Data Analysis Using a Combination of Redundant Multiscale Transforms

Jean-Luc Starck

Service d'Astrophysique, CEA-Saclay, France. jstarck@cea.fr, http://jstarck.free.fr

Collaborators:

D.L. Donoho, Department of Statistics, Stanford
E. Candès, Department of Applied Mathematics, California Institute of Technology
M. Elad, The Technion, Israel Institute of Technology

TOWARD REDUNDANCY

. Orthogonal WT: Mallat, 1989.

- . Bi-orthogonal WT: Daubechies, Cohen, ... 1992
- . Lifting Scheme: Swelden, 1996.

===> JPEG 2000 Norm

. Isotropic Undecimated Wavelet Transform (1990, in Astronomy)

NGC2997 WT

Undecimated **Isotropic** WT:
$$I(k,l) = c_{J,k,l} + \sum_{j=1}^{J} w_{j,k,l}$$

Undecimated Wavelet Transform

PSNR

Noise Standard Deviation

Multiscale Transforms

Critical Sampling

(bi-) Orthogonal WTLifting scheme constructionWavelet PacketsMirror Basis

Redundant Transforms

Pyramidal decomposition (Burt and Adelson) Undecimated Wavelet Transform Isotropic Undecimated Wavelet Transform Complex Wavelet Transform Steerable Wavelet Transform Dyadic Wavelet Transform Nonlinear Pyramidal decomposition (Median)

New Multiscale Construction

Contourlet Bandelet Finite Ridgelet Transform Platelet (W-)Edgelet Adaptive Wavelet Ridgelet Curvelet

From Super-Redundancy to Hyper-Redundancy: Data Analysis Using a Combination of Redundant Multiscale Transforms

1) From Curvelet Filtering to Wavelet/Curvelet Filtering

-The Curvelet Transform for Image Denoising, IEEE Transaction on Image Processing, 11, 6, 2002.

-Gray and Color Image Contrast Enhancement by the Curvelet Transform, ITIP, 12, 6, 2003.

-Astronomical Image Representation by the Curvelet Transform, Astron. and Astrophys., 398, 785, 2003.

-*Very High Quality Image Restoration*, in Signal and Image Processing IX, San Diego, 1-4 August, 2001, Eds Laine, Andrew F.; Unser, Michael A.; Aldroubi, Akram, Vol. 4478, pp 9-19, 2001.

2) Extension to the Deconvolution Problem

-Wavelets and Curvelets for Image Deconvolution, Signal Processing, 83, 10, 2003.

3) Morphological Component Analysis (MCA)

-Redundant Multiscale Transforms and their Application for Morphological Component Analysis,

Advances in Imaging and Electron Physics, 132, 2004.

- Image Decomposition Via the Combination of Sparse Representation and a Variational Approach, ITIP, submitted.

==> Texture/Piecewise smooth content separation

==> Edge detection

==> Interpolation of missing data

4) Application in Cosmology

- Detecting Cosmological non-Gaussian Signatures by Multi-scale Methods, Astronomy and Astrophysics, 416, 9--17, 2004.

RESTORATION: HOW TO COMBINE SEVERAL MULTISCALE TRANSFORMS ?

The problem we need to solve for image restoration is to make sure that our reconstruction will incorporate information judged as significant by any of our representations.

Very High Quality Image Restoration, in Signal and Image Processing IX, San Diego, 1-4 August, 2001, Eds Laine, Andrew F.; Unser, Michael A.; Aldroubi, Akram, Vol. 4478, pp 9-19, 2001.

Notations:

Consider K linear transforms $T_1, ..., T_k$ and α_k the coefficients of x after applying $T_k: \alpha_k = T_k s, s = T^{-1} \alpha_k$.

min Complexity_penalty(\tilde{s}), subject to $\tilde{s} \in C$

Where C is the set of vectors which obey the linear constraints:

$$\tilde{s} > 0$$
, positivity constraint
 $|(T_k \tilde{s} - T_k s)_l| \le e$, $if(T_k s)_l$ is significant

The second constraint guarantees that the reconstruction will take into account any pattern which is detected by any of the K transforms.

$\frac{\text{DECONVOLUTION:}}{S = P * \tilde{s} + N}$

We propose solving the following optimization problem:

min Complexity_penalty (\bar{s}) , subject to $\bar{s} C$

Where C is the set of vectors which obey the linear constraints:

$$\tilde{s} > 0$$
, positivity constraint
 $\left| \left(T_k \tilde{s} - T_k P * s \right)_l \right| \le e$, $if \left(T_k s \right)_l$ is significant

The second constraint guarantees that the reconstruction will take into account any pattern which is detected by any of the K transforms.

Morphological Component Analysis (MCA)

Given a signal s, we assume that it is the result of a sparse linear combination of atoms from a known dictionary D.

A dictionary D is defined as a collection of waveforms $(\phi_{\gamma})_{\gamma \in \Gamma}$, and the goal is to obtain a representation of a signal s with a linear combination of a small number of basis such that:

$$s = \sum_{\gamma} \alpha_{\gamma} \phi_{\gamma}$$

Or an approximate decomposition:

$$s = \sum_{\gamma} \alpha_{\gamma} \phi_{\gamma} + R$$

Example – Composed Signal

Example – Desired Decomposition

Formally, the sparsest coefficients are obtained by solving the optimization problem:

(P0) Minimize
$$\|\alpha\|_0$$
 subject to $S = \phi \alpha$

It has been proposed (*to relax and*) to replace the l_0 norm by the l_1 norm (Chen, 1995):

(P1) Minimize
$$\|\alpha\|_1$$
 subject to $S = \phi \alpha$

It can be seen as a kind of convexification of (P0).

It has been shown (Donoho and Huo, 1999) that for certain dictionary, it there exists a highly sparse solution to (P0), then it is identical to the solution of (P1).

We consider now that the dictionary is built of a set of L dictionaries related to multiscale transforms, such wavelets, ridgelet, or curvelets.

Considering L transforms, and α_k the coefficients relative to the kth transform:

$$\phi = [\phi_1, \dots, \phi_L], \quad \alpha = \{\alpha_1, \dots, \alpha_L\}, \quad s = \phi \alpha = \sum_{k=1}^L \phi_k \alpha_k$$

Noting $T_1,...,T_L$ the L transform operators, we have:

$$\alpha_k = T_k s_k, \qquad s_k = T_k^{-1} \alpha_k, \qquad s = \sum_{k=1}^L s_k$$

A solution α is obtained by minimizing a functional of the form:

$$J(\alpha) = \left\| s - \sum_{k=1}^{L} T_{k}^{-1} \alpha_{k} \right\|_{2}^{2} + \left\| \alpha \right\|_{p}$$

Different Problem Formulation

$$J(s_1,...,s_L) = \left\| s - \sum_{k=1}^L s_k \right\|_2^2 + \lambda \sum_{k=1}^L \left\| T_k s_k \right\|_p^2$$

.We do not need to keep all transforms in memory. .We can easily add some constraints on a given component An efficient algorithm is the Block-Coordinate Relaxation Algorithm (Sardy, Bruce and Tseng, 1998):

- . Initialize all S_k to zero
- . Iterate j=1,...,M
 - Iterate k=1,..,L

- Update the kth part of the current solution by fixing all other parts and minimizing:

$$J(s_k) = \left\| s - \sum_{i=1, i \neq k}^{L} s_i - s_k \right\|_{2}^{2} + \lambda \left\| T_k s_k \right\|_{1}$$

Which is obtained by a simple soft thresholding of :

$$S_r = S - \sum_{i=1}^{L} \sum_{i \neq k} S_i$$

- a) Simulated image (Gaussians+lines)
- b) Simulated image + noise

c) A trous algorithm

d) Curvelet transform

e) coaddition c+d

f) residual = e-b

trous WT

Galaxy SBS 0335-052 10 micron GEMINI-OSCIR

Separation of Texture from Piecewise Smooth Content

The separation task: decomposition of an image into a texture and a natural (piecewise smooth) scene part.

Numerical Consideration

The DCT is denoted \mathcal{D} and its inverse by \mathcal{D}^{-1} (with a clear abuse of notations). The curvelet transform is denoted it by \mathcal{C} and its inverse by \mathcal{C}^{-1} . We have two unknowns - \underline{X}_t and \underline{X}_n - the texture and the piecewise smooth images. The optimization problem to be solved is

$$\min_{\{\underline{X}_t, \underline{X}_n\}} \quad \left\| \mathcal{D}\underline{X}_t \right\|_1 + \left\| \mathcal{C}\underline{X}_n \right\|_1 + \lambda \left\| \underline{X} - \underline{X}_t - \underline{X}_n \right\|_2^2 + \gamma TV\left\{ \underline{X}_n \right\}.$$

Edge Detection

Sigma=10 X_n Residual

Interpolation of Missing Data

$$J(s_1,...,s_L) = \left\| M(s - \sum_{k=1}^L s_k) \right\|_2^2 + \lambda \sum_{k=1}^L \left\| T_k s_k \right\|_p$$

Where M is the mask: $M(i,j) = 0 \implies$ missing data $M(i,j) = 1 \implies$ good data

If the data are composed of a piecewise smooth component + texture

$$J(X_{t}, X_{n}) = \left\| M(X - X_{t} - X_{n}) \right\|_{2}^{2} + \lambda(\left\| \mathbf{C}X_{n} \right\|_{1} + \left\| \mathbf{D}X_{t} \right\|_{1}) + \gamma \operatorname{TV}(X_{n})$$

- . Initialize all S_k to zero
- . Iterate j=1,...,M
 - Iterate k=1,..,L

- Update the kth part of the current solution by fixing all other parts and minimizing:

$$J(s_k) = \left\| M(s - \sum_{i=1, i \neq k}^{L} s_i - s_k) \right\|_2^2 + \lambda \left\| T_k s_k \right\|_1$$

Which is obtained by a simple soft thresholding of :

$$S_r = M(S - \sum_{i=1, i \neq k}^{L} S_i)$$

mage inpainting [2, 10, 20, 38] is the procesing data in a designated region of a still or lications range from removing objects from suching damaged paintings and photograph produce a revised image in which the i is seamlessly merged into the image in a detectable by a typical viewer. Traditionallbeen done by professional artists.⁷ For phot inpainting is used to revert deterioration totographs or scratches and dust spots in fill move elements (e.g., removal of stamped of from photographs, the infamous "airbrushi enemies [20]). A current active area of re-

Application in Cosmology

The cosmic Microwave Background is a relic radiation (with a temperature equals to 2.726 Kelvin) emitted 13 billion years ago when the Universe was about 370000 years old.

Detection of non-Gaussian Cosmological Signatures

CMB

Results

• Curvelets are NOT sensible to KSZ and sensitive to cosmic string

	Bi-orthogonal WT	Ridgelet	Curvelet
CMB+KSZ	1106.	0.1	10.12
CMB+CS	1813.	5.7	198.
CMB+CS+KSZ	1040.	5.9	165.

Detecting cosmological non-Gaussian signatures by multi-scale methods, Astron. and Astrophys., 416, 9--17, 2004 .

Spatial distribution of the galaxies

3D MULTISCALE TRANSFORMS

- 1) **3D WAVELET TRANSFORM:** Isotropic Structures
- 2) 3D RIDGELET TRANSFORM: Sheet like Structures
- 3) 3D BEAMLET TRANSFORM: Filaments

=> Statistical information extraction.

VIVE LA REDONDANCE