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ABSTRACT. This article reviews different deconvolution methods. The all-pervasive presence of noise is what
makes deconvolution particularly difficult. The diversity of resulting algorithms reflects different ways of
estimating the true signal under various idealizations of its properties. Different ways of approaching signal
recovery are based on different instrumental noise models, whether the astronomical objects are pointlike or
extended, and indeed on the computational resources available to the analyst. We present a number of recent
results in this survey of signal restoration, including in the areas of superresolution and dithering. In particular,
we show that most recent published work has consisted of incorporating some form of multiresolution in the
deconvolution process.

1. INTRODUCTION

Deconvolution is a key area in signal and image processing.
It is used for objectives in signal and image processing that
include the following:

1. deblurring,
2. removal of atmospheric seeing degradation,
3. correction of mirror spherical aberration,
4. image sharpening,
5. mapping detector response characteristics to those of

another,
6. image or signal zooming, and
7. optimizing display.

In this article, we focus on one particular but central interface
between model and observational data. In observational
astronomy, modeling embraces instrument models and also in-
formation registration and correlation between different data
modalities, including image and catalog. The measure of ob-
serving performance that is of greatest interest to us in this
context is the instrument degradation function, or point-spread
function. How the point-spread function is used to improve
image or signal quality lies in deconvolution. We will review
a range of important recent results in deconvolution. A central
theme for us is how nearly all deconvolution methods, arising
from different instrument noise models or from priority given
to point-source or extended objects, now incorporate resolution
scale into their algorithms. Some other results are very exciting
too. A recent result of importance is the potential for super-
resolution, characterized by a precise algorithmic definition of

the “near-black object.” A further result of note is dithering as
a form of stochastic resonance and not just as a purely ad hoc
approach to getting a better signal.

Deconvolution of astronomical images has proven in some
cases to be crucial for extracting scientific content. For instance,
IRAS images can be efficiently reconstructed thanks to a new
pyramidal maximum entropy algorithm (Bontekoe, Koper, &
Kester 1994). Io volcanism can be studied with a lower res-
olution of 0�.15, or 570 km on Io (Marchis, Prange´, & Christou
2000). Deconvolved mid-infrared images at 20mm revealed
the inner structure of the active galactic nucleus in NGC 1068,
hidden at lower wavelength because of the high extinction
(Alloin et al. 2000; see Fig. 1). Research on gravitational lenses
is easier and more efficient when applying deconvolution meth-
ods (Courbin, Lidman, & Magain 1998). A final example is
the high resolution (after deconvolution) of mid-infrared
images revealing the intimate structure of young stellar objects
(Zavagno, Lagage, & Cabrit 1999). Deconvolution will be even
more crucial in the future in order to fully take advantage of
increasing numbers of high-quality ground-based telescopes,
for which images are strongly limited in resolution by the
seeing.

The Hubble Space Telescope (HST ) provided a leading ex-
ample of the need for deconvolution in the period before the
detector system was refurbished. Two proceedings (White &
Allen 1990; Hanisch & White 1994) provide useful overviews
of this work, and a later reference is Adorf, Hook, & Lucy
(1995). While an atmospheric seeing point-spread function
(PSF) may be relatively tightly distributed around the mode,
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Fig. 1.—Active galactic nucleus of NGC 1068 observed at 20mm. Left: Raw image is highly blurred by telescope diffraction.Right: Restored image using the
multiscale entropy method reveals the inner structure in the vicinity of the nucleus.

this was not the case for the spherically aberratedHST PSF.
Whenever the PSF “wings” are extended and irregular, decon-
volution offers a straightforward way to mitigate the effects of
this and to upgrade the core region of a point source. One usage
of deconvolution of continuing importance is in information
fusion from different detectors. For example, Faure et al. (2002)
deconvolveHST images when correlating with ground-based
observations. In Radomski et al. (2002), Keck data are decon-
volved for study withHST data. VLT data are deconvolved in
Burud et al. (2002), with other ESO andHST data used as
well. In planetary work, Coustenis et al. (2001) discuss CFHT
data as well asHST and other observations.

What emerges very clearly from this small sample—which
is in no way atypical—is that a major use of deconvolution is
to help in cross-correlating image and signal information.

An observed signal is never in pristine condition, and
improving it involves inverting the spoiling conditions, i.e.,
finding a solution to an inverse equation. Constraints related
to the type of signal we are dealing with play an important
role in the development of effective and efficient algorithms.
The use of constraints to provide for a stable and unique so-
lution is termed regularization. Examples of commonly used
constraints include a result image or signal that is nonnegative
everywhere, an excellent match to source profiles, necessary
statistical properties (Gaussian distribution, no correlation, etc.)
for residuals, and absence of specific artifacts (ringing around
sources, blockiness, etc.).

Our review opens in § 2 with a formalization of the problem.
In § 3, we consider the issue of regularization. In § 4, the
CLEAN method, which is central to radio astronomy, is de-
scribed. Bayesian modeling and inference in deconvolution is
reviewed in § 5. In § 6, we introduce wavelet-based methods
as used in deconvolution. These methods are based on multiple
resolution or scale. In §§ 7 and 8, important issues related to
resolution of the output result image are discussed. Section 7

is based on the fact that it is normally not worthwhile to target
an output result with better resolution than some limit, for
instance, a pixel size. In § 8, we investigate when, where, and
how missing information can be inferred to provide
superresolution.

2. THE DECONVOLUTION PROBLEM

Noise is the bane of the image analyst’s life. Without it we
could so much more easily rectify data, compress them, and
interpret them. Unfortunately, however, deconvolution becomes
a difficult problem due to the presence of noise in high-quality
or deep imaging.

Consider an image characterized by its intensity distribution
(the “data”) I, corresponding to the observation of a “real
image” O through an optical system. If the imaging system is
linear and shift-invariant, the relation between the data and the
image in the same coordinate frame is a convolution:

�� ��

I(x, y) p P(x � x , y � y )O(x , y )dx dy� � 1 1 1 1 1 1
x p�� y p��1 1

� N(x, y)

p (P ∗ O)(x, y) � N(x, y), (1)

whereP is the PSF of the imaging system andN is additive
noise.

In Fourier space, we have

ˆˆ ˆ ˆI(u, v) p O(u, v)P(u, v) � N(u, v). (2)

We want to determine knowingI andP. This inverseO(x, y)
problem has led to a large amount of work, the main difficulties
being the existence of (1) a cutoff frequency of the PSF and
(2) the additive noise (see, for example, Cornwell 1989;
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Katsaggelos 1993; Bertero & Boccacci 1998; Molina et al.
2001).

A solution can be obtained by computing the Fourier trans-
form of the deconvolved object by a simple division betweenÔ
the image and the PSF :ˆ ˆI P

ˆ ˆI(u, v) N(u, v)ˆ ˆÕ(u, v) p p O(u, v) � . (3)ˆ ˆP(u, v) P(u, v)

This method, sometimes called theFourier-quotient method,
is very fast. We need to do only a Fourier transform and an
inverse Fourier transform. For frequencies close to the fre-
quency cutoff, the noise term becomes important, and the noise
is amplified. Therefore, in the presence of noise, this method
cannot be used.

Equation (1) is usually in practice an ill-posed problem. This
means that there is no unique and stable solution.

The diversity of algorithms to be looked at in the following
sections reflects different ways of recovering a “best” estimate
of the source. If one has good prior knowledge, then simple
modeling of PSF-convolved sources with a set of variable
parameters is often used. In fact, this is often a favored ap-
proach, in order to avoid deconvolution, even though its users
are unaware of the consequences of its spatially correlated
residuals. Lacking specific source information, one then relies
on general properties, which have been referred to in § 1. The
algorithms described in our review approach these issues in
different ways.

With linear regularized methods (§ 3) we use a smoothing/
sharpening trade-off. CLEAN assumes our objects are point
sources. We discuss the powerful Bayesian methodology in
terms of different noise models that can be applicable. Maxi-
mum entropy makes a very specific assumption about source
structure, but in at least its traditional formulations it was poor
at addressing the expected properties of the residuals produced
when the estimated source was compared to the observations.
Some further work is reviewed that models planetary images
or extended objects. So far, all of these methods work, usually
iteratively, on the given data.

The story of § 6 is an answer to the question: Where and
how do we introduce resolution scale into the methods we
review in § 3, 4, and 5, and what are the benefits of doing
this?

Some varied directions that deconvolution can take are as
follows:

1. Superresolution: object spatial frequency information out-
side the spatial bandwidth of the image formation system is
recovered.

2. Blind deconvolution: the PSFP is unknown.
3. Myopic deconvolution: the PSFP is partially known.
4. Image reconstruction: an image is formed from a series

of projections (computed tomography, positron emission
tomography [PET], and so on).

We will discuss only the deconvolution and superresolution
problems in this paper.

In the deconvolution problem, the PSF is assumed to be
known. In practice, we have to construct a PSF from the data
or from an optical model of the imaging telescope. In astron-
omy, the data may contain stars, or one can point toward a
reference star in order to reconstruct a PSF. The drawback is
the “degradation” of this PSF because of unavoidable noise or
spurious instrument signatures in the data. So, when recon-
structing a PSF from experimental data, one has to reduce very
carefully the images used (background removal, for instance)
or otherwise any spurious feature in the PSF would be repeated
around each object in the deconvolved image. Another problem
arises when the PSF is highly variable with time, as is the case
for adaptive optics images. This usually means that the PSF
estimated when observing a reference star, after or before the
observation of the scientific target, hassmall differences from
a perfect PSF. In this particular case, one has to turn toward
myopic deconvolution methods (Christou et al. 1999) in
which the PSF is also estimated in the iterative algorithm
using a first guess deduced from observations of reference
stars.

Another approach consists of constructing a synthetic PSF.
Several studies (Buonanno et al. 1983; Moffat 1969; Djorgov-
ski 1983; Molina et al. 1992) have suggested a radially sym-
metric approximation to the PSF:

�b
2r

P(r) ∝ 1 � . (4)2( )R

The parametersb andR are obtained by fitting the model with
stars contained in the data.

3. LINEAR REGULARIZED METHODS

It is easy to verify that the minimization ofk I(x, y) �
, where the asterisk means convolution,2P(x, y) ∗ O(x, y)k

leads to the least-squares solution:

∗ˆ ˆP (u, v)I(u, v)ˆ̃O(u, v) p , (5)2ˆd P(u, v)F

which is defined only if (the Fourier transform of theP̂(u, v)
PSF) is different from zero. A tilde indicates an estimate. The
problem is generally ill-posed and we need to introducereg-
ularization in order to find a unique and stable solution.

Tikhonov regularization (Tikhonov et al. 1987) consists of
minimizing the term

J (O) pk I(x, y) � (P ∗ O)(x, y) k �l k H ∗ O k , (6)T

whereH corresponds to a high-pass filter. This criterion con-
tains two terms. The first, ,2kI(x, y) � P(x, y) ∗ O(x, y)k
expresses fidelity to the data , and the second,I(x, y)
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, expresses smoothness of the restored image;l is2l k H ∗ Ok
the regularization parameter and represents the trade-off be-
tween fidelity to the data and the smoothness of the restored
image. The solution is obtained directly in Fourier space:

∗ˆ ˆP (u, v)I(u, v)ˆ̃O(u, v) p . (7)2 2ˆ ˆd P(u, v)F � l d H(u, v)F

Finding the optimal valuel necessitates use of numerical
techniques such as cross-validation (Golub, Heath, & Wahba
1979; Galatsanos & Katsaggelos 1992). This method works
well, but computationally it is relatively lengthy and produces
smoothed images. This second point can be a real problem
when we seek compact structures such as is the case in astro-
nomical imaging.

This regularization method can be generalized, and we write

Î(u, v)ˆ ˆÕ(u, v) p W(u, v) , (8)
P̂(u, v)

which leads directly to Wiener filtering when theW filter de-
pends on both signal and noise behavior (see eq. [16] below,
which introduces Wiener filtering in a Bayesian framework);
W must satisfy the following conditions (Bertero & Boccacci
1998). We give here the window definition in one dimension:

1. , for any .ˆd W(n) d ≤ 1 n 1 0
2. , for anyn such that .ˆ ˆlim W(n) p 1 P(n) ( 0nr0

3. bounded for any .ˆ ˆW(n)/P(n) n 1 0

Any function satisfying these three conditions defines a reg-
ularized linear solution. The most commonly used windows
are Gaussian, Hamming, Hanning, and Blackman (Bertero &
Boccacci 1998). The function can also be derived directly from
the PSF (Pijpers 1999). Linear regularized methods have the
advantage of being very attractive from a computation point
of view. Furthermore, the noise in the solution can easily be
derived from the noise in the data and the window function.
For example, if the noise in the data is Gaussian with a standard
deviation , the noise in the solution is . But2 2 2j j p j � Wd s d k

this noise estimation does not take into account errors relative
to inaccurate knowledge of the PSF, which limits its interest
in practice.

Linear regularized methods present also a number of severe
drawbacks:

1. Creation of Gibbs oscillations in the neighborhood of the
discontinuities contained in the data. The visual quality is there-
fore degraded.

2. No a priori information can be used. For example, negative
values can exist in the solution, while in most cases we know
that the solution must be positive.

3. Since the window function is a low-pass filter, the reso-
lution is degraded. There is trade-off between the resolution
we want to achieve and the noise level in the solution. Other
methods such as wavelet-based methods do not have such a
constraint.

4. CLEAN

The CLEAN method (Ho¨gbom 1974) is a mainstream one
in radio astronomy. This approach assumes that the object is
only composed of point sources. It tries to decompose the image
(called the dirty map) into a set ofd-functions. This is done
iteratively by finding the point with the largest absolute bright-
ness and subtracting the PSF (dirty beam) scaled with the prod-
uct of the loop gain and the intensity at that point. The resulting
residual map is then used to repeat the process. The process is
stopped when some prespecified limit is reached. The convo-
lution of thed-functions with an ideal PSF (clean beam) plus
the residual equals the restored image (clean map). This so-
lution is only possible if the image does not contain large-scale
structures.

In the work of Champagnat, Goussard, & Idier (1996) and
Kaaresen (1997), the restoration of an object composed of
peaks, calledsparse spike trains, has been treated in a rigorous
way.

5. BAYESIAN METHODOLOGY

5.1. Definition

The Bayesian approach consists of constructing the condi-
tional probability density relationship

p(I d O)p(O)
p(O d I) p , (9)

p(I)

where is the probability of our image data and is thep(I) p(O)
probability of the real image, over all possible image realiza-
tions. The Bayes solution is found by maximizing the right
part of the equation. The maximum likelihood (ML) solution
maximizes only the density overO:p(I d O)

ML(O) p maxp(I d O). (10)
O

The maximum a posteriori (MAP) solution maximizes overO
the product of the ML and a prior:p(I d O)p(O)

MAP(O) p maxp(I d O)p(O). (11)
O

The term is considered as a constant value that has nop(I)
effect in the maximization process and is ignored. The ML
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solution is equivalent to the MAP solution assuming a uniform
probability density for .p(O)

5.2. Maximum Likelihood with Gaussian Noise

The probability isp(I d O)

21 (I � P ∗ O)
p(I d O) p exp� , (12)2� 2j2pj NN

and, assuming that is a constant, maximizing isp(O) p(O d I)
equivalent to minimizing

2k I � P ∗ Ok
J(O) p . (13)22jn

We obtain the least-squares solution using equation (5). This
solution is not regularized. A regularization can be derived by
minimizing equation (13) using an iterative algorithm such as
the steepest descent minimization method. A typical iteration
is

n�1 n ∗ nO p O � gP ∗ (I � P ∗ O ), (14)

where p P( , ), is the transpose of the PSF,∗ ∗P (x, y) �x �y P
and is the current estimate of the desired “real image.”(n)O
This method is usually called the Landweber method (Land-
weber 1951), but sometimes also thesuccessive approximations
or Jacobi method (Bertero & Boccacci 1998). The number of
iterations plays an important role in these iterative methods.
Indeed, the number of iterations can be considered as a reg-
ularization parameter. When the number of iterations increases,
the iterates first approach the unknown object and then poten-
tially go away from it (Bertero & Boccacci 1998). Furthermore,
some constraints can be incorporated easily in the basic iterative
scheme. Commonly used constraints are the positivity (i.e., the
object must be positive), the support constraint (i.e., the object
belongs to a given spatial domain), or the band-limited con-
straint (i.e., the Fourier transform of the object belongs to a
given frequency domain). More generally, the constrained
Landweber method is written as

n�1 n nO p P [O � a(I � P ∗ O )], (15)C

where is the projection operator that enforces our set ofPC

constraints on .nO

5.3. Gaussian Bayes Model

If the object and the noise are assumed to follow Gaussian
distributions with zero mean and variance, respectively, equal
to and , then a Bayes solution leads to the Wiener filter:j jO N

∗ˆ ˆP (u, v)I(u, v)
Ô(u, v) p . (16)2 2 2ˆ [ ] [ ]d P(u, v)F � j (u, v) / j (u, v)N O

Wiener filtering has serious drawbacks (artifact creation such
as ringing effects) and needs spectral noise estimation. Its
advantage is that it is very fast.

5.4. Maximum Likelihood with Poisson Noise

The probability isp(I d O)

I(x,y)[(P ∗ O)(x, y)] exp {�(P ∗ O)(x, y)}
p(I d O) p � .

x,y I(x, y)!

(17)

The maximum can be computed by taking the derivative of
the logarithm:

� ln p(I d O)(x, y)
p 0. (18)

�O(x, y)

Assuming the PSF is normalized to unity, and using Picard
iteration (Issacson & Keller 1966), we get

I(x, y)n�1 ∗ nO (x, y) p ∗ P (x, y)O (x, y), (19)[ ]n(P ∗ O )(x, y)

which is the Richardson-Lucy algorithm (Richardson 1972;
Lucy 1974; Shepp & Vardi 1982), also sometimes called the
expectation maximization (EM) method (Dempster, Laird, &
Rubin 1977). This method is commonly used in astronomy.
Flux is preserved and the solution is always positive. Con-
straints can also be added by using the following iterative
scheme:

In�1 n ∗O p P O ∗ P . (20)C [ ]{ }n(P ∗ O )

5.5. Poisson Bayes Model

We formulate the object probability density function (PDF)
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as

O(x,y)M(x, y) exp {�M(x, y)}
p(O) p � . (21)

x,y O(x, y)!

The MAP solution is

I(x, y) ∗O(x, y) p M(x, y) exp � 1 ∗ P (x, y) ,[ ]{ }(P ∗ O)(x, y)

(22)

and choosing and using Picard iteration leads tonM p O

I(x, y)n�1 n ∗O (x, y) p O (x, y) exp � 1 ∗ P (x, y) .[ ]{ }n(P ∗ O )(x, y)

(23)

5.6. Maximum Entropy Method

In the absence of any information on the solutionO except
its positivity, a possible course of action is to derive the prob-
ability of O from its entropy, which is defined from information
theory. Then if we know the entropyH of the solution, we
derive its probability as

p(O) p exp [�aH(O)]. (24)

The most commonly used entropy functions are

1. Burg (1978):1 ;H (O) p � � � ln [O(x, y)]x yb

2. Frieden (1978): ;H (O) p � � � O(x, y) ln [O(x, y)]x yf

3. Gull & Skilling (1991):

H (O) p O(x, y) � M(x, y)��g
x y

� O(x, y) ln [O(x, y)FM(x, y)].

The last definition of the entropy has the advantage of having
a zero maximum whenO equals the modelM, usually taken
as a flat image.

5.7. Other Regularization Models

In this section, we discuss approaches to deconvolving im-
ages of extended objects.

Molina et al. (2001) present an excellent review of taking
the spatial context of image restoration into account. Some
appropriate prior is used for this. One such regularization con-

1 “Multichannel Maximum Entropy Spectral Analysis,” paper presented at
the Annual Meeting of the International Society of Exploratory Geophysics.

straint is

12k CIk p I(x, y) � [I(x, y � 1) � I(x, y � 1)��
4x y

� I(x � 1, y) � I(x � 1, y)]. (25)

Similar to the discussion above in § 5.2, this is equivalent to
defining the prior

a 2p(O) ∝ exp � k CIk . (26){ }2

Given the form of equation (25), such regularization can be
viewed as setting a constraint on the Laplacian of the resto-
ration. In statistics this model is a simultaneous autoregressive
(SAR) model (Ripley 1981).

Alternative prior models can be defined, related to the SAR
model of equation (25). In

2p(O) ∝ exp �a [I(x, y) � I(x, y � 1)]��{
x y

2� [I(x, y) � I(x � 1, y)] , (27)}
constraints are set on first derivatives.

Blanc-Féraud & Barlaud (1996) and Charbonnier et al.
(1997) consider the following prior:

p(O) ∝ exp �a f(k ∇I k (x, y)) (28)��{ }x y

2∝ exp �a f(I(x, y) � I(x, y � 1))�� [{ x y

2� f(I(x, y) � I(x � 1, y)) . (29)]}
The function f, called a potential function, is an edge-
preserving function. The term cana � � f(k ∇I k (x, y))x y

also be interpreted as the Gibbs energy of a Markov random
field.

The ARTUR method (Charbonnier et al. 1997), which has
been used for helioseismic inversion (Corbard et al. 1999), uses
the function . Anisotropic diffusion (Perona2f(t) p log (1� t )
& Malik 1990; Alvarez, Lions, & Morel 1992) uses similar
functions, but in this case the solution is computed usingpartial
differential equations.

The function leads to thetotal variation methodf(t) p t



DECONVOLUTION IN ASTRONOMY 1057

2002 PASP,114:1051–1069

(Rudin, Osher, & Fatemi 1992; Acar & Vogel 1994); the con-
straints are on first derivatives, and the model is a special case
of a conditional autoregressive (CAR) model. Molina et al.
(2001) discuss the applicability of CAR models to image res-
toration involving galaxies. They argue that such models are
particularly appropriate for the modeling of luminosity expo-
nential and laws.1/4r

The priors reviewed above can be extended to more complex
models. In Molina et al. (1996, 2000), a compound Gauss
Markov random field (CGMRF) model is used, one of the main
properties of which is to target the preservation and improve-
ment of line processes. Another prior again was used in Molina
& Cortijo (1992) for the case of planetary images.

6. WAVELET-BASED DECONVOLUTION

6.1. Introduction

The regularized methods presented in the previous sections
give rise to a range of limitations: Fourier-based methods such
as Wiener or Tikhonov methods lead to a band-limited solution,
which is generally not optimal for astronomical image resto-
ration, especially when the data contain point sources. The
CLEAN method cannot correctly restore extended sources. The
maximum entropy method (MEM) cannot recover simulta-
neously both compact and extended sources. MEM regulari-
zation presents several drawbacks, which are discussed in
Starck et al. (2001b). The main problems are (1) results depend
on the background level; (2) the proposed entropy functions
give poor results for negative structures, i.e., structures under
the background level (such as absorption bands in a spectrum);
and (3) spatial correlation in the images is not taken into ac-
count. Iterative regularized methods such as Richardson-Lucy
or the Landweber method do not prevent noise amplification
during the iterations. Finally, if Markov random field based
methods can be very useful for images with edges such as
planetary images, they are ill-adapted for other cases, insofar
as the majority of astronomical images contain objects that are
relatively diffuse and do not have a “border.”

6.2. Toward Multiresolution

The Fourier domain diagonalizes the convolution operator,
and we can identify and reduce the noise that is amplified during
the inversion. When the signal can be modeled as stationary
and Gaussian, the Wiener filter is optimal. But when the signal
presents spatially localized features such as singularities or
edges, these features cannot be well represented with Fourier
basis functions, which extend over the entire spatial domain.
Other basis functions, such as wavelets, are better suited to
represent a large class of signals.

The wavelet transform, its conceptual links with Fourier and
Gabor transforms, its indirect links with Karhunen-Loe`ve and
other transforms, and its generalization to multiresolution trans-
forms, are all dealt with at length in Starck, Murtagh, & Bijaoui

(1998a), Starck & Murtagh (2002), and many articles in the
mainstream astronomy literature. Perhaps among the most im-
portant properties of the wavelet transform are the following:

1. A resolution scale decomposition of the data is provided,
using high-pass, bandpass or detail, and low-pass or smooth
coefficients.

2. The transformed data are more compact than the original.
Indeed, the noise is uniformly distributed over all coefficients
while the signal of interest is concentrated in a few coefficients.
Therefore, the signal-to-noise ratio of these coefficients is high,
which opens the way toward data filtering and denoising.

3. Of even greater relevance for data denoising, noise models
defined for the original data often carry over well into wavelet
transform space.

The last point is of tremendous importance in the physical
sciences: as a result of the instrument or sensor used, we gen-
erally know the noise model we are dealing with. Direct def-
inition of this noise model’s parameters from the observed data
is not at all easy. Determining the noise parameters in wavelet
space is a far more effective procedure.

In this short briefing on the capital reasons explaining the
importance of wavelet and multiresolution transforms, we note
that wavelet transforms differ in the wavelet function used and
in a few different schemes for arranging the high- and low-
frequency information used to define our data in wavelet space.
Such schemes include the graphical “frequency domain tiling”
used below in §§ 6.3 and 6.4, which provide powerful sum-
maries of transform properties. We have generally espoused
so-called redundant transforms (i.e., each wavelet resolution
scale has exactly the same number of pixels as the original
data) whenever “pattern recognition” uses of the wavelet scale
are uppermost in our minds, as opposed to compression.

A final point to note: the manner in which the wavelet trans-
form is incorporated into more traditional deconvolution ap-
proaches varies quite a bit. In CLEAN, the scale-based decom-
position is used to help us focus in on the solution. In § 6.4
below, the question of how noise is propagated into multi-
resolution transform space is uppermost in our minds. In § 6.5,
we “siphon off” part of the restored data at each iteration of
an iterative deconvolution, clean it by denoising, and feed it
back into the following iteration.

We will return below to look at particular wavelet transform
algorithms. In the remainder of this section, we will review
various approaches that have links or analogies with multi-
resolution approaches.

The concept of multiresolution was first introduced for de-
convolution by Wakker & Schwarz (1988) when they proposed
the multiresolution CLEAN algorithm for interferometric im-
age deconvolution. During the last 10 years, many develop-
ments have taken place in order to improve the existing meth-
ods (CLEAN, Landweber, Lucy, MEM, and so on), and these
results have led to the use of different levels of resolution.
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Fig. 2.—Frequency domain tiling by the one-dimensional wavelet transform.
The filter pair, and , are, respectively, low pass and bandpass. The tree¯ ¯h g
shows the order of application of these filters. The tiling shows where these
filters have an effect in frequency space.

The Lucy algorithm was modified (Lucy 1994) in order to
take into account a priori information about stars in the field
where both position and brightness are known. This is done
by using a two-channel restoration algorithm, one channel rep-
resenting the contribution relative to the stars, and the second
to the background. A smoothness constraint is added on the
background channel. This method, called PLUCY, was then
refined first (and called CPLUCY) for considering subpixel
positions (Hook 1999), and a second time (and called GIRA;
Pirzkal, Hook, & Lucy 2000) for modifying the smoothness
constraint.

A similar approach has been followed by Magain, Courbin,
& Sohy (1998), but more in the spirit of the CLEAN algorithm.
Again, the data are modeled as a set of point sources on top
of spatially varying background, leading to a two-channel
algorithm.

MEM has also been modified by several authors (Weir 1992;
Bontekoe et al. 1994; Pantin & Starck 1996; Nu´ñez & Llacer
1998; Starck et al. 2001b). First, Weir proposed themulti-
channel MEM, in which an object is modeled as the sum of

objects at different levels of resolution. The method was then
improved by Bontekoe et al. (1994) with thepyramid MEM.
In particular, many regularization parameters were fixed by the
introduction of the dyadic pyramid. The link between pyramid
MEM and wavelets was underlined in Pantin & Starck (1996)
and Starck et al. (2001b), and it was shown that all the reg-
ularization parameters can be derived from the noise modeling.
Wavelets were also used in Nu´ñez & Llacer (1998) in order
to create a segmentation of the image, each region being then
restored with a different smoothness constraint, depending on
the resolution level where the region was found. This last
method, however, has the drawback of requiring user inter-
action for deriving the segmentation threshold in the wavelet
space.

ThePixon method (Dixon et al. 1996; Puetter & Yahil 1999)
is relatively different from the previously described methods.
This time, an object is modeled as the sum of pseudoimages
smoothed locally by a function with position-dependent scale,
called the Pixon shape function. The set of pseudoimages de-
fines a dictionary, and the image is supposed to contain only
features included in this dictionary. But the main problem lies
in the fact that features that cannot be detected directly in the
data or in the data after a few Lucy iterations will not be
modeled with the Pixon functions, and they will be strongly
regularized as background. The result is that the faintest objects
are overregularized while strong objects are well restored. This
is striking in the example shown in Figure 8.

Wavelets offer a mathematical framework for the multi-
resolution processing. Furthermore, they furnish an ideal way
to include noise modeling in the deconvolution methods. Since
the noise is the main problem in deconvolution, wavelets are
very well adapted to the regularization task.

6.3. The Wavelet Transform

We begin with the wavelet transform used in the over-
whelming majority of practical applications, for the simple rea-
son that its performance in compression is well proven. It is
used in the JPEG2000 standard, for instance. Of course, for
compression, it is a nonredundant transform. The schema used
in the wavelet transform output, and the associated frequency
domain tiling, will be familiar to anyone who has studied wave-
lets in the nonastronomy (and compression) context. In § 6.4,
we will contrast the bi-orthogonal wavelet transform with the
recently developed innovative use of the wavelet-vaguelette
approach to noise filtering.

We denote the (bi-) orthogonal wavelet transform andwW

the wavelet transform of a signals, ; w is composedw p Ws
of a set of wavelet bands and a coarse version ofs,w cj J

, whereJ is the number of scales usedw p {w , … , w , c }1 J J

in the wavelet transform. Roughly speaking, the Fourier trans-
form of a given wavelet band is localized in a frequencywj

band with support , and the Fourier transform ofj�1 j[1/2 , 1/2 ]
the smoothed array is localized in the frequency band withcJ
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Fig. 3.—Orthogonal wavelet transform representation of an image.

support . Thus, the algorithm outputs subbandJ[0, 1/2 ] J � 1
arrays. The indexing is such that, here, corresponds to thej p 1
finest scale (high frequencies). Coefficients and are ob-c wj,l j,l

tained by means of the filtersh andg, c p � h(k � 2l)ckj�1,l j,k

and , where the filtersh andg are de-w p � g(k � 2l)ckj�1,l j,k

rived from the analysis wavelet functionw; h and g can be
interpreted as, respectively, a low- and a high-pass filter. An-
other important point in this algorithm is the critical sampling.
Indeed, the number of pixels in the transformed dataw is equal
to the number of pixelsN in the original signal. This is possible
because of the decimation performed at each resolution level.
The signal at resolution levelj (with pixels and )c N c p sj j 0

is decomposed into two bands and , both of themw cj�1 j�1

containing pixels. Finally, the signals can be reconstructedN /2j

from its wavelet coefficients: , using the inverse�1s p W w
wavelet transform.

Figure 2 shows the frequency domain tiling by the one-
dimensional wavelet transform. The first convolution step by
the two filtersh andg separates the frequency band into two
parts, the high frequencies and the low frequencies. The first
scale of the wavelet transform corresponds to the high fre-w1

quencies. The same process is then repeated several times on
the low-frequency band, which is separated into two parts at
each step. We get the wavelet scales , …, and . Thew w c2 J J

wavelet transform can be seen as a set of passband filters that
has the properties of being reversible (the original data can be
reconstructed from the wavelet coefficients) and nonredundant.

The two-dimensional algorithm is based on separate varia-
bles leading to prioritizing of horizontal, vertical, and diagonal
directions. The detail signal is obtained from three wavelets:

the vertical wavelet, the horizontal wavelet, and the diagonal
wavelet. This leads to three wavelet subimages at each reso-
lution level. This transform is nonredundant, which means that
the number of pixels in the wavelet-transformed data is the
same as in the input data.

Figure 3 shows the spatial representation of a two-dimen-
sional wavelet transform. The first step decomposes the image
into three wavelet coefficient bands (i.e., horizontal band, ver-
tical band, and diagonal band) and the smoothed array. The same
process is then repeated on the smoothed array. Figure 4 shows
the wavelet transform of a galaxy (NGC 2997) using four res-
olution levels.

Other discrete wavelet transforms exist. The a` trous wavelet
transform is very well suited for astronomical data and has
been discussed in many papers and books (Starck et al. 1998a).
By using the a` trous wavelet transform algorithm, an imageI
can be defined as the sum of itsJ wavelet scales and the last
smooth array: , where the firstJI(x, y) p c (x, y) � � wjp1J j, x, y

term on the right is the last smoothed array andw denotes a
wavelet scale. This algorithm is quite different from the pre-
vious one. It is redundant; i.e., the number of pixels in the
transformed data is larger than in the input data (each wavelet
scale has the same size as the original image, hence the
redundancy factor is ); and it is isotropic (there are noJ � 1
favored orientations). Both properties are useful for the purpose
of astronomical image restoration.

Figure 5 shows the a` trous transform of the galaxy NGC
2997. Three wavelet scales are shown (upper left, upper right,
lower left) and the final smoothed plane (lower right). The
original image is given exactly by the sum of these four images.

Since the wavelet transform is a linear transform, the noise
behavior in wavelet space can be well understood and correctly
modeled. This point is fundamental since one of the main prob-
lems of deconvolution is the presence of noise in the data.

6.4. Wavelet-Vaguelette Decomposition

The wavelet-vaguelette decomposition, proposed by Donoho
(1995), consists of first applying an inverse filtering:

�1 �1F p P ∗ I � P ∗ N p O � Z, (30)

where is the inverse filter [ ]. The�1 �1ˆ ˆP P (u, v) p 1/P(u, v)
noise is not white but remains Gaussian. It is�1Z p P ∗ N
amplified when the deconvolution problem is unstable. Then
a wavelet transform is applied toF, the wavelet coefficients
are soft- or hard-thresholded (Donoho 1993), and the inverse
wavelet transform furnishes the solution.

The method has been refined by adapting the wavelet basis
to the frequency response of the inverse ofP (Kalifa 1999;
Kalifa, Mallat, & Rougé2000). Thismirror wavelet basis has
a time-frequency tiling structure different from conventional
wavelets, and it isolates the frequency where is close to zero,P̂
because a singularity in influences the noise vari-�1P̂ (u , v )s s
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Fig. 4.—Galaxy NGC 2997 and its bi-orthogonal wavelet transform.

Fig. 5.—Wavelet transform of NGC 2997 by the a` trous algorithm.

ance in the wavelet scale corresponding to the frequency band
that includes . Figures 6 and 7 show the decomposition(u , v )s s

of the Fourier space, respectively, in one dimension and two
dimensions.

Because it may be not possible to isolate all singularities,
Neelamani (1999) and Neelamani, Choi, & Baraniuk (2001)

advocated a hybrid approach, proposing to still use the Fourier
domain so as to restrict excessive noise amplification. Regu-
larization in the Fourier domain is carried out with the window
function :Wl

2ˆd P(u, v)F
Ŵ (u, v) p , (31)l 2ˆd P(u, v)F � lT(u, v)

where ,S being the power spectral density2 ˆT(u, v) p j /S(u, v)
of the observed signal:

�1 �1F p W ∗ P ∗ I � W ∗ P ∗ N. (32)l l

The regularization parameterl controls the amount of Fourier-
domain shrinkage and should be relatively small (!1; Neela-
mani et al. 2001). The estimateF still contains some noise,
and a wavelet transform is performed to remove the remaining
noise. The optimall is determined using a given cost function.
See Neelamani et al. (2001) for more details.

This approach is fast and competitive compared to linear
methods, and the wavelet thresholding removes the Gibbs os-
cillations. It presents, however, several drawbacks:

1. The regularization parameter is not so easy to find in
practice (Neelamani et al. 2001) and requires some computation
time, which limits the usefulness of the method.

2. The positivity a priori is not used.
3. The power spectrum of the observed signal is generally

not known.
4. It is not trivial to consider non-Gaussian noise.
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Fig. 6.—Frequency domain tiling using a wavelet packet decomposition
with a mirror basis. The variance of the noise has a hyperbolic growth. See
text for discussion of the implications of the noise variation.

Fig. 7.—Mirror wavelet basis in two-dimensional space. See text for dis-
cussion of the implications of the noise variation.

The second point is important for astronomical images. It is
well known that the positivity constraint has a strong influence
on the solution quality (Kempen & van Vliet 2000). We will
see in the following that it is straightforward to modify the
standard iterative methods in such a way that they benefit from
the capacity of wavelets to separate the signal from the noise.

6.5. Regularization from the Multiresolution Support

6.5.1. Noise Suppression Based on the Wavelet Transform

We have noted how, in using an iterative deconvolution al-
gorithm such as van Cittert or Richardson-Lucy, we define

, the residual at iterationn:(n)R (x, y)

n nR (x, y) p I(x, y) � (P ∗ O )(x, y). (33)

By using the a` trous wavelet transform algorithm, can benR
defined as the sum of itsJ wavelet scales and the last smooth
array:

J

nR (x, y) p c (x, y) � w , (34)�J j, x, y
jp1

where the first term on the right is the last smoothed array and
w denotes a wavelet scale.

The wavelet coefficients provide a mechanism to extract only
the significant structures from the residuals at each iteration.
Normally, a large part of these residuals are statistically non-
significant. The significant residual (Murtagh & Starck 1994;
Starck & Murtagh 1994) is then

J

nR̄ (x, y) p c � M( j, x, y)w , (35)�J, x, y j, x, y
jp1

where is the multiresolution support and is definedM( j, x, y)
by

1 if w is significant,j, x, yM( j, x, y) p (36){0 if w is nonsignificant.j, x, y

This describes in a logical or Boolean way if the data contain
information at a given scalej and at a given position .(x, y)
Assuming that the noise follows a given distribution,

is significant if the probability that the wavelet coef-w (x, y)j

ficient is due to noise is small [ ]. In theP(d W 1 w d) ! ej, x, y

case of Gaussian noise, is significant if , wherew w 1 kjj, x, y j, x, y j

is the noise standard deviation at scalej andk is a constantjj

generally taken between 3 and 5. Different noise models are
discussed in Starck et al. (1998a). If a priori information is
available, such as star positions, it can easily be introduced
into the multiresolution support.

An alternative approach was outlined in Murtagh, Starck, &
Bijaoui (1995) and Starck, Bijaoui, & Murtagh (1995): the
support was initialized to zero and built up at each iteration of
the restoration algorithm. Thus, in equation (35) above,

was additionally indexed byn, the iteration number.M( j, x, y)
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In this case, the support was specified in terms of significant
pixels at each scale,j; in addition, pixels could become sig-
nificant as the iterations proceeded but could not be made
nonsignificant.

6.5.2. Regularization of Van Cittert’s Algorithm

Van Cittert’s iteration (van Cittert 1931) is

n�1 n nO (x, y) p O (x, y) � aR (x, y), (37)

with . Regularizationn n nR (x, y) p I (x, y) � (P ∗ O )(x, y)
using significant structures leads to

n�1 n n¯O (x, y) p O (x, y) � aR (x, y). (38)

The basic idea of this regularization method consists of de-
tecting, at each scale, structures of a given size in the residual

and putting them in the restored image . Then nR (x, y) O (x, y)
process finishes when no more structures are detected. Then,
we have separated the image into two images˜I(x, y) O(x, y)
and ; is the restored image, which ought not to contain˜R(x, y) O
any noise, and is the final residual, which ought not toR(x, y)
contain any structure;R is our estimate of the noise .N(x, y)

6.5.3. Regularization of the One-Step Gradient Method

The one-step gradient iteration is

n�1 n ∗ nO (x, y) p O (x, y) � P (x, y) ∗ R (x, y), (39)

with . Regularization byn nR (x, y) p I(x, y) � (P ∗ O )(x, y)
significant structures leads to

n�1 n ∗ n¯O (x, y) p O (x, y) � P (x, y) ∗ R (x, y). (40)

6.5.4. Regularization of the Richardson-Lucy Algorithm

From equation (1), we have . Thenn nI (x, y) p (P ∗ O )(x, y)
, and hencen n nR (x, y) p I(x, y) � I (x, y) I(x, y) p I (x, y) �

.nR (x, y)
The Richardson-Lucy equation is

n nI (x, y) � R (x, y)n�1 n ∗O (x, y) p O (x, y) ∗ P (x, y),[ ]nI (x, y)

and regularization leads to

n n¯I (x, y) � R (x, y)n�1 n ∗O (x, y) p O (x, y) ∗ P (x, y).[ ]nI (x, y)

6.5.5. Convergence

The standard deviation of the residual decreases until no
more significant structures are found. Convergence can be
estimated from the residual. The algorithm stops when a user-
specified threshold is reached:

(j � j )/j ! e. (41)n�1 n nR R R

6.5.6. Examples

A simulatedHubble Space Telescope Wide Field Camera
image of a distant cluster of galaxies is shown in Figure 8a.
The image used was one of a number described in Caulet &
Freudling (1993) and Freudling & Caulet (1993). The simulated
data are shown in Figure 8b. Four deconvolution methods were
tested: Richardson-Lucy, Pixon, wavelet-vaguelette, and wavelet-
Lucy. Deconvolved images are presented, respectively, in Fig-
ures 8c, 8d, 8e, and 8f. The Richardson-Lucy method amplifies
the noise, which implies that the faintest objects disappear in
the deconvolved image. The Pixon method introduces regu-
larization, and the noise is under control, while objects where
“Pixons” have been detected are relatively well protected from
the regularization effect. Since the “Pixon” features are detected
from noisy partially deconvolved data, the faintest objects are
not in the Pixon map and are strongly regularized. The wavelet-
vaguelette method is very fast and produces rela-
tively high quality results when compared to Pixon or
Richardson-Lucy, but the wavelet-Lucy method seems clearly
the best of the four methods. There are fewer spurious objects
than in the wavelet-vaguelette method, it is stable for any kind
of PSF, and any kind of noise modeling can be considered.

6.6. Wavelet CLEAN

The CLEAN solution is only available if the image does not
contain large-scale structures. Wakker & Schwarz (1988)
introduced the concept of multiresolution CLEAN (MRC) in
order to alleviate the difficulties occurring in CLEAN for ex-
tended sources. The MRC approach consists of building two
intermediate images, the first one (called the smooth map) by
smoothing the data to a lower resolution with a Gaussian func-
tion, and the second one (called the difference map) by sub-
tracting the smoothed image from the original data. Both of
these images are then processed separately. By using a standard
CLEAN algorithm on them, the smoothed clean map and dif-
ference clean map are obtained. The recombination of these
two maps gives the clean map at the full resolution. This al-
gorithm may be viewed as an artificial recipe, but it has been
shown (Starck et al. 1994, 1998a; Starck & Bijaoui 1994) that
it is linked to multiresolution analysis. Wavelet analysis leads
to a generalization of MRC from a set of scales. The wavelet
CLEAN (WCLEAN) method consists of the following steps:

1. Apply the wavelet transform to the image: we get .WI
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2. Apply the wavelet transform to the PSF: we get .WP

3. Apply the wavelet transform to the CLEAN beam: we get
.WC

4. For each scalej of the wavelet transform, apply the CLEAN
algorithm using the wavelet scalej of both and .W WI P

5. Apply an iterative reconstruction algorithm using .WC

More details can be found in Starck et al. (1994, 1998a).

6.7. Multiscale Entropy

6.7.1. Introduction

In Starck, Murtagh, & Gastaud (1998b), Starck et al. (2001b),
and Starck & Murtagh (1999), the benchmark properties for a
good “physical” definition of entropy were discussed, and it
was proposed to consider that the entropy of a signal is the
sum of the information at each scale of its wavelet transform
(Starck et al. 1998b), and the information of a wavelet coefficient
is related to the probability of it being due to noise. Denotingh
the information relative to a single wavelet coefficient, we have

, with , whereJNJ jp1H(X) p � � h(w ) h(w ) p � ln p(w )j kp1 j,k j,k j,k

is the number of scales and is the number of samples (pixels,Nj

time-, or wavelength-interval values) in band (scale)j. For
Gaussian noise, the information is proportional to the energy
of the wavelet coefficients. The larger the value of a normalized
wavelet coefficient, then the lower will be its probability of
being noise and the higher will be the information furnished
by this wavelet coefficient. SinceH is corrupted by the noise,
it can be decomposed into two components, one ( ) corre-Hs

sponding to the noncorrupted part and the other ( ) to theHn

corrupted part (Starck et al. 1998b): ;H(X) p H (X) � H (X)s n

is called the signal information and the noise information.H Hs n

For each wavelet coefficient , we have to estimate the pro-wj,k

portions and ofh [with ] thath h h(w ) p h (w ) � h (w )n s j,k n j,k s j,k

should be assigned to and . Hence, signal informationH Hn s

and noise information are defined by

NjJ

H (X) p h (w ),��s s j,k
jp1 kp1

NjJ

H (X) p h (w ). (42)��n n j,k
jp1 kp1

If a wavelet coefficient is small, its value can be due to noise,
and the informationh relative to this single-wavelet coefficient
should be assigned to . More details can be found in StarckHn

et al. (2001b).
Following the Bayesian scheme, the functional to minimize

is

NjN J2 2[I � (P ∗ O) ] wk k j,kJ(O) p � a , (43)� ��2 22j 2jkp1 jp1 kp1I j

where is the noise at scalej, is the number of pixels atj Nj j

the scalej, is the noise standard deviation in the data, andjI

J is the number of scales.
Rather than minimizing the amount of information in the

solution, we may prefer to minimize the amount of information
that can be due to the noise. The function is now

N 2[I � (P ∗ O) ]k kJ(O) p � aH (O), (44)� n22jkp1 I

and for Gaussian noise, has been defined byHn

N d w dj j,kJ 1 d w d �uj,kH (X) p u erf du. (45)��n �2 ( )�jjp1 kp1 2jj 0 j

Minimizing can be seen as a kind of adaptive soft-thres-Hn

holding in the wavelet terminology. Finally, equation (44) can
be generalized by (Starck et al. 2001b)

J(O) p H (I � P ∗ O) � aH (O); (46)s n

i.e., we want to minimize the minimum of information due to
the signal in the residual and the minimum of information due
to the noise in the solution.

6.7.2. Example: b Pictoris Image Deconvolution

The b Pictoris image (Pantin & Starck 1996) was obtained
by integrating 5 hr on-source using a mid-infrared camera,
TIMMI, placed on the 3.6 ESO telescope (La Silla, Chile). The
raw image has a peak signal-to-noise ratio of 80. It is strongly
blurred by a combination of seeing, diffraction (0�.7 on a 3 m
class telescope), and additive Gaussian noise. The initial disk
shape in the original image has been lost after the convolution
with the PSF (see Fig. 9a). Thus, we need to deconvolve such
an image to get the best information on this object, i.e., the
exact profile and thickness of the disk, and subsequently to
compare the results to models of thermal dust emission.

After filtering (see Fig. 9b), the disk appears clearly. For
detection of faint structures (the disk here), one can calculate
that the application of such a filtering method to this image
provides a gain of observing time of a factor of around 60.
The deconvolved image (Fig. 9c) shows that the disk is ex-
tended at 10mm and asymmetrical. The multiscale entropy
method is more effective for regularizing than other standard
methods and leads to good reconstruction of the faintest struc-
tures of the dust disk.

6.8. Summary of Scale-based Deconvolution

As already mentioned, our objective in § 6 has been to take
the major categories of deconvolution methods—linear inver-
sion, CLEAN, Bayesian optimization, and maximum entropy
(respectively, §§ 3, 4, and 5)—and seek where and how res-
olution scale information could be incorporated. A key re-
quirement for us is that the basic method should stay the same
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Fig. 8a Fig. 8b

Fig. 8c Fig. 8d

Fig. 8e Fig. 8f

Fig. 8.—SimulatedHubble Space Telescope Wide Field Camera image of a distant cluster of galaxies. (a) Original, unaberrated, and noise-free. (b) Input,
aberrated, noise added. (c) Restoration, Richardson-Lucy. (d) Restoration, Pixon method. (e) Restoration, wavelet-vaguelette. (f ) Restoration, wavelet-Lucy.



DECONVOLUTION IN ASTRONOMY 1065

2002 PASP,114:1051–1069

in all cases (e.g., well-behaved convergence properties should
remain well behaved, new artifacts or other degradation must
not be introduced, and so on). It follows that the essential
properties of the methods described earlier (e.g., appropriate-
ness of particular noise models, use or otherwise of particular
a priori assumptions, etc.) hold in the multiple-resolution setting
also. We have cited examples of further reading on these
enhanced methods.

7. DECONVOLUTION AND RESOLUTION

In many cases, there is no sense in trying to deconvolve an
image at the resolution of the pixel (especially when the PSF
is very large). The idea to limit the resolution is relatively old,
because it is already this concept that is used in the CLEAN
algorithm (Högbom 1974). Indeed, the clean beam fixes the
resolution in the final solution. This principle was also devel-
oped by Lannes & Roques (1987) in a different form. This
concept was reinvented, first by Gull & Skilling (1991), who
called the clean beam theintrinsic correlation function (ICF),
and more recently by Magain et al. (1998) and Pijpers (1999).

The ICF is usually a Gaussian, but in some cases it may be
useful to take another function. For example, if we want to
compare two images and , which are obtained with twoI I1 2

wavelengths or with two different instruments, their PSFsP1

and will certainly be different. The classic approach wouldP2

be to deconvolve with and with , so we are sure thatI P I P1 2 2 1

both are at the same resolution. Unfortunately, however, we
lose some resolution in doing this. Deconvolving both images
is generally not possible because we can never be sure that
both solutions and will have the same resolution.O O1 2

A solution would be to deconvolve only the image that has
the worse resolution (say, ) and to limit the deconvolution toI1

the second image resolution ( ). Then, we just have to takeI2

for the ICF. The deconvolution problem is to find (hidden˜P O2

solution) such that

˜I p P ∗ P ∗ O, (47)1 1 2

and our real solution at the same resolution as is obtainedO I1 2

by convolving with ; and can then be compared.Õ P O I2 1 2

Introducing an ICFG in the deconvolution equation leads
to just considering a new PSF , which is the convolution of′P
P and G. The deconvolution is carried out using , and the′P
solution must be reconvolved withG at the end. In this way,
the solution has a constrained resolution, but aliasing may occur
during the iterative process, and it is not sure that the artifacts
will disappear after the reconvolution withG. Magain et al.
(1998) proposed an innovative alternative to this problem by
assuming that the PSF can be considered as the convolution
product of two terms, the ICFG and an unknownS:

. UsingS instead ofP in the deconvolution processP p G ∗ S
and a sufficiently large FWHM value forG implies that the

Shannon sampling theorem (Shannon 1948) is never violated.
But the problem is now to calculateS, knowingP andG, which
is again a deconvolution problem. Unfortunately, this delicate
point was not discussed in the original paper. Propagation of
the error on theS estimation in the final solution has also until
now not been investigated, even if this issue seems to be quite
important.

8. SUPERRESOLUTION

8.1. Definition

Superresolution consists of recovering object spatial fre-
quency information outside the spatial bandwidth of the image
formation system. In other terms, frequency components where

have to be recovered. It has been demonstratedP̂(n) p 0
(Donoho et al. 1992) that this is possible under certain con-
ditions. The observed object must benearly black, i.e., nearly
zero in all but a small fraction of samples. Denotingn as the
number of samples,m as the number of nonzero values in the
Fourier transform of the PSF, and as the incomplete-e p m/n
ness ratio, it has been shown that an image (Donoho et al.
1992):

1. Must admit superresolution if the object is -black.1e2

2. Might admit superresolution if the object ise-black. In
this case, it depends on the noise level and the spacing of
nonzero elements in the object. Well-spaced elements favor the
possibility of superresolution.

3. Cannot admit superresolution if the object is note-black.

Near-blackness is both necessary and sufficient for super-
resolution. Astronomical images often give rise to such data
sets, where the real information (stars and galaxies) is contained
in very few pixels. If the -blackness of the object is not1e2

verified, a solution is to limit the Fourier domainQ of the
restored object. Several methods have been proposed in dif-
ferent contexts for achieving superresolution.

8.2. Gerchberg-Saxon-Papoulis Method

The Gerchberg-Saxon-Papoulis (Gerchberg 1974) method is
iterative and uses the a priori information on the object, which
is its positivity and its support in the spatial domain. It was
developed for interferometric image reconstruction, where we
want to recover the objectO from some of itsvisibilities, i.e.,
some of its frequency components. Hence, the object is sup-
posed to be known in a given Fourier domainQ, and we need
to recover the object outside this domain. The problem can
also be seen as a deconvolution problem , whereI p P ∗ O

1 if (u, v) � Q,
P(u, v) p (48){0 otherwise.

We denote and the projection operators in the spatialP PC Cs f
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Fig. 9a Fig. 9b

Fig. 9c

Fig. 9.—(a) b Pictoris raw data; (b) filtered image; (c) deconvolved image.

and the Fourier domain:

X(x, y) if ( x, y) � D,
P (X(x, y)) p (49)Cs {0 otherwise;

ˆÎ(u, v) p O(u, v) if (u, v) � Q,ˆP (X(u, v)) pC ˆf { X(u, v) otherwise.

The projection operator replaces by zero all pixel valuesPCs

that are not in the spatial support defined by , and replacesD PCf

all frequencies in the Fourier domainQ by the frequencies of
the objectO. The Gerchberg algorithm is as follows:

1. Compute p inverse Fourier transform of , and set0˜ ˆO I
.i p 0

2. Compute .i˜X p P (O )1 Cs

3. Compute p Fourier transform of .X̂ X1 1

4. Compute .ˆ ˆX p P (X )2 C 1f

5. Compute p inverse Fourier transform of .ˆX X2 2

6. Compute .i�1˜ ˆO p P (X )C 2s

7. Set , , and go to 2.i�1˜X p O i p i � 11

The algorithm consists just of forcing iteratively the solution
to be zero outside the spatial domain and equal to the ob-D

served visibilities inside the Fourier domainQ. It has been
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shown that this algorithm can be derived from the Landweber
method (Bertero & Boccacci 1998), and therefore its conver-
gence and regularization properties are the same as for the
Landweber method. It is straightforward to introduce the pos-
itivity constraint by replacing by :�P PC Cs s

max (X(x, y),0) if (x, y) � D,�P (X(x, y)) p (50)Cs {0 otherwise.

The Gerchberg method can be generalized (Bertero & Boc-
cacci 1998) using the Landweber iteration:

n�1 � n ∗ ∗ nO p P [O � a(P ∗ L � P ∗ P ∗ O )], (51)Cs

where .�L p P (I)Cs

8.3. Deconvolution with Interpolation

The MAP Poisson algorithm, combined with an interpola-
tion, can be used to achieve superresolution (Hunt 1994):

In�1 n ∗O p O exp � 1 ∗ P , (52)F( ){ }n(P ∗ O )f

where up-arrow and down-arrow notation describes, respec-
tively, the oversampling and downsampling operators. The PSF
P must be sampled on the same grid as the object.

8.4. Undersampled PSF

When considering sampling, we should remember that de-
tector pixels are “bins” for capturing flux and hence that there
is inherent area integration. At all times, therefore, signal de-
tection implies signal convolution. Passing from one spatial
resolution to another (which is implicit, for example, when
cross-correlating signals from different detectors) necessarily
involves deconvolution, however this is actually achieved in
practice.

We now look at the case where observations are made with
an undersampled PSF. When the observation is repeated several
times with a small shift between two measurements, we can
reconstruct a deconvolved image on a smaller grid. We denote

the kth observation ( …,n), , the shiftD(i, j, k) k p 1 D Di,k j,k

in both directions relative to the first frame, the operatorLF

that co-adds all the frame on a smaller grid, and the operator�1Lf

that estimatesD from using shifting and downsamplingL DF

operations. The , shifts are generally derived from theD Di,k j,k

observations using correlation methods or a PSF fitting (if a
star is in the field) but can also be the jitter information if the
data are obtained from space. Note also that . The�1L L D ( Df F

PSFP can generally be derived on a finer grid using a set of
observations of a star or using an optical modeling of the

instrument. The deconvolution iteration becomes

n�1 n ∗ �1 nO p O � aP [L (D � L (P ∗ O ))] (53)F f

and the positivity and spatial constraints can also be used:

n�1 � n ∗ �1 nO p P {O � aP [L (D � L (P ∗ O ))]}. (54)C F fs

The co-addition operator can be implemented in differentLF

ways. All frames can first be interpolated to the finer grid size,
shifted using an interpolation function, and then co-added.

“Dithering” or “jitter” have been terms applied to purposeful
use of offsets in imaging (Hook & Fruchter 2000). An ad-hoc
method called “drizzling” was developed by Hook & Fruchter
(2000) and implemented in IRAF, based on mapping pixels to
a finer grid and assuming knowledge of geometric distortion.

Dithering may be described as a way of recovering Nyquist
sampling. Moving the source image to get new samples is easy
to understand, particularly with the effective PSF concept,
where the effective PSF combines the native optical PSF and
the areal integral within the detector. In recent work, Gam-
maitoni et al. (1998) consider dithering as a special case of
“stochastic resonance,” which in general seeks to amplify weak
signals by the assistance of small quantities of noise.

Lauer (1999) ignores geometric distortion and instead ad-
dresses the problem of aliasing resulting from combining
undersampled images. A linear combination of Fourier trans-
forms of the offset images is used, which mitigates aliasing
artifacts in direct space.

8.5. Multiscale Support Constraint

The constraint operator may not always be easy to de-�PCs

termine, especially when the observed object is extended. Fur-
thermore, if the object is very extended, the support will be
very large and the support constraint may have very small
influence on the final result. For this reason, it may be con-
venient to replace the support constraint by the multiresolution
support constraint. The advantages are the following:

1. It can be automatically calculated from the noise modeling
in the wavelet space.

2. Extended objects are generally also smooth. This means
that the support on the small scales will be small, and therefore
this introduces a smoothness constraint on extended objects
and no constraint on pointlike objects.

9. CONCLUSIONS

We conclude with a short look at how multiscale methods
used in deconvolution are evolving and maturing.

We have seen that the recent improvement in deconvolution
methods has led to use of multiscale approaches. These can be
summarized as follows:
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1. Linear inverse filtering leading to wavelet-vaguelette
decomposition.

2. CLEAN leading to wavelet-CLEAN.
3. Fixed-step gradient, Lucy, and van Cittert leading to reg-

ularization by the multiresolution support.
4. MEM leading to the multiscale entropy method.

The multiscale entropy method (Starck et al. 2001b), which
generalized the wavelet-regularized iterative methods, allows
us to separate the deconvolution problem into two separate
problems: noise control from one side and solution smoothness
control on the other side. The advantage of this approach is
that noise control is better carried out in the image domain,
while smoothness control can only be carried out in the object
domain.

The success of wavelets is due to the fact that wavelet bases
represent well a large class of signals. Other multiscale meth-
ods, such as the ridgelet or the curvelet transform (Cande`s &
Donoho 1999, 2000; Donoho & Duncan 2000; Starck, Cande`s,
& Donoho 2001a) will certainly play a role in the future.

An old view of astronomy in practice is that of the obser-
vational specialist, aided by one or more data-analysis spe-
cialists. This view is changing fast with the coming of astron-
omy “collaboratories” supported by middleware and Web
services. Our review of deconvolution is addressed to the teams
that are leading the evolution toward use of the Grid and
“virtual observatory.”

The virtual observatory in astronomy is premised on the fact
that all usable astronomy data are digital. High-performance
information cross-correlation and fusion, and long-term avail-
ability of information, are required. The term “virtual” in this
context means the use of reduced or processed on-line data.

A second and closely associated development is that of the
Grid. The computational Grid is to provide an algorithmic and
processing infrastructure for the virtual science of the future.
The data Grid is to allow ready access to information from our
tera- and petabyte data stores. The information Grid is to
provide active and dynamic retrieval of information, not just
pointers to where information might or might not exist.

The evolution of the way we do science, driven by these
themes, is inextricably linked to the problem areas and often
recently developed algorithmic solutions surveyed in this
article.

As just one location for further information on innovative
developments in this broad area, see “Computational and
Information Infrastructure in the Astronomical DataGrid” on
the iAstro Web site.2 This is a 4 year (from late 2001) European
collaborative project.

We are grateful to an anonymous referee for various com-
ments on an earlier version of this article.

2 http://www.iAstro.org.
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