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ABSTRACT

We outline digital implementations of two newly developed multiscale representation systems, namely, the ridgelet
and curvelet transforms. We apply these digital transforms to the problem of restoring an image from noisy data
and compare our results with those obtained via well established methods based on the thresholding of wavelet
coeÆcients. We develop a methodology to combine wavelets together these new systems to perform noise removal by
exploiting all these systems simultaneously. The results of the combined reconstruction exhibits clear advantages over
any individual system alone. For example, the residual error contains essentially no visually intelligible structure:
no structure is lost in the reconstruction.
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1. INTRODUCTION

Wavelets and related multiscale representations pervade all areas of signal processing. The recent inclusion of wavelet
algorithms in JPEG 2000 {the new still-picture compression standard{ testi�es to this lasting and signi�cant impact.
A series of recent papers,1,2 however, argued that wavelets and related classical multiresolution ideas are playing
with a limited dictionary made up of roughly isotropic elements occurring at all scales and locations. We view as a
limitation the facts that those dictionaries do not exhibit highly anisotropic elements and that there is only a �xed
number of directional elements, independent of scale. Despite the success of the classical wavelet viewpoint, there are
objects, e.g. images that do not exhibit isotropic scaling and thus call for other kinds of multiscale representation.
In short, the theme of this line of research is to show that classical multiresolution ideas only address a portion of
the whole range of interesting multiscale phenomena and that there is an opportunity to develop a whole new range
of multiscale transforms.

Following on this theme, Cand�es and Donoho introduced new multiscale systems like curvelets2 and ridgelets3

which are very di�erent from wavelet-like systems. Curvelets and ridgelets take the the form of basis elements which
exhibit very high directional sensitivity and are highly anisotropic. In two-dimensions, for instance, curvelets are
localized along curves, in three dimensions along sheets, etc. Continuing at this informal level of discussion we will
rely on an example to illustrate the fundamental di�erence between the wavelet and ridgelet approaches {postponing
the mathematical description of these new systems.

Consider an image which contains a vertical band embedded in white noise with relatively large amplitude.
Figure 1 (top left) represents such an image. The parameters are as follows: the pixel width of the band is 20 and the
SNR is set to be 0:1. Note that it is not possible to distinguish the band by eye. The wavelet transform (undecimated
wavelet transform) is also incapable of detecting the presence of this object; roughly speaking, wavelet coeÆcients
correspond to averages over approximately isotropic neighborhoods (at di�erent scales) and those wavelets clearly
do not correlate very well with the the very elongated structure (pattern) of the object to be detected.

We now turn our attention towards procedures of a very di�erent nature which are based on line measurements.
To be more speci�c, consider an ideal procedure which consists in integrating the image intensity over columns; that
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Figure 1. Top, original image containing lines and gaussians. Bottom left, reconstructed image for the �a trous
wavelet coeÆcient, bottom right, reconstructed image from the ridgelet coeÆcients.

is, along the orientation of our object. We use the adjective \ideal" to emphasize the important fact that this method
of integration requires a priori knowledge about the structure of our object. This method of analysis gives of course
an improved signal to noise ratio for our linear functional better correlate the object in question, see the top right
panel of Figure 1.

This example will make our point. Unlike wavelet transforms, the ridgelet transform processes data by �rst
computing integrals over lines with all kinds of orientations and locations. We will explain in the next section how
the ridgelet transform further processes those line integrals. For now, we apply naive thresholding of the ridgelet
coeÆcients and \invert" the ridgelet transform; the bottom right panel of Figure 1 shows the reconstructed image.
The qualitative di�erence with the wavelet approach is striking. We observe that this method allows the detection
of our object even in situations where the noise level (standard deviation of the white noise) is �ve times superior to
the object intensity.

The contrasting behavior between the ridgelet and the wavelet transforms will be one of the main themes of this
paper which is organized as follows. We �rst brie
y review some basic ideas about ridgelet and curvelet represen-
tations in the continuum. In parallel to a previous article,4 Section 2 rapidly outlines a possible implementation
strategy and applies our digital curvelet transforms to the problem of removing noise from image data. The numer-
ical results reported here seem very encouraging. We �nally develop an approach which combines both the wavelet
and curvelet transforms and search for a decomposition which is a solution of an optimization problem in this joint
representation. We �nd that denoising experiments give results of rather unexpected high quality.



2. THE CURVELET TRANSFORM

2.1. The Ridgelet Transform

The two-dimensional continuous ridgelet transform in R2 can be de�ned as follows.3 We pick a smooth univariate
function  : R! R with suÆcient decay and satisfying the admissibility conditionZ

j ̂(�)j2=j�j2 d� <1; (1)

which holds if, say,  has a vanishing mean
R
 (t)dt = 0. We will suppose a special normalization about  so thatR1

0
j ̂(�)j2��2d� = 1.

For each a > 0, each b 2 R and each � 2 [0; 2�), we de�ne the bivariate ridgelet  a;b;� : R
2 ! R2 by

 a;b;�(x) = a�1=2 �  ((x1 cos � + x2 sin � � b)=a); (2)

A ridgelet is constant along lines x1 cos � + x2 sin � = const. Transverse to these ridges it is a wavelet.
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Figure 2. A Few Ridgelets

Figure 2.1 graphs a few ridgelets with di�erent parameter values. The top right, bottom left and right panels are
obtained after simple geometric manipulations of the upper left ridgelet, namely rotation, rescaling, and shifting.

Given an integrable bivariate function f(x), we de�ne its ridgelet coeÆcients by

Rf (a; b; �) =

Z
 a;b;�(x)f(x)dx:

We have the exact reconstruction formula

f(x) =

Z 2�

0

Z 1
�1

Z 1
0

Rf (a; b; �) a;b;�(x)
da

a3
db
d�

4�
(3)



valid a.e. for functions which are both integrable and square integrable.

Ridgelet analysis may be construed as wavelet analysis in the Radon domain. Recall that the Radon transform
of an object f is the collection of line integrals indexed by (�; t) 2 [0; 2�)�R given by

Rf(�; t) =

Z
f(x1; x2)Æ(x1 cos � + x2 sin � � t) dx1dx2; (4)

where Æ is the Dirac distribution. Then the ridgelet transform is precisely the application of a 1-dimensional wavelet
transform to the slices of the Radon transform where the angular variable � is constant and t is varying.

This viewpoint strongly suggests developing approximate Radon transforms for digital data. This subject has
received a considerable attention over the last decades as the Radon transform naturally appears as a fundamental
tool in many �elds of scienti�c investigation. Our implementation follows a widely used approach in the literature
of medical imaging and is based on discrete fast Fourier transforms. The key component is to obtain approximate
digital samples from the Fourier transform on a polar grid, i.e. along lines going through the origin in the frequency
plane. Because of space limitations, we will not detail our approach and refer to the reader to.4 As a compromise
Figure 3 (left) represents the 
owgraph of the ridgelet transform.
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Figure 3. Left, ridgelet transform 
owgraph. Each of the 2n radial lines in the Fourier domain is processed
separately. The 1-D inverse FFT is calculated along each radial line followed by a 1-D nonorthogonal wavelet
transform. In practice, the one-dimensional wavelet coeÆcients are directly calculated in the Fourier space. Right,
Curvelet transform 
owgraph. The �gure illustrates the decomposition of the original image into subbands followed
by the spatial partitioning of each subband. The ridgelet transform is then applied to each block.

The ridgelet transform of a digital array of size n�n is an array of size 2n�2n and hence introduces a redundancy
factor equal to 4.

Local Ridgelet Transforms

Speaking in engineering terms, one might say that the ridgelet transform is well adapted for picking linear structures
of about the size of the image. However, interesting linear structures, e.g line segments, may occur at a wide range
of scales. Following upon a well-established tradition in time-frequency analysis, there is an opportunity to develop
a pyramid of ridgelet transforms. We may indeed apply classical ideas such as recursive dyadic partitioning, and
thereby construct dictionaries of windowed ridgelets, renormalized and transported to a wide range of scales and
locations.

To make things more explicit we consider the situation at a �xed scale. The image is decomposed into smoothly
overlapping blocks of sidelength b pixels in such a way that the overlap between two vertically adjacent blocks is a



rectangular array of size b by b=2; we use overlap to avoid blocking artifacts. For an n by n image, we count 2n=b
such blocks in each direction. The partitioning introduces redundancy, as a pixel belongs to 4 neighboring blocks.
More details on a possible implementation of the digital ridgelet transform can be found in.4 Taking the ridgelet
transform of these smoothly localized data is what we call the local ridgelet transform.

2.2. Digital Curvelet Transform

The idea of the curvelet transform2 is �rst to decompose the image into subbands, i.e. to separate the object out
into a series of disjoint scales. Each scale is then analyzed by means of a local ridgelet transform. Roughly speaking,
di�erent levels of the multiscale ridgelet pyramid are used to represent di�erent subbands of a �lter bank output.
The key point is that there is a very special relationship between the depth of the multiscale pyramid and the index
of the dyadic subbands; the sidelength of the localizing windows is doubled at every other dyadic subband, hence
maintaining the fundamental property of the curvelet transform which says that elements of length about 2�j=2 serve
for the analysis and synthesis of the j-th subband [2j ; 2j+1].

In our opinion the \�a trous" subband �ltering algorithm is especially well-adapted to the needs of the digital
curvelet transform. The algorithm decomposes an n by n image I as a superposition of the form

I(x; y) = cJ(x; y) +

JX
j=1

wj(x; y);

where cJ is a coarse or smooth version of the original image I and wj represents `the details of I ' at scale 2
�j , see5

for more information. Thus, the algorithm outputs J + 1 subband arrays of size n� n. (The indexing is such that,
here, j = 1 corresponds to the �nest scale (high frequencies).)

As a side comment, we will also note that the coarse description of the image cJ is not processed. We used the
default value Bmin = 16 pixels in our implementation. Figure 3 (right) gives an overview of the organization of the
algorithm.

This implementation of the curvelet transform is redundant. The redundancy factor is equal to 16J+1 whenever
J scales are employed. Finally, the method enjoys exact reconstruction and stability, because each step of the
transform is both invertible and stable.

2.3. Filtering by the curvelet transform

In our �rst example, a Gaussian white noise with a standard deviation �xed to 20 was added to a subimage of the
classical Lenna image (512 by 512). We employed several methods to �lter the noisy image:

1. Thresholding of the Curvelet transform.

2. Bi-orthogonal wavelet de-noising methods using the Dauchechies-Antonini 7/9 �lters (FWT-7/9) and hard
thresholding.

3. Undecimated wavelet de-noising using the Dauchechies-Antonini 7/9 �lters (UWT-7/9) and hard thresholding.

Our experiments are reported on Figure 4. The undecimated wavelet transform approach outputs a PSNR comparable
to that obtained via the curvelet transform, but the curvelet reconstruction does not contain the quantity of disturbing
artifacts along edges that one sees in wavelet reconstructions. An examination of the details of the restored images
(Figure 4) is instructive. One notices that the decimated wavelet transform exhibits distortions of the boundaries
and su�ers substantial loss of important detail. The undecimated wavelet transform gives better boundaries, but
completely omits to reconstruct certain ridges in the hatband. In addition, it exhibits numerous small-scale embedded
blemishes; setting higher thresholds to avoid these blemishes would cause even more of the intrinsic structure to be
missed.

Further results are visible at the following URL: http://www-stat.stanford.edu/�jstarck.



Figure 4. The �gure displays the noisy image (top left), and the restored images after denoising by means of the
DWT (top right), UWT (bottom left), and the curvelet transform (bottom right). The diagonal lines of the hat have
been recovered with much greater �delity in the curvelet approach.

3. THE COMBINED APPROACH

Although the results obtained by simply thresholding curvelet expansion are encouraging, there is of course ample
room for further improvement. A quick inspection of the residual images for both the wavelet and curvelet transforms
shown on �gure 5 reveals the existence of very di�erent features. For instance, wavelets do not restore long edges
with high �delity while curvelets are challenged with small features such as Lenna's eyes. Loosely speaking, each
transform has its own area of expertise and this complementarity may be of great potential. This section will develop
a denoising strategy based on the idea of combining both transforms.

The idea of combining several representations is not new.6{8 There are well-known general principles for synthe-
sizing a signal s as a \sparse" linear combination s =

P

 a
'
 of elements taken from a of dictionary of waveforms

D = ('
)
2�. Two of the most frequently discussed approaches are the Matching Pursuit (MP)9 and the Basis Pur-



Figure 5. Residual for thresholding of the undecimated wavelet transform and thresholding of the curvelet transform.

suit (BP).6 MP is a greedy procedure that operates in a stepwise fashion by sequentially adding elements that best
correlate with the current residual. In stark contrast, BP is a global procedure which synthesizes an approximation
~s to s by minimizing a functional of the type

ks� ~sk2`2 + � � k�k`1 ; ~s = ��: (5)

In many cases, BP or MP synthesis algorithms are computationally very expensive. We propose here an alternative
approach for the sole purpose of image restoration. The problem that we will want to solve in this combined approach
is not to represent a signal with overcomplete dictionaries, but to make sure that our reconstruction will incorporate
information judged as signi�cant by any of our representations.

In general, suppose that we are given K linear transforms T1; : : : ; TK and let �k be the coeÆcient sequence of
an object x after applying the transform Tk, i.e. �k = Tkx. We will suppose that for each transform Tk we have
available a reconstruction rule that we will denote by T�1k although this is clearly an abuse of notations. Finally, T
will denote the block diagonal matrix with the Tk's as building blocks and � the amalgamation of the �k's.

A hard thresholding rule associated with the transform Tk synthesizes an estimate ~sk via the formula

~sk = T�1k Æ(�k) (6)

where Æ is a rule that sets to zero all the coordinates of �k whose absolute value falls below given a sequence of
thresholds (such coordinates are said to be nonsigni�cant).

In practice, a widely used approach is to compute the average of the ~sk's giving a reconstruction of the form

~s =
X
k

~sk=K: (7)

For instance, in the literature of image processing it is common to average reconstructions obtained after thresholding
the wavelet coeÆcients of translated versions of the original dataset (cycle-spinning), i.e. the Tk's are obtained by
composing translations and the wavelet transform. In our setup, we do not �nd this solution very appealing as this
creates the opportunity to average high-quality and low-quality reconstructions.

Given data y of the form y = s+ �z, where s is the image we wish to recover and z is standard white noise, we
propose solving the following optimization problem:

min kT ~sk`1 ; subject to s 2 C; (8)



where C is the set of vectors ~s which obey the linear constraints
�

~s � 0;
jT ~s� Tyj � e;

(9)

here, the second inequality constraint only concerns the set of signi�cant coeÆcients, i.e. those indices � such that
�� = (Ty)� exceeds (in absolute value) a threshold t�. Given a vector of tolerance (e�), we seek a solution whose
coeÆcients (T ~s)� are within e� of the noisy empirical ��'s. Think of �� as being given by

y = hy; '�i;

so that �� is normally distributed with mean hf; '�i and variance �2� = �2k'�k
2
2. In practice, the threshold values

range typically between three and four times the noise level �� and in our experiments we will put e� = ��=2. In
short, our constraints guarantees that the reconstruction will take into account any pattern which is detected as
signi�cant by a any of the K transforms.

We use an `1 penalty on the coeÆcient sequence because we are interested in low complexity reconstructions.
There are other possible choices of complexity penalties; for instance, an alternative to (8) would be

min k~skTV ; subject to s 2 C:

where k � kTV is the Total Variation norm, i.e. the discrete equivalent of the integral of the euclidian norm of the
gradient.

We propose solving (8) using the method of hybrid steepest descent (HSD).10 HSD consists in building the
sequence

sn+1 = P (sn)� �n+1rJ (P (s
n)); (10)

here, P is the `2 projection operator onto the feasible set C, rJ is the gradient of equation 8, and (�n)n�1 is a
sequence obeying (�n)n�1 2 [0; 1] and limn!+1 �n = 0.

Unfortunately, the projection operator P is not easily determined and in practice we will use the following proxy;
compute T ~s and replace those coeÆcients which do not obey the constraints jT ~s� Tyj � e (those which fall outside
of the prescribed interval) by those of y; apply the inverse transform.

The combined �ltering algorithm (CFA) is:

1. Initialize Lmax = 1, the number of iterations Ni, and Æ� = Lmax
Ni

.

2. Estimate the noise standard deviation �, and set ek =
�
2 .

3. for k = 1, .., K calculate the transform: �
(s)
k = Tks.

4. Set � = Lmax, n = 0, and ~sn to 0.

5. While � >= 0 do

� u = ~sn.

� for k = 1, .., K do

{ Calculate the transform �k = Tku.

{ For all coeÆcients �k;l do

� Calculate the residual rk;l = �
(s)
k;l � �k;l

� if �
(s)
k;l is signi�cant and j rk;l j> ek;l then �k;l = �

(s)
k;l

� �k;l = sgn(�k;l)(j �k;l j ��)+.

{ u = T�1k �k

� Threshold negative values in u and ~sn+1 = u.

� n = n+ 1, � = �� Æ�, and goto 5.



Figure 6. Noisy image (top left), and �ltered images by the undecimated wavelet transform (top right), the curvelet
transform (bottom left) and the combined transforms (bottom right).

3.0.1. Filtering

The noisy Lenna image (the noise standard deviation being equal 20) has been �ltered by the undecimated wavelet
transform, the curvelet transform, and by our combined transform approach (curvelet and undecimated wavelet
transforms). The results are reported in Table 1. Figure 6 displays the noisy image (top left), and the restored
images after denoising by means of the undecimated wavelet transform (UWT) (top right), the curvelet transform
(bottom left), and the combined transforms (bottom right). Details are displayed on Figure 7 left. Figure 7 right
shows the full residual image, and can be compared to the residual images shown in Figure 5. The residual is much
better when the combined �ltering is applied, and no feature can anymore be detected by eye. This was not the case
for both the wavelet and the curvelet �ltering.

Figure 8 displays the PSNR of the solution versus the number of iterations. On this example, the algorithm
is shown to converge rapidly. From a practical viewpoint only four or �ve iterations are truly needed. Note that
the result obtained after a single iteration is already superior than those available using methods based on the
thresholding of wavelet or curvelet coeÆcients alone.



Method PSNR Comments

Noisy image 22.13
OWT7-9 + ksigma Hard thresh. 28.35 many artifact
UWT7-9 + ksigma Hard thresh. 31.94 very few artifact
Curvelet (B=16) 31.95 no artifact
Combined �ltering 32.72 no artifact

Table 1. PSNR after �ltering the simulated image (Lena + Gaussian noise (sigma=20)). In the combined �ltering,
a curvelet and an undecimated wavelet transform have been used.

Figure 7. The left panel shows a detail of the �ltered image by the combined method. The full residual image is
displayed on the right.

4. CONCLUSION

We believe that the denoising experiments presented in this paper are of very high quality;

1. The combined �ltering leads to a real improvement both in terms of PSNR and visual appearance.

2. The combined approach arguably challenges the eye to distinguish structure/features from residual images on
real image data (at least for the range of noise levels that was considered here). Single transforms cannot
manage such a feat.

We also note that the combined reconstruction may tend to be free of major artifacts which is very much unlike
typical thresholding rules. Although the ease of implementation is clear we did not address the computational issues
associated with our method. In a nutshell, the algorithms we described requires calculating each transform and its
inverse only a limited number of times.

In our examples, we constructed a combined transform from linear transforms (wavelets, ridgelets and curvelets)
but our paradigm extends to any kind of nonlinear transform such as the Pyramidal Median Transform5 or morpho-
logical multiscale transforms.11



Figure 8. PSNR versus the number of iterations.
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