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ABSTRACT
Many statistical methods have been proposed in the last years for analysing the spatial dis-

tribution of galaxies. Very few of them, however, can handle properly the border effects of

complex observational sample volumes. In this paper, we first show how to calculate the

Minkowski Functionals (MFs) taking into account these border effects. We then present a

multiscale extension of the MF which gives us more information about how the galaxies are

spatially distributed. A range of examples using Gaussian random fields illustrate the results.

Finally, we have applied the Multiscale Minkowski Functionals (MMFs) to the 2dF Galaxy

Redshift Survey data. The MMF clearly indicates an evolution of morphology with scale. We

also compare the 2dF real catalogue with mock catalogues and found that � cold dark matter

simulations roughly fit the data, except at the finest scale.
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1 I N T RO D U C T I O N

One of the main tenets of the present inflationary paradigm is the

assumption of Gaussianity for the primordial density perturbations.

This postulate forms the basis of present theories of formation and

evolution of large-scale structure in the Universe, and of its subse-

quent analysis. However, it remains a hypothesis that needs to be

checked.

The most straightforward way to do that would be to follow the

definition of Gaussian random fields (see e.g. Adler 1981) – their

one-point probability distribution and all many-point joint proba-

bility distributions of field amplitudes have to be Gaussian. This

is clearly a too formidable task. Another way is to check the re-

lationships between the correlation functions and power spectra of

different orders, which are well defined for Gaussian random fields.

This approach is frequently used (see e.g. a review in Martı́nez

& Saar 2002). A third method is to study the morphology of the

cosmological (density) fields. One approach to the morphological

description relies on the so-called Minkowski Functionals (MFs)

and is complementary to the moment-based methods because these

functionals depend on moments of all orders. This procedure has

been usually referred to as topological analysis. It has a quite long

history already, starting with the seminal paper by Gott, Dickinson

& Melott (1986), that deals with the genus, a quantity closely related

to one of the four MFs. The approach in this paper lies within this

latter framework; we describe it in detail in Section 2.

�E-mail: vicent.martinez@uv.es

There are two different possibilities to develop a morphological

analysis of galaxy catalogues based on MFs. First, we can dress

all points (galaxies) with spheres of a given radius, and study the

morphology of the surface that is generated by the convex union

of these spheres, as a function of the radius, which acts here as the

diagnostic parameter. An appropriate theoretical model to compare

with in this case is a Poisson point process. On the other hand, if

we wish to study the morphology of the underlying realization of a

random field, we have to restore the (density) field first, to choose an

isodensity surface corresponding to a given density threshold and to

calculate its morphological descriptors. In this approach, the density

threshold (or a related quantity) acts as the diagnostic parameter. The

theoretical reference model is that of a Gaussian random field, and

the crucial point here is to properly choose a restoration method that

provides a smoothed underlying density field that should be fairly

sampled by the observed discrete point distribution.

Starting from the original paper on topology by Gott et al. (1986),

this task has been typically done by smoothing the point distri-

bution with a Gaussian kernel. The choice of the optimal width of

this kernel has been widely discussed; it is usually taken close to

the correlation length of the point distribution. However, Gaussian

smoothing is not the best choice for morphological studies. As we

have shown recently (Martı́nez et al. 2005), it tends to introduce ad-

ditional Gaussian features even for manifestly non-Gaussian density

distributions. MFs are very sensitive to small density variations, and

the wings of Gaussian kernels could be wide enough to generate a

small-amplitude Gaussian ripple that is added to the true density dis-

tribution. Such effect could be alleviated by using compact adaptive

smoothing kernels, as we show below.
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Figure 1. The matter density power spectrum for the 2dFGRS. Data cour-

tesy of W. Percival and the 2dFGRS team.

It is well known that large-scale cosmological fields have a mul-

tiscale structure. A good example is the density field; it includes

components that vary on widely different sales. The amplitudes

of these components can be characterized by the power spectrum;

the present determinations encompass the frequency interval 0.01–

0.8 h Mpc−1,1 which corresponds to the scale range from 8 to over

600 Mpc h−1. Fig. 1 shows the power spectrum for the 2dF Galaxy

Redshift Survey (2dFGRS).

As cosmological densities have many scales and widely varying

amplitudes, density restoration should be adaptive. Different meth-

ods exist to adaptively smooth point distributions to estimate from

them the underlying density field. Schaap & van de Weygaert (2000)

have introduced the Delaunay Tessellation Field Estimator (DTFS)

which adapts itself to the point configuration even when anisotropies

are present. The method starts by considering the Delaunay tessel-

lation of the point process, then we can estimate the density at those

points using the contiguous Voronoi cells, and finally, we should

interpolate to obtain the density in the whole volume. Intricate

point patterns have been successfully smoothed using this method,

and applications to particle hydrodynamics provide good perfor-

mance (Pelupessy, Schaap & van de Weygaert 2003). Ascasibar &

Binney (2005) have recently introduced a novel technique based on

a different partition of the embedding space. These authors used

multidimensional binary trees to make the partition and later ap-

plied adaptive kernels within the resulting cells. Finally, it is well

known that wavelets provide a localized (compact-kernel) adaptive

restoration method (Starck & Murtagh 2002). We have applied, in

a previous paper (Martı́nez et al. 2005), a wavelet-based denoising

technique to the 2dFGRS. As a result we found that the morphol-

ogy of the galaxy density distribution in the survey volume does not

follow a Gaussian pattern, in contrast to the usual results in which

deviations of Gaussianity are not clearly detected [see e.g. Hoyle

et al. 2002 for the 2dFGRS and Park et al. 2005 for the Sloan Digital

Sky Survey (SDSS)].

By the way, adaptive density restoration methods are probably the

best for calculating partial MFs, to describe the morphology of single

large-scale density enhancements (superclusters; see e.g. Shandarin,

1 As usual, h is the present Hubble parameter, measured in units of

100 km s−1 Mpc−1.

Sheth & Sahni 2004). Partial functionals can be used to characterize

the inner structure (clumpiness) and shapes (via shapefinders (Sahni,

Sathyaprakash & Shandarin 1998)) of superclusters. As MFs are

additive, partial functionals can be, in principle, combined to obtain

global MFs for the whole catalogue volume. However, if we want to

check for non-Gaussianity, direct calculation of global MFs is more

simple and straightforward. When combining partial functionals,

estimating the mean densities and volume distributions for the full

sample is a difficult problem.

Now, although a single adaptively found density distribution rep-

resents the cosmological density field better, it could not be the

best tool for comparing theories with observations. Theories of

evolution of structure predict that Gaussianity of the original den-

sity distribution is distorted during evolution, and this distortion is

scale-dependent. According to the present paradigm, evolution of

structure should proceed with different pace at different scales. At

smaller scales, signatures of gravitational dynamics should be seen,

and traces of initial conditions could be discovered at larger scales.

In a single density field, containing contributions from all scales,

these effects are mixed. Thus, a natural way to study cosmologi-

cal density fields is the multiscale approach, scale by scale. This

has been done in the past by using a series of kernels of different

widths (Park et al. 2005), but this method retains a considerable

low-frequency overlap. A better way is to decompose the density

field into different frequency (scale) subbands, and to study each

subband separately.

The simplest idea of separation of scales by using different Fourier

modes does not work well, at least for morphological studies (studies

of shapes and texture). Describing a texture requires knowledge of

positions, but Fourier modes do not have positions, their position is

the whole sample space. A similar weakness, to a smaller extent, is

shared by discrete orthogonal wavelet expansions – their localization

properties are better, but vary with scale, and large-scale modes

remain badly localized.

This leads to the conclusion that the natural candidates for scale

separation are shift-invariant wavelet systems, where wavelet am-

plitudes of all scales are calculated for each point of the coordinate

grid. These wavelet decompositions are redundant – each subband

has the same data volume as the original data.

For such a scheme, direct calculation of low-frequency subbands

would require convolution with wide wavelet profiles, that could be

numerically expensive. A way out is the àtrous (with holes) trick,

where convolution kernels for the next dyadic scale are obtained

by inserting zeros between the elements of the original kernel. In

this way, the total number of non-zero elements is the same for all

kernels, and all wavelet transforms are equally fast.

Now, as usual with wavelets, there is considerable freedom in

choosing the wavelet kernel. A particularly useful choice is the

wavelet based on a B3 spline scaling function (see Appendix A).

In this case, the original data can be reconstructed as a simple sum

of subbands, without extra weights, so the subband decomposition

is the most natural.

In this paper, we combine the à trous representation of density

fields with a grid-based algorithm to calculate the MFs, and apply

it to the 2dFGRS data.

Section 2 describes how to compute the MF for complex data vol-

umes and how to extend such an approach in a multiscale framework

using the wavelet transform. Section 3 describes our observational

data while Section 4 evaluates the multiscale MF on Gaussian ran-

dom field realizations for which the analytical results are known.

Section 5 presents our results for the 2dFGRS data. These results are

compared with the multiscale MF calculated for 22 mock surveys
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and about 100 Monte Carlo (MC) simulations of Gaussian random

fields. We list the conclusions in Section 6.

2 M O R P H O L O G I C A L A NA LY S I S

2.1 Definition

An elegant description of morphological characteristics of density

fields is given by MFs (Mecke, Buchert & Wagner 1994). These

functionals provide a complete family of morphological measures.

In fact, all additive, motion invariant and conditionally continuous2

functionals defined for any hypersurface are linear combinations of

its MFs.

The MFs describe the morphology of isodensity surfaces

(Minkowski 1903; Tomita 1990), and depend thus on the specific

density level (see Sheth & Sahni 2005, for a recent review). Of

course, when the original data are galaxy positions, the procedure

chosen to calculate densities (smoothing) will also determine the re-

sult (Martı́nez et al. 2005). Generally, convolution of the data with

a Gaussian kernel is applied to obtain a continuous density field

from the point distribution. An alternative approach starts from the

point field, decorating the points with spheres of the same radius,

and studying the morphology of the resulting surface (Schmalzing,

Kerscher & Buchert 1996; Kerscher et al. 1997). This ap-

proach does not refer to a density; we cannot use that for this

study.

The MFs are defined as follows. Consider an excursion set Fφ0
of

a field φ(x) in a three-dimensional space (the set of all points where

φ(x � φ0). The first MF (the volume functional) is then the volume

of the excursion set:

V0(φ0) =
∫

Fφ0

d3x .

The second MF is proportional to the surface area of the boundary

δFφ of the excursion set:

V1(φ0) = 1

6

∫
δFφ0

dS(x).

The third MF is proportional to the integrated mean curvature of the

boundary:

V2(φ0) = 1

6π

∫
δFφ0

[
1

R1(x)
+ 1

R2(x)

]
dS(x),

where R1 and R2 are the principal curvatures of the boundary. The

fourth MF is proportional to the integrated Gaussian curvature (the

Euler characteristic) of the boundary:

V3(φ0) = 1

4π

∫
δFφ0

1

R1(x)R2(x)
dS(x).

The last MF is simply related to other known morphological

quantities:

V3 = χ = 1

2
(1 − G),

where χ is the Euler characteristic and G is the topological genus,

widely used in the past study of cosmological density distributions.

The functional V3 is a bit more comfortable to use – it is additive,

2 The functionals are required to be continuous only for compact convex

sets; we can always represent any hypersurface as unions of such sets.

while G is not, and it gives just twice the number of isolated balls

(or holes). Instead of the functionals, their spatial densities Vi are

frequently used:

vi ( f ) = Vi ( f )

V
, i = 0, . . . , 3,

where V is the total sample volume. The densities allow us to com-

pare the morphology of different data samples.

The original argument of the functionals, the density level ρ0, can

have different amplitudes for different fields, and the functionals

are difficult to compare. Because of that, normalized arguments are

usually used; the simplest one is the volume fraction, fv, the ratio

of the volume of the excursion set to the total volume of the region

where the density is defined. Another similar argument is the mass

ratio, fm, which is very useful for real, positive density fields, but

is cumbersome to apply for realizations of Gaussian fields, where

the density may be negative. The most widely used argument is the

Gaussianized volume fraction, ν, defined as

fv = 1√
2π

∫ ∞

ν

exp

(−t2

2

)
dt . (1)

For a Gaussian random field, ν is the density deviation from the

mean, divided by the standard deviation. This argument was intro-

duced already by Gott et al. (1986), in order to eliminate the first

trivial effect of gravitational clustering, the deviation of the one-

point probability distribution function (PDF) from the (supposedly)

Gaussian initial PDF. Note that using this argument, the first MF is

trivially Gaussian by definition.

All the MFs have analytic expressions for isodensity slices of re-

alizations of Gaussian random fields. For a three-dimensional space,

they are (Tomita 1990):

v0 = 1

2
− 1

2
	

(
ν√
2

)
, (2)

v1 = 2

3

λ√
2π

exp

(
−ν2

2

)
, (3)

v2 = 2

3

λ2

√
2π

ν exp

(
−ν2

2

)
, (4)

v3 = λ3

√
2π

(ν2 − 1) exp

(
−ν2

2

)
, (5)

where 	(·) is the Gaussian error integral, and λ is determined by

the correlation function ξ (r) of the field:

λ2 = 1

2π

ξ ′′(0)

ξ (0)
. (6)

2.2 Numerical algorithms

Several algorithms are used to calculate the MFs for a given density

field and a given density threshold. We can either try to follow

exactly the geometry of the isodensity surface, for example, using

triangulation (Sheth et al. 2003) or try to approximate the excursion

set on a simple cubic lattice. The algorithm that was proposed first

by Gott et al. (1986), uses a decomposition of the field into filled

and empty cells, and another popular algorithm (Coles, Davies &

Pearson 1996) uses a grid-valued density distribution. The lattice-

based algorithms are simpler and faster, but not as accurate as the

triangulation codes.
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We use a simple grid-based algorithm, that makes use of inte-

gral geometry (Crofton’s intersection formula, see Schmalzing &

Buchert 1997). We find the density thresholds for given filling frac-

tions by sorting the grid densities, first. Vertices with higher densities

than the threshold form the excursion set. This set is characterized

by its basic sets of different dimensions – points (vertices), edges

formed by two neighbouring points, squares (faces) formed by four

edges, and cubes formed by six faces. The algorithm counts the

numbers of elements of all basic sets, and finds the values of the

MFs as

V0( f ) = a3 N3,

V1( f ) = a2

[
2

9
N2( f ) − 2

3
N3( f )

]
,

V2( f ) = a

[
2

9
N1( f ) − 4

9
N2( f ) + 2

3
N3( f )

]
,

V3( f ) = N0( f ) − N1( f ) + N2( f ) − N3( f ), (7)

where a is the grid step, f is the filling factor, N0 is the number of

vertices, N1 is the number of edges, N2 is the number of squares

(faces), and N3 is the number of basic cubes in the excursion set for

a given filling factor (density threshold). The formula (7) was first

used in cosmological studies by Coles et al. (1996).

2.3 Biases

The algorithm described above is simple to program, and is very

fast, allowing the use of MC simulations for error estimation.

However, it suffers from discreteness errors, which are not large,

but annoying, nevertheless. An example of that is given in Fig. 2,
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Figure 2. The V1 functional for a realization of a Gaussian random density

field in a periodic 2563 cube (upper panel). The full line shows the the-

oretical prediction for this realization, the dotted line shows the standard

one-excursion-set estimate, and the dashed line shows the average of the

functional over two excursion sets. The lower panel shows the difference

between the estimates and the theoretical prediction; the lines encode the

estimates as above.

where we show the V1 functional, calculated by the above recipes

for a periodic realization of a Gaussian field (the dashed line). As

we see, it has a constant shift in ν over the whole range. This shift

is due to the fact that when we approximate isodensity surfaces by

a discrete grid, the vertices that compose the surface lie in a range

of densities starting from the nominal one. This effect can easily be

calculated because this bias will show up as a constant shift in ν for

a Gaussian density field, as observed. Other functionals (V2 and V3)

suffer similar shifts, with smaller amplitudes, and these are not easy

to explain.

There is, fortunately, another and simple possibility to fight these

errors. The standard way is to approximate an isodensity surface by

the collection of vertices that have densities ρ � ρl , where ρ l is the

threshold density. However, another surface, formed by the vertices

with ρ < ρl , is as good an approximation to the isodensity surface

as the first one. Thus, the natural way to calculate the MFs is to

run the algorithm twice, swapping the marks for the excursion set,

and averaging the values of the functionals obtained. The last step

is justified, as the MFs are additive. The averaging rules are

V0 = V (1)
0 + Vtot − V (2)

0

2
,

V1 = V (1)
1 + V (2)

1

2
,

V2 = V (1)
2 − V (2)

2

2
,

V3 = V (1)
3 + V (2)

3

2
.

Here the upper indices (1) and (2) denote the original and comple-

mentary excursion sets, respectively, and Vtot is the total number of

grid cubes in the data brick. The minus sign in the formula for the

third functional (V2) accounts for the fact that the curvature of the

second surface is opposite to that of the first one.

The V1 functional calculated this way is shown in Fig. 2 by

the full line; we can compare it with the theoretical prediction for

Gaussian fields (Fig. 2, dotted line). The coincidence of the two

curves is very good; the only slight deviation is at ν ≈ 0, where

the Gaussian surface is more complex. We have to stress that the

Gaussian curve is not a fit; the parameter λ that determines the am-

plitude of the curve was found directly from the data, using the

relations ξ (0) = 〈ρ2〉 and ξ ′′(0) = 〈ρ2
,i 〉, where ξ (r) is the correla-

tion function and ρ,i is the derivative of density at a grid vertex in

one of the coordinate directions. The good match of these curves

shows also that the Gaussian realization is good, which is not simple

to model. The averaging works as well for the two other function-

als; this is shown in Fig. 3. There are slight deviations from the

theoretical curve for V2 around ν ≈ 1 and for V3 at ν ≈ 0; these

may be intrinsic to the particular realization, as the number of

‘resolution details’ diminishes when the order of the functional

increases.

We also see that the higher the order, the closer are the one- and

two-excursion-set estimates. Thus, even if we are interested only in

the topology of the density isosurfaces, we should correct for the

border effects, all MFs are used, and it is important that they were

unbiased.

There is a natural restriction on the grid steps – the grid has to be

fine enough to resolve the details of the density field. The previous

figures (Figs 2 and 3) show the MFs obtained for the case of the

Gaussian field smoothed by a Gaussian filter with σ = 3 grid steps,

being the smoothing radius R ≈ 2σ = 6.
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Figure 3. The V2 (upper panels) and V3 (lower panels) functionals for a

realization of a Gaussian random density field in a periodic 2563 cube.

In the larger panels, the full lines show the theoretical predictions for this

realization, the dotted lines show the standard one-excursion-set estimates,

and the dashed lines show the averages of the functionals over two excursion

sets. The smaller panels show the differences between the estimates and the

theoretical predictions; the lines encode the estimates as above.

2.4 Border corrections

As we have seen above, we can obtain good estimates of the MFs for

periodic fields. The real data, however, are always spatially limited,

and the limiting surfaces cut the isodensity surface. An extremely

valuable property of MFs is that such cuts can be corrected for. Let

us assume that the data region (window or mask) is big enough

relative to the typical size of details, so that one can consider the

field inside the mask homogeneous and isotropic. For this case,

Schmalzing et al. (1996) showed that the observed MFs for the

masked isosurface Mi (D ∩ W) can be expressed as a combination of

the true functionals, Mi (D), and those of the mask Mi(W):

Mi (D ∩ W ) = 1

V

i∑
j=0

(
i
j

)
M j (D)Mi− j (W ), (8)

where V is the total volume inside the mask. Note that the func-

tionals Mi differ from the usual Vi by normalization. Schmalzing

et al. (1996) derived relation (8) for a collection of balls. Here, we

have applied it to isodensity surfaces and for the true values of the

functionals, we get

Mi (D)

V = Mi (D ∩ W )

M0(W )
−

i−1∑
j=0

(
i
j

)
M j (D)

V
Mi− j (W )

M0(W )
. (9)

The relation between Mi and the usual Vi is

Mi = ωd−i

ωd
Vi ,

where ω j is the volume of a j-dimensional unit ball, and d is the

dimension of the space. For MFs in a three-dimensional space, the

explicit relations are

M0 = V0, M1 = 3

4
V1, M2 = 3

2π
V2 and M3 = 3

4π
V3.

Using equation (9) and replacing Mi by Vi, we arrive at the following

correction chain:

v0(ν) = V0(ν)

V0(W )
,

v1(ν) = V1(ν)

V0(W )
− v0(ν)

V1(W )

V0(W )
,

v2(ν) = V2(ν)

V0(W )
− v0(ν)

V2(W )

V0(W )
− 3π

4
v1(ν)

V1(W )

V0(W )
,

v3(ν) = V3(ν)

V0(W )
− v0(ν)

V3(W )

V0(W )
− 9

2
v1(ν)

V2(W )

V0(W )

−9

2
v2(ν)

V1(W )

V0(W )
. (10)

Here Vi(ν) denote the observed (raw) values of MFs, and Vi(ν)

denote the corrected densities.

We tested these corrections with our original Gaussian realiza-

tion, masked at all faces. The correction for the second MF, v1, is

practically perfect. The corrected version of v2 is also close to the

original for all the argument range, and only a little higher than the

original. The higher the order of the functional, the more difficult

it is to correct for the borders, as small errors from the lower or-

ders accumulate. The discrepancy with the corrected version of v3

and the original estimates is the largest amongst the three densities,

but it balances well the amplitudes of the maxima, and is only a

little lower than the original for low densities (ν ≈ 1.5). There are

practically no differences from the original at the high-density end.

A note on the use of masks in practice: we ensure that there is at

least one-vertex thick mask layer around our data brick. This allows

us to assume periodic borders for the brick itself, and there is also

another way to use the mask, ignoring the vertices in the mask, not

building any elements from the vertices in the data region to the mask

vertices. We then do not have to apply the correction chain (10) and

do not have to build the basic sets in the mask region. The latter

fact makes the algorithm about twice as fast for the 2dF data (the

data region occupies only a fraction of the encompassing brick). We

compared this version with the border-corrected algorithm described
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Figure 4. Demonstration of border corrections for complex borders. The raw densities of MFs for the 2dFGRS NGP sample volume 2523, cut from a periodic

2562 × 64 realization of a Gaussian random field (dotted lines) are shown together with the border-corrected estimates (dashed lines) and the estimates for the

original brick (full lines). The upper panels show the densities, and the smaller lower panels show the differences between the densities for the sample volume

and those for the brick (for both the raw and the corrected cases, and the same line types are used as in the upper panels). The densities of the second MF v1 are

shown in the left-hand panels, the densities of the third MF v2 are shown in the middle panels, and the densities of the fourth MF v3 are shown in the right-hand

panels.

above (see Appendix B) and found that it gives slightly worse results

for Gaussian realizations, so we dropped it. The present algorithm

is fast enough, taking 12 s for an isolevel for a 2563 grid on a laptop

with the Intel Celeron 1500-MHz processor.

As the data masks are complex (see Fig. 5), we should test the

border corrections for real masks, too. Fig. 4 shows the effect of

border corrections as used with the data mask for the 2dF NGC

sample volume (see Section 3). As the corrections give densities

of functionals, we will show the densities from this point on. The

density field in this volume was generated by simulating a Gaussian

random field for a 256 × 256 × 64 periodic brick, combining these

bricks to cover the sample extent, and masking this realization with

the Northern data mask. Smaller bricks were combined because the

spatial extent of the data was too large for the available core memory

to generate a single fast Fourier transform (FFT) brick to cover it; as

the brick is periodic, the realization remains Gaussian. We show the

raw densities of the MFs as the dashed lines, the corrected versions

with the full lines, and the densities for the original brick with the

dotted lines.

We see that the density v1 of the V1 functional is restored well,

apart from a slight deviation near ν = 0. The density v2 is also cor-

rected well; only its maximum amplitude is slightly smaller than

that for the original brick. The restoration is almost perfect for v3,

with the same small amplitude problem than for the two other densi-

ties. The fact that the restoration works so well is really surprising –

first, our mask is extremely complex, and, secondly, our realization

of the Gaussian random field is certainly not exactly homogeneous

and isotropic inside the sample volume. We generate realizations

of random fields in this work by the FFT technique; these fields

are homogeneous, but isotropic only for small scales, not for scales

comparable to the brick size.

The importance of the good restoration of the MF means that

when checking theoretical predictions, we can directly compare ob-

servational results with the predictions, and do not have to use costly

MC simulations.

2.5 Multiscale Minkowski Functionals

A natural way to study cosmological fields is the multiscale ap-

proach, scale by scale. According to the present paradigm, evolution

of structure should proceed with different pace at different scales.

At smaller scales, signatures of gravitational dynamics should be

seen, and traces of initial conditions could be discovered at larger

scales.

The matter density in the Universe is formed by perturbations at

all scales. In the beginning, they all grow at a similar rate, but soon

this rate becomes scale-dependent; the smaller the scale, the faster

it will go non-linear and non-Gaussian. Thus, it is interesting to de-

compose the density (gravitational potential and velocity) field into

different scales and check their Gaussianity (and other interesting

characteristics).

Using the wavelet transform as it is described in Appendix

A, we obtain a set of wavelet scales W = w0, . . . , wJ , cJ+1,

and each scale wj(x, y, z) corresponds to the convolution prod-

uct of the observed galaxies with a wavelet function ψ j , where

ψ j (x, y, z) = ψ( x
2 j ,

y
2 j ,

z
2 j ) and ψ is the analysing wavelet func-

tion described in Appendix A. Now, we can apply the MF calculation

at each scale independently, and we get four MF values per scale us-

ing equation (7). The set (V j,0, V j,1, V j,2, V j,3) will denote the MF at

scale j. Note that in this framework, we do not have to convolve the

data anymore with a Gaussian kernel, avoiding the delicate choice

of the size of the kernel bandwidth.

3 T H E DATA

There exist two large-volume galaxy redshift surveys at the moment,

the 2dFGRS (Colless et al. 2003) and the SDSS (York et al. 2000).

The 2dFGRS is completed; although the SDSS is not, its data volume

has already surpassed that of the 2dFGRS. We will use in our paper

the 2dFGRS data set; it is easier to handle, and we make use of the

mock catalogues created to estimate the cosmic variance of the data.

The galaxies of the 2dFGRS have been selected from an earlier

photometric APM survey (Maddox, Efstathiou & Sutherland 1996)

and its extensions. The survey covers about 2000 deg2 in the sky

and consists of two separate regions, one in the North Galactic Cap

(NGC) and the other in the South Galactic Cap (SGC), plus a number

of small randomly located fields; we do not use the latter. The total

number of galaxies in the survey is about 250 000. The depth of the

survey is determined by its limiting apparent magnitude, which was

chosen to be bJ = 19.45. Caused by varying observing conditions,
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however, this limit depends on the sky coordinates, varying almost

the full magnitude. Another cause of non-uniformity of the catalogue

is its spectroscopic incompleteness – as the fibres used to direct the

light from a galaxy image in the focal plane to the spectrograph have

a finite size; a number of galaxies in close pairs were not observed for

redshifts. However, these corrections can be estimated; the 2dFGRS

team has made public the programs that calculate the completeness

factors and magnitude limit, given a line-of-sight direction.

The 2dFGRS survey, as all redshift surveys, is magnitude-limited.

This means that the density of observed galaxies decreases with

distance; at large distances only intrinsically brighter galaxies can be

seen. For certain statistical studies (luminosity functions, correlation

functions, power spectra), this decrease can be corrected for. For

texture studies, there are yet no appropriate correction methods,

and maybe, these do not exist, as the scales of the details that can

be resolved are inevitably different, and small-scale information is

certainly lost at large distances. The usual approach is to use volume-

limited subsamples extracted from the survey. In order to create such

a sample, one chooses absolute magnitude limits, and retains only

the galaxies with absolute magnitudes between these limits. This

discards most of the data, but assures that the spatial resolution is

the same throughout the survey volume (taking also account of the

possible luminosity evolution and K-correction).

The 2dFGRS team has created such catalogues and used them to

study higher-order correlation functions (Norberg et al. 2002; Cro-

ton et al. 2004a,b). They kindly made these catalogues available

to us, and these constitute our main data. These catalogues span

one magnitude each, from M = −17 + 5 log 10(h) to M = −21 +
5 log 10(h). The catalogues for least-bright galaxies span small spa-

tial volumes, and those for the brightest galaxies are sparsely popu-

lated. Thus, we chose for our work the catalogue spanning the mag-

nitude range−20� M −5 log 10(h)�−19, this is the most informa-

tive. This has been also the conclusion of Croton et al. (2004b). We

will call this sample 2dF19. This sample, as all 2dF volume-limited

samples, consists of two spatially distinct subsamples, one in the

NGC region (2dF19N) and another in the SGC region (2dF19S).

The sample lies between 61.1 and 375.6 Mpc h−1; the general fea-

tures of the subsamples are listed in Table 1.

In a previous paper on the morphology of the 2dFGRS (Martı́nez

et al. 2005), we extracted bricks from the data to avoid the influence

of border effects. This forced us to use only a fraction of the volume-

limited samples. This time we tried to use all the available data, and

succeeded with that.

The 2dFGRS catalogue is composed of measurements in a

large number of circular patches in the sky, and its footprint

in the sky is relatively complex (see the survey web page

http://www.mso.anu.au/2dFGRS). Furthermore, due to the varia-

tions in the final magnitude limit used, the catalogue depth is also a

function of the direction. In order to use all the data for wavelet and

morphological analysis, we had to create a spatial mask, separating

the sample volume from regions outside. We did it by creating first

a spatial grid for a brick that surrounded the observed catalogue

volume, calculated the sky coordinates for all vertices of the brick,

and then used the software provided by the 2dFGRS team to find

Table 1. The 2dF volume-limited catalogues used.

Sample Galaxies RA limits Dec. limits Volume d mean

(◦) (◦) (106 Mpc3 h−3) (Mpc h−1)

2dF19N 19080 147.0 223.0 −6.4 2.6 2.75 5.24

2dF19S 25633 −35.5 55.2 −37.6 −22.4 4.43 5.57

the correction factors for these directions. The completeness factor

told us if the direction was inside the sample footpath. If it was,

we found the apparent magnitude of the brightest galaxies (with

M = Mmin) of our sample for that distance and checked, if it was

lower than the sample limit. If it was, the grid point was included

in the mask. For the last comparison, we had to change from the

comoving grid distance to the luminosity distance. We assumed the

�M = 0.3, �� = 0.7 cosmology for that and interpolated a tabulated

relation between the two distances. As explained in Norberg et al.

(2002), the 2dF volume-limited samples were built using the k +
e-correction as dependent on the spectral type of a galaxy. We do not

have such a quantity for the mask, so we tuned a little the bright ab-

solute magnitude limit, checking that the mask should extend as far

as the galaxy sample. For that, we had to increase the effective bright

absolute magnitude limit by �M = 0.25. The nearby regions of the

mask were cut off at the nearest distance limit for the observational

sample.

The original survey mask in the sky includes holes around bright

stars; these holes generate narrow tunnels through our spatial mask.

As the masks have a complex geometry, we did not want to add

discreteness effects due to resolving such tunnels. We filled them in

by counting the number of neighbours in a 33 cube around non-mask

points and, if the neighbour number was larger than a chosen limit,

assigning the points to the mask. We chose the required number n of

neighbours to avoid filling in at flat mask borders (n = 9 is enough for

that) and iterated the procedure until the tunnels disappeared. This

was determined by visual checks (using the ‘ds9’ fits file viewer,

Joye & Mandel 2003).

We show the three-dimensional views of our masks in Fig. 5.

The mask volumes are, in general, relatively thin curved slices with

heavily corrugated outer walls. These corrugations are caused by

the unobserved survey fields. Also, the outer edges of the mask

are uneven, due to the variations in the survey magnitude limit.

One three-dimensional view does not give a good impression of the

mask; the slices we will show below will complement these.

As mentioned in Appendix A, in order to apply the wavelet con-

volution cascade, the initial density on the grid should be extirpo-

lated by the chosen scaling function. We chose our initial grid step as

1 Mpc h−1, and used the B(3)
3 kernel for extirpolation. In order to have

a better scale coverage, we repeated the analysis, using the grid step√
2 Mpc h−1. The smoothing scale (the spatial extent of the kernel)

is 4 grid units, and the smoothing radius corresponds to 2 units.

When calculating the densities, we used the spectroscopic com-

pleteness corrections cisp, included in the 2dFGRS volume-limited

catalogues, and weighted the galaxies by the factor w = 1/cisp. Most

of the weights are close to unity, but a few of them are large. In order

not to ‘overweight’ these galaxies, we fixed the maximum weight

level as w = 2. The same procedure was chosen by Croton et al.

(2004a).

4 G AU S S I A N F I E L D S

The filters used to perform wavelet expansion are linear, and thus

should keep the morphological structure of Gaussian fields; the MFs
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Multiscale morphology of galaxy distribution 1037

Figure 5. Survey masks for the 2dFGRS volume-limited sample 2dF19.

The upper panel shows the Northern subsample, and the lower panel shows

the Southern subsample. Spatial orientations are chosen to better visualize

the volumes.

should be Gaussian for any wavelet order. This is certainly true for

periodic densities, but for densities restricted to finite volumes the

boundary conditions can introduce correlations. The most popular

boundary condition – reflection at the boundary – will keep the

density field mostly Gaussian for brick masks. Our adopted zero

boundary condition will certainly work destroying Gaussianity, as

the random field which is zero outside a given volume and has finite

values inside is certainly not Gaussian.

We compare the effect of the mirror and zero boundary conditions

in Fig. 6, for high wavelet orders that are yet not dominated by noise,

calculated for a Gaussian realization in a 2563 cube with the σ =
3 Gaussian smoothing described above, and masked at all borders

by a layer two vertices thick (thus the effective volume of the data

cube is 2523)

Fig. 6 shows that the second MF is certainly better restored by the

wavelets obtained by using mirror boundary conditions. These con-

ditions lead to the functionals that are symmetric about ν = 0, as it

should be, while the functionals obtained by applying zero boundary

conditions display a shift towards smaller values of ν. However, al-

though our brick data should prefer mirror boundary conditions, it is
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Figure 6. Densities of the MFs (from the second at the left-hand side to the fourth at the right-hand side) for the same Gaussian realization for the wavelet

orders 3 and 4 (lower wavelet orders give higher amplitudes). The case for the wavelets generated using the mirror boundary conditions is shown by the full

lines, and for zero boundary conditions the dotted lines are used. The amplitudes of the functionals for the wavelet order 4 are rescaled by 2 for v2 and by 4 for

v3 to show more details.

not easy to say which boundary conditions give better estimates for

the remaining two functionals. Both cases have comparable errors

(look at the amplitudes at extrema, which should be equal). Hence,

other considerations have to be used. As our data mask is complex,

with corrugated planes and sharp corners, the mirror boundary con-

ditions will amplify the corner densities and propagate them inside,

while the zero boundary conditions will gradually remove the influ-

ence of the boundary data. Thus, we have selected zero boundary

conditions for this study; these are probably natural for all observa-

tional samples.

We have seen that the wavelet components of the multiscale de-

composition of a realization of a Gaussian random field remain

practically Gaussian for simple sample boundaries. This means that

testing for Gaussianity is straightforward. However, we have to as-

sess the boundary effect for our application, where the boundaries

are extremely complex. We will demonstrate it on the example of the

Northern mask. For that, we generated a realization of a Gaussian

random field for a volume encompassing the mask, as described in

Section 3, and masked out the region outside the NGP data volume.

As we want to see the effects that could show up in the data, we

used the standard dark matter power spectrum for the � cold dark

matter (�CDM) cosmology (Klypin & Holtzman 1997), for the cos-

mological parameters �0 = 0.3, �� = 0.7, �bar = 0.026, h = 0.7

(this is pretty close to the standard ‘concordance’ power spectrum),

generated the realization on a grid with the step of 1 Mpc h−1, and

smoothed the field with a Gaussian of σ = 2 Mpc h−1. The original

density distribution, the scaling distributions and the wavelets are

shown in Figs 7 and 8 for a slice at z = 34 Mpc h−1, at about the

middle of the sample volume.

The MF, V3, for the wavelets is shown in Fig. 9. In order not to

overcrowd the figure, we do not show the theoretical predictions.

The functional has been rescaled to show all functionals together in

a single diagram and scaling factors are shown in the labels.

As we see, the lower the wavelet order, the larger values of V3 are

obtained (this is also true for the other functionals); this is expected,

as higher orders represent increasingly smoother details of the field.

The values of the functionals for the zero-order wavelet are always

higher than those for the full field, as it includes only the high-

resolution details that the isolevels have to follow. Also, we have

seen that the lower the order of the functional, the smaller are the

distortions from Gaussianity.

The distortions of the third MF are the largest. The functional for

the zeroth-order wavelet (curve W0 in Fig. 9) shows argument com-

pression, the result of insufficient spatial resolution of the smallest

details of the field. The functional for the first-order wavelet is close

to Gaussian, as is the functional for the total realization, but the

second-order curve 8W2 shows strong distortions, due to a small

number of independent resolution elements in the volume, and to
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1038 E. Saar et al.

Figure 7. Multiscale decomposition of a realization of a Gaussian random field in the 2dF19N volume mask, for the z = 34 Mpc h−1 slice (the data and the

first orders). The upper panel column shows the scaling orders, with the original density at the right-hand side. The lower panel shows the wavelet orders, with

the lowest order at the right-hand side.

Figure 8. Multiscale decomposition of a Gaussian random field in the 2dF19N volume mask (continued). The upper panel shows scaling orders, and the lower

panel shows wavelet orders; the highest orders are at the left-hand side. The last scaling solution shows already strong effects of the boundary conditions.
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Figure 9. The density v3 of the fourth MF for the wavelet decomposition of

a realization of a Gaussian random field in the 2dF19N mask. The legends

in the figure show the wavelet order and the scaling factor (2W1 denotes the

functional for the wavelet order 1, multiplied by 2). The legend NG denotes

the original realization.

the small height of the slice. The characteristic volume of these

elements is (4 × 22)3 = 4096 Mpc3 h−3, and their number is about

670. The functional for the third wavelet order is already completely

dominated by noise.

Thus, we can estimate MFs with a high precision, and the border

corrections work well. The most difficult part at the moment is

the scale separation in observed samples. The sample geometries

are yet slice-like, limiting the range of useful scales by the mean

Figure 10. Multiscale decomposition of the 2dF19N volume-limited sample, for the z = 39 Mpc h−1 slice, and for the grid step
√

2 Mpc h−1. The original

density is shown at the top right-hand side, the last scaling order at the bottom left-hand side, and the wavelet orders in between. The wavelet orders increase

from the right-hand to left-hand side and from the top to bottom panel. The weakest grey-level shows the sample mask.

thickness of the slice. Complex sample borders are also a nuisance

when applying the wavelet cascade. In order to take account of

these difficulties, we have yet to resort to running MC simulations

of Gaussian realizations of a right power spectrum, and to compare

the obtained distributions of the functionals with the functionals for

the galaxy data. We hope that for the future surveys (e.g. the full

SDSS), the data volume will be large enough to do without MC

runs.

5 M O R P H O L O G Y O F T H E 2 dF 1 9 S A M P L E

Having developed all necessary tools, we apply them to the 2dF19

volume-limited sample, separately for the NGC and SGC regions.

We show selected slices for the two subsamples, first (Figs 10 and

11). The Northern slice was chosen to show the richest supercluster

in the 2dFGRS NGC, supercluster 126 (lower panels, Einasto et al.

1997). The Southern slice has the maximum area in the z = constant

slices of this sample. We choose the grey-levels to show also the

mask area.

Figs 12–15 show the results – the MFs for the wavelet decom-

positions of the 2dF19N and 2dF19S subsamples. First, we show

the summary figures: the density v3 for the original data and for

wavelet orders from 0 to 3, and for grid unit of
√

2 Mpc h−1. Higher

wavelet orders are not usable – there the boundary rules used for

the wavelet cascade influence strongly the results, and the number

of independent resolution elements becomes very small, letting the

functionals to be dominated by noise. The wavelet orders used span

the scale range 2–22.6 Mpc h−1. In order to show all the densities

in the same plot, we use the mapping

C© 2006 The Authors. Journal compilation C© 2006 RAS, MNRAS 374, 1030–1044

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/374/3/1030/1044129 by guest on 07 January 2021



1040 E. Saar et al.

Figure 11. Multiscale decomposition of the 2dF19S volume-limited sample, for the z = 97 Mpc h−1 slice, and for the grid step
√

2 Mpc h−1. The original

density is shown at the top right-hand side, the last scaling order at the bottom left-hand side, and the wavelet orders in between. The wavelet orders increase

from the right-hand to left-hand side and from the top to bottom panel. The weakest grey-level shows the sample mask (in most cases; sometimes the mask is

missing and sometimes the grey-level is wider than the mask).
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Figure 12. Summary of the densities of the fourth MF v3 for the data and all wavelet orders for the 2dF19N sample (left-hand panel) and 2dF19S sample

(right-hand panel), in the logn mapping – the higher the wavelet order (indicated by labels), the lower the density amplitude. The thick lines show reference

Gaussian predictions. The thin lines stand for the
√

2 Mpc h−1 grid.

logn(v3) = sgn(v3) log(1 + |v3|).

It is almost linear for |v3| < 1, logarithmic for |v3| > 1, and can be

applied to negative arguments, also. The density in Fig. 12 is shown

with the dotted lines. For reference, the two thick lines show the

Gaussian predictions for small and large functional density ampli-

tudes for the logn(v3) mapping. The first glance at the figures of the

fourth MF reveals that none of the wavelet scales shows Gaussian

behaviour.

In order to estimate the spread in the values of the functionals, we

ran about 100 Gaussian realizations for every sample and grid, gen-

erated wavelets and found the MFs. The power spectrum for these

realizations was chosen as described in Section 4 above (see Klypin

& Holtzman 1997), and smoothed by a Gaussian of σ = 1 (in grid

units). This is practically equivalent to the B3 extirpolation used to

generate the observed density on the grid. Now, if the observational

MFs lie outside the limiting values of these realizations, we can say

that the Gaussian hypothesis is rejected with the p-value less than

1 per cent. We also calculated the multiscale functionals for a set of

22 mock samples, especially created for the 2dFGRS (Norberg et al.

2002). The mock catalogues were extracted from the Virgo Con-

sortium �CDM Hubble volume simulation, and a biasing scheme
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Figure 13. The density of the fourth MF v3 for the wavelet order 2 for the

2dF19N sample (full line). The dotted lines show the minima and maxima

of 102 Gaussian realizations, and the bars show the full variation in a sample

of 22 mock catalogues.
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Figure 14. The density of the fourth MF v3 for the wavelet order 2 (grid√
2) for the 2dF19S sample (full line). The dotted lines show the minima and

maxima of 108 Gaussian realizations, and the bars show the full variation in

a sample of 22 mock catalogues.

described in Cole et al. (1998) was used to populate the dark matter

distribution with galaxies.

Figs 13 and 14 show, respectively, the densities of the fourth MF

for the NGCs and the SGCs. The MF density v3 corresponding to the

data is plotted with a continuous line, while the error bars correspond

to the total variation for mocks. The minimum and maximum limits

for Gaussian realizations are plotted with the dotted lines.

The Gaussian realizations show very small spread, and are clearly

different from the v3 MF of the observational samples. Results from

mocks are much closer to the data.

Fig. 13 shows clear non-Gaussianity for the NGC at a high confi-

dence level. Gaussian realizations are not much deformed by the

combination of boundary conditions (wavelets) and border cor-

rection (functionals) effects. In this figure, we can appreciate that

with respect to this MF, mocks follow data well for smaller density

isolevels, but deviate around ν = 1; we have seen similar effects be-

fore (Martı́nez et al. 2005). An interesting detail is the knee around

ν = 0.5, seen both in the data and in the mocks, but not for Gaus-

sian realizations. The latter fact tells us that it is not caused by the

specific geometry of the data sample. The grid step was 1 Mpc h−1.

Fig. 14 for the Southern data shows also clear non-Gaussianity,

but no strong features like the Northern one (it describes larger

scales, as this wavelet is based on the
√

2 Mpc h−1 step grid). An

interesting point is that mocks follow the data curve almost perfectly

here, much better than that for the Northern sample.
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Figure 15. The densities of the fourth MF v3 for the wavelet order 1 for the

2dF19S and 2dF19N samples (full lines). The bars show the full variation

in two samples of 22 mock catalogues.

Fig. 15 shows the v3 MF density at the first wavelet scale for both

north and south slices. Again, it is clearly non-Gaussian. However,

it is remarkable how well the functionals for both volumes coincide.

This shows that the border and boundary effects are small, and we

are seeing real features in the density distribution that we have to

explain. Also, the mocks follow the data rather well. This means

that the structure (and galaxy) formation recipes used to build the

mocks already implicitly include mechanisms responsible for these

features.

It is useful to compare our results with the recent careful analysis

of the topology of the SDSS galaxy distribution by Park et al. (2005).

They used Gaussian kernels to find the density distribution, and as

a result, their genus curves (see e.g. their figs 6 and 8) are close to

those of Gaussian fields. They describe deviations from Gaussianity

by moments of the genus curve, taken in carefully chosen ν inter-

vals, and normalized by corresponding Gaussian values. Our MFs

differ so much from Gaussian templates (see Fig. 12) that we cannot

fit a reference Gaussian curve. The only analogue we can find is the

shift of the genus curve �ν, that we estimate by fitting an expression

v3(ν) = A[(ν − �ν)2 − 1] exp [−(ν − �ν)2/2] to our results. The

values of the shift corroborate the visual impression of strong differ-

ences between our results and those of Park et al. (2005). While they

found that �ν lies in the interval [−0.1, 0.26] (for the scale range

RG ∈ [4.5, 11.0] Mpc h−1, their table 2), our �ν assumes values

between −1.3 and −0.2, for approximately the same scale interval

(λ ∈ [4, 22.6] Mpc h−1). As the morphology of the 2dFGRS and the

SDSS should not differ much, the difference is clearly caused by

different kernels, Gaussians compared to compact wavelets. Drop-

ping the conventional Gaussian kernels makes the discriminative

force of the morphological tests considerably stronger.

6 C O N C L U S I O N S

The main results of this paper are as listed below.

(i) We have shown how to compute the MF, taking into account

both the biases due to the discrete grid from the Crofton method and

the border effects related to complex observational sample volumes.

(ii) Our experiments have shown that the multiscale MF function-

als of a Gaussian Random Field have always a Gaussian behaviour,

even in case where the field lies within complex boundaries. There-

fore, we have established a solid base for calculating the MFs for

real data sets and their multiscale decompositions.

(iii) We found that both the observed galaxy density fields and

the mocks show clear non-Gaussian features of the morphological
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descriptors over the whole scale range we have considered. For

smaller scales, this non-Gaussianity of the present cosmological

fields should be expected, but it has been an elusive quality, not

detected in most of previous papers (see e.g. Hoyle et al. 2002;

Park et al. 2005). However, even for the largest scales that the data

allow us to study (about 20 Mpc h−1), the density fields are yet not

Gaussian. We believe that the Gaussianity reported in the papers

cited above could be just a consequence of oversmoothing the data.

This effect was clearly described in Martı́nez et al. (2005).

(iv) The mocks that are generated from initial Gaussian den-

sity perturbations by gravitational evolution and by applying semi-

analytic galaxy formation recipes, are pretty close to the data. How-

ever, as in a previous study (Martı́nez et al. 2005), we confirm a

discrepancy around ν = 1 between the mocks and the data. This

analysis clearly shows that there are more faint structures in the

data than in the mocks, and clusters in the mocks have a larger

intensity than in the real data.
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A P P E N D I X A : T H E à trous ALGORITHM AND
GALAXY CATALOGUES

A good description of the à trous algorithm and of its applications to

image processing in astronomy can be found in Starck & Murtagh

(2002). Readers interested in the mathematical basis of the algorithm

can consult Mallat (1999) and Shensa (1992). We give below a short

summary of the algorithm and describe the additional intricacies that

arise when the algorithm is applied to galaxy catalogues (point data).

We start with forming the initial density distribution d0 on a grid.

In order to form the discrete distribution, we have to weight the point

data (extirpolate), using the scaling kernel for the wavelet (Mallat

1999). As we will use the B3 box spline as the scaling kernel, the

extirpolation step is

d (0)(ni ) =
∫

ρ(x)B(3)
3 (x − ni )d

3x, (A1)

where ni ≡ (n)i = (xi , yi , zi ) is a grid vertex, ρ(x) is the original

density, delta-valued at galaxy positions, and B(3)
3 (x) is the direct

product of three B3 splines:

B(3)
3 (x) = B3(x)B3(y)B3(z),

where (x) = (x, y, z). The B3 spline is given by

B3(x) = 1

12
(|x − 2|3 − 4|x − 1|3 + 6|x |3 − 4|x + 1|3

+ |x + 2|3).

As this function is zero outside the cube [− 2, 2]3, every data point

contributes only to its immediate grid neighbourhood, and extirpo-

lation is fast.

The main computation cycle starts now by convoluting the data

d with a specially chosen discrete filter h(k):

d (I+1)
(n) =

∑
(k)

h(k)d
(I )

(n)+2I (k)
. (A2)

Here I stands for the convolution order (octave); the three-

dimensional filter h(k) = hlhmhn , (k) = (l, m, n) is the direct product

of three one-dimensional filters hi = {1/16, 1/4, 3/8, 1/4, 1/16}
for i ∈ [−2, 2]. The following two points should be noted.

(i) As the filter is the direct product of the one-dimensional filters,

the convolution can be applied consecutively for each coordinate,
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and can be done in place, with extra memory only for a data

line.

(ii) The data index (n) + 2I (k) in the convolution shows that

the data are assessed from consecutively larger regions for further

octaves, leaving intermediate grid vertices unused. This is equivalent

to inserting zeroes in the filter for these points, and this is where the

name of the method comes from (à trous is ‘with holes’ in French).

This makes the convolution very fast, as the number of operations

does not increase when the filter width increases.

The filter hi satisfies the dilation equation

1

2
B3

(
x

2

)
=

∑
k

hk B3(x − k).

After we have performed the convolution (A2), we find the

wavelet coefficients w(J) for the octave J by simple substraction:

w
(J )
(n) = d (J )

(n) − d (J+1)
(n) . (A3)

The combination of steps (A2) and (A3) is equivalent to convolution

of the data with the associated wavelet ψ (3) (x), where

ψ(x) = 2B3(2x) − B3(x). (A4)

Repeating the sequence (A2) and (A3), we find wavelet coefficients

for a sequence of octaves. The number of octaves is, evidently,

limited by the grid size, and in real applications by the geometry of

the sample.

We have illustrated the wavelet cascade in the main text by an

application to real galaxy samples. As our wavelet amplitudes were

obtained by subtraction, we can easily reconstruct the initial density:

d (0)
(n) = d (J+1)

(n) +
j=J∑
j=0

w
( j)
(n). (A5)

Here the upper indices show the octave, the lower indices denote

grid vertices, and d(J+1) is the result of the last convolution. This

formula can also be interpreted as the decomposition of the original

data (density field) into contributions from different scales – the

wavelet octaves describe contributions from a limited (dyadic) range

of scales.

Here, we have to note that while the scaling kernel

	(x, y, z) = B3(x)B3(y)B3(z)

is a direct product of three one-dimensional functions, it is sur-

prisingly almost isotropic. Its innermost isolevels are slightly con-

cave, and outer isolevels tend to be cubic, but this happens at very

low function values. In order to characterize the deviation from

anisotropy, let us first define the angle-averaged scaling kernel

	̄(r ) = 1

4π

∫
S

(r )	(r , θ, φ) dS,

where S(r) is a spherical surface of a radius r. The anisotropy can now

be calculated as the integral of the absolute value of the difference

between the kernel and its angle-averaged value:∫ 2

2

∫ 2

2

∫ 2

2

|	(x, y, z) − 	̄(
√

x2 + y2 + z2)| dx dy dz = 0.030.

As the integral of the kernel itself is unity, the deviation is only a

couple of per cent.

A similar integral over the wavelet profile gives the value 0.052.

Here, the natural scale, the integral of the square of the wavelet

profile, is also unity, so the deviation from isotropy is small.
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Figure A1. The square of the Fourier transform of the wavelet for two

neighbouring octaves.

An isotropy of the wavelet is essential, if we want to be sure

that our results do not depend on the orientation of the grid. This

is usually assumed, but with a different choice of the scaling kernel

this could easily happen.

As our wavelet transform is not orthogonal, there remain correla-

tions between wavelet amplitudes of different octaves. The Fourier

transform of the B3 scaling function is

B̂3(ω) =
[

sin(ω/2)

ω/2

]4

.

The Fourier transform of the associated wavelet (A3) is

ŵ(ω) = B̂3(ω/2) − B̂3(ω).

We show the square of the Fourier transform of the wavelet for

two neighbouring octaves in Fig. A1. As we see, the overlap between

the octaves is not large, but substantial. This is the price we pay for

keeping the wavelet transform shift invariant. We can now compare

wavelet amplitudes for different octaves (scale ranges) at any grid

vertex, but we have to keep in mind that the separation of scales is

not complete. It may seem an unpleasant restriction that the wavelet

scales have to increase in dyadic steps. It is not, in fact, as one can

choose the starting scale (the step of the grid) at will.

Before applying the wavelet transform to the data, we have to

decide how to calculate the convolution (A2) near the spatial bound-

aries of the sample. Exact convolution can be carried out only for

periodic test data, and spatially limited data need special considera-

tion. For density estimation, a useful method to deal with boundaries

is to renormalize the kernel. This cannot be done here, as renormal-

ization would destroy the wavelet nature of our convolution cascade.

The only assumptions that can be used are those about the behaviour

of the density outside the boundaries of the sample. Let us consider,

for example, the one-dimensional case and the data d(i) known only

for the grid indices i > 0. The possible boundary conditions are then

d(i ; i < 0) =

⎧⎨⎩
0 : zero boundary

d(0) : constant boundary

d(−i) : reflecting boundary.

The constant boundary condition is rarely used; the most popular

case seems to be the reflecting boundary. For brick-type sample ge-

ometries, where the coordinate lines are perpendicular to the sample

boundary, this condition gives good results. However, in our case

the sample boundary has a complex geometry, and reflections from

nearby boundary surface details would soon interfere with each

other.
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A P P E N D I X B : C O M PA R I N G B O R D E R
C O R R E C T I O N S

We noted above (Section 2.4) that alongside with the border correc-

tion chain (10) there is another possibility to correct for borders. In

this case, we ignore the vertices in the mask and do not build any

basic elements if one of the vertices belongs to the mask. This also

means that we do not have to build the basic elements in the mask

region. The latter fact makes the algorithm faster (about twice faster

for the 2dF data), as the data region occupies usually only a fraction

of the encompassing brick.

We call this method the ‘raw’ border correction and compare it

with the border-correction algorithm (10) on the example of the

realization of a Gaussian random field for the 2dF NGC region,

smoothed by a Gaussian of σ = 3 Mpc h−1 to ensure that we re-

solve the density distribution. (We used the same realization to com-

pare the border-corrected and uncorrected case, in Section 2.4.) We

combine the encompassing Gaussian brick with the 2dF19N mask,

calculate the MFs for both border correction methods, and compare

them with the functionals found for the periodic brick. We show

below the relative errors of the functionals, defined as

ε(vi (ν)) = vi (ν) − vb
i (ν)

maxν

∣∣vb
i (ν)

∣∣ ,

where vb
i (ν) are the densities of the functionals for the brick. We

cannot use vb
i (ν) themselves to normalize the errors, as their values

pass through zero, so we use their maximum absolute values.

The relative differences are shown in Figs B1–B3. We see that

both correcting methods give the results that do not differ from the

true densities more than 10 per cent (12 per cent for v3). We see also
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Figure B1. Relative errors of border-corrected densities of the second MF

v1 for a realization of a Gaussian random field in the 2dF19N sample mask.

The case of the border correction chain is shown by the solid line, and the

‘raw’ correction case is shown by the dotted line.
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Figure B2. Relative errors of border-corrected densities of the third MF v2

for a realization of a Gaussian random field in the 2dF19N sample mask.

The case of the border correction chain is shown by the solid line, and the

‘raw’ correction case is shown by the dotted line.
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Figure B3. Relative errors of border-corrected densities of the fourth MF

v3 for a realization of a Gaussian random field in the 2dF19N sample mask.

The case of the border correction chain is shown by the solid line, and the

‘raw’ correction case is shown by the dotted line.

that the border correction chain (10) gives always better estimates

of the functionals; the maximum error is 3–4 per cent, and the error

is about three times smaller than that for the ‘raw’ border correction.

Thus, we use this chain throughout this paper.

It is useful to recall, though, that the border corrections (10) are

based on the assumption of homogeneity and isotropy of the data,

which may not always be the case. The ‘raw’ border corrections do

not rely on any assumptions, and are therefore useful for verifying

the results obtained by the correction chain.
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