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In order to investigate the recent discovery of a discrepancy between the 2DF data and the Λ CDM simulations, we
have applied a Multiscale Geometric Analysis (MGA) on the 2DF data. We report in this paper the results of this
study.

1 Introduction

The distribution of galaxies seen in the available

galaxy redshift catalogues shows complex structures

such as voids, filaments, walls, or clusters. In order

to compare the data with the simulations resulting

from the cosmological models, we need to extract sta-

tistical or morphological information from the data.

The two-point correlation (2CF), extensively used by

Peebles 1, is certainly the most popular indicator to

describe the spatial clustering of the galaxy distri-

bution. Many different 2CF estimators have been

proposed in the past 2,3,4. A detailed description of

these estimators may be found in refs. 5,6 and they

are compared in refs. 7,8. The two-point correlation

function can been generalized to the N-point correla-

tion function 9,10. Other statistical measures to char-

acterize the spatial distribution of points have also

been developed, such as the void probability function
11, the multifractal approach 12, the Minkowski func-

tionals 13,14, the J function 15,16, the minimal span-

ning tree 17,18,19, or the wavelet 20,21,22,23,24. The

Sloan Digital Sky Survey (Early Data Release) has

recently been analyzed using a 3D Genus Statistics
25 and results were consistent with that predicted

by simulations of a Λ-dominated spatially-flat cold

dark matter model. The Genus is calculated by (i)

convolving the data by a kernel, generally a Gaus-

sian, (ii) setting to zero all values under a thresh-

old ν in the obtained distribution, and (iii) taking

the difference D between the number of holes and

the number of isolated regions. The Genus curve

G(ν) is obtained by varying the threshold level ν.

The first step of the algorithm, the convolution by

a Gaussian, may be dramatic for the description of

filaments, which are spread out along all directions
26. Is has been shown that replacing the Gaussian

smoothing by a wavelet denoising leads to much more

reliable results 26. The wavelet-Genus method has

been applied to both the 2DF data and a set of 22 Λ

CDM simulations and the 2DF genus curve is clearly

not compatible with the simulations 26. Figure 1

shows the wavelet genus function of the 2DF data.

The solid line is the genus for the 2DF data and the

crosses are the mean genus for 22 realizations of the

λ-CDM simulations with the 3σ error bars.

Question: How to explain the discrep-

ancy ? In 26, the discrepancy was attributed to the

presence of a super cluster in the data, which was

not in the simulation. Therefore, even if there is a

discrepancy, the λ-CDM model is still considered as

a good model for representing the 2DF data. In or-

der to better investigate this difference between the

2DF and the λ-CDM simulations, we have achieved a

Multiscale Geometric Analysis (MGA) 27 of the 2DF

data. Section 2 presents the MGA approach and the

data (simulations and 2DF data) are described in

section 3. Results are given in section 4.
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Figure 1. Wavelet Denoising+Genus: 2DF and Lambda-CDM Sim. The solid line is the genus for the wavelet denoised 2DF data
and the crosses are the mean genus for 22 wavelet denoised realizations of the λ-CDM simulations with the 3σ error bars.

2 Multiscale Geometric Analysis

As the data contain clusters, filaments and sheets, it

has recently been proposed to analyze the data with

three multiscale transforms, each of them being well

adapted for representing only one kind of feature 27.

Wavelets represent well isotropic features (i.e. clus-

ters in 3D), while more recent geometric multiscale

methods such the beamlet and the ridgelet repre-

sent well data containing respectively filaments and

sheets.
For each a > 0, b1, b2, b3 ∈ R3 , the wavelet is

defined by

ψa,b1,b2,b3 : R3
→ R

ψa,b1,b2,b3(x1, x2, x3) = a−3/2
· ψ(

x1 − b1
a

,
x2 − b2

a
,
x3 − b3

a
)

The ridgelet function is defined by:

ψa,b,θ1,θ2
: R3

→ R

ψa,b,θ1,θ2
(x1, x2, x3) = a−1/2

· ψ((x1 cos θ1 cos θ2 +

x2 sin θ1 cos θ2 + x3 sin θ2 − b)/a)

and the beamlet function is defined by:

ψa,b1,b2,θ1,θ2
: R3

→ R

ψa,b1,b2,θ1,θ2
(x1, x2, x3) = a−1/2

· ψ((−x1 sin θ1 + x2 cos θ1

+b1)/a, (x1 cos θ1 cos θ2 + x2 sin θ1 cos θ2 − x3 sin θ2 + b2)/a)

Figure 2 shows an example of 3D wavelet function

and Figure 3 shows respectively examples of ridgelet

function (left) and beamlet function (right). The

ridgelet function is a wavelet function in the direc-

tion defined by the line (θ1, θ2), and it is constant

along the orthogonal plane to this line. The beamlet

function is constant along lines of direction (θ1, θ2),

and a 2D wavelet function along plane orthogonal to

this direction. More details about the implementa-

tion of these 3D multiscale transforms can be found

in ref 27.

Local 3D Ridgelet and Beamlet Transform

The ridgelet (resp. beamlet) transform is optimal to

find sheets (resp. filaments) of the size of the cube.

To detect smaller sheets (resp. filaments), a parti-

tioning must be introduced 28. The cube c is decom-

posed into blocks of lower side-length b so that for a

N ×N ×N cube, we count N/b blocks in each direc-

tion. After the block partitioning, the transform is

tuned for sheets (resp. filaments) of size b × b (resp.

b) and of thickness aj , aj corresponding to the dif-

ferent dyadic scales used in the transformation.
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Figure 2. Example of wavelet function.

MGA statistic

Hence, we have three different multiscale transforms,

and for the beamlet and the ridgelet transform, we

can also use several block sizes when analyzing the

data. In the following, we will use the following seven

decompositions:

1. 3D Isotropic Wavelet Transform with 4 dyadic

scales.

2. 3D Ridgelet Transform using a block size of 8

Mpc and two scales. Here the scale is related

to the width of the ridgelet function, its length

being fixed by the block size.

3. 3D Ridgelet Transform using a block size of 16

Mpc and three scales.

4. 3D Ridgelet Transform using a block size of 32

Mpc and three scales.

5. 3D Beamlet Transform using a block size of 8

Mpc and two scales. Here the scale is related

to the width of the beamlet function, its length

being fixed by the block size.

6. 3D Beamlet Transform using a block size of 16

Mpc and three scales.

7. 3D Beamlet Transform using a block size of 32

Mpc and three scales.

For each scale of each transform, we calculate

the Kurtosis value (i.e. K = 1
Nσ4

∑
k(xk − x̄)4 − 3 =

1
σ4 (x̄4−4x̄x̄3 +6x̄2x̄2−3x̄4)−3). Positive K implies

a higher peak and larger wings than the Gaussian

distribution with the same mean and variance. Neg-

ative K means a wider peak and shorter wings.

3 2DF Data

The best available redshift catalog to study mor-

phology of the galaxy distribution at present is the

2dF Galaxy Redshift Survey (2dFGRS) 29. It fills

large compact volume(s) in space and includes more

than a quarter of million of galaxies. This is a flux-

limited catalog and therefore the density of galaxies

decreases with distance. For statistical analysis of

such of surveys, a weighting scheme that compen-

sates for the missing galaxies at large distances, has

to be used. Usually, each galaxy is weighted by the

inverse of the selection function 6. However, the re-

sulting densities will have different resolution at dif-

ferent locations, and will not be suitable for morpho-

logical studies.
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Figure 3. Examples of ridgelet function (left) and beamlet function (right).

At the cost of discarding many surveyed galax-

ies, one can alternatively use volume-limited sam-

ples. In this case, the variation in density at dif-

ferent locations depends only on the fluctuations of

the galaxy distribution itself. We have used the

volume-limited samples prepared by the 2dF team

for scaling studies 30,31, and kindly sent to us by

Darren Croton. As our basic sample, we chose

the catalog with absolute luminosities in the range

−19 > MBJ
− 5 log10 h > −20 (the type dependent

k + e correction 32 has been applied to the magni-

tudes). This sample contains galaxies with luminos-

ity around L∗. This catalog is the largest of the

2dF volume-limited catalogs, and as 33 point out, it

provides optimal balance between the surveyed vol-

ume and the number density of galaxies. Although

the catalog does not suffer from luminosity incom-

pleteness, it is slightly spectroscopically incomplete,

mainly due to missing galaxies because of fiber col-

lisions. The incompleteness parameter has been de-

termined by every galaxy by the 2dF team; when

calculating densities, each galaxy can be weighted

by the inverse of this parameter.

We split the volume-limited sample into the

Northern and Southern subsamples, and cut off the

numerous whiskers in the plane of the sky to obtain

compact volumes. The geometry of the Northern

sample is similar to a flat slice, while the South-

ern sample is enclosed between two cones of open-

ing angles of 64.5◦ and 55.5◦. When we tried to cut

cuboidal volumes (bricks) from the Southern sample

cone, we ended up with small brick volumes. We re-

port in this paper only the analysis of the Northern

subsamples.

In order to obtain a compact volume, we choose

the angular limits for the Northern sample as

−4.5◦ ≤ δ ≤ 2.5◦ and 149.0◦ ≤ α ≤ 209.0◦. The

slice lies between two cones defined by the δ limits.

The right ascension limits cut the cones by planes

from both sides, and there are two additional cuts

by two spheres. The radii of the spheres are fixed

by the original data, and depend only on the chosen

absolute magnitude limits (and on the cosmological

model). For our sample they are: R1 = 61.1 h−1

Mpc, R2 = 375.6 h−1 Mpc.

As this sample is pretty flat, we cut from it a

maximal volume cuboidal window, a “brick” with

dimensions of 254.0 × 133.1 × 31.1 h−1 Mpc, with

8487 galaxies (see Fig. 4). This gives for the per-

particle-volume size d = 5.0 h−1 Mpc.
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Figure 4. The volume-limited cuboidal sample analyzed in this paper drawn from the Northern slice of the 2dFGRS (top) and
from a mock realization.

3.1 Mock catalogs

In order to estimate sample errors of the Minkowski

functionals, we use mock catalogs, provided by the

2dF team. 32 created 22 mock catalogs for the 2dF-

GRS that have been used by the 2dfGRS team to

measure the influence of cosmic variance of different

statistics, as correlation functions, counts-in-cells,

the void probability function, clustering of groups,

etc. 30,31,33,34. The mock catalogs were extracted

from the Virgo Consortium ΛCDM Hubble volume

simulation, and a biasing scheme described in 35 was

used to populate the dark matter distribution with

galaxies. The catalogs were created by placing ob-

servers in the Hubble volume, applying the radial

and angular selection functions of the 2dFGRS, and

translating the positions and velocities of galaxies

into redshift space. No luminosity clustering depen-

dence is present in the mock catalogs.

The mock catalogs represent typical volumes of

space. The real 2dF catalog, however, includes two

superclusters, one in the Northern, another in the

Southern subsample (see a thorough discussion in
31). The Northern supercluster is especially promi-

nent in our M ∈ [−19,−20] catalog; all mock sam-

ples for this catalog have less galaxies than the 2dF

sample, as the mocks were normalized by the total

number of galaxies in both subsamples. We cut mock

bricks from the mock samples, too, as we did for the

real 2dF data; the mean number of galaxies in the

mock bricks is 1.36 times smaller than in the 2dF

brick.

4 MGA and the 2DF

We have applied the seven decompositions to the

2DF data and the 22 mock catalogs.

Figure 5 shows the Kurtosis for each scale of the

wavelet transform. Crosses with the 2σ (continu-

ous line) and 3σ (dotted line) error bars represent

the mean kurtosis for the 22 simulation and the tri-

angle represents the kurtosis relative to the wavelet

scale of the 2DF data. Figure 7 shows the kurtosis

for the three beamlet transforms and Figure 6 shows

the kurtosis for the three ridgelet transforms.

We can see that a strong discrepancy between

the data and the simulations appears at the finest

scale of the wavelet transform. It is also visible at
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Figure 5. Isotropic WT Kurtosis versus scale. Crosses with the 2σ (continuous line) and 3σ (dotted line) error bars represent the
mean kurtosis for the 22 simulation and the triangle represents the kurtosis relative to the wavelet scale of the 2DF data. The
x-axis is the wavelet scale, corresponds to the analysis of isotropic structures of size 2x Mpc.

Figure 6. Ridgelet Kurtosis. The x-axis is the ridgelet scale, and corresponds to the analysis of structures of size 8× 8× 2x Mpc
(left), 16 × 16 × 2x Mpc (middle) and 32 × 32 × 2x Mpc (right).

the finest scale of the beamlet transform (block size

8). The last scale of the ridgelet transform (block

size =32) shows also a difference, however not at a 3σ

level. The main difference between the data and the

simulations is clearly related to the smallest scales.

As it is the wavelets which detect this difference, it

is certainly the distribution of clusters (and not the

distribution of filaments and walls) which is different.

A kurtosis exess in the simulated data can be

due to a larger number of clusters and/or a few clus-

ters with a larger amplitude. The first possibility

would be in contradiction with the genus curve (see

Figure 1) which indicates that the real high-density

haloes (galaxy groups) are more concentrated than

the mock galaxy groups. The second hypothesis,

also supported by a visual inspection of the first and

second wavelet scales, seems more adequate. If the

real data contains more faint clusters, the simula-

tions contain a few more prominent clusters which

create a kurtosis exess.

The supercluster has been suspected to be re-

sponsible of the genus curve difference between the

simulation and the data in 26, but the MGA analy-

sis leads to the conclusion that the problem is more

likely related to the non-linear regime in the sim-

ulation which does not reflect the observations. It

is probably due to individual simulated dark-matter

haloes badly populated with galaxies, but it could



7

Figure 7. Beamlet Kurtosis. The x-axis is the beamlet scale, and corresponds to the analysis of structures of size 8 × 2x
× 2x

Mpc (left), 16 × 2x
× 2x Mpc (middle) and 32 × 2x

× 2x Mpc (right).

also be due to some departure from the simplest

models of primordial fluctuations of dark energy.

4.1 MGA:EARLY-LATE Type Galaxies

In this section, we have separated the 2DF data set

into two parts, the early type galaxies (ETG) (3826

galaxies) and the late type galaxies (3913 galaxies)

(LTG). It is well known that ETG are more clustered

than LTG and this has also already be seen in the

2DF data 31. However, we can wonder if the ELT-

LTG clustering property is dependent on the type

of structure. For instance, is this ELT-LTG prop-

erty more important in cluster than in filaments or

walls ?

In order to answer this question, we have per-

formed a separate MGA analysis of the two cata-

logs, i.e. we have applied the seven transformations

to both catalogs and calculated the kurtosis in the

different scales. In order to normalize all values, we

have also computed the kurtosis for 100 simulated

cubes which contains each around 3870 galaxies ran-

domly distributed (Poisson noise). A mean kurtosis

and a standard deviation has been calculated for each

transform and for each scales. The kurtosis derived

from the two catalogs have been normalized using

the mean values and the standard deviation values.

Figures 8,9 and 10 shows the kurtosis for the two

catalogs and the different transforms. The solid lines

correspond to the ETG kurtosis and the dashed line

to the LTG kurtosis. It is clear that for all trans-

forms and all scales, the ETG presents a higher kur-

tosis than the LTG. This suggests that in all types of

structures (filaments, clusters, walls), the ETG are

more concentrated than the LTG. Both the ridgelet

kurtosis and the beamlet kurtosis increase when the

block size increases. This suggest that filaments and

walls of the size of at least 32 Mpc exists in the

data. Filaments with a width between 2 and 4 Mpc

dominates (second scale of the beamlet transform)

while walls seems to be thinner (1 or 2 Mpc) as the

first scale of the ridgelet transform always presents a

higher kurtosis.

In order to evaluate if a difference in the respec-

tive concentration exits between the three kind of

features, we keep for each of the seven transforma-

tions only the higher normalized kurtosis along the

scales. Hence, we built the variable K
(ETG)
max (t), t be-

ing the transform number (i.e. t = 1, ..7 for respec-

tively the wavelet transform, the ridgelet transform

for a block size equals to 8,16,32, and the beamlet

transform for a block size equals to 8,16,32). Fig-

ure 11 shows the ratio RK(t) =
K(ET G)

max
(t)

K
(LT G)
max (t)

. For all

the transforms, the ratio RK(t) is between two and

three, which shows a remarkable stability in the clus-

tering properties. It seems that the rates of ETG and

LTG are relatively the same in all kinds of structures

(i.e. filaments, walls and clusters).
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Figure 8. Isotropic WT Kurtosis of both the ETG (solid line) and the LTG (dotted line).

Figure 9. Ridgelet Kurtosis of both the ETG (solid line) and the LTG (dotted line).

Figure 10. Beamlet Kurtosis of both the ETG (solid line) and the LTG (dotted line).
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Figure 11. Kurtosis ratio RK = K
(ETG)
max /K

(LTG)
max between ETG and LTG versus the transformation. x-axis corresponds respec-

tively for x = 1 to 7 to the wavelet transform, the ridgelet transform with block size equals 8, 16, 32 and the beamlet transform
with block size equals 8, 16, 32.
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