, 2003.

3) Morphological Component Analysis (MCA)
 -Redundant Multiscale Transforms and their Application for Morphological Component Analysis,
 Advances  in Imaging and Electron Physics, 132, 2004.
 - Image Decomposition Via the Combination of Sparse Representation and a  Variational Approach, ITIP, submitted.

        ==> Texture/Piecewise smooth content separation
           ==> Edge detection
       ==> Interpolation of missing data

4) Application in Cosmology
- Detecting Cosmological non-Gaussian Signatures by Multi-scale Methods, Astronomy and Astrophysics, 416, 9--17, 2004.

       From Super-Redundancy to Hyper-Redundancy:
Data Analysis Using a Combination  of Redundant Multiscale Transforms
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The problem we need to solve for image restoration is to make
sure that our reconstruction will incorporate information judged as 
significant by any of our representations.

Notations:

T 1, ...,T K
Consider K linear transforms                   and       the coefficients 
of x after applying      :                                    .T K

RESTORATION: HOW TO COMBINE
  
SEVERAL MULTISCALE TRANSFORMS ?

€ 

αk

€ 

αk = Tks, s = T−1αk

Very High Quality Image Restoration, in Signal and Image Processing IX, San Diego, 1-4 August, 2001,
Eds Laine, Andrew F.; Unser, Michael A.; Aldroubi, Akram, Vol. 4478, pp 9-19, 2001.



We propose solving the following optimization problem:

 min  Complexity_penalty      ,        subject to 

Where C is the set of vectors which obey the linear constraints:

The second constraint guarantees that the reconstruction will take into 
account any pattern which is detected by any of the K transforms.
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(˜ s )
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˜ s ∈ C
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˜ s > 0,
Tk ˜ s −Tks( )l ≤ e, if Tks( )l

positivity constraint

is significant







We propose solving the following optimization problem:

 min  Complexity_penalty      ,        subject to –
s � C

–
s

Where C is the set of vectors which obey the linear constraints:

The second constraint guarantees that the reconstruction will take into 
account any pattern which is detected by any of the K transforms.

DECONVOLUTION:

€ 

˜ s > 0,
Tk ˜ s −TkP ∗ s( )l ≤ e, if Tks( )l

positivity constraint

is significant
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s = P ∗ ˜ s + N







Morphological  Component  Analysis (MCA)

Given a signal s, we assume that it is the result of a sparse linear
 combination of atoms from a known dictionary D.
 

Or an approximate decomposition:

 

A dictionary D is defined as a collection of waveforms                , and the goal is
to obtain a representation of a signal s with a linear combination of a small 
number of basis such that:
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φγ( )γ ∈Γ
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s = αγφγ
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s = αγφγ
γ

∑ + R
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   Example – Composed Signal

-0.1
-0.05

0
0.05
0.1

-0.1
-0.05

0
0.05
0.1

φ1

φ2

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

+

×1.0

×0.3

×0.5

×0.05

0

0.5

1

0

0.5

1

φ3

φ4

0 64 128

0 20 40 60 80 100 12010-10

10-8

10-6

10-4

10-2

100

|T{φ1+0.3φ2}|

DCT Coefficients

|T{φ1+0.3φ2+0.5φ3+0.05φ4}|



1

   Example – Desired Decomposition
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Formally, the sparsest coefficients are obtained by solving the optimization problem:  

(P0)   Minimize                         subject to   

It has been proposed (to relax and) to replace the l0 norm by the l1 norm (Chen, 1995):

(P1) Minimize                         subject to   

It can be seen as a kind of convexification of (P0).

It has been shown (Donoho and Huo, 1999) that for certain dictionary, it there
exists a highly sparse solution to (P0), then it is identical to the solution of (P1).
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α 0
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α 1
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s = φα
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s = φα



We consider now  that the dictionary is built of a set of L dictionaries  related
to multiscale transforms,  such wavelets, ridgelet, or curvelets.

Considering L transforms, and         the coefficients relative to the kth transform:

Noting T1,...TL the L transform operators,  we have:

A solution       is obtained by  minimizing a functional of the form:
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φ = φ1,K,φL[ ], α = α1,K,αL{ }, s = φα = φkk=1

L
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−1αk, s = skk=1
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Different Problem Formulation

.We do not need to keep all transforms in memory.

.We can easily add some constraints on a given component
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J(s1,K,sL ) = s− skk=1

L
∑
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L
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An efficient algorithm is the Block-Coordinate Relaxation Algorithm
(Sardy, Bruce and Tseng, 1998):

. Initialize all          to zero

. Iterate j=1,...,M

    - Iterate k=1,..,L

     - Update the kth part of the current solution by fixing all other parts and
     minimizing: 

Which is obtained by a simple soft thresholding of :
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J(sk ) = s− si − ski=1,i≠k

L
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a) Simulated image (Gaussians+lines)       b) Simulated image + noise                     c)  A trous algorithm            

     d)  Curvelet transform                            e) coaddition c+d                                            f) residual = e-b              



a) A370 b) a trous

c) Ridgelet + Curvelet Coaddition b+c



Galaxy SBS 0335-052

Curvelet A trous WT

Ridgelet



Galaxy SBS 0335-052
10 micron
GEMINI-OSCIR 



The separation task: decomposition of an image into a texture and a natural (piecewise smooth)scene part.

= +

Separation of Texture from
Piecewise Smooth Content











Data
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on the original image

Edge 
Detection

 on the reconstructed 
piecewise smooth component
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J(s1,K,sL ) = M(s− sk )k=1

L
∑

2

2

+ λ Tksk pk=1

L
∑

Where M is the mask: M(i,j) = 0  ==> missing data
                                    M(i,j) = 1  ==> good data

Interpolation of Missing Data

€ 

J(Xt ,Xn ) = M(X − Xt − Xn ) 2
2

+ λ( CXn 1 + DXt 1) + γ TV(Xn )

If the data are composed of a piecewise smooth component +  texture



. Initialize all          to zero

. Iterate j=1,...,M

    - Iterate k=1,..,L

     - Update the kth part of the current solution by fixing all other parts and
     minimizing: 

Which is obtained by a simple soft thresholding of :
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Application in Cosmology

WMAP

The cosmic Microwave Background is a relic radiation (with a temperature equals to 2.726 Kelvin) 
emitted 13 billion  years ago when the Universe was about 370000 years old. 
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Detection of non-Gaussian Cosmological Signatures





Results
• Curvelets are NOT sensible to KSZ and sensitive to
cosmic string

5.9

5.7

0.1

165.1040.CMB+CS+KSZ

198.1813.CMB+CS

10.121106.CMB+KSZ

 Detecting cosmological non-Gaussian signatures by multi-scale methods, Astron. and Astrophys., 416, 9--17, 2004 .

Bi-orthogonal WT Ridgelet Curvelet



Spatial  distribution of the galaxies





3D MULTISCALE TRANSFORMS

1)   3D WAVELET TRANSFORM:   Isotropic Structures

2)   3D RIDGELET TRANSFORM:   Sheet like Structures

3)   3D BEAMLET TRANSFORM:   Filaments

 
=>   Statistical information extraction.
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Z=5 Z=3 Z=1

Z=2 Z=0

VIVE LA REDONDANCE


