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Abstract

We describe a range of powerful multiscale analysis methods. We also focus on
the pivotal issue of measurement noise in the physical sciences. From multiscale
analysis and noise modeling, we develop a comprehensive methodology for data
analysis of 2D images, 1D signals (or spectra), and point pattern data. Noise
modeling is based on the following: (i) multiscale transforms, including wavelet
transforms; (i) a data structure termed the multiresolution support; and (iii)
multiple scale significance testing. The latter two aspects serve to characterize
signal with respect to noise. The data analysis objectives we deal with include

noise filtering and scale decomposition for visualization or feature detection.



1 Introduction

We will describe a recently-proposed methodology for data analysis in astronomy,
medicine, Farth observation and other fields. We will survey results obtained. This
methodology takes account of measurement noise in our input data. Noise models in-
clude Gaussian or Poisson distributions or mixtures of the two, and also include additive
or multiplicative cases. Our methodology also assumes that the data embody charac-
teristics which are on different resolution levels or scales, and therefore that analysis
will be improved if these are taken into account.

The remainder of section 1 discusses various aspects of noise. Section 2 describes the
wavelet transform mostly used by us, and compares it in some detail with alternative
transform methods. This section then describes a data structure derived from the
wavelet or some other multiscale transform, which is defined on the basis of noise
modeling. In fact, as shown later in section 3, this data structure, the multiresolution
support, can be iteratively used to get a better estimate of the noise, which in turn is
used to then get a better estimate of the multiresolution support.

Section 3 discusses the treatment of noise in greater depth. This includes variance
stabilization and other mechanisms for helping us more easily use the noise, once it has
been defined.

Section 4 provides a number of examples of this innovative methodology.



1.1 Scientific Instruments and Detectors

Data in the physical sciences are characterized by the all-pervasive presence of noise,
and often knowledge is available of the detector’s and data’s noise properties, at least
approximately. We take as our point of departure image processing in astronomy. It is
usual to distinguish between the signal, of substantive value to the analyst, and nouse
or clutter. The data signal can be a 2D image, a 1D time-series or spectrum, a 3D data
cube, and variants of these.

Noise is a necessary evil in astronomical image processing. If we can reliably estimate
noise, through knowledge of instrument properties or otherwise, subsequent analyses
would be very much better behaved. In fact, major problems would disappear if this
were the case — e.g. image restoration or sharpening based on solving inverse equations
could become simpler.

One perspective on the theme of this paper is that we present a coherent and
integrated algorithmic framework for a wide range of methods which may well have
been developed elsewhere on pragmatic and heuristic grounds. We put such algorithms
on a firm footing, through explicit noise modeling followed by computational strategies
which benefit from knowledge of the data. The advantages are clear: they include
objectivity of treatment; better quality data analysis due to far greater thoroughness:
and possibilities for automation of otherwise manual or interactive procedures.

Noise is often taken as additive Poisson (related to arrival of photons) and/or Gaus-
sian. Commonly used electronic CCD (charge-coupled device) detectors have a range of

Poisson noise components, together with Gaussian readout noise (Snyder et al., 1993).



Digitized photographic images were found by Tekalp and Pavlovi¢ (1991) to be also
additive Poisson and Gaussian (and subject to nonlinear distortions which we will not

discuss here).

1.2 Automatic Estimation of Noise

The noise associated with a particular detector may be known in advance. In practice
rule-of-thumb calculation of noise is often carried out. For instance, limited convex
regions of what is considered as background are sampled, and the noise is determined
in these regions. For common noise distributions, noise is classically specified by its
variance.

There are different ways to more formally estimate the standard deviation of Gaus-
sian noise in an image. Olsen (1993) carried out an evaluation of six methods and
showed that the best was the average method, which is the simplest also. This method
consists of filtering the data I with the average filter (filtering with a simple box func-
tion) and subtracting the filtered image from /. Then a measure of the noise at each
pixel is computed. To keep image edges from contributing to the estimate, the noise
measure is disregarded if the magnitude of the intensity gradient is larger than some
threshold, T'.

A new approach to automatic estimation of noise, which improves on the methods
described by Olsen, is given in section 3.3 below. It uses a multiscale transform and

the multiresolution support data structure.



1.3 Working on Signal versus Working on Noise

In various studies of image and spectral filtering, and image compression (see Starck et
al., 1995; Starck et al., 1996), the basis of the methodology lay in determining noise,
and separating signal from noise. Signal is what we term the scientifically interesting
part of the data. Signal is often very compressible, whereas noise by definition is not
compressible. Effective separation of signal and noise is evidently of great importance
in the physical sciences.

As has been pointed out, our initial focus is on accurate determination of the noise.
Other types of signal modeling, e.g. distribution mixture modeling or density estimation,
are more easily carried out subsequently. We contend that the noise modeling is a

desirable, and in many cases necessary, preliminary to such signal modeling.

2 The a trous and Other Wavelet Transforms

2.1 The a trous Wavelet Transform

. Furthermore, using a wavelet defined as the difference between the scaling functions

of two successive scales (3¥(%) = ¢(x) — ¢(£)), the original image ¢y can be expressed

as the sum of all the wavelet scales and the smoothed array c,

P
co=cp+ ) w (1)

i=1

and a pixel at position x, y can be expressed also as the sum of all the wavelet coefficients

at this position, plus the smoothed array:
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The wavelet transform of an image produces, at each scale j, a set zero-mean co-
efficient values {w;}. Using an algorithm such as the a trous method (Holschneider et
al., 1989; Shensa 1992) this set has the same number of pixels as the image and thus
this wavelet transform is a redundant one. Furthermore, using a wavelet defined as the
difference between the scaling functions of two successive scales (2¢(£) = ¢(x) — ¢(2)),
the original image ¢o, with a pixel at position z,y, can be expressed as the sum of all

the wavelet scales and the smoothed array ¢,
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To simplify notation, let us take one index running over all pixels,

colk) = co(k) +

J
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A summary of the a trous wavelet transform algorithm is as follows.

1. Initialize ¢ to 0, starting with an image ¢;(k). Index k ranges over all pixels.

2. Increment ¢, and carry out a discrete convolution of the data ¢;(k) using a filter
h (see Annex A), yielding ¢;41(k). The convolution is an interlaced one, where
the filter’s pixel values have a gap (growing with level, 1) between them of 2¢~!
pixels, giving rise to the name & trous (“with holes”). “Mirroring” is used at the

data extremes.

3. From this smoothing we obtain the discrete wavelet transform, w;(k) = ¢;—1(k) —

4. If ¢ is less than the number p of resolution levels wanted, return to step 2.



The set W = {wq, w1, ..., w,, ¢, }, where ¢, is a residual, represents the wavelet transform
of the data.

The discrete filter A is derived from the scaling function ¢(z) (see Annex A). In our
calculations, ¢(x) is a spline of degree 3, which leads (in one dimension) to the the filter
h(35,5.2,4,5). A 2D implementation can be based on two 1D sets of (separable)
convolutions (Starck and Murtagh, 1994).

The associated wavelet function is of mean zero, of compact support, with a central

bump and two negative side-lobes. Of interest for us is that, like the scaling function,

it is isotropic (point symmetric).

2.2 Multiscale Transforms Compared to Other Data Trans-
forms

In this section we will discuss in general terms why the wavelet transform has very good
noise filtering properties, and how it differs from other data preprocessing transforms
in this respect. Among the latter, we can include principal components analysis (PCA)
and correspondence analysis, which decompose the input data into a new orthogonal
basis, with axes ordered by “variance (or inertia) explained”. PCA used with images
as observation vectors can be used, for example, for a best synthesis of multiple band
images, or for producing eigen-faces in face recognition. Among other data preprocess-
ing transforms, we also include the discrete cosine transform (DCT), which decomposes
the data into an orthogonal basis of cosine functions; and the Fourier transform (FT)

which uses a basis of sine and cosine functions, each at different frequencies.



PCA, DCT, and FT have the property of energy packing (Seales et al. 1996): most
of the energy (second order moment) of the input vector is packed into the first few
values of the output vector. Thus, one can roughly approximate, or even eliminate, all
but the most important values and still preserve most of the input energy.

The wavelet transform (W'T), whether orthonormal as in the case of the Haar or
Daubechies transforms or non-orthogonal as in the case of the a trous method, is differ-
ent. It can be viewed as an automatic method for laying bare superimposed scale-related
components of the data. Our analysis of the data may be considerably improved by
removing noise in all scale-related components. This perspective differs from the usual
approach of PCA, DCT, and FT: in these methods we remove output scales (or “levels”)
entirely to filter the data.

We turn attention now to denoising through modification of scale information at all
levels. This is the preferred method of denoising using the wavelet transform.

Donoho et al. (1995) have proposed a “universal threshold”, \/2log no, used in the
additive Gaussian noise case where o is the known or estimated standard deviation
of the data, and n is the size of the input data set. Wavelet coefficients above this
threshold are retained, and those below the threshold are set to zero. The authors also
propose a soft threshold, referred to as wavelet shrinkage, which reduces wavelet values
by a fraction of their initial values.

As an alternative to such hard and soft thresholding, Starck et al. (1995) assume
known or estimated noise properties for the input data, and then derive or make use
of wavelet coefficient probability distributions at each level, under a null hypothesis of

stochastic input. Other noise modeling work in this direction can be found in Kolaczyk



(1997) and Powell et al. (1995), albeit with different wavelet transforms.
In the work described in this paper we employ thresholding in a data- and noise-

driven manner.

2.3 Choice of Multiscale Transform

Background texts on the wavelet transform include Meyer (1993), Combes et al. (1989),
Mallat (1989), Shensa (1992), Bijaoui et al. (1994), Wickerhauser (1994) and Strang
and Nguyen (1996). Some important properties of the a trous wavelet transform are as
follows.

As already noted, the a trous transform is isotropic. Unlike it, Mallat’s widely-used
multiresolution algorithm (Mallat, 1989) leads to a wavelet transform with three wavelet
functions (at each scale there are three wavelet coefficient subimages) which does not
simplify the analysis and the interpretation of the wavelet coefficients. Other anisotropic
wavelets include the similarly widely-used Haar and Daubechies wavelet transforms. An
isotropic wavelet seems more appropriate for images containing features or objects with
no favored orientation.

An important property of the a trous wavelet transform over other wavelet trans-
forms is shift invariance. Lack of independence to pixel shift is a problem in the case
of any pyramidal wavelet transform (Haar, Daubechies, Mallat, etc.) due to the down-
sampling or decimating. The reason is simply that shift-variance is introduced because
Nyquist sampling is violated in each of the (wavelet-decomposed) subbands — wavelets
are not ideal filters. By not downsampling the problem is avoided. Various authors

have proposed solutions to this problem. The a trous algorithm is in fact a fast imple-



mentation of a wavelet transform with no downsampling.

Two inconvenient aspects of many wavelet transforms are negative values and lack
of robustness. By definition, the wavelet coefficient mean at each level is null. Every
time we have a positive structure at a scale, we have negative values surrounding it.
These negative values often create artifacts during the data reconstruction process,
or complicate the analysis. For instance, if we threshold small values (noise, non-
significant structures, etc.) in the wavelet transform, and if we reconstruct the image
at full resolution, the structure’s total intensity will be modified. Furthermore, if an
object is associated with high intensity values, the negative values will be significant too
and will lead to false structure detections. Point artifacts (e.g. cosmic ray hits in optical
astronomy, glitches in the infrared I1SO, Infrared Satellite Observatory, detectors) can
“pollute” all scales of the wavelet transform. The wavelet transform is non-robust
relative to such real or detector faults.

One way around both of these issues — negative wavelet coefficient values, and non-
robustness relative to anomalous values — is to keep certain aspects of the multiscale
decomposition algorithm provided by the a trous wavelet transform, but to base our
algorithm on a function other than the wavelet function. The median smoothing trans-
form provides us with one such possibility. A multiscale pyramidal median transform,
for instance, was investigated in Starck et al. (1996). We conclude that the wavelet
transform, a trous or otherwise, is not sacrosanct. Depending on the data, it may well

be advisable and necessary to develop new multiresolution tools.
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2.4 The Multiresolution Support

We will say that a multiresolution support (Starck et al., 1995) of an image describes
in a logical or boolean way if an image I contains information at a given scale 5 and at
a given position (z,y). If MD(j,z,y) =1 (or = true), then I contains information at

scale 7 and at the position (z,y). M depends on several parameters:

The input image.

The algorithm used for the multiresolution decomposition.

e The noise.

All constraints which we want the support additionally to satisfy.

Such a support results from the data, the treatment (noise estimation, etc.), and from
knowledge on our part of the objects contained in the data (size of objects, linearity,
etc.). In the most general case, a priori information is not available to us.

The multiresolution support of an image is computed in several steps:

e Step 1 is to compute the wavelet transform of the image.

e Booleanization of each scale leads to the multiresolution support.

e A priori knowledge can be introduced by modifying the support.

The last step depends on the knowledge we have of our images. For instance, if we
know there is no interesting object smaller or larger than a given size in our image,
we can suppress, in the support, anything which is due to that kind of object. This
can often be done conveniently by the use of mathematical morphology (Breen et al.,

11



1998). In the most general setting, we naturally have no information to add to the
multiresolution support.
The multiresolution support will be obtained by detecting at each scale the signifi-
cant coefficients. The multiresolution support is defined by:
1 if wj(x,y) is significant

M(j,z,y) = (5)

0 if wj(z,y) is not significant
In order to visualize the support, we can create an image S defined by:

P

S(w,y) =3 2 M(j,z,y) (6)

j=1
Given stationary Gaussian noise, to define if w; is significant, it suffices to compare
w;(x,y) to to;, where o; is the noise standard deviation at scale j. Often ¢ is chosen
as 3. If w;(x,y) is small, it is not significant and could be due to noise. If w;(z,y) is
large, it is significant:
if |w;|> to; then w; is significant

(7)

if |w;| < to; then w; is not significant

So we need to estimate, in the case of Gaussian noise models, the noise standard

deviation at each scale.

3 Noise Modeling

3.1 The Overall Procedure

Images and sets of point patterns generally contain noise. Hence the wavelet coefficients
are noisy too. In most applications, it is necessary to know if a wavelet coefficient is
due to signal (i.e. it is significant) or to noise.

12



The wavelet transform yields a set of resolution-related views of the input image.
A wavelet image scale at level j has coefficients given by w;(x,y). If we obtain the
distribution of the coefficient w;(x,y) for each resolution plane, based on the noise, we
can introduce a statistical significance test for this coefficient. This procedure is the
classical significance-testing one. Let Hy be the hypothesis that the image is locally
constant at scale j. Rejection of hypothesis Hy depends (for interpretational reasons,

restricted to positive coefficient values) on:

P = Prob(| wi(z,y) | < 7| Ho) (8)

The detection threshold, 7, is defined for each scale. Given an estimation threshold, e,
if P = P(7) > e the null hypothesis is not excluded. Although non-null, the value of
the coefficient could be due to noise. On the other hand, if P < ¢, the coefficient value
cannot be due to the noise alone, and so the null hypothesis is rejected. In this case, a

significant coefficient has been detected.

3.2 The Case of Gaussian Noise

We start with a consideration of the Gaussian case, and then incorporate the Poisson
case. Such noise distributions are the most important for CCD, digitized photographic,
and other common astronomical image detectors.

The following discussion will be based on the a trous wavelet transform. For a non-
wavelet transform such as the multiscale median transform, we can use a very similar
perspective, but it then becomes an approximate one.

The appropriate value of o; in the succession of wavelet planes is assessed from

13



the standard deviation of the noise o; in the original image and from study of the
noise in the wavelet space. This study consists of simulating an image with zero signal,
containing Gaussian noise with a standard deviation equal to 1, and taking the wavelet
transform of this image. Then we compute the standard deviation o§ at each scale. We
get a curve of as a function of j, giving the behavior of the noise in the wavelet space.
(Note that if we had used an orthogonal wavelet transform, this curve would be linear.)

Due to the properties of the wavelet transform, we have

o; = 0'[0'; (9)

This numerical simulation therefore gives us values for of which we will make use of

subsequently.

3.3 Automatic Estimation of Gaussian Noise

The Gaussian noise o; can be estimated automatically in an image /. This estimation is
very important, because all the noise standard deviations ¢; in the scales j are derived
from o;. Thus an error associated with o; will introduce an error on all o;. This
measure of o; can be refined by the use of the multiresolution support. Indeed, if we
consider the set of pixels § in the image which are due only to the noise, and if we take
the standard deviation of them, we would obtain a good estimate of o;. This set is
easily obtained from the multiresolution support. We say that a pixel (z,y) belongs to
the noise if M(j,2,y) = 0 for all j (i.e. there is no significant coefficient at any scale).

The new estimation of oy is then computed by the following iterative algorithm:

14



. Estimate the standard deviation of the noise in I (usually by sampling the image

(0)

in areas of relatively constant signal): we have o} ".

. Compute the wavelet transform (& trous algorithm) of the image I with p scales,

providing the additive decomposition see in equation (1) above.

3. Set n to 0.

. Compute the multiresolution support M which is derived from the wavelet coef-

ficients and from U}n) (equations (7) and (5)).

. Select the pixels which belong to the set S: if M(j,2,y) =0 forall jin 1...p,

then the pixel (z,y) € S.

. For all the selected pixels (x,y), compute the values I(z,y)—c,(z, y) and compute

the standard deviation U}nﬂ) of these values (we compute the difference between

I and ¢, in order not to include the background in the noise estimation).

.n=n+1
|U(")_U(”—1)|
. If =——Ff—— > ¢ then go to 4.

I

This method converges in a few iterations, and allows the noise estimation to be im-

proved.

The approach is in fact very physically-meaningful. It consists of detecting the set

N of pixels which does not contain any significant signal (only the background + noise).

A pixel (z,y) is dominated by the noise if all wavelet coefficients at this position are

not significant. The background affects only the last scale of the wavelet transform.
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We subtract this last scale from the original image, and we compute the standard
deviation of the set N in this background-free image. Wavelet coefficients larger than
3o, are considered as significant, but a small fraction of them will be due to the noise.
This introduces a small systematic bias in the final solution, which is easily corrected
by dividing the standard deviation by a given constant value, found experimentally as
equal to 0.974. Therefore we downgrade the empirical variance in this way. The method
is robust and whatever the initial estimation of noise, it converges quickly to a good
estimate.

More information on this framework for automated noise estimation can be found

in Starck and Murtagh (1998a).

3.4 Cases of Poisson or Poisson and Gaussian Noise

If the noise in the data [ is Poisson, the transformation

1) = 2/ 1(e,0) + 5 (10)

acts as if the data arose from a Gaussian white noise model (Anscombe, 1948), with
o = 1, under the assumption that the mean value of I is large. The arrival of pho-
tons, and their expression by electron counts, on CCD detectors may be modeled by
a Poisson distribution. In addition, there is additive Gaussian read-out noise. The
Anscombe transformation has been extended to take this combined noise into account.
The generalization of the variance stabilizing Anscombe formula is derived as (Murtagh

et al., 1995):

2 3
t(I)= E\/oz[(x,y) + §a2 +o0%—ag (11)



where « is the detector gain, ¢ and g the standard deviation and the mean of the
read-out noise respectively.

These transformations, it has been shown in Murtagh et al. (1995), are only valid for
a sufficiently large number of counts (and of course, for a larger still number of counts,
the Poisson distribution becomes Gaussian). The necessary average number of counts
is about 10 if bias is to be avoided. In the next section, we will look at an approach

which also handles the case of very low average numbers of counts.

3.5 Case of Poisson Noise with Few Counts

The low count situation is what we face when dealing with planar point patterns. This
also is the case with certain types of astronomical X-ray images. We have often in such
images a low number of counts, and extensive very sparsely populated regions.

A wavelet coefficient is by definition obtained by convolution product between the
input data and the dilated wavelet function. Then a wavelet coefficient at a given
position and at a given scale j is

e

w;(e,y) = 3 w(=5—, ) (12)
k=1

where n. is the number of events which contribute to w;(z,y) , i.e. the number of events

included in the support of the dilated wavelet function (35, %) centered at (z,y); and

o]
(g, yx) are the event coordinates (which can be non integer values).
If a wavelet coefficient w;(x,y) is due to noise, it can be considered as a realization

of the sum of n. independent random variables with the same distribution as that of

the wavelet function. This allows comparison of the wavelet coefficients of the data
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with the values which can be taken by the sum of n. independent variables.

The distribution of one event in wavelet space is then directly given by the histogram
H; of the wavelet ¥b. As we consider independent events, the distribution of a coefficient
w,, (note the changed subscripting for w, for convenience) related to n events is given

by n autoconvolutions of Hj:

This principle of using autoconvolutions of the wavelet in order to model the null
hypothesis marginal distribution was also used or described by Slezak et al. (1993),
Bury (1995), and Starck and Pierre (1998¢). For a large number of events, H,, converges
to a Gaussian.

It may be helpful to comment somewhat further on the implementation of this
procedure. Consider a wavelet coefficient, at a given pixel, at some resolution level.
At any resolution level, the support of the wavelet function defines a region and the
input data provides a number of counts in this region. The autoconvolutions then show
the anticipated distribution of the wavelet coefficient. This is the distribution of the
wavelet-transformed Poisson noise. This distribution function summarizes all possible
eventualities, from the extreme of a uniform arrangement of counts, through to the
extreme of all counts being stacked in one pixel. Tables representing the distribution
functions — or, in practice, detection thresholds — are determined once, and stored for
subsequent data analyses.

In order to facilitate the comparisons, the variable w, of distribution H, is reduced

18



by ¢ = [w, — E(w,)]/c(w,) and the distribution function is

From F),, we derive ¢pin and ¢pq, such that F(cpin) = € and F(cpaz) =1 — €.

Then a reduced wavelet coefficient w’(z, y), calculated from w;(z, y), resulting from
n events is significant (positive coefficients only being considered for interpretational
reasons) if F'(w") > ¢pae. Finally, w,(j, x,y) is obtained from w;(x,y) (w;(x,y) being

obtained using the a trous algorithm) by

ey wil@y)
U“](xvy) - \/EO'%

_ ’LU]‘(SE, y)4]

Vnoy

where oy is the standard deviation of the wavelet function, and oy, is the standard

deviation of the dilated wavelet function (oy, = oy/47).

4 Examples

4.1 Determining Noise in 2D Images

A simulated image containing stars and galaxies is shown in Fig. 1 (top left). This
image was constructed by sampling from a library of object shapes, reflecting realistic
luminosity distributions, and placing these objects in the image at randomly chosen
locations. Then background and noise were added, in fairly close analogy with common

detector characteristics. The simulated noisy image, the filtered image and the residual
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image are respectively shown in Fig. 1 top right, bottom left, and bottom right. We can
see that there is no structure in the residual image. The filtering was carried out using
the multiresolution support, and thereby determining of signal at each level, before
reconstruction of the image.

It is possible for us to see in Fig. 1, and below in Fig. 4, the influence of the
isotropic wavelet function on the structures reconstructed following filtering, or found
at different resolution scales. In Fig. 1, this is certainly accentuated by the display color
function used: the residual image confirms this. An isotropic wavelet function provides
an excellent general analyzing function for the myriad range of objects or structures

found in practice.

4.2 Filtering in 1D Images

Fig. 2 shows a noisy spectrum (top). For the astronomer, the spectral lines — here
mainly absorption lines extending downwards — are of interest. The continuum may
also be of interest, i.e. the overall spectral tendency or overall spectral shape. The
spectral lines are unaffected in the filtered version (center). The bottom part of the
figure shows the input and filtered result superimposed. Noise is suppressed in the
unimportant parts of the spectrum, and the important parts are untouched.

A similar filtering was used, based on the Daubechies coefficient 8 (Daubechies,
1992), a compactly-supported orthonormal wavelet, followed by thresholding based on
estimated variance of the coefficients as proposed by Donoho (1995). This did not take
into account the image’s noise properties as we have done, and results were very poor.

A problem- (or image-) driven choice of wavelet and filtering strategy is indispensable.
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4.3 Point Patterns

Point patterns can represent very diverse situations, e.g. mines in a coastal waters mine-
field, or earthquake locations (Dasgupta and Raftery, 1995; Murtagh and Starck, 1998).
Given a planar point pattern, a 2-dimensional image is created by:

1. Considering a point at (z,y) as defining the value one at that point, yielding the

tuple (z,y,1).

2. Projection onto a plane by (i) using a regular discrete grid (an image) and (ii)
assigning the contribution of points to the image pixels by means of the interpo-
lation function, ¢, used by the chosen wavelet transform algorithm (in our case,

the a trous algorithm with a Bj spline).

3. The a trous algorithm is applied to the resulting image. Based on a noise model
for the original image (i.e. tuples (z,y, 1)), significant structures are detected at
each resolution level.

Fig. 3 shows a point pattern set. Fig. 4 shows the corresponding wavelet transform.
Wavelet scales 1-6 are shown in sequence, left to right, starting at the upper right
corner. The images shown in Fig. 4 may be summed pixel-wise to exactly reconstitute
a smoothed version of Fig. 3, the smoothing being carried out, as mentioned above,
by a Bs spline. Two technical remarks regarding Fig. 4 are that (i) we rebinned each
image to 128 x 128 from the input 256 x 256 to cut down on space, and (ii) this figure
is shown histogram-equalized to more clearly indicate structure.

Fig. 3 shows two Gaussian clusters designed with centers (64,64) and (190, 190);

and with standard deviations in « and y directions respectively (10,20) and (18, 10). In
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the first (lower) of these clusters, there are 300 points, and there are 250 in the second.
Background Poisson clutter was provided by 300 points. The 5th wavelet scale (see Fig.
4), following application of the significance threshold for positive values (e = 0.001),
provides good reconstruction of the input clusters. The centroid values of the “island”
objects were found to be respectively (62,63) and (190,190) which are very good fits
to the design values. The standard deviations in x and y were found to be respectively
(9.3,14.4) and (14.9,8.9), again reasonable fits to the input data.

A remark to make in regard to this result is that the wavelet method used prioritizes

the finding of Gaussian-like shapes. The wavelet, as already mentioned, is a Bj spline.

5 Conclusion

This article has discussed a general methodology for data analysis, focusing on image
data and including also low-dimensional point pattern data. In various aspects, it is an
alternative methodology to more classical procedures. As a methodology, it has been
developed to tackle a wide range of real data analytic problems. We have shown in
many case-studies and practical situations that results (filtering, deconvolution, data
registration, feature detection, compression, and so on) are better than more classical
alternatives. Many such data processing and data analysis methods are discussed and
exemplified in Starck et al. (1998a).

For the types of data worked on, the transforms used were the most appropriate.
It may be the case that other aspects can be better handled by other wavelet trans-

forms. Edges or sharp jumps in features may be enhanced by use of an anisotropic
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wavelet transform. In Starck and Murtagh (1998b,1998e) and Starck et al (1998d), we
investigate and compare the combination of various wavelet, filtering strategies, and
multiscale transforms to allow for performance enhancements over and above use of a
single multiscale transform.

The work described in this paper has also resulted in a large software package, sup-
porting a range of wavelet and other multiscale transforms, and also supporting a wide
range of noise models. Visualization, noise filtering, deconvolution and compression are
among the many objectives covered. Further information on this software package can
be obtained from the authors or at

http://ourworld.compuserve.com/homepages/multires
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Annex A: the a trous algorithm

We consider spectra, {co(k)}, defined as the scalar product at samples k of the function

f(z) with a scaling function ¢(z) which corresponds to a low pass filter:

colk) =< f(2), $(x — k) > (14)

The scaling function is chosen to satisfy the dilation equation:

Zh oz —1) (15)

where h is a discrete low-pass filter associated with the scaling function ¢. This means
that a low-pass filtering of the signal is, by definition, closely linked to another resolution
level of the signal. The distance between levels increases by a factor 2 from one scale
to the next.

The smoothed data ¢;(k) at a given resolution j and at a position k is the scalar

product
1 x—k
(k) = o < fa).o(“E) > (16)
This is consequently obtained by the convolution:
Zh cj_1(k + 271 (17)

The signal difference w; between two consecutive resolutions is:

wj(k) = ¢j1(k) — (k) (18)
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or:

1 x—k

wilk) = o < f@), b > (19)

Here, the wavelet function @ is defined by:
. x _
) = o) — 3(3) (20)

Equation 19 defines the discrete wavelet transform, for a resolution level j.
A series expansion of the original signal, ¢g, in terms of the wavelet coefficients is
now given as follows. The final smoothed array ¢,(x) is added to all the differences wj:
P
co(k) = ¢, + 3 w;(k) (21)
j=1
This equation provides a reconstruction formula for the original signal. At each scale

J, we obtain a set {w;} which we call a wavelet scale. The wavelet scale has the same

number of samples as the signal.
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Figure 1: (a) Simulated image, (b) simulated image and Gaussian noise, (c) filtered

image, and (d) residual image.
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Figure 2: From top to bottom: input spectrum; denoised spectrum; and both overplot-

ted.
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Figure 3: Simulated Gaussian clusters with 300 and 250 points; and background Poisson

noise with 300 points.
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Figure 4: Wavelet transform (& trous method) of Fig. 3.
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