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A B S T R A C T

Keywords: weak gravitational lensing, cosmology, sparsity

Gravitational lensing, that is the distortion of the images of distant galaxies by intervening
massive objects, has been identi�ed as one of the most promising probes to help answer questions
relative to the nature of dark matter and dark energy. As the lensing e�ect is caused by the total
matter content, it can directly probe the distribution of the otherwise invisible dark matter. By
measuring the shapes of distant galaxies and statistically estimating the deformations caused by
gravitational lensing, it is possible to reconstruct the distribution of the intervening mass. This
mass-mapping process can be seen as an instance of a linear inverse problem, which can be ill-
posed in many situations of interest, especially when mapping the dark matter on small angular
scales or in three dimensions. As a result, recovering a meaningful mass-map in these situations
is not possible without prior information.

In recent years, a class of methods based on a so-called sparse prior has proven remarkably suc-
cessful at solving similar linear inverse problems in a wide range of �elds such as medical imaging
or geophysics. The primary goal of this thesis is to apply these sparse regularisation techniques
to the gravitational lensing problem in order to build next-generation dark matter mass-mapping
tools. We propose in particular new algorithms for the reconstruction of high-resolution 2D mass-
maps and 3D mass-maps and demonstrate in both cases the e�ectiveness of the sparse prior. We
also apply the same sparse methodologies to the reconstruction the primordial density �uctuation
power spectrum from measurements of the Cosmic Microwave Background which constitutes an-
other notoriously di�cult inverse problem. We apply the resulting algorithm to reconstruct the
primordial power spectrum using data from the Planck satellite.

Finally, we investigate new methodologies for the analysis of cosmological surveys in spherical
coordinates. We develop a new wavelet transform for the analysis of scalar �elds on the 3D ball.
We also conduct a comparison of methods for the 3D analysis of spectroscopic galaxy survey.
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R E S U M E

Mots clés : E�et de lentille gravitationnelle faible, cosmologie, parcimonie

L’e�et de lentille gravitationnelle, qui se traduit par une déformation des images nous parvenant
de galaxies lointaines, constitue l’une des techniques les plus prometteuse pour répondre aux nom-
breuses questions portant sur la nature de l’énergie sombre et de la matière noire. Cet e�et de
lentille étant sensible à la masse totale, il permet de sonder directement la distribution de matière
noire, qui resterait autrement invisible. En mesurant la forme d’un grand nombre de galaxies loin-
taines, il est possible d’estimer statistiquement les déformations causées par l’e�et de lentille grav-
itationnelle puis d’en inférer la distribution de masse de la lentille. La reconstruction de ces cartes
de masse constitue un problème inverse qui se trouve être mal posé dans un certain nombre de
situations d’intérêt, en particulier lors de la reconstruction de la carte de masse aux petites échelles
ou en trois dimensions. Dans ces situations, il devient impossible de reconstruire une carte sans
l’ajout d’information a priori.

Une classe particulière de méthodes, basées sur un a priori de parcimonie, s’est révélée re-
marquablement e�cace pour résoudre des problèmes inverses similaires pour un large champ
d’applications tels que la géophysique et l’imagerie médicale. Le but principal de cette thèse est
donc d’adapter ces techniques de régularisation parcimonieuses au problème de la cartographie
de la matière noire a�n de developper une nouvelle generation de méthodes. Nous développons
en particulier de nouveaux algorithmes permettant la reconstruction de cartes de masse bi-dimen-
sionnelles de haute résolution ainsi que de cartes de masse tri-dimensionnelles.

Nous appliquons de plus les mêmes méthodes de régularisation parcimonieuse au problème
de la reconstruction du spectre de puissance des �uctuations primordiales de densités à partir
de mesures du fond di�us cosmologique, ce qui constitue un problème inverse particulièrement
di�cile à résoudre. Nous développons un nouvel algorithme pour résoudre ce problème, que nous
appliquons aux données du satellite Planck.

En�n, nous investiguons de nouvelles méthodes pour l’analyse de relevés cosmologiques ex-
primés en coordonnées sphériques. Nous développons une nouvelle transformée en ondelettes
pour champs scalaires exprimés sur la boule 3D et nous comparons di�érentes méthodes pour
l’analyse cosmologique de relevés de galaxies spectroscopiques.
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R É S U M É D E L A T H È S E E N F R A N Ç A I S

régularisation parcimonieuse de problèmes inverses

Parcimonie

La parcimonie est un concept mathématique permettant de décrire une classe de signaux dont
la représentation dans une base appropriée est essentiellement composée de coe�cients nuls à
l’exception d’un faible nombre de coe�cients non nuls. De tels signaux sont dit parcimonieux.
Cette notion en apparence très simple constitue en réalité un outil très puissant pour adresser une
multitude de problèmes pratiques couvrant une large gamme de champs d’application.

Tout particulièrement, la parcimonie fournit un outil remarquable pour résoudre la classe parti-
culière des problèmes inverses linéaires. Dans ces problèmes, le but est de reconstituer un signal
inconnu à partir d’un jeu d’observations dégradées par l’e�et d’un opérateur linéaire, générale-
ment dit mal-posé i.e. non directement inversible ou possédant une inverse très instable. Dans ce
contexte, il existe en général une in�nité de solutions potentielles au problème, c’est à dire per-
mettant de reproduire les observations, sans pour autant être proche du signal recherché. Il est
généralement impossible d’estimer une solution proche de la vérité sans l’ajout d’information a
priori sur le signal à estimer. Le concept de parcimonie fournit justement un cadre mathématique
pour résoudre ce type de problèmes lorsque le signal à reconstruire peut être considéré comme
parcimonieux. Dans ce cas, la solution du problème inverse peut être vue comme la solution d’un
problème d’optimisation où l’on recherche le signal le plus parcimonieux compatible avec les ob-
servations.

Résoudre en pratique ce problème d’optimisation n’est pas chose facile mais grâce à de récentes
avancées dans le domaine de l’optimisation convexe (théorie proximale) nous avons à présent à
notre disposition une série d’algorithmes permettant de résoudre e�cacement ces problèmes pou-
vant aussi intégrer di�érentes contraintes additionnelles. Ces algorithmes sont la clé de l’application
des méthodes parcimonieuses à des problèmes de grande taille tels que ceux qui seront adressés
dans cette thèse.

Ondele�es

Bien souvent, un signal n’est pas directement parcimonieux dans le domaine dans lequel il est
observé, mais sa représentation dans un domaine approprié peut tout de même être parcimonieuse.
C’est par exemple le cas d’une sinusoïde qui n’est pas parcimonieuse dans le domaine temporel,
mais qui le devient dans le domaine fréquentiel, après transformée de Fourier. Cet exemple met en
valeur la notion de représentation parcimonieuse.

De même que la transformée de Fourier est une représentation parcimonieuse pour des signaux
stationnaires harmoniques, la transformée en ondelettes est une représentation parcimonieuse
pour une vaste classe de signaux dits lisses par morceaux, incluant un grand nombre de signaux
naturels. De par leur �exibilité et leur faible coût algorithmique, les ondelettes sont un outil de
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base pour les techniques parcimonieuses. En particulier, dans toutes les applications présentées
dans cette thèse, l’a priori de parcimonie est basé sur une représentation en ondelettes.

Application à la reconstruction du spectre de puissance primordial

La physique gouvernant les touts premiers instants de l’Univers est encore largement inconnue. Le
modèle cosmologique standard nécessite une courte période d’accélération exponentielle appelée
in�ation, juste après la singularité initiale. Ce mécanisme d’in�ation est en particulier essentiel
pour expliquer l’origine des �uctuations de densité dans l’Univers primordial qui au �l du temps
ont évolué principalement sous l’e�et de la gravité pour former la structure à grande échelle visible
aujourd’hui. Cependant, la physique de l’in�ation n’est à ce jour pas élucidée et toute information
permettant de discriminer entre divers modèles est d’un intérêt crucial pour la cosmologie mod-
erne. En particulier, l’étude du spectre de puissance de ces perturbations primordiales peut perme-
ttre de discerner des traces particulières à certains modèles d’in�ation, comme des oscillations ou
d’autres sortes de traits localisés.

Malgré que le spectre de puissance primordial ne soit plus directement observable aujourd’hui, il
est encore accessible indirectement en étudiant le spectre de puissance des �uctuations de densité
observées plus tard dans l’age de l’Univers. C’est par exemple le cas du fond di�us cosmologique
qui présente une image de ces �uctuations de densité après quelques 380 000 ans d’évolution sous
l’in�uence de phénomènes physiques bien compris. Cette évolution pouvant être décrite comme
un processus linéaire il est possible d’écrire le spectre de puissance du fond di�us cosmologique
comme le résultat de l’action d’un opérateur linéaire sur le spectre de puissance primordial: estimer
le spectre de puissance primordial devient un cas typique de problème inverse linéaire.

Malheureusement, résoudre ce problème inverse est non trivial en raison de plusieurs facteurs
dont le fait que l’opérateur linéaire en question n’est pas inversible et surtout du fait de la variance
cosmique (l’incertitude sur le spectre de puissance du fond di�us cosmologique venant du fait que
nous devons l’estimer à partir d’une seule réalisation).

Nous proposons une nouvelle méthode pour résoudre ce problème inverse basée sur la régu-
larisation parcimonieuse. Cette méthode nous permet de reconstruire le spectre de puissance pri-
mordial avec su�samment de qualité pour discerner entre divers types de déviations par rapport
au modèle le plus simple d’une loi de puissance. Nous démontrons l’e�cacité de la méthode sur
divers types de spectres en simulant des observations de la mission WMAP et nous l’appliquons
aux données du satellite Planck. Malgré la sensibilité et la robustesse de notre méthode, nous ne
détectons aucune déviation d’une simple loi de puissance. Ces résultats sont en parfait accord avec
la dernière étude sur le sujet menée par la collaboration Planck.

cartographie de la matière noire par effet de lentille gravi-

tationnelle faible

L’e�et de lentille gravitationnelle faible

L’e�et de lentille gravitationnelle se produit lorsque la lumière nous arrivant de galaxies lointaines
passe à proximité de structure massives, agissant comme des lentilles en déformant l’espace temps
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et causant au passage une déformation de l’image de ces objets lointains. Lorsque ces déformations
restent faibles (on parle alors d’e�et de lentille gravitationnelle faible), l’image qui nous arrive de
ces galaxies se trouve très légèrement étirée selon une direction particulière, c’est ce que l’on ap-
pelle le cisaillement gravitationnel. En conséquence, la forme mesurée d’une galaxie (caractérisée
par son ellipticité) peut être vue comme la somme de la forme intrinsèque de la galaxie et du champ
de cisaillement à la position de cette galaxie. Si l’on suppose que les formes intrinsèques des galax-
ies sont distribuées de manière aléatoire on s’attend à ce que la moyenne de leurs ellipticités tende
vers zero alors qu’au contraire les déformations causées par le cisaillement sont cohérentes et ne
se moyennent pas à zero. Ainsi, mesurer la forme d’un grand nombre de galaxies nous permet
d’avoir un estimateur bruité mais non baisé (du moins en première approximation) du champ de
cisaillement.

L’intérêt cosmologique fondamental du cisaillement gravitationnel réside dans le fait qu’il est
sensible à la masse totale de la lentille et donc en particulier à la matière noire qui représente la
grande majorité du contenu total en matière de l’Univers (autour de 85%) mais qui reste complète-
ment invisible autrement que par ses e�ets gravitationnels. Une des applications de cet e�et de
cisaillement est la cartographie de la distribution de masse d’une lentille (et donc majoritairement
de la matière noire qui la constitue) en essayant d’inverser l’opérateur linéaire reliant cette distri-
bution de masse au champ de cisaillement observé. Là encore, ce problème constitue un exemple
typique de problème inverse linéaire.

Dans le cas où l’on cherche à reconstruire une carte bidimensionnelle d’une lentille situé à une
distance bien connue, le problème n’est pas nécessairement mal posé. En e�et, l’opérateur de ci-
saillement possède un inverse explicite et stable dans le cas où le problème est posé sur une grille
régulière. Cependant, comme discuté plus en détails dans la prochaine section, en pratique le ci-
saillement n’est mesuré que là où l’on observe des galaxies en arrière plan, qui sont distribuées de
façon aléatoire, ce qui complique l’inversion, particulièrement aux petites échelles.

Dans le cas où l’on cherche à reconstruire une carte tridimensionnelle de la distribution de
matière à l’origine du champ de cisaillement, le problème devient extrêmement mal posé. Plusieurs
méthodes ont été proposées dans la littérature pour essayer de reconstruire cette carte tridimen-
sionnelle mais sans grand succès, ce qui a largement limité jusqu’à ce jour l’application de ce genre
de techniques. En particulier, les cartes estimées par ces méthodes échouent à reconstruire correcte-
ment les structures le long de la ligne de visée, ainsi une lentille située à une distance spéci�que
se retrouve complètement étalée le long de la ligne de visée dans la carte reconstruite, si bien qu’il
est très di�cile d’en déduire les propriétés de la lentille, tels sa masse et sa distance.

Cartographie de haute résolution combinant cisaillement et flexion

Lorsque l’on cherche à reconstruire une carte bidimensionnelle d’une lentille à une distance con-
nue, on se trouve confronté à deux di�cultés. Premièrement, le champ de cisaillement n’est accessi-
ble qu’à la position particulière des galaxies en arrière plan, ce qui rend l’inversion de l’opérateur de
cisaillement mal posé si l’on ne lisse les données sur une grille régulière au préalable. Deuxième-
ment, les mesures d’ellipticité sont très largement dominées par la forme intrinsèque des galax-
ies, ce qui rend l’estimation du champ de cisaillement extrêmement bruitée si l’on n’applique pas
un lissage visant à réduire le niveau de bruit. Dans tous les cas, un simple lissage permet de re-
conditionner le problème et de réduire le niveau de bruit mais au prix de la perte de l’information
aux petites échelles.
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La méthode que nous proposons a pour but de reconstruire une carte de masse de haute résolu-
tion, c’est à dire en préservant les détails aux petites échelles lorsque ceux-ci sont discernables du
bruit, en appliquant une régularisation parcimonieuse au problème inverse nous évitant d’avoir
recours à tout lissage des données. De plus, a�n de gagner en sensibilité, en particulier aux petites
échelles, nous proposons de combiner l’e�et de cisaillement gravitationnel avec l’e�et de �exion
gravitationnel (causant des déformations d’ordre supérieur) particulièrement sensible aux détails.
Nous testons l’algorithme résultant sur un jeux de simulations correspondant à un relevé typique
e�ectué avec le satellite Hubble. Nous montrons en particulier l’apport de la �exion qui nous per-
met de résoudre certaines sous-structures de petites tailles d’amas de galaxies qui ne peuvent pas
être reconstruites uniquement à partir du cisaillement.

Cartographie tridimensionnelle

Contrairement au problème de la cartographie bidimensionnelle, la reconstruction tridimension-
nelle de la carte de matière noire implique l’inversion d’un opérateur linéaire supplémentaire agis-
sant selon la ligne de visée qui se trouve être particulièrement mal posé. Il est donc nécessaire de
faire appel à une régularisation particulièrement e�cace pour tenter de résoudre ce problème. Les
méthodes de l’état de l’art reposent soit sur un re-conditionnement de cet opérateur en utilisant
une décomposition en valeurs singulières, soit sur un �ltrage de Wiener basé sur un a priori du
spectre de puissance du signal recherché. Ces deux approchent se sont révélées particulièrement
ine�caces. La première du fait que les valeurs singulières de faible amplitude restent fondamen-
tales pour reconstruire une distribution de masse correctement localisée le long de la ligne de visée.
La seconde du fait qu’un a priori sur le spectre de puissance n’est absolument pas adapté à la dis-
tribution de masse que l’on cherche à reconstruire, très di�cilement caractérisable par son spectre
de puissance.

Nous proposons donc une méthode basée sur l’a priori que la distribution de matière doit être
parcimonieuse le long de la ligne de visée. En e�et, le signal que l’on cherche à reconstruire est
constitué d’halos de matière noire (autour des amas de galaxies) situés à des distances bien précises
tandis qu’en dehors de ces zones particulières, la densité de matière est en moyenne très faible et
peut être correctement approximée à zéro étant donné le niveau de bruit. Nous démontrons sur une
simulation particulière que notre algorithme est capable de reconstruire correctement la densité
de matière d’un halo massif (avec la bonne amplitude et correctement localisé en distance) alors
que les méthodes précédentes produisent une distribution non localisée, à partir de laquelle il est
impossible d’inférer directement la masse ou la distance de l’objet.

Nous caractérisons notre méthode sur un vaste jeux de simulations basées sur les caractéris-
tiques de la mission Euclid et nous montrons que notre algorithme est capable de produire des
cartes de densité en trois dimensions à partir desquels nous pouvons directement mesurer la dis-
tance des amas de galaxies ainsi qu’estimer leurs masses. Cette nouvelle approche ouvre donc la
voie vers de nouvelles applications de la cartographie tridimensionnelle par cisaillement gravita-
tionnel jusqu’alors impossibles en raison des limitations des méthodologies existantes.
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cosmologie sur la boule

Ondele�es isotropes sur la boule 3D

Les relevés cosmologiques, et en particulier les relevés de galaxies, sont observés en coordon-
nées sphériques (position sur le ciel combinée à la mesure de la distance des objets par rapport
à nous) et vivent donc naturellement sur la boule tridimensionnelle. A�n d’extraire un maximum
d’information cosmologique il est nécessaire de développer des outils d’analyse appropriés à la
géométrie particulière de ces relevés. Dans ce contexte, nous proposons une nouvelle construction
en ondelettes directement dé�nie sur la boule et donc particulièrement bien adaptée à des �ns
d’études cosmologiques.

Cette ondelette est la première ondelette sur la boule permettant à la fois analyse et synthèse.
Reposant sur la décomposition de Fourier-Bessel sphérique, elle est construite par extension sur la
boule des concepts développés sur la sphère utilisant la décomposition en harmoniques sphériques.
Contrairement à d’autres constructions proposées ultérieurement dans la littérature, cette on-
delette est non séparable, ce qui lui confère des propriétés telles que l’isotropie ou l’invariance
par translation qui sont extrêmement désirables dans nombre d’applications.

Analyse tridimensionnelle de relevés de galaxies spectroscopiques

Les relevés de galaxies spectroscopiques fournissent d’excellentes sondes pour contraindre en par-
ticulier les paramètres de l’énergie sombre. Cependant, cette information est principalement ren-
fermée dans l’évolution radiale de la distribution de galaxie. Il est donc primordial de correctement
extraire l’information radiale pour exploiter tout le potentiel de cette sonde. L’approche classique à
ce problème, dite tomographique, consiste à séparer le relevé en couches de rayons di�érents puis
de calculer des spectres de puissances angulaires croisés entre les couches. Une autre approche,
jusqu’ici beaucoup moins explorée, consiste à procéder à une décomposition harmonique sur la
boule (transformée de Fourier-Bessel sphérique) du relevé puis de calculer le spectre de puissance
des coe�cients obtenus.

En théorie, ces deux approches devraient permettre de capturer la même information. Cepen-
dant, en pratique, elles ne sont pas sensibles de la même manière à un certain nombre d’e�ets et
de systématiques et ne sont donc pas nécessairement équivalentes. Nous procédons à une analyse
comparative à l’aide de matrices de Fisher a�n d’investiguer l’impact de l’exclusion des échelles
non-linéaires (di�ciles à interpréter) ainsi que l’incertitude sur le biais des galaxies (source de
systématiques) pour ces deux approches di�érentes.

Nous trouvons que l’analyse basée sur la décomposition de Fourier-Bessel est plus à même de
distinguer l’incertitude sur le biais des galaxies de l’impact de l’énergie sombre et permet une ré-
jection plus nette des échelles indésirables. Ceci nous amène à conclure que cette approche devrait
être favorisée par rapport à une analyse tomographique classique pour les prochains relevés tel
celui de la mission Euclid.
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1 I N T R O D U C T I O N

Cosmology has entered in the last decade a new era of precision. With the success of the WMAP
and Planck missions, the standard cosmological model is now well established and its main pa-
rameters are measured at the percent level. Yet, in this model, conventional baryonic matter only
accounts for a mere 5 % of the total energy content today, while an overwhelming 95 % of the
Universe is composed of 27 % of dark matter and 68 % of dark energy. If these two components are
necessary for the model to �t the observations, they remain largely mysterious and understand-
ing the physical nature of this dark universe constitutes one of the main challenges of modern
cosmology.

Gravitational lensing, that is the distortion of the images of distant galaxies by intervening
massive objects, has been identi�ed as one of the most promising probes to help answer questions
relative to the nature of dark matter and dark energy. Indeed, as the lensing e�ect is caused by
the total matter content, it can directly probe the distribution of dark matter. In the weak lensing
regime, where those deformations are small, there is a direct linear mapping between the dark
matter distribution and the measured lensing e�ect. Reconstructing the dark matter map from
weak lensing therefore constitutes a linear inverse problem which can be ill-posed in practice
when mapping the dark matter in three dimensions and when part of the data is masked. In these
situations, the information is degraded in a way that makes it impossible to recover a meaningful
dark matter map without additional prior information.

Ill-posed linear inverse problems such as dark matter mass-mapping are in fact ubiquitous and
well studied in the signal processing literature. In recent years, a class of methods based on a so
called sparse prior has proven remarkably successful at solving inverse problems in a wide range
of �elds such as medical imaging or geophysics. These methods rely on the assumption that the
signals to recover are sparse, i.e. can be represented with a small number of non-zero coe�cients,
and use this information to constrain the solution of the inverse problem. As the sparsity of a
signal depends on the basis used to represent it, a key aspect of these methods is the choice of an
appropriate sparse representation for the signals of interests.

The primary goal of this thesis is therefore to apply these sparse regularisation techniques to the
weak lensing problem in order to build next-generation dark matter mass-mapping tools which
can eventually help us address the challenges of modern cosmology.

The aim of the �rst part of this thesis is to introduce the concepts and tools of sparse regular-
isation. In Chapter 3 I introduce the notion of sparsity, how it can be applied in practice to solve
inverse problem, and the sparse optimisation algorithms used in the rest of this thesis. In comple-
ment, I provide in Chapter 4 an introduction to wavelets, which are a particularly successful and
versatile class of sparse representations, at the core of all the applications presented in the follow-
ing chapters. Equipped with these tools I present in Chapter 5 a �rst application of these methods
to the problem of the recovery of the power spectrum of primordial perturbations. In this canoni-
cal example of a linear inverse problem, the aim is to use measurements of the anisotropies of the
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Cosmic Microwave Background we observe today to reconstruct this primordial power spectrum,
which carries valuable information about the physics at play in the primordial universe.

In the second part of this thesis I focus on the particular problem of weak lensing mass-mapping.
After introducing the weak lensing framework in Chapter 6, I �rst address in Chapter 7 the prob-
lem of the high-resolution 2D mass-mapping of galaxy clusters from weak lensing alone. I develop
a new approach, based on sparse regularisation which makes use of higher order lensing informa-
tion in order to improve the resolution of the mass map and allow the detection of small substruc-
ture. The ability to reconstruct mass maps at these resolutions from weak lensing alone can be of
considerable interest for investigating the nature of dark matter. In Chapter 8 I consider the more
di�cult problem of reconstructing the dark matter density in three dimensions, using tomographic
weak lensing information. The sparse reconstruction method I develop in this chapter is capable
of recovering both the masses and distances of dark matter halos and represents a signi�cant im-
provement over previous state-of-the-art techniques, opening the door to new applications for this
kind of analysis.

The last part of this thesis focuses on the 3D analysis of cosmological surveys in spherical coor-
dinates. By nature, cosmological surveys which include distance estimates, such as spectroscopic
galaxy surveys, live on the 3D ball. Preserving this spherical geometry in the subsequent analysis is
crucial to avoid unnecessary mixing of purely radial or angular e�ects. In Chapter 9, I develop the
�rst practical wavelet transform on the 3D ball which allows analysis and synthesis in both contin-
uous and discrete settings. This isotropic, shift invariant wavelet is ideally suited for the analysis
of galaxy surveys. Finally, I present in Chapter 10 a comparison of methods for the 3D analysis of
spectroscopic galaxy survey. The �rst method investigated is a partial, tomographic expansion of
the data while the second is a full harmonic expansion on the 3D ball. As demonstrated, the full
3D expansion is more robust to unavoidable systematic e�ects than a more standard tomographic
analysis, especially for constraining dark energy parameters.
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The purpose of this �rst chapter is to provide the general cosmological background for the rest
of this thesis. We introduce in particular the standard cosmological model and present some of the
current challenges of modern cosmology. This chapter is complemented by Chapter 6 which will
be dedicated to gravitational lensing.

2.1 the Λcdm model

In this section, we brie�y describe the cosmological concordance model, which has been so far
extremely successful at describing cosmological observations. This model is based on two primary
components, Cold Dark Matter (CDM) and a non-vanishing cosmological constant Λ, and is con-
sequently known as ΛCDM.

In the currently commonly accepted picture of the Universe, shortly after an initial singular-
ity, the Universe underwent a very brief period of exponential expansion, known as in�ation (see
Section 2.3.1), which imprinted small �uctuations of quantum origin on an otherwise extremely
smooth background. This short period of in�ation ended around 10−32s after the initial singular-
ity, marking the beginning of an era of much slower expansion and progressive cooling. After
this initial phase, the Universe was �lled with a hot plasma of baryons, electrons, and photons.
The mean free path of photons remained extremely short during a long time and this plasma was
therefore opaque. As the Universe expanded it slowly cooled down, until the temperature reached
the 3000 K mark, about 380,000 years after the Big Bang, at which point electrons and protons
combined to form neutral atoms. During this event, called recombination, the mean free path of
photons suddenly increased to reach the order of the Hubble scale and the Universe became trans-
parent. The �rst light emitted at this epoch is still visible to this day as the Cosmic Microwave
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4 cosmological context

Figure 2.1: Cosmic history of the Universe from the Big Bang to present day. Credit: ESA - C. Carreau

Background (CMB), now observed in the microwave domain at a temperature of 2.725 K and iden-
ti�ed for the �rst time by Penzias and Wilson (1965). The evolution of the Universe then remained
dominated by its matter content, allowing the growth of the initial density perturbations into the
large scale structure we observe today, through gravitational collapse. About 4 billion years ago,
the Universe entered a new phase of accelerated expansion, believed to be driven by dark energy,
which will eventually stop the growth of structures. Our understanding of this history of the Uni-
verse is summarised on Figure 2.1.

In order to describe this evolution, the ΛCDM model assumes that the Universe is composed of
the following �uids, each behaving and in�uencing the dynamics of the Universe in a distinct way.

dark energy The total energy content of the Universe today is dominated at 69.11 % by a
mysterious dark energy. As we will see in the following section, this energy has negative pressure
and is driving a new phase of accelerated expansion (Riess et al., 1998; Perlmutter et al., 1999). So far,
this energy remains undistinguishable from a non-vanishing cosmological constant Λ in Einstein’s
equations. One the main goals of the next generation of cosmological surveys will be to determine
whether dark energy is indeed due to a cosmological constant or if it behaves as a dynamical �eld.

cold dark matter The second largest contribution to the total energy content of the Universe,
accounting for 25.84 %, is due to dark matter. This non-baryonic matter does not interact through
the electromagnetic interaction, and is therefore invisible, hence its dark denomination. If the true
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Parameter name Symbol Value
Hubble constant H0 67.74 ± 0.46
Dark energy density ΩΛ 0.6911 ± 0.0062
Total matter density Ωm 0.3089 ± 0.0062
Physical Baryon density Ωbh

2 0.02230 ± 0.00014
Power spectrum normalisation σ8 0.8159 ± 0.0086
Spectral index ns 0.9667 ± 0.0040
Reionisation optical depth τ 0.066 ± 0.012

Table 1: Main cosmological parameters 68 % con�dence limits for the ΛCDM from Planck Collaboration
et al. (2015b). These parameters are derived from a combination of Planck CMB power spectra
with the lensing reconstruction and external data (BAO+JLA+H0).

nature of dark matter remains unknown, it is an essential component of the standard cosmological
model and although it has not be directly detected or produced to this day, its existence is necessary
to explain a number of observations, in particular, the famous weak lensing mass-mapping of the
Bullet cluster (Clowe et al., 2004, 2006). Several �avours of dark matter have been proposed, but
the currently favoured model is Cold Dark Matter (CDM), where the cold denomination implies
that dark matter particles are non-relativistic.

baryonic matter The remaining 4.86 % are composed of ordinary baryonic matter, essentially
in the form of hydrogen and helium gas in the intergalactic medium.

relativistic species Finally, the Universe today contains trace amounts of electromagnetic
radiation, mainly due to the CMB photons. Cosmological neutrinos can also contribute to this
component.

One of the success of the ΛCDM model is its ability to describe this evolution of the Universe
and reproduce all cosmological observations from a small set of parameters, the most relevant of
which are summarised on Table 1.

2.2 the homogeneous isotropic universe

2.2.1 Cosmological General Relativity and the FLRW metric

Our comprehension of the Universe and its evolution relies on Einstein’s theory of General Relativ-
ity (GR). In this geometrical theory of gravity, what appears like a gravitational force is only the
consequence of the curvature of the 4 dimensional spacetime. In turn the curvature of spacetime
will be generated by its energy-momentum content. Applied to cosmological scales, GR makes the
link between the geometry of the Universe and its matter and energy content and describes their
dynamical evolution with time.
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The local geometry of spacetime is entirely described by the metric tensor дµν which allows the
computation of distances between two points by de�ning a line element ds2:

ds2 = дµν dx µ dxν (2.1)

where x µ is some set of coordinates with indices ranging from 0 to 3, with by convention 0 being
the time dimension and 1-3 the spatial dimensions. As a special example, let us consider a �at
spacetime. In this case, the metric reduces to the Minkowski metric ηµν of special relativity de�ned
in Cartesian coordinates by:

η =

*.......
,

−c2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

+///////
-

(2.2)

In GR, in the absence of external forces, the inertial motion of particles (including massless
photons) in a curved spacetime is determined by the geodesic equation:

d2x µ
dλ2 + Γ

µ
α β

dxα
dλ

dyβ

dλ = 0 (2.3)

where the a�ne parameter λ is a scalar parametrising the particle along its trajectory and Γ
µ
α β are

Christo�el symbols, function of the metric дµν and its partial derivatives:

Γ
µ
α β =

1
2д

µν
(
∂дνα

∂x β
+
∂дν β

∂xα
−
∂дα β

∂xν

)
(2.4)

Trajectories which verify Equation (2.3) are known as spacetime geodesics. This equation will be
especially important to present the gravitational lensing e�ect in Chapter 6 as it describes how
light propagates in a curved spacetime and in particular how images from distant galaxies are
lensed by the intervening large scale structure of the Universe. In the particular case of a �at
spacetime, described by the metric ηµν , the Christo�el symbols simply vanish, as the components
of the metric are constants, and Newton’s �rst law of motion can be recovered:

d2x µ
dt2 = 0 (2.5)

In this case, the geodesic is simply a straight line as one would expect in the absence of external
forces.

If the motion of free falling objects can be explained by the curvature of spacetime, the question
is now what causes spacetime to acquire curvature in the �rst place. This is described in GR by
the famous Einstein �eld equations which relate the curvature to the local energy and momentum
content of spacetime through the following expression:

Gµν =
8πG
c4

Tµν (2.6)

whereTµν is the energy-momentum tensor andGµν is the Einstein tensor which measures the cur-
vature of spacetime and can be expressed in terms of the Christo�el symbols and their derivatives
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but remains ultimately a function of the metricдµν . The energy-momentum tensor describes the lo-
cal density and �ux of energy and momentum of all the content of spacetime, including matter and
radiation. Solving analytically the Einstein �eld equations without any additional considerations
such as symmetries of the system is generally not possible. In particular, applying these equations
to describe the evolution of the entire Universe will require some simplifying assumptions, as we
will see now.

One of the cornerstones of cosmology is the Cosmological Principle which implies that the Uni-
verse is both isotropic and homogeneous on large scales. Although this principle can seem at odds
with our own direct experience of the Universe, which is extremely inhomogeneous at our scale, it
is remarkably well veri�ed on large scales by CMB and Large Scale Structure (LSS) observations.

Thanks to the Cosmological Principle, the Einstein �eld equations can be greatly simpli�ed. First
and foremost, as was shown independently by Robertson and Walker in the mid 1930s, the metric
describing an homogeneous and isotropic Universe is unique and is known as the Friedmann-
Lemaître-Robertson-Walker (FLRW) metric:

ds2 = −c2 dt2 + a2(t) �
dr 2 + fK (r )2 dΩ2�

(2.7)

where r is the time independent comoving distance, a(t) is the scale factor describing an isotropic
scaling of the cosmological comoving coordinate system with time and the function fK (r ) is the
transverse comoving distance which depends on the curvature K of the Universe:

fK (r ) =



K−1/2 sin
(
K−1/2r

)
for K > 0 (spherical)

r for K = 0 (�at)

|K |−1/2 sinh
(|K |−1/2r

)
for K < 0 (hyperbolic)

(2.8)

The second simpli�cation implied by the Cosmological Principle is that the matter-energy con-
tent of the Universe can be described as a perfect �uid which is completely characterised in a
comoving inertial frame by a simple energy-momentum tensor of the form:

T µν =

*.......
,

ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

+///////
-

(2.9)

where ρ is the energy density and p the pressure of the �uid. As we will see in the next section,
the total energy density and pressure can be separated into di�erent contributions for the various
components of the Universe, each with their own equations of state.

Thanks to the simpli�cation of both the metric and the energy-momentum made possible by the
Cosmological Principle, the Einstein �eld equations can now be used to describe the dynamical
evolution of the Universe.



8 cosmological context

2.2.2 The dynamics of the universe

Combining the FLRW metric and the energy-momentum tensor of a perfect �uid in Einstein �eld
equations yields two independent equations relating the dynamical evolution of the Universe to
its matter and energy content. These are known as the Friedmann equations:( ȧ

a

)2
=

8πG
3 ρ −

Kc2

a2
(2.10)

ä

a
= −

4
3πG

(
ρ +

3p
c2

)
(2.11)

Let us introduce the dimensionless Hubble parameter H (t) = ȧ(t)/a(t) whose value at present
time t = t0, i.e. for a = 1, is the Hubble constant H0 = ȧ(t0). The Hubble constant therefore
corresponds to the speed of the expansion of the Universe today. H0 is usually de�ned in terms of
the dimensionless reduced Hubble constant h according to:

H0 = 100 h km s−1 Mpc−1 (2.12)

Given the �rst Friedmann equation, the Hubble parameter at any given time or equivalently, any
given scale factor can simply be deduced from the total energy density ρ. To describe the evolu-
tion of ρ with the scale factor, both Friedmann equations can be combined to yield the following
conservation relation:

dρ
da +

3
a

(
ρ +

p

c2

)
= 0 (2.13)

For the various components of the Universe, one can de�ne an Equation Of State (EOS) relating
the pressure of the �uid to its energy density through a parameter w :

p = c2wρ . (2.14)

In particular, for non-relativistic matter (cold dust),wm = 0 while for relativistic specieswr = 1/3.
For these two particular cases, the EOS is constant and Equation (2.13) is readily solved:

ρr (a) = ρr ,0a−4 ; ρm(a) = ρm,0a
−3 (2.15)

As one can see from the acceleration equation Equation (2.11), a �uid with an EOS with w <

−1/3 would drive an acceleration of the expansion. In particular, a cosmological constant can be
interpreted as a �uid with a �xed EOSwΛ = −1, in which case its energy density remains constant
with time. However, in order to investigate the nature of dark energy, one can let its EOS free to
vary with time, which leads to the following expression:

ρde = ρde ,0a
f (a) with f (a) = − 3

lna

∫ lna

0
(1 +wde (a′)) d lna′ (2.16)

To restrict the functional space of wde (a), several parametrisation have been used in the liter-
ature. Throughout this work we will be using the common Linder (Linder, 2003) parametrisa-
tion wde (a) = w0 +wa(1 − a). This parametrisation makes explicit a possible dependence of the
EOS with time through the wa parameter and would reduce to a simple cosmological constant
for w0 = −1 and wa = 0. For this speci�c form of the EOS, the function f becomes f (a) =
−3(1 +w0) − 3wa

(
1 + 1−a

ln(a)
)
. The total energy density ρ(t) can be expressed as the sum of

ρ(a) = ρm(a) + ρr (a) + ρde (a) (2.17)
= ρr ,0a

−4 + ρm,0a
−3 + ρde ,0a

f (a) (2.18)
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One can see from Equation (2.10) that for a speci�c value ρc of the density ρ, the curvature of
the Universe K vanishes. This value is known as the critical density and can be expressed as:

ρc (a) = 3H 2(a)
8πG (2.19)

It is common to rescale the density ρ by the critical ρc and de�ne a dimensionless density parameter
Ω:

Ω(a) = ρ(a)
ρc (a) (2.20)

which leads to
Ω(a) = Ωra

−4 + Ωma
−3 + Ωdea

f (a) (2.21)

By de�nition of the critical density, Ω = 1 would correspond to a �at universe otherwise, for
non-zero curvature Ω , 1. The e�ect of curvature can conveniently be interpreted as an additional
energy density by de�ning a curvature density parameter Ωk (a) = 1 − Ω(a).

H 2(a) = H 2
0

[
Ωra

−4 + Ωma
−3 + Ωka

−2 + Ωdea
f (a)] (2.22)

2.2.3 Distances

Redshi�

In an expanding Universe described by the FLRW metric it is easily shown that the light coming
to us from distant sources undergo a shift in frequency which can be expressed as the ratio of the
scales factor at the emission and observation:

λobsv
λemit

=
aobsv
aemit

(2.23)

In the absence of expansion aobsv = aemit and the wavelength of the light is not a�ected as it
propagates through the Universe. However, if the Universe expands, the scale factor at the time of
observation is larger than it was when the light was emitted by the distant source, in which case
λobsv > λemit: the spectrum is shifted towards the red. This shift in wavelength is quanti�ed by the
dimensionless cosmological redshift z de�ned as:

z =
λobsv − λemit

λobsv
(2.24)

Given that the scale factor is normalised at a = 1 at present time, the measured redshift z of a
distant source is directly linked to the scale factor at the time of emission by:

a =
1

1 + z (2.25)

The redshift of distant sources can directly be linked to their distance through the cosmological
model and therefore this e�ect provides us with an invaluable tool to probe the depth of the Uni-
verse.

This link between redshift and distance was �rst established by Edwin Hubble in 1929 who
observed a roughly linear relation between the velocity and the distance of "extra-galactic nebulae"
(Hubble, 1929) which is known as Hubble’s law : v = H0r . This linear law is only true for the local
Universe and can be recovered from the de�nition of the Hubble parameter. On cosmological scales,
the evolution of the Hubble parameter with time needs to be taken into account.
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Comoving distance

The comoving distance r has been introduced with the formulation of the FLRW metric and cor-
responds to the distance between two points in the cosmological comoving coordinate system.
As the Universe is expanding, the physical proper distance between objects is always �uctuating
(increasing) but the comoving distance remains una�ected by the expansion by factoring out the
scale factor a.

As was mentioned in the previous paragraph, the cosmological model allows us to relate the
observed redshift of a distant source to its comoving distance with respect to the observer. The
expression of this relation can be worked out from the de�nition of the metric dr = a−1c dt and
the de�nition of the Hubble parameter dt = a−1H (a)−1 da:

r (a) =
∫ 1

a

c da′

a′2H (a′) . (2.26)

This expression gives us the comoving distance of an object given that we observe now light that
it emitted when the scale factor of the Universe was equal to a. Equivalently this relation can be
expressed in term of the observable redshift, given Equation (2.25) :

r (z) =
∫ z

0

c dz ′
H (z ′) . (2.27)

Angular diameter distance

The angular diameter distance, as its name implies, is linked to another fundamental approach
to measuring distances based on geometrical considerations. In Euclidian geometry, the distance
to an object of a given size can simply be related to its apparent angular diameter. In complete
analogy, the angular diameter distance DA is de�ned so that an object of physical size ∆ observed
at a redshift z will have an apparent angular size δθ according to:

DA(z) = ∆

δθ
(2.28)

This distance can directly be expressed in terms of the transverse comoving distance fK (r (a))
de�ned in Equation (2.8):

DA(a) = afK (r (a)) = fK (r (z))
z

(2.29)

Luminosity distance

A last essential measure of distances is the luminosity distance, which is based on the scaling of
the �ux of a distant source with its distance. It is de�ned so that the observed �ux F of a source at
distance DL with an intrinsic luminosity L correspond to:

F =
L

4πD2
L

(2.30)

This distance can be expressed in terms of the transverse comoving distance fK or the equivalently
in terms of the angular diameter distance as:

DL(a) = a−1 fK (r (a)) = a−2DA(a) (2.31)
= (1 + z)fK (r (z)) = (1 + z)2DA(z) (2.32)
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Figure 2.2: Cosmological distances as a function of redshift in a �at universe with Ωm = 0.25 and Ωde =

0.75.

The three cosmological distances presented in this section are plotted as a function of redshift
on Figure 2.2.

2.3 linear structure formation

The Universe described in the previous section is smooth and homogeneous, which if course is at
odds with observations of the LSS. It is however possible to describe the formation and evolution
of these structures by treating them as small �uctuations on top of the smooth FLRW background
which leads to the linear theory outlined in this section.

2.3.1 Primordial perturbations

The structures we observe today can be described by the gravitational collapse of small inhomo-
geneities present in the early Universe. The commonly accepted mechanism to explain the origin
of these perturbations is known as in�ation (Guth, 1981; Linde, 1982) which corresponds to a short
period of exponential expansion underwent by the Universe, ending approximately 10−30s after
the initial singularity. In simple in�ationary models, this expansion is driven by a scalar �eld, the
in�aton, which can exert a negative pressure (much like dark energy) for a limited amounted of
time as the �eld slowly rolls towards a ground state, at which point in�ation stops. In this process,
quantum �uctuations of the in�aton are imprinted in the metric and reach macroscopic scales
under this extremely fast period of expansion. As in�ation ends, these perturbations of quantum
origin remain and will act as seeds for the eventual formation of large scale structures.
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The scale dependence of these perturbations are encoded by the Primordial Power Spectrum
(PPS), generally expressed in the following parametric form:

Pp(k) = As

(
k

kp

)ns−1+ 1
2αs ln(k/kp )

, (2.33)

where kp is a given pivot scale, As is the overall amplitude of the power spectrum, ns is known as
the spectral index and αs is an optional running parameter. An exactly scale-invariant PPS, known
as the Harrison-Zeldovich model, which sets ns = 1 and αs = 0 (Harrison, 1970; Zeldovich, 1972), is
now signi�cantly disfavoured by CMB constraints (Planck Collaboration et al., 2015b), and a near
scale-invariant spectrum is instead preferred by current observations.

To this day, there is no direct evidence to con�rm the validity of the in�ationary paradigm, but
in�ation is nonetheless a remarkably successful phenomenological model. In addition to providing
an explanation for the origin of primordial perturbations, it was realised by Guth that a period of
exponential expansion of the Universe could explain some of the major issues in cosmology not
directly addressed by the standard model, in particular the horizon and �atness problems described
below.

the horizon problem As mentioned in the previous section isotropy and homogeneity are
part of the fundamental assumptions of cosmology. Yet on the largest scales the Universe ap-
pears simply too isotropic. In particular, the level of isotropy of the CMB is ba�ing (temperature
anisotropies are at the 10−5 level) as it would have required regions of the universe at opposite
position on the sky to have been in causal contact in the past, in order to reach a common ther-
mal equilibrium, which should not have been possible under matter or radiation domination. The
period of exponential expansion associated with in�ation conveniently solves this problem by al-
lowing the entire observable Universe to have originally occupied a very small volume. Within
this small volume, even the largest scales observable today would have been in causal contact and
reached thermal equilibrium before the onset of in�ation.

the flatness problem Current observations seem to suggest that the Universe today is in
fact �at, with ΩK ≈ 0. In itself this result is not paradoxical, however the curvature parameter
steadily increases with the scale factor during matter and radiation domination, which means that
in order for the curvature to be small today, the Universe would have needed to be exceptionally �at
in the past (ΩK of the order of 10−16 at the epoch of nucleosynthesis). Such small values seem oddly
speci�c and pose an acute �ne-tuning problem. In�ation provides a mechanism to explain why the
Universe was so �at at early times as curvature is naturally diluted during a period of exponential
expansion. As a result, any non-zero initial curvature can be su�ciently suppressed by the end of
in�ation to fall within the current constraints, thus eliminating the �ne-tuning problem.

2.3.2 Linear growth

As discussed above, in�ation can be invoked to produce small density perturbations in an otherwise
homogeneous universe. These primordial perturbations will act as seeds which will grow, driven
by gravitational collapse, to ultimately form the structures present in our Universe today. In the
limit where these perturbations remain small, their growth can be described by a linear evolution
as we will describe in this section.
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Figure 2.3: Linear growth factor as a function of scale factor for an Einstein-de Sitter universe (Ωm = 1)
and a �at universe with a cosmological constant. The presence of a non vanishing cosmological
constant suppresses the growth of structure when the universe leaves matter domination.

Let us introduce the matter density contrast δ (x ,a) at comoving position x and at scale factor a,
de�ned in terms of the matter density ρm as:

δ (x ,a) = ρm(x ,a) − ρ̄m(a)
ρ̄m(a) , (2.34)

where ρ̄m(a) is the mean matter density at scale factor a. In the limit of small perturbations δ � 1
(veri�ed on large scales and at early times), the evolution of the density contrast can be described
by linear perturbation theory. It can be shown (e.g. Dodelson, 2003; Peebles, 1980) that in the
limit of small peculiar velocities and for collisionless dark matter, the density contrast follows a
di�erential equation of the form:

δ̈ + 2H δ̇ − 4πGρ̄mδ = 0 . (2.35)

In this very simple di�erential equation, the matter density ρ̄m can be interpreted as a source term
while the Hubble parameter H behaves as a damping term. The growth of structure is therefore
suppressed by the expansion of the Universe. Another important point is that this equation allows
the decoupling of spatial and temporal coordinates and accepts general solutions of the form:

δ (x ,a) = D+(a)f1(x) +D−(a)f2(x) , (2.36)

where f1 and f2 are particular initial conditions while D+ and D− are respectively a growing and
decaying mode. We are only interested in the growing mode D+, as D− eventually decays and does
not a�ect structure formation. The general solution of this growing mode is:

D+(a) = 5Ωm

2
H (a)
H0

∫ a

0

da′
(a′H (a′)/H0)3 . (2.37)

This expression is normalised so that D+(a) = a during matter domination. Figure 2.3 illustrates
the impact of dark energy on this growth factor, which clearly suppresses growth compared to a
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matter dominated Universe. For the rest of this thesis, we will de�ne the normalised linear growth
factor D as:

D(a) = D+(a)
D+(a = 1) . (2.38)

This normalisation ensures that the growth factor today is equal to 1, so that the density contrast
δ (x ,a) at a given time a can simply be described in terms of the density contrast today δ (x) as:

δ (x ,a) = δ (x)D(a) . (2.39)

2.3.3 Ma�er power spectrum

As can be demonstrated using stationarity and isotropy arguments, the Fourier modes of a Statisti-
cally Isotropic and Homogeneous (SIH) �eld are uncorrelated. In particular, as the density contrast
δ (x) can be expected to verify this SIH condition as a consequence of the Cosmological Principle,
this implies that the two-point correlation function of the 3D Fourier transform of the density �eld
can be expressed as:

< δ (k)∗δ (k ′) >= (2π )3 P(k) δD (k −k ′) . (2.40)

where δD is the Dirac delta function and P(k) is de�ned as the 3D matter power spectrum. One of
the main cosmological parameters, σ8, quanti�es the normalisation of this power spectrum and is
de�ned by the variance of the density contrast within a window of 8h−1Mpc.

Under linear evolution, the Fourier modes of the density contrast involve independently, and
this evolution can be described in terms of a linear transfer functionT (k), de�ned in Fourier space
as:

T (k) = δ (k ,a = 1)
δ (k ,a = 0)

δ (k = 0,a = 0)
δ (k = 0,a = 1) (2.41)

This function therefore accounts for the modulation of each Fourier mode between their original
value at the end of in�ation (a = 0) and their current value (a = 1). This includes not only the total
linear growth described previously but also accounts for the di�erent times of horizon crossing
of di�erent scales and most importantly for Baryon Acoustic Oscillations (BAO) e�ects, which are
due to the propagation of acoustic waves in the baryon-photon plasma before recombination. The
proper computation of this transfer function requires the use of Boltzmann codes such as CLASS
(Lesgourgues, 2011) or CAMB (Lewis et al., 2000) but a number of analytical �tting formulae are
also available when an exact computation is not essential. In particular, we use in Chapter 10 the
common �tting formula from Eisenstein and Hu (1998). This transfer function allows us to relate
the power spectrum today P(k) to the PPS, according to:

P(k) = T 2(k) Pp(k) . (2.42)

This linear transfer function only accounts for the evolution of density �uctuations in the linear
regime. On small scales, and at late times, the evolution of the density contrast becomes non-linear
and this simple description of the growth of structure breaks down. Non linear corrections can be
added to the linear power spectrum using for instance the Halo�t code corresponding to Smith
et al. (2003). The impact of these non linearities is an enhancement of the power spectrum on
small scales. A comparison of linear and non-linear power spectra is shown in Figure 2.4.
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2.4 conclusion

If the parameters of ΛCDM are now well constrained (see Table 1), understanding the nature of
dark matter, dark energy and the physics of in�ation are the main challenges of modern cosmology.

In the rest of this thesis, we will rely on this standard cosmological model and develop new tools
that can be used to help address the pressing questions of modern cosmology. In Chapter 5 we will
propose a new tool for probing in�ationary models by reconstructing the PPS. In Chapter 7 and
Chapter 8 we will develop new tools for mapping the dark matter distribution, which can even-
tually be used to investigate di�erent dark matter models and constrain cosmological parameters.
Finally in Chapter 10 we present a comparison of methods for the 3D analysis of galaxy surveys,
with a particular focus on constraints on the dark energy EOS.
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Sparsity is a concept used to describe signals which, when expressed in an appropriate basis, can
be represented with a small number of coe�cients. More fundamentally, this apparently simple
notion implies that the intrinsic number of degrees of freedom of a sparse signal is low, which
makes in fact a very strong statement about the nature of the signal. Sparsity provides a mathe-
matical framework to characterise this class of signals and leverage their properties to address a
wide range of practical problems.

A particular class of problems e�ciently solved using sparsity are linear inverse problems. In
such problems, one aims at recovering an unknown signal from a set of observations, degraded by
a linear operator. As we will see in this chapter, if the signal to recover is known to be sparse, it can
be robustly estimated from the measurements, even if the linear operator involved is not formally
invertible.

The aim of this chapter is to introduce the mathematical concept of sparsity, how it can be
applied to the regularisation of inverse problems, and most importantly, provide the algorithmic
tools allowing us to e�ciently solve these problems in practice. These tools, combined with the
sparse representations introduced in Chapter 4, will form the core of the methods developed in
the rest of this thesis to address various problems in the cosmological context.

3.1 introduction to sparsity

The concept of sparsity is very akin to Occam’s razor: if two hypotheses can explain equally well
the observations, the one with the fewest assumptions (i.e. the simplest one) should be preferred.
Sparsity provides a mathematical framework to quantify the complexity of potential solutions to
an inverse problem and therefore identify the simplest one.
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−λ

λ

HTλ
STλ
y = x

Figure 3.1: Response of the Hard Thresholding (blue) and Soft Thresholding (red) operators. Hard Thresh-
olding only sets to zero coe�cients with an amplitude lower than λ. Soft Thresholding shrinks
the amplitude of coe�cients by λ and sets to zero coe�cients of amplitude lower than λ.

A signal is considered to be sparse when most of its coe�cients are zero. More precisely, if we
consider a discrete signal x ∈ RN then x is said to be exactly k-sparse if only k of its coe�cients
xi |i∈J1. . .N K

are non zero. Behind this de�nition is the notion that for two signals living in the same
space, a sparse signal has a lower number of degrees of freedom than a non-sparse signal.

Quantifying the sparsity of a given signal x is simply a matter of counting the number of ac-
tive (i.e. non-zero) coe�cients of x . To describe this measure mathematically, we introduce the `0
pseudo-norm, noted ‖ · ‖0, which counts the number of active coe�cients of a signal. The `0 norm
can formally be de�ned by considering the active support of a signal Supp(x), the set of indices of
non-zero coe�cients, de�ned as

Supp(x) = �
i ∈ J1,N K | xi , 0

	
. (3.1)

Therefore ‖ x ‖0 is simply the number of elements of the set Supp(x) which leads to the following
de�nition

∀x ∈ RN , ‖ x ‖0= Card(Supp(x)) , (3.2)
where Card(X ) is the cardinality of set X .

In practice however, this mathematical de�nition of exactlyk-sparse signals is not always adapted
to natural signals. Indeed, a signal may have only a few coe�cients with a high amplitude, yet small
coe�cients are seldom identically zero, in which case its `0 norm is potentially high. Nevertheless,
such a signal can be considered as compressible, or weakly sparse, in the sense that it can be well
approximated by a strictly k-sparse signal. Indeed, a good approximation of such a signal but with
a lower `0 norm can be built by setting negligible coe�cients to zero and keeping only the k most
signi�cant coe�cients.

To mathematically describe this operation, one can introduce the Hard Thresholding operator
HTλ which sets to zero coe�cients of amplitude lower than a given threshold λ ∈ R:

∀i ∈ J1,N K, HTλ(x)i =



xi if |xi | ≥ λ
0 otherwise

. (3.3)

The response of the Hard Thresholding operator is illustrated in Figure 3.1. Using this operator, one
can build a strictly k-sparse non-linear approximation x̃ |k = HTλk (x) of a signal x by adjusting
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λ

−λ

Figure 3.2: Example of sparse approximation for a compressible signal. By setting the threshold λ to the
amplitude of the �fth largest coe�cient, only signi�cant (blue) coe�cients are preserved after
applying HTλ while non-signi�cant coe�cients (red) are set to zero.

the level of the threshold λk to the amplitude of the k-th largest coe�cient of x . Provided that the
original signal x had only k signi�cant coe�cients (i.e. coe�cients of non negligible amplitude)
the error induced by the non-linear approximation will be small. Figure 3.2 illustrates this concept
of sparse approximation of a compressible signal. Only �ve coe�cients (marked in blue) are sig-
ni�cant while the rest of the coe�cients (marked in red) have negligible amplitude. By setting the
threshold value λ to the amplitude of the �fth largest coe�cient, after Hard Thresholding all but
the �ve most signi�cant coe�cients will be set to zero.

The quality of this non-linear approximation can be quanti�ed by introducing a distance d be-
tween two signals and measuring the distance between the original signal and its approximation.
Depending on the speci�c application various distances can be used but the most common is based
on the quadratic `2 norm which quanti�es the energy of the approximation error. Given two signals
x and y in RN , the distance d between these two signals is

d(x ,y) =‖ x −y ‖22 . (3.4)

Therefore, one can quantify the degradation of the signal caused by a sparse approximation as
d(x̃ |k ,x).

Using these concepts, we can formally de�ne a class of signals said to be compressible if the sorted
magnitude of their coe�cients decays quickly according to a power law. If i(n) is the index of the
n-th largest coe�cient of x , such that |xi(0)| ≥ |xi(1)| ≥ . . . ≥ |xi(N )|, then a signal is compressible
if there exists C ∈ R+ and s > 1/2 such that:

∀n ∈ J1,N K, |xi(n)| ≤ Cn−s . (3.5)

With this de�nition, the larger the value of s , the faster the decay of the coe�cients. For compress-
ible signals, the k-sparse non-linear approximation error can be bounded:

d(x̃ |k ,x) ≤
C2

2s − 1k
−2s+1 . (3.6)

This upper bound guarantees that the faster the decay of the coe�cients, the smaller the non-linear
approximation error is when approximating a compressible signal by an exactly k-sparse signal.
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As a result, most of the developments presented in the following for exactly sparse signals still
hold to a very good approximation if the signals are in fact compressible.

Nevertheless, although the notion of strict sparsity can be extended to compressibility, most
natural signals are neither sparse nor compressible in the space in which they are measured. For
instance, a sinusoidal signal sampled in the time domain is clearly not sparse as most of its co-
e�cients are of signi�cant amplitude. However, through a Fourier transform, such a signal can
equivalently be represented in the frequency domain, in which it is extremely sparse (a sine is
1-sparse in the frequency domain).

This leads to the fundamental idea that the sparsity of a signal will be intrinsically linked to the
domain used to represent it. Therefore �nding appropriate signal representations that maximise
the sparsity of certain classes of signals is an active and important research �eld for the application
of sparse methodologies.

3.1.1 Sparse signal representation

Any given signal can be represented in a variety of domains without loss of information, but
depending on the properties of the signal and on the application, a given representation may be
preferred. In particular, �nding signal representations that maximise the sparsity of the coe�cients
is of special interest in the perspective of applying sparse methodologies.

A signal can be modelled as a linear combination of elementary templates called atoms. A family
of atoms which can span the functional space in which the signal to represent lives is called a
dictionary. More formally, given a signal x ∈ RN , x can be represented in a dictionary Φ ∈ RN×P

with P ≥ N as a linear combination of P atoms ϕi ∈ RN :

x = Φα =
P∑
i=1
ϕiαi , (3.7)

where α ∈ RP are the coe�cients of x in dictionary Φ. An important distinction can be made at
this point between redundant and non-redundant dictionaries. If the atoms of Φ form a basis of
RN , the size of the dictionary is N × N and the decomposition α is unique and non redundant
as α has the same size as x . On the contrary, when P ≥ N , the atoms of the dictionary are not
linearly independent and the decomposition α is no longer unique. On one hand, non-redundant
representations will lead to simpler sparse optimisation problems but, on the other hand, over-
complete dictionaries will o�er more �exibility in their design to better suit speci�c applications.

A fundamental example of non-redundant representation is theDiscrete Fourier Transform (DFT):

x = Fx̂ , (3.8)

where x̂ denotes the DFT of vector x and F is the Fourier matrix de�ned as :

Fn,k =
1
√
N
ei2πkn/N . (3.9)

The Fourier transform is the classical example of sparse representation for stationary periodic
signals. Indeed, a sine, which is not sparse in the time domain, becomes exactly 2-sparse in the
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Figure 3.3: Examples of atoms from various dictionaries. As a general rule, to achieve a sparse representa-
tion, one should choose a dictionary whose atoms correspond to the morphology of the signal.

Fourier domain. Furthermore, the DFT bene�ts from e�cient Fast Fourier Transform (FFT) algo-
rithms with a complexity in O(N logN ). We will also mention the very closely related Discrete
Cosine Transform (DCT) de�ned by:

αk =
N−1∑
n=0

xn cos
( π
N
(n + 1

2 )k
)

(3.10)

and its inverse formula:

xk =
2
N

*
,

1
2α0 +

N−1∑
n=1

αn cos
( π
N
(k + 1

2 )n
)

+
-
. (3.11)

The DCT dictionary can be extended to 2D discrete signals as a separable product of the DCTs
along each direction. This dictionary is particularly well suited to represent textures and can be
e�ciently implemented using fast cosine transform algorithms with a complexity in O(N logN ).
This makes the DCT a good candidate for image compression applications.

A major drawback of these dictionaries is that their atoms are non local. As a result, they are not
e�cient at representing local features or more generally non stationary signals. These limitations
can be mitigated by analysing the signal in windows small enough so that the properties of the
signal can be assumed to remain stationary, which leads to the Short-Term Fourier Transform (STFT)
or the block-DCT, used in the popular JPEG format.

Yet an even more e�cient solution to overcome these limitations is to resort to wavelets. Wavelets
are by construction designed to probe a signal in both time and frequency and provide sparse
representations for piecewise smooth signals. Again, e�cient algorithms are available for their
computation, with complexities in O(N ) compared to the O(N logN ) of the FFT or the DCT. In
general, wavelets lead to very sparse representations of natural images and have replaced the DCT
in the more e�cient JPEG 2000 format. Orthogonal and redundant wavelet transforms will be in-
troduced in detail in Chapter 4 and most of the applications presented in this thesis will be based
on wavelet dictionaries.

A plethora of more complex sparse representations have been developed over the years since
the �rst wavelets1 with the aim of designing dictionaries adapted to speci�c applications or classes
of signals. For instance, one of the shortcomings of wavelets is their lack of directionality which
makes them rather ine�cient at representing highly anisotropic features such as edges on 2D im-
ages. This has led to the development of ridgelets(Candes and Donoho, 1999) and curvelets (Starck

1 See http://tinyurl.com/wits-wavelets-starlet for a great compilation.

http://tinyurl.com/wits-wavelets-starlet
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et al., 2002; Candès and Donoho, 1999) which are respectively extremely e�ective representations
for lines and edges. Examples of typical atoms of these dictionaries are shown on Figure 3.3.

An alternative to the traditional design of sparse representations was proposed in Aharon et al.
(2006) and consists in directly learning sparse representations from examples of the signal. This
approach, known as Dictionary Learning (DL), involves solving an optimisation problem to �nd
a dictionary which leads to the sparsest representation of the signals in the training set. Because
these dictionaries are speci�cally built to optimise the sparsity of a given signal, they usually out-
perform more generic dictionaries such as wavelets (see for instance Beckouche et al. (2013) in the
context of astronomical image denoising).

Figure 3.4 illustrates the sparse representation of a natural image using an orthogonal wavelet
dictionary. The sorted amplitudes of both the pixels of the image and its wavelet coe�cients are
plotted in Figure 3.4b. As can be seen, the amplitude of the coe�cients decays much faster in the
wavelet domain than in the direct domain. In particular, because of the power law decay of the
wavelet coe�cients, this image can be considered compressible in this wavelet dictionary. The
bottom panels show the non-linear approximation of the input image setting 99% of the coe�-
cients to 0 in the direct and wavelet domains. Whereas, the remaining 1% most signi�cant wavelet
coe�cients retain most of the information, it is not the case of the 1% most signi�cant pixels.

3.2 sparse regularisation of inverse problems

As mentioned at the beginning of this chapter, a key application of the sparsity concept is the reg-
ularisation of linear inverse problems. Such problems cover a very wide range of applications and
typically involve recovering an unknown signal from a series of linear measurements. Most of the
time, either because of noise or degeneracies in the linear operator involved in the measurements,
the solution of the inverse problem is not unique and additional information is required to recover
the signal of interest. In this context, sparsity o�ers a framework to use the morphology of the
signal as a powerful regularising prior.

3.2.1 Basis Pursuit Denoise

In this section, we consider general linear problems of the form:

y = Ax +n , (3.12)

where x ∈ RN is an unknown signal to recover, y ∈ RM contains the measurements and n ∈

RM is an additive noise, assumed to be Gaussian with diagonal covariance σ 2Id. Finally A is a
bounded linear operator which degrades the signal x and which is typically ill-behaved so that
A−1 does not exist or is extremely unstable with respect to the noise. For instance, in the case of a
deconvolution problem, A is a convolution by a blurring kernel which removes the high-frequency
details of x . Another example is the inpainting problem where A is a binary mask which sets to
zero portions of the signalx . In both instances, the operator is not invertible and without additional
prior information, an in�nite number of solutions x̃ are possible.

To constrain the space of possible solutions, we consider as additional prior information that
the signal x is sparse in an adapted dictionary Φ i.e. there exists a set of coe�cients α sparse such
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Figure 3.4: Non-linear approximation of a natural image using an orthogonal wavelet dictionary. The
sorted amplitudes of the image pixels and corresponding wavelet coe�cients are shown in (b).
This image is not sparse in the direct domain but the fast decay of its wavelet coe�cients indi-
cate that it is compressible in this wavelet dictionary. The vertical black line indicates the �rst
percentile of the coe�cients. The non-linear approximations obtained by setting to zero all coef-
�cients except for the �rst percentile are shown in (c) and (d). Credit: Input image from NASA/APL/SwRI

that x = Φα . Thus the inverse problem can be regularised by imposing that the solution not only
has to �t the data but also needs to be sparse in the dictionary Φ.

Finding the sparsest solution that �ts the observations can be stated as an optimisation problem
of the form:

argmin
α

‖ α ‖0 s .t . ‖ y −AΦα ‖22≤ ϵ , (3.13)

where ϵ > 0 is a parameter based on the level of noise which relaxes the data �delity term to avoid
over-�tting the noise. As introduced at the beginning of this chapter, the `0 norm in the left-hand
side of this expression is a measure of the sparsity of the solution and will promote the sparsest
solution.
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α1

α2

0

‖ y
−Aα

‖ 22 ≤
ϵ

‖ α ‖2

‖ α ‖1

Figure 3.5: Geometrical representation of the inverse problem. The shaded gray area represents the feasible
set allowed by the data �delity constraint. The smallest `1 (red) and `2 (blue) balls intersecting
the feasible set each de�ne a di�erent solution of the optimisation problem (red and blue dots).
The `1 solution is sparse, with only one non zero coe�cient, contrary to the `2 solution.

Although this problem leads to the sparsest solution and is what we would aim to solve, it is
computationally hard to solve in practice (it is actually NP-hard Natarajan (1995)). As a result, we
will rather consider a convex relaxation of this problem obtained by replacing the `0 norm by the
`1 norm:

argmin
α

‖ α ‖1 s .t . ‖ y −AΦα ‖22≤ ϵ . (3.14)

This problem is known as Basis Pursuit DeNoise (BPDN). Both terms are now convex which will
enable the development of fast algorithms to perform the minimisation.

Although not equivalent to the original `0 formulation, this relaxation of the problem still leads
to sparse solutions. For su�ciently sparse signals, the relaxed `1 problem has even been shown
to recover the exact solution of the `0 problem in the absence of noise (Donoho and Huo, 2001).
Figure 3.5 illustrates the behaviour of the `1 norm on a simple two dimensional problem. Solving
the BPDN amounts to �nding the smallest `1 ball (red) intersecting the feasible set (grey shaded
area). The point of intersection (red dot) is the solution of the problem. As can be seen, the solution
is 1-sparse (only one active coe�cient). In contrast, if one tries to address the same problem using
an `2 norm, the `2 ball (blue) will intersect the feasible set at a point which is not sparse (blue dot),
it has active coe�cients in all dimensions. More generally, all `p norms with p ∈ [0, 1] tend to
promote sparse solutions but only the `1 norm is convex and thus leads to tractable optimisation
problems.

The BPDN problem can also be equivalently recast either with explicit constraint on the `1 norm:

argmin
α

‖ y −AΦα ‖22 s .t . ‖ α ‖1≤ τ , (3.15)
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which is commonly known as the Lasso problem, or in the form of an augmented Lagrangian:

argmin
α

1
2 ‖ y −AΦα ‖22 +λ ‖ α ‖1 . (3.16)

These three formulations are equivalent in the sense that for an appropriate choice of parameters
ϵ , τ and λ they yield the same solution. However, the correspondence between these parameters
is not trivial and not known a priori. Therefore, depending on the speci�c application and on
algorithmic considerations one formulation or the other can be preferred.

3.2.2 Analysis sparsity prior

The formulation of the sparse recovery problem presented in the previous paragraph was under a
so-called synthesis prior: the minimisation problem aims at �nding a set of coe�cientsα which are
sparse and from which the solution can be synthesised as x = Φα . However, one can also impose
an analysis sparsity prior by requiring the analysis coe�cients Φtx to be sparse. In this case, the
sparse recovery problem can be formulated as:

argmin
x

1
2 ‖ y −Ax ‖22 +λ ‖ Φ

tx ‖1 . (3.17)

The two formulations are completely equivalent in the case where Φ is an orthogonal dictionary.
Indeed, in this case, Φt = Φ−1 and the analysis formulation only amounts to a change of variables.
However, in the case of redundant dictionaries the two problems are no longer equivalent.

The synthesis approach has received considerable attention over the last decade regarding the-
oretical guarantees and e�cient algorithms. In contrast, the analysis model has been much less
investigated. Yet early works have advocated the use of the analysis prior Starck et al. (2004, 2005).
The fundamental distinctions between these two priors was made explicit in Elad et al. (2007) and
more recent results have shown superior recovery properties under this prior compared to the syn-
thesis approach. For instance, Selesnick and Figueiredo (2009) compare both priors on denoising
and deconvolution applications using undecimated wavelets and report superior results in both
instances under the analysis model.

Several factors can explain this di�erence of performance between the two priors. First and fore-
most, under the synthesis prior the recovered signal is constrained to the space spanned by a few
atoms of the dictionary whereas under the analysis model the solution can be any arbitrary signal
of RN . Therefore, the atoms of an optimal synthesis dictionary should contain examples of the
signal (for instance Diracs for the recovery of spikes). However, even when a dictionary is speci�-
cally built for an application (e.g. using dictionary learning Aharon et al. (2006)), several atoms are
usually needed to reproduce examples of the signal. For instance synthesising positive structures
using wavelets requires a signi�cant number of coe�cients to compensate the oscillatory nature
of wavelet atoms. On the contrary, under the analysis prior, the recovered signal is not constrained
to belong to a speci�c subspace spanned by a few columns of the dictionary.

Another aspect in favour of the analysis prior is the reduced number of unknowns involved in
the optimisation problem. Indeed, when using redundant dictionaries, the dimension of the space
of coe�cients in the dictionary Φ can be much larger than the dimension of the signal to recover.
In this case, the analysis formulation has much fewer unknowns thus leading to a simpler and
more stable optimisation problem.
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Recovery guarantees have recently been shown for the analysis prior, in particular in the context
of Compressed Sensing (Candès et al., 2011) and in the presence of noise (Vaiter et al., 2013). A
new framework, known as the cosparse analysis model (Nam et al., 2011), as also been proposed
to explain the behaviour of the analysis prior. This framework adopts a di�erent view point on
the problem by de�ning the notion of cosparsity which focuses on the number of zero coe�cients
instead of the number of non-zero coe�cients (see Nam et al. (2013) for a review).

3.2.3 Enhanced sparsity through `1-reweighting

The `1-minimisation problem provides a robust and e�cient framework to enforce sparse regulari-
sation on inverse problems. However, compared to the `0 regularisation, it has one major drawback,
namely its dependence on the magnitude of the coe�cients. As a result, in the presence of noise,
the solution of the `1 minimisation can often be of biased amplitude. Indeed, without su�cient
evidence from the data, the prior will prefer solutions with smaller amplitude. Consequently, it is
often necessary to perform some additional debiasing step after convergence of the `1 recovery to
correct for this e�ect.

An elegant approach to this problem has been proposed in Candès et al. (2008). The proposed
method consists in iteratively solving an `1 minimisation, each time with a speci�c weighting of
the `1 norm based on the previous estimate of the solution. The idea is to tend to a solution where
non-zero coe�cients are equitably penalized independently of their amplitude, thus getting closer
to the solution of the `0 minimisation problem. The strength of this approach is that it only involves
solving a series of convex problems which can e�ciently be addressed by the proximal algorithms
presented in the next section.

The weighted `1 minimisation problem is de�ned as:

argmin
α

1
2 ‖ y −AΦα ‖22 +λ ‖ Wα ‖1 , (3.18)

where W is a diagonal matrix of positive weightsw1,w2, . . . ,wn . The aim is to �nd a set of weights
which tune the shape of the `1 border in order to promote a sparser solution and attenuate the
dependence of the penalisation on the amplitude of the coe�cients.

The question is now how to set adequate weights. In Candès et al. (2008), the authors propose
the following iterative scheme to set the weights and converge to a solution:

1. Set the iteration count ` = 0 and initialise the weights to 1 : ∀i , w (0)
i = 1.

2. Solve the weighted `1 minimisation problem:

α (`) = argmin
α

1
2 ‖ y −AΦα ‖22 +λ ‖ W(`)α ‖1 .

3. Update the weights based on the solution α (`):

w (`+1)
i =

1
|α (`)
i | + ϵ

, (3.19)

where ϵ is a small positive parameter preventing in�nite weights.

4. Terminate on convergence. Otherwise, increment ` and go to step 2.
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As shown by Candés, this procedure has some analytical justi�cation as it can be linked to solving
the inverse problem under a log-sum penalty of the form д(α ) = ∑

i log(|αi | + ϵ) which is a better
approximation of the `0 penalty but which is no longer convex. Unfortunately, this means that
this procedure is sensitive to the choice of initialisation and more importantly to the choice of
parameter ϵ . Candés recommends empirically setting ϵ to a small value of the order of the smallest
expected non-zero coe�cient of the signal.

In practice, we �nd that this reweighting procedure does improve the results of the `1 minimi-
sation and we have implemented it to address the problems presented in Chapter 5 and Chapter 7.
However, we advocate using a di�erent update rule for the weights W based on the signi�cance
of the coe�cients recovered at each iteration with respect to the level of noise:

w (`+1)
i =




1
|α (`)
i |/Kσi

if |α (`)
i | ≥ Kσi

1 if |α (`)
i | < Kσi

, (3.20)

where σi is an estimate of the standard deviation of coe�cient αi due to noise and K is a given
signi�cance level. The idea behind this rule is to reduce the penalty on coe�cients which have
already been identi�ed as signi�cant at previous iterations. However, for coe�cients below the
threshold Kσ we keep the weights to 1 as we do not want to increase the penalty which would
prevent new features from being detected at subsequent iterations.

Finally note that we have introduced the reweighted-`1 procedure in a synthesis setting. It can
also be applied to improve the results of the analysis `1 problem as was demonstrated in Candès
et al. (2008, 2011). The iterative scheme is identical except for the optimisation problem in step 2
which becomes:

x (`) = argmin
x

1
2 ‖ y −Ax ‖22 +λ ‖ W(`)Φtx ‖1 .

For the applications considered in the rest of this work, we have found the reweighted-`1 analysis
to yield signi�cantly better results compared to the synthesis approach.

3.3 proximal algorithms for sparse recovery

The previous section has introduced the notion of sparse regularisation to address inverse problems
which involves �nding a solution by solving an optimisation problem. As was mentioned, solving
the `0 minimisation problem, which is NP-hard, is not tractable, however its `1 relaxation is convex
and can e�ciently be solved by algorithms derived from proximal calculus. The aim of this section
is to provide these algorithmic tools which make solving large scale optimisation problems possible
in practice.

3.3.1 Elements of proximal calculus

We begin by introducing some notions of convex analysis. For a reference on this subject, we
point the interested reader to Zalinescu (2002); Bauschke and Combettes (2011). Let us consider a
function f : Rn → R∪ {+∞} and de�ne the domain of f , noted dom f , as the subset of Rn where
f does not reach +∞:

dom f = {x ∈ Rn | f (x) < +∞} . (3.21)
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Property f (x) proxf (x)
Translation f (x − z), z ∈ RN z + proxf (x − z)
Scaling f (x/a), a ∈ R∗ a proxf /a2(x/a)
Re�ection f (−x) − proxf (−x)
Conjugation f ∗(x) x − proxf (x)
Separability f (x) = ∑n

i=1 fi (xi ) (proxf1(x1), . . . , proxfn (xn))
Table 2: Useful properties of the proximity operator. See Combettes and Pesquet (2011) for a more extensive

compilation. In this table, the conjugation property is relative to the convex conjugation de�ned for
a function f as f ∗ : x 7−→ supy < x ,y > −f (y).

A function f will be said proper if its domain dom f is nonempty. We also de�ne the epigraph of
f , noted epi f :

epi f = {(x , λ) ∈ Rn ×R | f (x) ≤ λ} ⊂ Rn+1 . (3.22)
The epigraph is useful to characterise several important properties, in particular the convexity and
lower semicontinuity of f :

epi f is closed⇔ f is lower semicontinuous (3.23)
epi f is convex⇔ f is convex (3.24)

We will note Γ0 the class of proper lower semicontinuous convex functions of Rn . Functions in Γ0
are therefore characterised by a non empty closed convex epigraph.

The proximal operator, introduced by Moreau (1962) is at the center of the di�erent algorithms
introduced in the following sections. This operator, which can be seen as an extension of the convex
projection operator is de�ned as:

De�nition 3.1. Let F ∈ Γ0. For every x the function y 7→ 1
2 ‖ x −y ‖

2 +F (y) achieves its in�mum
at a unique point de�ned as proxF (x).

Therefore, given a proper lower semicontinuous convex function F , the proximity operator of
F is uniquely de�ned by:

proxF (x) = argmin
y

1
2 ‖ y − x ‖

2
2 +F (y) . (3.25)

To manipulate this operator, some useful properties and calculus rules are listed in Table 2.
In order to illustrate this operator in practice in a simple case, consider F = iC the indicator

function of a closed convex set C. Then the proximity operator reduces to the orthogonal projector
onto C, noted projC :

proxiC (x) = argmin
y∈C

1
2 ‖ y − x ‖

2
2= projC(x) . (3.26)

Similarly to the simple case of the indicator function, explicit expressions for the proximity oper-
ator exist for a number of di�erent simple functions. Some useful examples are listed in Table 3.

In the context of sparse optimisation, we will be particularly interested in the proximity operator
of the `1 norm which appears in the various problems stated in the previous section. Thankfully,
the proximity operator of F (x) = λ ‖ x ‖1 is explicit and corresponds to Soft Thresholding:

proxλ ‖ · ‖1(x) = STλ(x) , (3.27)
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f (x) proxf (x)
i ·≥0(x) [x]+
i |·i |≤λ(x) x − STλ(x)
λ ‖ x ‖1 STλ(x)

Table 3: Examples of explicit proximity operators. See Combettes and Pesquet (2011) for a more extensive
compilation.

where the Soft Thresholding operator STλ is de�ned for x ∈ RN as:

∀i ∈ J1,N K, STλ(x)i =



xi − λ if xi ≥ λ
0 if |xi | ≤ λ

xi + λ if xi ≤ λ
. (3.28)

The Soft Thresholding operator shrinks the amplitude of the coe�cients by an amount λ and sets
to 0 coe�cients of amplitude smaller than λ. The response of this operator is compared to the Hard
Thresholding in Figure 3.1.

Another situation of special interest for sparse optimisation is the precomposition of the `1 norm
with a bounded linear operator. Indeed, under the analysis prior (see Section 3.2.2), the regulari-
sation term is not directly the `1 norm of the variable but F (x) = λ ‖ Φtx ‖1. Unfortunately, in
the general case, this function no longer admits an explicit proximity operator which makes solv-
ing the `1 analysis problem signi�cantly more challenging than its synthesis counterpart. In the
absence of an explicit formula, the proximity operator can still be evaluated by going back to its
de�nition and directly solving the optimisation problem involved. It can be shown (e.g. Appendix
of Rapin et al., 2014) that for an arbitrary dictionary Φ, the proximity operator of F can be evaluated
as the solution of:

proxλ ‖Φt · ‖1(x) = x −Φ
(
argmin

u

1
2 ‖ x −Φu ‖22 + i |·i |≤λ(u)

)
(3.29)

Note that in the optimisation problem involved, the second term is the indicator function of the `1
ball whose proximity operator is explicit (see Table 3). Thus solving this problem can be e�ciently
addressed with the proximal algorithms introduced in the next section. An explicit algorithm to
evaluate this proximity operator using Forward-Backward splitting (see Section 3.3.2.1) is provided
in Algorithm 3.1.

Algorithm 3.1 Evaluation of proxλ ‖Φt · ‖1

Require: Gradient step 0 < µ < 1
‖Φ‖2 .

1: for n = 0 to Nmax − 1 do
2: ũ(n+1) = u(n) + µΦt �

x −Φu(n)�

3: u(n+1) = ũ(n+1) − STλ(ũ(n+1))
4: end for
5: return proxλ ‖Φt · ‖1(x) = x −Φu(Nmax)
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3.3.2 Proximal algorithms

Based on proximal calculus a number of minimisation algorithms have been developed in recent
years for the purpose of solving sparse optimisation problems. In this section, we gather a few
proximal algorithms which have been useful over the course of this thesis.

3.3.2.1 Forward-Backward

The simplest and most well-known algorithm is the Forward-Backward (FB) algorithm (Combettes
and Wajs, 2005) which aims at solving problems of the form:

argmin
x

F (x) +G(x) , (3.30)

where F and G are two proper lower semicontinuous convex functions but in the case where F is
di�erentiable with β the Lipschitz constant of ∇F , the gradient of F . Under these conditions, the
following algorithm converges to the minimum of Equation (3.30):

Algorithm 3.2 Forward-Backward Splitting algorithm
Require: Gradient step 0 < µ < 1

β .
1: for n = 0 to Nmax − 1 do
2: x̃ (n+1) = x (n) + µ∇F

�
x (n)�

3: x (n+1) = proxµG
�
x̃ (n+1)�

4: end for

This algorithm applies in particular to the `1 recovery problem stated in Equation (3.16) with
F (α ) = 1

2 ‖ y − AΦα ‖22 and G(α ) = λ ‖ α ‖1. Indeed, the quadratic data �delity term is
di�erentiable, with ∇F (α) = ΦtA∗ (y −AΦα ) and β =‖ AΦ ‖2 where ‖ . ‖ is the operator norm.
As was presented in the previous section, the proximal operator of the G is in this case a simple
soft thresholding proxG (x) = STλ(x). Therefore, for the `1 recovery problem, forward-backward
splitting yields a simple Iterative Soft-Thresholding Algorithm (ISTA):

α (n+1) = STµλ
(
α (n) + µΦtA∗ (y −AΦα )) (3.31)

Although this algorithm is proven to converge to the solution, the convergence rate of this
simple iteration is slow. A simple variant of ISTA was proposed in Beck and Teboulle (2009) which
converges in O(1/n2) compared to O(1/n) for ISTA. This variant, called Fast Iterative Shrinkage-
Thresholding Algorithm (FISTA), is based on a speci�c update rule which combines the current
and previous estimates at each iteration. This algorithm is presented in Algorithm 3.3.

3.3.2.2 Generalised Forward-Backward

The Forward-Backward algorithm is very useful in a number of situations but it is limited to the
minimization of only 2 terms. For some applications, additional constraints are desirable/required
but cannot be included in a single regularisation termG without losing the explicit formulation of
the proximity operator. This is for instance the case if one wants to include an additional positiv-
ity constraint on the solution of Equation (3.16). An extension of the FB algorithm was proposed
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Algorithm 3.3 Fast Iterative Shrinkage-Thresholding (FISTA)
Require: Gradient step 0 < µ < 1

β .
1: t0 = 1
2: for n = 0 to Nmax − 1 do
3: z̃(n) = x (n) + µ∇F

�
x (n)�

4: z(n) = proxµG
�
z̃(n)

�

5: tn+1 =
1+
√
1+4t 2n
2

6: x (n+1) = z(n) +
(
tn−1
tn+1

) (z(n) − z(n−1))
7: end for

in Raguet et al. (2013) to handle an arbitrary number of additional proximable constraints. This
Generalised Forward-Backward (GFB) algorithm aims at solving problems of the form:

argmin
x

F (x) +
n∑
i=1

Gi (x) , (3.32)

where F and Gi are proper lower semicontinuous convex functions and only F needs to be dif-
ferentiable. Compared to the simple FB algorithm, the regularisation G can be split into as many
terms Gi as necessary so that each Gi has a simple form with an explicit proximal operator. The
algorithm solving this problem is given in Algorithm 3.4.

Algorithm 3.4 Generalized Forward-Backward Algorithm
Require: Gradient step 0 < µ < 2

β . Weights ωi such that ∑
i ωi = 1.

1: for k = 0 to kmax − 1 do
2: for i ∈ J1,nK do
3: z(k+1)i = z(k )i + prox µ

ωi
Gi

(
2x (k ) − z(k )i − µ∇F (x (k ))) − x (k )

4: end for
5: x (k+1) = ∑n

i=1ωiz
(k+1)
i

6: end for

3.3.2.3 Chambolle-Pock primal-dual algorithm

The algorithms presented so far rely on the evaluation of at least one proximity operator at each
iteration. Although in simple cases, a closed form expression of the operator can be used (for
instance soft thresholding for `1 regularisation), in more complex cases the proximity operator is
not explicit and these algorithms lose some of their appeal as a nested optimisation problem needs
to be solved at each iteration. This is for instance the case of the `1 analysis problem in which the
regularisation term G(x) =‖ Φtx ‖1 does not have an explicit proximity operator for an arbitrary
linear operator Φ.

Chambolle and Pock proposed in Chambolle and Pock (2011) an elegant way to address problems
of the form:

argmin
x

F (x) +G(Wx) , (3.33)
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where F and G are two functions in Γ0 and W is a linear operator. Note that the �rst term F does
not need to be di�erentiable, and even if it is, this property is not used by the algorithm. These
authors recast this optimisation problem in the following primal-dual form:

argmin
x

max
y

〈Wx ,y〉 + F (x) −G∗(y) , (3.34)

where G∗ is the convex conjugate of the original function G, de�ned by G∗(y) = maxy′{〈y,y ′〉 −
G(y ′)}. Note that in the above primal-dual formulation, the term G∗(y) no longer involves the
precomposition by the linear operator W and as long as the G possesses an explicit proximity
operator, so does G∗, thanks to the conjugation formula in Table 2. The algorithm proposed by
Chambolle and Pock is detailed in Algorithm 3.5.

Algorithm 3.5 Chambolle-Pock primal-dual algorithm
Require: L =‖ W ‖, τ > 0, σ > 0, L2στ < 1.

1: for k = 0 to kmax − 1 do
2: y(k+1) = proxσG∗(y(k ) + σWx (k ))
3: x̃ (k+1) = proxτ F (x (k ) − τWty(k+1))
4: x (k+1) = 2x̃ (k+1) − x̃ (k )
5: end for

3.3.2.4 Vu primal-dual algorithm

The drawback of the primal-dual Chambolle-Pock algorithm is that it does not exploit the di�eren-
tiability of F when this function F is actually di�erentiable. A wider framework was proposed in
Vu (2013) which can accommodate at the same time the precomposition by a linear operator and
a di�erentiable term. In particular, it can be used to solve problems of the form:

argmin
x

F (x) +G(Wx) +H (x) , (3.35)

where F is convex and di�erentiable with a Lipschitzian gradient of constant β , (H ,G) ∈ Γ20 and
W is a non-zero linear operator. The algorithm proposed by Vu to solve a problem of this form is
given in Algorithm 3.6. As an example of application of this algorithm, consider the following `1

Algorithm 3.6 Vu primal-dual algorithm
Require: τ > 0, σ > 0 with 1 − τσ ‖ W ‖2> τ β/2.

1: for k = 0 to kmax − 1 do
2: x (k+1) = proxτH

�
x (k ) + τ (∇F (x (k )) −Wtu(k )�

3: u(k+1) = proxG∗(u(k ) + σW(2x (k+1) − x (k )))
4: end for

analysis problem, with positivity constraint:

argmin
x

1
2 ‖ y −Ax ‖22 +λ ‖ Φtx ‖1 +i ·≥0(x) . (3.36)
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This problem is not e�ciently addressed by any of the previous algorithms as it contains three
di�erent terms and one of these (λ ‖ Φtx ‖1) does not have an explicit proximal operator. Yet, it
can be easily solved using Algorithm 3.6, where steps 2 and 3 are specialised to:

x (k+1) =
[
x (k ) + τ (∇F (x (k )) −Φu(k )]

+
(3.37)

u(k+1) = (Id − STλ)(u(k ) + σΦt (2x (k+1) − x (k ))) (3.38)

3.4 conclusion

In this chapter, we introduced the notion of sparsity and how it can be applied to the regularisation
of linear inverse problems. As we have seen, under a sparsity prior on the solution, these problems
can be recast as convex optimisation problems and we introduced the algorithmic tools necessary
to e�ciently solve such problems.

However, the success of sparse recovery not only relies on e�cient algorithms but more crucially
it depends on the quality of the dictionaries used to sparsely represent the signal of interest. This
question has barely been discussed in this chapter but will be developed in more details in the next
chapter where we introduce wavelets, a celebrated family of sparse representations, extensively
used throughout this thesis. Combined with the algorithms introduced in this chapter, wavelets
will be at the core of all the applications presented in Chapter 5, Chapter 7 and Chapter 8.
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Wavelets are a wide class of functions, localised in time and frequency, which can be used to
e�ciently represent non stationary signals. The analysis of a signal through its wavelet coe�cients
makes it possible to identify features of di�erent scales and at di�erent positions, contrary to, for
instance, a Fourier analysis which is limited to scale.

In the context of the sparse regularisation of inverse problems, our interest in wavelets stems
from their ability to provide sparse representations for most natural signals. In fact, wavelets lead
to sparse representations for the very general class of piecewise smooth signals. However, in sparse
recovery applications, depending on the speci�c type of wavelet, the quality of the end result can
vary greatly and therefore much consideration should go into the choice of an appropriate wavelet
for a given application.

In this chapter, we begin by introducing the fundamentals of the continuous and discrete wavelet
transforms, the latter being the one used in practice for digital signal processing. We review a few
speci�c wavelet constructions in 1D and 2D used in the rest of this work and outline the principles
of the fast transforms which make wavelets a particularly attractive option for building sparse
representations. This chapter also serves as an introduction to the Spherical 3D wavelets presented
in Chapter 9 which will extend to the 3D ball some of the concepts presented here.
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4.1 continuous wavelets

4.1.1 Definition

The Continuous Wavelet Transform (CWT) was de�ned by Morlet and Grossmann (Grossmann
and Morlet, 1984) for functions in L2(R), the space of square integrable functions. To ensure an
invertible wavelet transform, a wavelet is de�ned as a real functionψ which veri�es the following
admissibility condition:

Cψ =

∫ ∞

0
|ψ̂ (ν )|2ν−1dν < +∞ , (4.1)

where ψ̂ is the Fourier transform of ψ . In order to verify this condition, wavelets must at least
have vanishing mean

∫
ψ (t) dt = 0. The functionψ is called a mother wavelet, from which a family

of daughter wavelets can be de�ned through scaling and translation. Given a scaling parameter
a ∈ R+ and a translation parameter b ∈ R, the daughter waveletψa,b is de�ned as

∀x ∈ R, ψa,b (x) = 1
√
a
ψ

(
x −b

a

)
. (4.2)

The CWT is de�ned as the projection of a function f ∈ L2(R) onto the family of daughter wavelets.
The coe�cients of this projection are called wavelet coe�cients and are obtained by taking the
inner product of f and (ψa,b )a>0,b ∈R:

∀a ∈ R+,b ∈ R, Wf (a,b) =< f ,ψa,b > (4.3)

=

∫
R

f (x)ψ ∗a,b (x)dx (4.4)

=
1
√
a

∫
R

f (x)ψ ∗
(
x −b

a

)
dx (4.5)

Interestingly, these wavelet coe�cients can also be expressed in terms of a convolution product
by de�ning the function ψ̄a(x) = 1√

aψ
∗(−xa ), in which case:

∀a ∈ R+,b ∈ R, Wf (a,b) = f ∗ ψ̄a(b) (4.6)

This expression hints at an implementation of the wavelet transform using linear �lters which will
be an essential aspect of the discrete wavelets introduced in the next section.

This wavelet decomposition is invertible (Grossmann and Morlet, 1984) and the function f can
be recovered from the wavelet coe�cients (Wf (a,b))a>0,b ∈R with the following formula:

f (x) = 1
Cψ

∫
R+

∫
R

Wf (a,b)ψa,b (x)da
a2

db (4.7)
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(a) Haar waveletψ (t)
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(b) Mexican hat waveletψ (t)
Figure 4.1: Mother wavelet function for the Haar and Mexican hat wavelets.

4.1.2 Examples

Haar wavelet

The simplest and �rst example of wavelet function is due to Haar (Haar, 1910) who de�ned the
following piecewise constant function:

ψ (t) =



1 if t ∈ [0, 1
2 [

−1 if t ∈ [ 12 , 1[
0 otherwise

(4.8)

One of the particular properties of this wavelet, already recognised by Haar, is that the discrete
set {ψj ,n}(j ,n)∈Z2 of shifted and scaled versions of the mother wavelet de�ned by the following
equation is an orthonormal basis of L2(R):

∀(j,n) ∈ Z2, ψj ,n(t) = 1
√
2j
ψ

(
t − 2jn
2j

)
(4.9)

Therefore, this wavelet is also the �rst example of a discrete wavelet decomposition where the
scaling and translation parameters can be discretised. In practice this wavelet is extremely simple
to compute, as it only involves evaluating �nite di�erences. However, its main drawback is its lack
of regularity which can cause severe artefacts in a number of applications.

Mexican hat wavelet

Another very common example of continuous wavelet is the Mexican hat wavelet (or Ricker
wavelet) which is built from the second derivative of a Gaussian. The expression of the wavelet is:

ψ (t) = 2
π 1/4
√
3σ

(
t2

σ 2 − 1
)
exp

(
−t2

2σ 2

)
(4.10)
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Contrary to the Haar wavelet, the Mexican hat is extremely regular. Its 2D generalisation is well
known in the �eld of computer vision under the name of Laplacian of Gaussian and is often used
as a blob detector.

An example of continuous wavelet decomposition using the Mexican hat wavelet is presented
in Figure 4.2. The top panel shows a non stationary 1D signal which is analysed to produce the
scalogram showed in the bottom panel. The x-axis of the scalogram represents the time while the
y-axis represents the scale. As can be seen, the signal contains two contributions which are clearly
separated on the scalogram in time and frequency.

1.5

1.0

0.5

0.0

0.5

1.0

1.5

1.0 0.5 0.0 0.5 1.0

5

10

15

20

25

30

Figure 4.2: CWT of the signal in the top panel using the Mexican hat wavelet. The input signal contains
two contributions, a high frequency cosine that spans the entire sequence and a low frequency
sine that starts at t = 0. These two contributions are clearly identi�able in time and frequency
on the scalogram.

4.2 orthogonal and bi-orthogonal wavelets

The wavelet transform introduced above is set in a continuous framework. However, for signal
processing purposes, a discrete wavelet transform is required. There are several ways to discretise
this transform but to be useful in practice such a transform must be fast and admit an exact recon-
struction formula. This has lead to the development of the Multiresolution Analysis framework
(Mallat, 1989; Meyer, 1992) which can be used to build orthogonal wavelet basis.
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4.2.1 MultiResolution Analysis

Mallat introduced in Mallat (1989) the concept of MutliResolution Analysis (MRA) in order to pro-
vide a framework for building orthogonal wavelet bases. The strength of this approach is that it
can be used to de�ne a discrete wavelet transform, with exact reconstruction from a discrete set
of coe�cients, which can be e�ciently implemented using simple linear �lters.

The idea of multiresolution analysis is to build a sequence of approximations fj of a function
f ∈ L2(R) by smoothing f with a kernel of increasing width proportional to 2j . Each of these
approximations fj will belong to a subspace Vj ⊂ L2(R) which will regroup all possible approxi-
mations at scale 2j . Then, fj can be seen as the orthogonal projection of f onVj . For each approxi-
mation subspaceVj one can build an orthogonal subspaceWj which will contain all the details lost
between two consecutive approximations, such that fj−1 = fj +w j with w j ∈Wj :

Vj−1 = Vj ⊕Wj . (4.11)

By recursively using this decomposition of approximations subspacesVj for all j ∈ Z it will directly
follow that the entire space L2(R) can be decomposed into a direct sum of detail subspacesWj :

L2(R) =
∞⊕

j=−∞

Wj . (4.12)

Mallat shows that one can build a waveletψ such that for each j ∈ Z the family of functions{
ψj ,n =

1
√
2j
ψ

(
t − 2jn
2j

)}
n∈Z

, (4.13)

forms an orthonormal basis of Wj . Finally, the whole family of wavelets {ψj ,n}(j ,n)∈Z2 forms an
orthonormal basis of L2(R).

To formally develop these ideas, Mallat and Meyer (Mallat, 1989; Meyer, 1992) introduce the
following de�nition of multiresolutions.

De�nition 4.1 (Multiresolution approximation). Let f be a function in L2(R). A multiresolution
approximation is a sequence {Vi}j ∈Z of closed embedded subspaces {0} ⊂ . . . ⊂ V1 ⊂ V0 ⊂ V−1 ⊂

. . . ⊂ L2(R) which verify the following properties:

• Translational invariance: ∀j,k ∈ Z, f (t) ∈ Vj ⇔ f (t − 2jk) ∈ Vj+1
• Causality: f (t) ∈ Vj ⇔ f (t/2) ∈ Vj+1
• Limit conditions:

⋂
j ∈ZVj = {0} and

⋃
j ∈ZVj = L2(R)

• There must exist a function θ such that {θ (t −n)}nZ is a Riesz basis of V0.

The purpose of the Riesz basis {θ (t −n)}nZ ofV0 is to provide a sampling theorem: any function
of V0 can be represented using a discrete set of coe�cients. Thanks to the properties of the mul-
tiresolution approximation, Mallat shows that the function θ can be used to construct a function
ϕ, called scaling function, such that the family {ϕ j ,n}n∈Z, de�ned as follows, forms an orthonormal
basis of Vj for all j ∈ Z:

ϕ j ,n(t) = 1
√
2j
ϕ

( t −n
2j

)
. (4.14)
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Therefore, it becomes possible to compute fj the approximation of a function f at scale 2j by taking
its inner product with the basis functions {ϕ j ,n}n∈Z of the approximation space Vj :

fj = PVj f =
∑
n∈Z

< f ,ϕ j ,n > ϕ j ,n =
∑
n∈Z

aj [n]ϕ j ,n , (4.15)

where PVj is the orthogonal projector on Vj and aj [n] =< f ,ϕ j ,n > are the discrete approximation
coe�cients of f at the scale 2j . This extends the sampling theorem forV0 provided by the Riesz basis
to all spacesVj : for all j ∈ Z the approximation fj is uniquely de�ned by the set of approximation
coe�cients {aj [n]}n∈Z.

A key aspect of multiresolution analysis is that approximation coe�cients at one resolution can
be computed from the coe�cients of the previous resolution by convolution with a discrete �lter
entirely de�ned by the scaling function ϕ.
Indeed, since ϕ belongs to V0, the scaled function 1√

2ϕ( t2 ) is in V1 by causality and therefore in V0
since V1 ⊂ V0, which means that it can be decomposed on the basis {ϕ0,n}n∈Z of V0 leading to the
following scaling equation:

1
√
2
ϕ( t2 ) =

∑
n∈Z

h[n]ϕ(t −n) , (4.16)

where h[n] =< 1√
2ϕ( t2 ),ϕ(t − n) >. More generally, any basis function ϕ j+1,n at scale 2j+1 can be

decomposed on the basis {ϕ j ,p}p∈Z of Vj using the same �lter h[n]:
ϕ j+1,p =

∑
n∈Z

h[n − 2p]ϕ j ,n . (4.17)

Taking the inner product of f with both terms of this equation leads to the following expression:

aj+1[p] =
∑
n∈Z

h[n − 2p]aj [n] . (4.18)

This fundamental relation between approximation coe�cients of two consecutive resolutions means
that these coe�cients can recursively be computed using a simple discrete �lter, without the need
of actually computing the (continuous) inner products between f and the basis functions ϕ j ,n . This
relation is at the heart of the fast wavelet transform algorithms detailed in the next section.

The �lterh[n] derived from the scaling equation in Equation (4.16) exhibits interesting properties
in relation to the scaling function ϕ in Fourier space. In particular Mallat (1989); Meyer (1992) show
the following theorem:

Theorem 4.1 (Conjugate Mirror Filter). If ϕ ∈ L2(R) is a scaling function, then the Fourier series of
h[n] veri�es ĥ(0) = √2 and is a Conjugate Mirror Filter (CMF) i.e. satis�es

∀ω ∈ R, |ĥ(ω)|2 + |ĥ(ω + π )|2 = 2. (4.19)

Reciprocally, if ĥ is a CMF (i.e. veri�es Equation (4.19)), 2π periodic, continuously di�erentiable around
ω = 0 and satis�es ĥ(0) = √2 and inf

ω ∈[−π/2,π/2]
|ĥ(ω)| > 0 then

ϕ̂(ω) =
+∞∏
p=1

ĥ(2−pω)
√
2

(4.20)

is the Fourier transform of a scaling function ϕ ∈ L2(R).
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So far, the multiresolution analysis has allowed us to build orthonormal bases of the approxi-
mation subspaces Vj and to recursively compute approximation coe�cients. However, it is also
possible to capture the details lost between two consecutive approximations as a set of discrete
wavelet coe�cients. Indeed, since for a given scale 2j ,Vj is included inVj−1, one can de�neWj the
orthogonal supplement of Vj in Vj−1 so that:

Vj−1 = Vj ⊕Wj . (4.21)

Finally Mallat (1989); Meyer (1992) show that one can build an orthonormal basis {ψj ,n}n∈Z ofWj

from a wavelet function ψ associated to the scaling function ϕ. This wavelet function is de�ned
Fourier space as:

ψ̂ (ω) = 1
√
2
д̂(ω2 )ϕ̂(

ω

2 ) , (4.22)

where we introduce the discrete �lter д[n], de�ned by its Fourier series:

д̂(ω) = e−iωĥ∗(ω + π ) . (4.23)

If one de�nes ψj ,n =
1√
2ψ

(
t−2jn
2j

)
, then for any scale 2j , {ψj ,n}n∈Z is an orthonormal basis of Wj

and for all scales {ψj ,n}(n,j)∈Z2 is an orthonormal basis of L2(R).
This result has many important consequences. First and foremost it implies that L2(R) can be

decomposed as a direct sum of orthogonal subspacesWj :

L2(R) =
∞⊕

j=−∞

Wj . (4.24)

which means that any function of L2(R) can uniquely be decomposed into a set of discrete wavelet
coe�cients by an orthogonal projection:

f =
∑
j ∈Z

∑
n∈Z

< f ,ψj ,n > ψj ,n =
∑
j ∈Z

∑
n∈Z

dj [n]ψj ,n (4.25)

where dj [n] =< f ,ψj ,n > are the wavelet coe�cients of f at scale 2j and position 2jn.
Furthermore, similarly to the scaling equation in Equation (4.16), the wavelet function ψj+1,n is

a function of Vj , since Vj = Vj+1 ⊕Wj+1, and can therefore be decomposed on the basis {ϕ j ,n}n∈Z

of Vj . This decomposition can be written in terms of the �lter д and leads to:

ψj+1,p =
∑
n∈bZ

д[n − 2p]ϕ j ,n . (4.26)

Taking the inner product of f with both terms of this equation yields:

dj+1[p] =
∑
n∈Z

д[n − 2p]aj [n] (4.27)

Again, this relation is fundamental to derive fast wavelet transform algorithms as it shows that
wavelet coe�cients at scale 2j+1 can simply be computed from the approximation coe�cients at
scale 2j using a simple discrete �lter and eliminates the need to actually evaluate the inner product
of f with the waveletψj ,n .
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4.2.2 Vanishing moments and size of the support

As was mentioned in the introduction of this chapter, our particular interest in wavelets stems
from their ability to provide sparse representations for a wide variety of natural signals. In fact,
as we will discuss now, wavelets bases are sparse representations for piecewise smooth functions
and can be optimised to maximise this sparsity.

A waveletψ is said to possess p vanishing moments if

∀k ∈ J0,pJ,
∫ +∞
−∞

xkψ (x) dx = 0 , (4.28)

which means that ψ is orthogonal to any polynomial of degree less than or equal to p − 1. Now
consider a function f which is assumed to be locally of classCk then it can be locally approximated
by a Taylor expansion of order k . If k < p, the wavelet will be orthogonal to the Taylor polynomial
and therefore the coe�cients | < f ,ψj ,n > | will be small on �ne scales at the vicinity of the
expansion.

Thus, in order to provide a sparse representation for a wider class of signals, a wavelet with a
large number of vanishing moments would be preferable from this point of view. However, this
conclusion is only valid where the function f is locally smooth. In practice, signals are often only
piecewise smooth and exhibit a number of singularities (for instance sharp edges in an image)
which will lead to signi�cant coe�cients even on small scales as they cannot be approximated by
low order polynomials. Therefore, a large number of vanishing moments is not enough, it is also
important to limit the impact of singularities in the signal to a small number of wavelet coe�cients.
This can be achieved by reducing the size of the support of the wavelet.

To limit the impact of these singularities the support of the wavelet needs to be of minimal size
so that only coe�cients at the close vicinity will be a�ected. If the wavelet has compact support
of size N , at each scale 2j only N wavelet coe�cients < f ,ψj ,n > will be a�ected by an isolated
singularity. The amplitude of these coe�cients is potentially high and neglecting them usually
greatly impacts the quality of the representation. Thus, using a wavelet with large support can
lead to a very ine�cient representation for signals with a signi�cant number of singularities. To
maximise the sparsity of the representation in this case a minimal support size should be preferred.

In general, the size of the support and the number of vanishing moments are not necessarily cor-
related. However, in the speci�c case of wavelet bases the size of the support scales with the num-
ber of vanishing moments as described by the following property due to Daubechies (Daubechies,
1988):

Proposition 4.1. Ifψ is a wavelet with p vanishing moments that generates an orthonormal basis of
L2(R), then it has a support of size larger than or equal to 2p − 1. In particular, Daubechies wavelets
reach this minimum with a compact support equal to [−p + 1,p].

Therefore, vanishing moments and support size are two competing properties and Daubechies
wavelets (presented in the following section) are optimal in that they have minimal support for a
given number of vanishing moments. Depending on the nature of the signal to represent, one may
therefore wish to favour a large number of vanishing moments for smooth signals with only few
singularities or on the contrary a small support if the singularities are predominant.
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Figure 4.3: Battle-Lemarié and Daubechies wavelets with respectively 4 and 2 vanishing moments. By con-
struction, the support of the Daubechies wavelet is compact whereas the Battle-Lemarié wavelet
has in�nite support.

4.2.3 A few wavelet bases

Ba�le-Lemarié

Battle-Lemarié wavelets (Battle, 1987; Lemarié, 1988) are based on spline multiresolution approxi-
mations. The scaling function is de�ned in Fourier space as:

ϕ̂(ω) = exp(−iϵω/2)
ωm+1

√
S2m+2(ω)

, (4.29)

where Sn(ω) = ∑+∞
k=−∞

1
(ω+2kπ )n , and ϵ = 1 ifm is even or ϵ = 0 ifm is odd. And the corresponding

wavelet is:

ψ̂ (ω) = exp(−iω/2)
ωm+1

√
S2m+2(ω/2 + π )

S2m+2(ω)S2m+2(ω/2) . (4.30)

For splines of degreesm, the waveletψ hasp =m+ 1 vanishing moments. Although Battle-Lemarié
wavelets are not compactly supported, they have an exponential time decay. The Battle-Lemarié
wavelet of order 3 (i.e 4 vanishing moments) is illustrated on Figure 4.3.

Daubechies wavelets

The wavelets proposed by Daubechies (Daubechies, 1988) have the orthogonal wavelets with a
support of minimum size for a given number of vanishing moments p. When p = 1 the Haar
wavelet is recovered. The regularity of the scaling and wavelet functions increase with the number
of vanishing moments p. The Daubechies wavelet for p = 2 is illustrated on Figure 4.3.

4.2.4 Filter banks and the Fast Pyramidal decomposition

As mentioned in the previous section, the key to the fast wavelet transform is the possibility to
recursively compute wavelet and approximation coe�cients from one resolution to the next using
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a couple of linear �lters (h,д) as demonstrated by Equation (4.18) and Equation (4.27). A second
essential feature is the ability to reconstruct the signal from its wavelet coe�cients. For orthogonal
wavelets, Mallat shows the same �lters (h,д) form a couple of perfect reconstruction �lters.

This de�nes the fast orthogonal wavelet transform, usually just called Discrete Wavelet Trans-
form (DWT), which, given a function f ∈ L2(R), recursively computes its approximation aj [n] =<
f ,ϕ j ,n > and detail (or wavelet) coe�cients dj [n] =< f ,ψj ,n > according to:

aj+1[p] =
∑
n∈Z

h[n − 2p]aj [n] = [aj ∗ h̄]↓2[p] , (4.31)

dj+1[p] =
∑
n∈Z

д[n − 2p]aj [n] = [aj ∗ д̄]↓2[p] , (4.32)

where h̄[n] = h[−n] and д̄[n] = [−n] and [·]↓2 stands for the decimation by a factor 2.
Conversely, approximation coe�cients at scale 2j can be reconstructed from approximation and

detail coe�cients at scale 2j+1 with:

aj [p] =
∑
n∈Z

h[p − 2n]aj+1[n] +
∑
n∈Z

д[p − 2n]dj+1[n] , (4.33)

= [aj+1]↑2 ∗h[p] + [dj+1]↑2 ∗д[p] . (4.34)

The DWT can be implemented as a simple cascade of linear �lters as illustrated on Figure 4.4.
This �lter bank implementation of the discrete wavelet is extremely, with a complexity in O(N ),
in contrast to O(N log(N )) of the FFT.

With orthogonal wavelets, the analysis and synthesis wavelets are identical and the same �lters
are used for the decomposition and reconstruction. However, perfect reconstruction can also be
achieved, under certain conditions, if a di�erent wavelet is used for the reconstruction. Let (h,д)
and (h̃, д̃) be the �lters associated with the analysis and synthesis wavelets. Then the two wavelets
are said to be bi-orthogonal and perfect reconstruction is possible if the following bi-orthogonal
conditions, proposed by Vetterli (Vetterli, 1986), are veri�ed by the �lter bank (h,д, h̃, д̃):

ĥ∗(ω + π )̂̃h(ω) + д̂∗(ω + π )̂̃д = 0 , (4.35)

and
ĥ∗(ω)̂̃h(ω) + д̂∗(ω)̂̃д(ω) = 2 . (4.36)

Thanks to the relaxation of the strict requirements of orthogonality, wavelets pairs can be
created that are symmetric, regular and compactly supported (Cohen et al., 1992). Given a bi-
orthogonal �lter bank (h,д, h̃, д̃), the same Fast wavelet transform algorithm holds is illustrated
on Figure 4.4. Compared to orthogonal wavelets, only the reconstruction formula is modi�ed and
becomes:

aj [p] = [aj+1]↑2 ∗ h̃[p] + [dj+1]↑2 ∗ д̃[p] . (4.37)

4.2.5 2D Bi-Orthogonal Wavelets

The 1D wavelet introduced in the previous section can be extended to higher dimensions, and in
particular to 2D by considering separable products of 1D wavelets. However, such a product can
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h̄ ↓ 2

д̄ ↓ 2

h̄ ↓ 2

д̄ ↓ 2

a J

↑ 2д̃

↑ 2h̃+s

↑ 2д̃

↑ 2h̃+
a J−1

a J−1a1

a1

d1 d J

s

Figure 4.4: Fast pyramidal wavelet transform algorithm for a bi-orthogonal �lter bank (h,д, h̃, д̃), note that
in the case of orthogonal wavelets the same algorithm applies with h̃ = h and д̃ = д. The top part
of the diagram represents the fast decomposition of an input signal s into a set of coe�cients
{d1,d2, . . . ,a J }. The bottom part of the diagram represents the fast reconstruction of s from its
decomposition coe�cients.

be built in several ways depending on the nature of the dimensions. If the two dimensions are
homogeneous, it is generally useful to probe details along each direction using the same physical
scale. In the contrary, in the case where the dimensions are not homogeneous (for instance, distance
and time or distance and energy) then it can useful to probe each direction using independent
scales, for instance to isolate slow moving large scale objects.

For the last case, a wavelet basis of L2(R2) can easily be constructed using the basis functions
ψj1,j2,n1,n2(x1,x2) = ψj1,n1(x1)ψj2,n2(x2). Note that the scale j1 and j2 are independent. Such a decom-
position leads to 3 kinds of coe�cients:

• detail-detail coe�cients: d1j1d
2
j2

• approximation-detail coe�cients: a1j1d
2
j2 and d1j1a

2
j2

• approximation-approximation coe�cients: a1j1a
2
j2

This construction is not optimal when the dimensions of the signal are homogeneous, like for
2D images for instance. Indeed, in this case, we want to probe the signal at a the same given scale
for all dimensions. Instead, a decomposition of L2(R2) can be built by de�ning the concept of
separable multiresolutions such that the approximation of a function f (x1,x2) at scale 2j will be
the projection of f on the subspaceV 2

j = Vj ⊗Vj . If one de�nes the detail spaceW 2
j the orthogonal

supplement ofV 2
j inV 2

j−1, then, as demonstrated for instance in Mallat (1999), a wavelet basis forW 2
j
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can be built from separable products of 1D scaling functions ϕ and wavelet functions ψ . Consider
the three functions:

ψ 1(x) = ϕ(x1)ψ (x2), ψ 2(x) = ψ (x1)ϕ(x2), ψ 3(x) = ψ (x1)ψ (x2) , (4.38)

and denote for 1 ≤ k ≤ 3

ψ k
j ,n(x) =

1
2jψ

k (x1 − 2
jn1

2j , x2 − 2
jn2

2j ) . (4.39)

Then for j ∈ Z the family of wavelets {ψ 1
j ,n ,ψ 2

j ,n ,ψ 3
j ,n}n∈Z2 is an orthonormal basis ofW 2

j . And the
family {ψ 1

j ,n ,ψ 2
j ,n ,ψ 3

j ,n}(j ,n)∈Z×Z2 is an orthonormal basis of L2(R2).
From this result, one can build a 2D DWT to compute the following approximation and detail

coe�cients:

aj+1 = [aj ∗ h̄h̄]↓2 , (4.40)
d1j+1 = [aj ∗ h̄д̄]↓2 , (4.41)
d2j+1 = [aj ∗ д̄h̄]↓2 , (4.42)
d3j+1 = [aj ∗ д̄д̄]↓2 , (4.43)

where we use the notation hд[x1,x2] = h[x1]д[x2]. Note that for d1 and d2, the high-pass �lter д is
only applied in one direction, this will lead to purely horizontal and vertical wavelet coe�cients.
For d3, the details are computed by applying the high-pass �lter д in both directions, the resulting
wavelet coe�cients are diagonal.

Conversely, the reconstruction can recursively be implemented using the following formula:

aj = [aj+1]↑2 ∗hh + [d1j+1]↑2 ∗hд + [d2j+1]↑2 ∗дh + [d3j+1]↑2 ∗дд . (4.44)

Just as in the 1D case, this reconstruction formula can also use a di�erent set of �lters (h̃, д̃) while
preserving the perfect reconstruction property if the �lter bank (h,д, h̃, д̃) veri�es the bi-orthogonal
conditions Equation (4.35) and Equation (4.36).

Since the family of wavelets {ψ 1
j ,n ,ψ 2

j ,n ,ψ 3
j ,n}(j ,n)∈Z2 forms a basis of L2(R2), the wavelet decom-

position of an image is non redundant and the wavelet coe�cients can be arranged to form an
image of the same size as the input image. This representation of the wavelet decomposition, due
to Mallat, is illustrated on Figure 4.5.

4.3 the starlet transform

In the previous section we introduced the framework for building non-redundant discrete wavelet
transforms. Although this construction has many advantages, it has one major drawback: the lack
of translational invariance of the wavelets. Indeed, for orthogonal wavelets, at scale 2j , the wavelet
atoms ψj ,n are positioned using a grid of step 2jn. Although this is enough to capture the signal,
for restoration applications it is also useful to compute wavelet coe�cients at scale 2j at each
position. This results in redundant wavelet transforms where more coe�cients than necessary to
reconstruct the signal are computed. These wavelet decompositions o�er more �exibility, at the
cost of an increased redundancy.
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(a) Input image (b) DWT with one scale

(c) DWT with 3 scales

d11 d31

d21
d12 d32

d22d1
3 d3

3

d2
3a3

(d) Mallat representation

Figure 4.5: 2D Discrete Wavelet Transform of Pluto image.
2D DWT of New Horizons’ image of Pluto (a) using an orthogonal Battle-Lemarié wavelet. The
image is �rst decomposed into 3 wavelets sub-bands (for horizontal, vertical and diagonal direc-
tions) and a smooth approximation at the �nest scale (b). Then the decomposition is recursively
applied on the smooth approximation to compute the next 2 scales (c). The coe�cients of the de-
composition are arranged according to Mallat’s representation. Credit: Input image from NASA/APL/SwRI.

4.3.1 À trous wavelet transform

The basic idea to build an Undecimated Wavelet Transform (UWT) from the DWT introduced in
the previous section is to remove the decimation step. The resulting transform can e�ciently be



50 wavelets

performed with the "à trous" algorithm (with holes in french) (Holschneider et al., 1989; Shensa,
1992) which computes the wavelet decomposition as:

aj+1[k] = aj ∗ h̄
(j)[k] =

∑
l ∈Z

h[l]aj [l − 2jk] , (4.45)

dj+1[k] = aj ∗ д̄
(j)[k] =

∑
l ∈Z

д[l]aj [l − 2jk] , (4.46)

Compared to the DWT algorithm, di�erent �ltershj andдj are used at every scale and are obtained
from the original �lters h and д by inserting 2j − 1 zeros between every sample, thus the name "à
trous". For instance the �lters h(1) and h(2) can be written as:

h(1) = [. . . ,h[−2], 0, h[−1], 0, h[0], 0, h[1], 0, h[2], . . .] (4.47)
h(2) = [. . . ,h[−2], 0, 0, 0, h[−1], 0, 0, 0, h[0], 0, 0, 0, h[1], 0, 0, 0, h[2], . . .] (4.48)

It can be shown (Shensa, 1992) that the coe�cients computed at position 2j n using the à trous
transform still correspond to the coe�cients of the original DWT decomposition. The signal can
still be reconstructed from these coe�cients using the �lter bank (h̃, д̃) with the following formula:

aj [k] = h̃(j) ∗ aj+1[k] + д̃(j) ∗dj+1[k]. (4.49)

One important feature of the UWT is that the �lter bank (h,д, h̃, д̃) no longer needs to verify the
de-aliasing condition Equation (4.35) for exact reconstruction as the decimation step has been
removed. It only needs to verify the exact reconstruction formula:

ĥ∗(ω)̂̃h(ω) + д̂∗(ω)̂̃д(ω) = 2 (4.50)

Therefore, this framework leaves much more �exibility for the design of �lter banks which are
no longer restricted by the bi-orthogonal conditions. This will be exploited in the next section to
build the Starlet, a wavelet adapted to astronomical images.

Just like for the DWT, the UWT can be extended to 2D images using the same concept of sepa-
rable multiresolutions. The decomposition of an image using J scales will lead to 3J wavelet sub
bands (3 for each scale: horizontal, vertical and diagonal) and one smooth approximation, each
with the same size as the input image. The redundancy of this transform in 2D is therefore 3J + 1.

4.3.2 Isotropic undecimated wavelet: the Starlet transform

As mentioned in the previous paragraph, the UWT leaves a lot of freedom in the design of analysis
and synthesis �lter banks. In particular, this �exibility can be exploited to build wavelet decom-
positions adapted to astronomical data where objects are most of the time more or less isotropic.
This has lead to the development of the Isotropic Undecimated Wavelet Transform (IUWT) (Starck
and Murtagh, 2006). This transform is built around two criteria:

• The �lters h,д must be symmetric.

• In 2-D or higher dimension, the wavelet and scaling function must be isotropic.
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(a) Scaling function ϕ(1D) (b) Wavelet functionψ(1D)

Figure 4.6: B3-spline scaling function and associated wavelet function corresponding to the "astro"-�lter.

One simple way to construct such a decomposition is to start from an isotropic scaling function ϕ
and to de�ne the wavelet function as the di�erence between two successive approximations:

1
4ψ (

x1
2 , x22 ) = ϕ(x1,x2) − 1

4ϕ(
x1
2 , x22 ) (4.51)

Therefore, if ϕ is isotropic, so is ψ . This relationship between wavelet and scaling function can
equivalently be written in terms of the associated �lters h and д:

д[k , l] = δ [k , l] −h[k , l] (4.52)

where δ [k , l] = 1 is (k , l) = (0, 0) and δ [k , l] = 0 otherwise. It can be shown Starck et al. (2007) that
for any pair of even-symmetric analysis Finite Impulse Response �lters (h,д = δ − h), this �lter
bank implements a frame decomposition for which perfect reconstruction is possible using Finite
Impulse Response (FIR) �lters. Indeed, based on the simple structure of the �lter д, it can easily be
seen that exact reconstruction can be achieved by simple summation of the wavelet coe�cients:

a0[k , l] = a J [k , l] +
J∑
j=1

dj [k , l] (4.53)

Therefore, the IUWTde is entirely de�ned by the choice of the scaling function ϕ and associated
�lter h. The "astro"-�lter, a speci�c choice of scaling function motivated by astronomical applica-
tions, was proposed in (Starck and Murtagh, 2006) to de�ne the Starlet transform. This scaling
function, a B-spline of order 3, is de�ned as:

ϕ(1D)(x) = 1
12

�|x − 2|3 − 4|x − 1|3 + 6|x |3 − 4|x + 1|3 + |x + 2|3�
(4.54)

from which the N-dimensional scaling function can be built as a separable product of N ϕ1D :
ϕ(x1,x2) = ϕ1D (x1)ϕ1D (x2). These scaling and wavelet functions are illustrated on Figure 4.6. As
can be seen, the wavelet function is very regular, with a small compact support and minimum os-
cillations. These properties make the Starlet an excellent choice for many restoration applications.
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(a)w1 (b)w2 (c)w3

(d)w4 (e) a4 (f) Input

Figure 4.7: Starlet transform of the Pluto image. Images (a)-(d) are the wavelet coe�cientsw j for increasing
scale j and (e) is the smooth approximation a4. (f) is the input image which can be recovered
by simple summation of the wavelet coe�cients: (f) = (a) + (b) + (c) + (d) + (e). Credit: Input image
from NASA/APL/SwRI.

The associated FIR �lters h and д are:

h(1D)[k] = 1
16 [1, 4, 6, 4, 1] (4.55)

h[k , l] = h(1D)[k]h(1D)[l] (4.56)
д[k , l] = δ [k , l] −h[k , l] (4.57)

The Starlet has the advantage of using a separable 2D scaling function which makes the com-
putation of the 2D convolution products faster as they can be implemented as consecutive 1D
convolutions along rows and columns.

Because of its isotropy, the Starlet only has one wavelet band per scale in contrast to the UWT
which has three di�erent directions for each scale. The redundancy of the Starlet is thus lower and
is equal to J + 1 where J is the number of scales. An illustration of a Starlet decomposition is given
in Figure 4.7.
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(a) Analysing waveletψдen21D (b) Synthesis function ψ̃дen21D

Figure 4.8: Analysis waveletψдen2(1D) and positive synthesis function ψ̃дen2(1D) for the second generation Starlet
transform.

4.3.3 Second generation positive reconstruction Starlet

The Starlet transform introduced in the previous paragraph was de�ned based on considerations
on the analysis (mainly that the analysis wavelet must be isotropic). However, no constraints were
put on the synthesis (other than allowing exact reconstruction). Yet, for restoration applications,
where a signal is reconstructed from modi�ed wavelet coe�cients, the quality of the results de-
pends strongly on the properties of the synthesis operation. In particular, in the astronomical do-
main, most signals are positive, therefore a positive reconstruction formula (where positive wavelet
coe�cients lead to a positive reconstructed image) is a very desirable property to avoid ringing
artefacts around positive structures.

With the freedom of wavelet design made possible by the UWT. Starck et al. (2007) have pro-
posed a second generation Starlet which admits a positive reconstruction �lter. This new transform
uses the following �lter bank:

h[k , l] = h(1D)[k]h(1D)[l] (4.58)
д[k , l] = δ [k , l] −h ∗h[k , l] (4.59)
h̃[k , l] = h[k , l] (4.60)
д̃[k , l] = δ [k , l] (4.61)

where h is the same low pass �lter as for the �rst generation wavelet. One can check that this �lter
bank veri�es the perfect reconstruction condition de�ned in Equation (4.50). The analysis �lter д
still corresponds to a wavelet as it still has zero mean but it is no longer the case of the reconstruc-
tion �lter д̃ which is now positive. The analysis wavelet and synthesis function associated to these
two �lters are illustrated on Figure 4.8.
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4.4 conclusion

In this chapter, we introduced the theoretical background of wavelets as well as the practical fast
algorithms available to compute the wavelet transform. In the context of sparse regularisation of
inverse problems, wavelets are of special interest as they provide a family of sparse representations.

The applications presented in the rest of this thesis will rely heavily on the wavelet constructions
introduced in this chapter. In particular, Starlets will be used in the context of weak lensing mass-
mapping in Chapter 7 and Chapter 8 while the application presented in Chapter 5 will be based on
undecimated bi-orthogonal wavelets.

Finally, the framework presented in this chapter in 1D and 2D will be extended to the 3D ball in
Chapter 9 where we introduce a new isotropic 3D wavelet.
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This chapter presents, as a direct application of the sparse methodology introduced in Chapter 3
and Chapter 4, a new approach to the recovery of the power spectrum of primordial perturbations
from measurements of the CMB. As will be described in the �rst section, this problem is a typi-
cal instance of an ill-posed linear inverse problem, with, as an additional di�culty, measurements
contaminated by a multiplicative noise. We address this problem, using sparse regularisation, as-
suming that the PPS is sparse in a wavelet dictionary.

The resulting algorithm, coined PRISM, is tested on an extensive set of Wilkinson Microwave
Anisotropy Probe (WMAP) simulations and applied to both the WMAP nine-year and Planck 2013
data, processed with the Local-Generalized Morphological Component Analysis (LGMCA) compo-
nent separation pipeline (Bobin et al., 2013). We demonstrate how small features on the PPS can
be accurately recovered using PRISM. When applied to WMAP and Planck data, we do not detect
any signi�cant deviations from the currently preferred near scale-invariant model, in accordance
with the latest results from Planck (Planck Collaboration et al., 2015a).

The results presented in this chapter were published in Paykari et al. (2014) and Lanusse et al.
(2014). This work has been conducted in collaboration with Paniez Paykari, Jean-Luc Starck, and
the CosmoStat team at CEA/Saclay.

55



56 application: sparse reconstruction of the primordial power spectrum

5.1 the primordial power spectrum reconstruction problem

The PPS describes the initial curvature perturbations that over time evolved to form the large-scale
structure we observe today. Because the physics of the early Universe are encoded in the PPS, it
represents an invaluable probe of primordial cosmology, and measuring it is a crucial research area
in modern cosmology. The currently favoured model describing the physics of the early Universe,
in�ation (Guth, 1981; Linde, 1982), produces initial perturbations from quantum �uctuations during
an epoch of accelerated exponential expansion (see Section 2.3.1). This in�ation process produces
a power spectrum of speci�c shape and can leave characteristic features. For the simplest in�ation
models, the power spectrum, generated by almost purely adiabatic perturbations, is predicted to
be nearly scale invariant. Hence, it is often expressed in terms of an amplitude As and a spectral
index ns with an optional ‘running’ αs ,

P(k) = As

(
k

kp

)ns−1+ 1
2αs ln(k/kp)

, (5.1)

where kp is a pivot scale. We consider here only the �rst-order expansion of the spectral index,
although higher orders can be considered (e.g., Debono et al., 2010). Exact scale invariance, known
as the Harrison-Zeldovich model, which sets ns = 1 (and αs = 0) (Harrison, 1970; Zeldovich, 1972),
has been ruled out by di�erent datasets. Instead, the near scale-invariant spectrum with ns < 1
�ts the current observations very well (e.g., Planck Collaboration et al., 2015b). More complex
models generating deviations from scale invariance include those with features on the potential
(Starobinsky, 1992; Adams et al., 2001; Wang et al., 2005; Hunt and Sarkar, 2004; Joy et al., 2008;
Hunt and Sarkar, 2007; Pahud et al., 2009; Lerner and McDonald, 2009; Kumazaki et al., 2011;
Meerburg et al., 2012; Ashoorioon and Krause, 2006; Ashoorioon et al., 2009), a small number of e-
folds (Powell and Kinney, 2007; Nicholson and Contaldi, 2008), or other exotic in�ationary models
(Lesgourgues, 2000; Feng and Zhang, 2003; Mathews et al., 2004; Jain et al., 2009; Romano and
Sasaki, 2008; Piao et al., 2004; Choudhury et al., 2013; Choudhury and Mazumdar, 2014). Therefore,
determining the shape of the PPS will allow us to evaluate how well these models of the early
Universe compare to the observations, possibly rule out some of the proposed models, and thus
provide some much needed insight into the conditions of the primordial Universe.

The di�culty of course is that the PPS is no longer directly observable today. Nevertheless, the
initial curvature perturbations present in the very early Universe and described by the PPS have
evolved with time to form the structures we observe today. In particular, the CMB still bears a
relatively clean imprint of the initial perturbations. Indeed, thanks to the linearity of the physical
processes at play at the time of the CMB emission, the initial perturbations can be linearly mapped
to the CMB temperature anisotropies through a transfer function, so that the theoretical CMB
power spectrum C th

`
can be linked to the unknown P(k) through:

C th
` = 4π

∫ ∞

0
d lnk∆2

`(k)P(k) , (5.2)

where ` is the angular multipole and∆`(k) is the angular transfer function of the radiation anisotropies,
which depends on the cosmological parameters responsible for the evolution of the Universe. This
transfer function exhibits a high level of degeneracy due to projection e�ects which makes recov-
ering the PPS P(k) an instance of an ill-posed linear inverse problem. This problem proves to be
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particularly di�cult as the statistics of the measured CMB power spectrum are not Gaussian and
an accurate estimation of this power spectrum is impeded by instrumental noise and various masks
applied to the data. Finally, as the CMB spectrum is jointly sensitive to the primordial spectrum
and the cosmological parameters in the transfer function, there is an induced degeneracy between
them. The impact and level of this degeneracy have been investigated in (Paykari and Ja�e, 2010).
A joint estimation of the cosmological parameters and a free form PPS would be prohibitively
expensive to perform (as the parameter space can become very large). As a result, a parametric
form of the PPS is assumed when jointly estimating this spectrum along with the other cosmo-
logical parameters. This potentially hides degeneracies between the cosmological parameters in
the transfer function and the form of P(k). One way to break this degeneracy is by adding extra
information, such as polarisation or LSS data (Hu and Okamoto, 2004; Nicholson and Contaldi,
2009; Mortonson et al., 2009).

There are generally two approaches to determine the shape of the PPS, one by parametrisation
and the second by reconstruction. Numerous parametric approaches that search for features with
a similar form to those in complex in�ationary models have been performed along with a simple
binning of P(k) (Bridle et al., 2003; Parkinson et al., 2005; Sinha and Souradeep, 2006; Sealfon
et al., 2005; Mukherjee and Wang, 2005; Bridges et al., 2006, 2007; Covi et al., 2006; Hazra et al.,
2010; Joy et al., 2009; Verde and Peiris, 2008; Paykari and Ja�e, 2010; Guo et al., 2011; Goswami
and Prasad, 2013). Non-parametric methods, which make no assumptions about the model of the
early Universe, have also been probed (Hannestad, 2001; Wang and Mathews, 2002; Matsumiya
et al., 2002; Sha�eloo and Souradeep, 2004; Bridle et al., 2003; Kogo et al., 2004a; Mukherjee and
Wang, 2003; Hannestad, 2003; Kogo et al., 2004b; Tocchini-Valentini et al., 2005; Leach, 2006;
Sha�eloo et al., 2007; Sha�eloo and Souradeep, 2008; Nagata and Yokoyama, 2008, 2009; Nichol-
son and Contaldi, 2009; Nicholson et al., 2010; Hazra et al., 2013). For an extensive review on how
to search for features in the PPS using a wide range of methods, refer to the following papers
and the references therein, which provide a sample on non-parametric reconstruction: deconvolu-
tion (Tocchini-Valentini et al., 2006; Ichiki and Nagata, 2009; Ichiki et al., 2010), Richardson-Lucy
deconvolution (Hamann et al., 2010; Sha�eloo et al., 2007), smoothing splines (Verde and Peiris,
2008; Peiris and Verde, 2010; Sealfon et al., 2005; Gauthier and Bucher, 2012), linear interpolation
(Hannestad, 2003; Bridle et al., 2003), and Bayesian model selection (Bridges et al., 2009; Vazquez
et al., 2012).

The recent Planck mission CMB temperature anisotropy data constrain the spectral index to
ns = 0.9655 ± 0.0062 (Planck Collaboration et al., 2015b), ruling out exact scale invariance at over
5σ . Planck also failed to �nd a statistically signi�cant running of the scalar spectral index, obtaining
αs = −0.0134 ± 0.0090. On the other hand, high-resolution CMB experiments, such as the South
Pole Telescope (SPT)1, report a small running of the spectral index; −0.046 < αs < −0.003 at 95%
con�dence (Hou et al., 2014). However, in general, any such detections have been weak and were
consistent with zero.

Furthermore, the Planck collaboration extensively investigated features in the PPS. Initially, in
Planck Collaboration et al. (2014a) a penalised likelihood approach indicated that there might be a
feature near the highest wavenumbers probed by Planck at an estimated signi�cance of ∼ 3σ . This
nominally statistically signi�cant feature was detected around k ∼ 0.13 Mpc−1. However, it has

1 http://pole.uchicago.edu/spt/index.php

http://pole.uchicago.edu/spt/index.php
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been con�rmed since that the large dip at ` ∼ 1800 in the CMB power spectrum, which is associated
with residual electromagnetic interference generated by the drive electronics of the 4 K cooler, is in
fact responsible for the features detected at these high wavenumbers. The detection of this feature
was subsequently retracted in Planck Collaboration et al. (2015a) and the main conclusion of this
analysis is now that Planck does not �nd any signi�cant departure from a simple power law model.

5.2 modelling

5.2.1 Empirical power spectrum

A CMB experiment, such as Planck, measures the CMB temperature anisotropy Θ(~p) in direction
~p, which is described as T (~p) = TCMB[1 +Θ(~p)]. This anisotropy �eld can be expanded in terms of
spherical harmonic functions Y`m as

Θ(~p) =
∞∑
`=0

∑̀
m=−`

a`mY`m(~p) , (5.3)

with a`m being the spherical harmonic coe�cients. The CMB anisotropy Θ(~p) is assumed to be
Gaussian distributed, which makes thea`m independent and identically distributed (i.i.d.) Gaussian
variables with zero mean, 〈a`m〉 = 0, and variance

〈a`ma∗`′m′〉 = δ``′δmm′C
th
` , (5.4)

whereC th
`

is the CMB temperature angular power spectrum introduced in Equation (5.2). However,
we only observe a realisation of this underlying power spectrum on our sky, which we can estimate
using the empirical power spectrum estimator de�ned as

Ĉ th
` =

1
2` + 1

∑̀
m=−`

|a`m |2 , (5.5)

where Ĉ th
`

is an unbiased estimator of the true underlying power spectrum; this becomes 〈Ĉ th
`
〉 =

C th
`

in the case of noiseless CMB data over full sky.
For a given `, the empirical power spectrum follows a χ 2 distribution with 2` + 1 degrees of

freedom, as it is a sum of the squares of independent Gaussian random variables. To account for
this variability, we recast the relation between Ĉ th

`
and C th

`
as

Ĉ th
` = C

th
` Z` , (5.6)

where Z` =
∑
m |a`m |2/LC th

`
, which is a random variable representing a multiplicative noise dis-

tributed according to
LZ` ∼ χ 2L , where L = 2` + 1 . (5.7)

In particular, the standard deviation of the empirical power spectrum estimator for a given ` is√(2/L) C th
`

.
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5.2.2 Accounting for instrumental noise and partial sky coverage

So far, we have considered that the CMB anisotropy data was available on the full sky which is
not possible in practice because of the di�erent Galactic foregrounds. Applying a mask on the
sky results in the a modi�cation of the spherical harmonic coe�cients of the CMB temperature
anisotropy,

ã`m =

∫
Θ(~p)W (~p)Y ∗`m(~p)d~p , (5.8)

where W (~p) is the window function applied to the data. The presence of the window function
induces correlations between the a`m coe�cients at di�erent ` and di�erent m and hence Equa-
tion (5.4) is no longer true.

One can de�ne the pseudo power spectrum C̃` as the application of the empirical power spectrum
estimator on the spherical harmonic coe�cients of the masked sky. When data is contaminated
with additive Gaussian stationary noise, the pseudo power spectrum is

C̃` =
1

2` + 1
∑̀
m=−`

|ã`m + ñ`m |2 , (5.9)

where ñ`m are the spherical harmonic coe�cients of the masked instrumental noise.
Following the MASTER method from Hivon et al. (2002), the pseudo power spectrum C̃` and

the empirical power spectrum Ĉ th
`

can be related through their ensemble averages,

〈C̃`〉 =
∑
`′

M``′〈Ĉ th
`′ 〉 + 〈Ñ`〉 , (5.10)

where M``′ describes the mode-mode coupling between modes ` and `′ resulting from computing
the transform on the masked sky. We note that in this expression 〈Ĉ th

`′
〉 = C th

`′
and we introduce

the notations
C` = 〈C̃`〉 and N` = 〈Ñ`〉 , (5.11)

where C` and N` refer to the CMB and the noise power spectra of the masked maps, respectively.
We will also work under the approximation that the pseudo power spectrum C̃` still follows a

χ 2 distribution with 2` + 1 degrees of freedom and can be modelled as

C̃` = C`Z` , (5.12)

= *
,

∑
`′

M``′C
th
`′ +N`

+
-
Z` , (5.13)

where Z` is de�ned in Equation (5.7).

5.2.3 Transfer function of the radiation anisotropies

Equation (5.13) relates the observables C̃` to the theoretical CMB anisotropy power spectrum C th
`

,
taking into account instrumental noise, sample variance, and masking. The theoretical power spec-
trum C th

`
is itself related to the PPS through the convolution operation de�ned in Equation (5.2).
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For a �nite sampling of the wavenumber k , this convolution can be recast as a matrix operator T
acting on the discretely sampled primordial spectrum, now referred to as Pk ,

C th
` '

∑
k

T`kPk , (5.14)

with matrix elementsT`k = 4π∆ lnk ∆2
`k , where ∆ lnk is the logarithmic k interval for the discrete

sampling chosen in the integration of the system of equations. Because of the non-invertibility
of the T operator, recovering the PPS Pk from the true CMB power spectrum C th

`
constitutes an

ill-posed inverse problem. Finally, the complete problem we aim to solve can be condensed in the
following form:

C̃` = *
,

∑
`′k

M``′T`′kPk +N`
+
-
Z` . (5.15)

We assume that the masked instrumental noise power spectrum N` is known for a given experi-
ment. It can be computed from a JackKnife data map or from realistic instrumental noise simula-
tions. Therefore, in the power spectrum of the data C̃` , only the PPS Pk remains unknown. Here
we assume that the cosmology is known and hence operator T is known.

As already mentioned, the degeneracies of the transfer function make the recovery of the PPS
an ill-posed inverse problem. The presence of the multiplicative noise Z` further complicates the
problem and requires a speci�c treatment.

5.2.4 Variance stabilisation

One of the major di�culties encountered while solving this problem comes from the multiplicative
nature of the noise Z` in Equation (5.13). Indeed, all the methods introduced in Chapter 3 to solve
linear inverse problems assume additive Gaussian noise. One way to address this problem is to
apply a variance stabilisation scheme to the data to turn the multiplicative noise into an additive
Gaussian noise of unit variance. This approach has been applied to the CMB power spectrum in
Paykari et al. (2012) to provide a proper treatment of the non-Gaussian noise on Ĉ th

`
based on the

Wahba Variance Stabilisation Transform (VST). After the variance stabilisation is applied, the noise
on Ĉ th

`
can be treated as an additive Gaussian noise with zero mean and unit variance. The VST

operator T is de�ned as
T : x ∈ R+ 7→

lnx − µL
σL

, (5.16)

where µL = ψ0(L/2) − ln(L/2) and σ 2
L = ψ1(L/2), where ψm is the polygamma function ψm(t) =

dm+1
dtm+1 ln Γ(t). We denoteCs

`
as the stabilised empirical power spectrum after applying the VST and

get

Cs
` = T (Ĉ th

` ) =
lnC th

`

σL
+ ϵ` , (5.17)

where ϵ` = (lnZ` − µL)/σL ∼ N (0, 1). The inverse operator of T can be de�ned as

R : x ∈ R 7→ exp(σLx) . (5.18)

Equipped with this VST tool, the question is now how to incorporate it within the reconstruction
problem to make it tractable with the methodologies and algorithm at our disposal. The VST can-
not simply be applied to the input data C̃` to solve the problem in the transformed space as the
logarithmic VST operator would make the problem non-linear.
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However, it can be used to build an estimator of the quantity we are interested i.e. the resid-
uals R`(X ) between the true noiseless pseudo power spectrum C` and the reconstructed power
spectrum C`(X ) = MTX +N` given a PPS X :

R`(X ) = C` −C`(X ) . (5.19)

Note that the true pseudo power spectrum C` is unknown and so is R`(x). The aim is to �nd an
estimator R`(X ) of R`(X ) based on the measured C̃` so that:

R`(X ) = R`(X ) +n` (5.20)

where n` is a Gaussian noise with zero mean and covariance Σ. If such an estimator can be found
then the inverse problem can be stated as a minimisation problem with a χ 2 data �delity term of
the form 1

2 ‖ Σ
−1/2R`(X ) ‖22 .

Consider the following di�erence:

T (C̃`) − ln(C`(X ))
σL

=
ln(C`) − ln(C`(X ))

σL
+ ϵ` , (5.21)

=
1
σL

ln
(

C`

C`(X )
)
+ ϵ` , (5.22)

=
1
σL

ln
(
1 + R`(X )

C`(X )
)
+ ϵ` , (5.23)

where ϵ` is the Gaussian noise with zero mean introduced in Equation (5.17). Assuming that the
residual R`(X ) is small compared toC`(X ), one can linearise the above equation, to a good approx-
imation, as

T (C̃`) − ln(C`(X ))
σL

'
1

σLC`(X )R`(X ) + ϵ` , (5.24)

and
R`(X ) ' C`(X )σL

(
T (C̃`) − ln(C`(X ))

σL

)
−C`(X )σLϵ` . (5.25)

In this expression, the variance of the noise, i.e. the second term in the above equation, depends
on the current estimate C`(X ). As we will need to estimate the variance of the noise propagated
to the wavelet coe�cients using Monte Carlo simulations, it would be too expensive to estimate
this every time C`(X ) changes. Therefore, we opted for an additional approximation and replace
the termC`(X )σL byC`(X 0)σL , where X 0 is now a �xed �ducial power spectrum which can be the
initial guess of the solution. We can now de�ne the estimator R`(X ) for R`(X ) as

R`(X ) ≡ C`(X 0)σL
(
T (C̃`) − ln(C`(X ))

σL

)
. (5.26)

We can now verify that this estimator behaves as expected:

R`(X ) ' C`(X 0)
C`(X ) R`(X ) +C`(X 0)σLϵ` , (5.27)

' α R`(X ) +n` , (5.28)

where we have introduced for convenience α(X ) = C` (X 0)
C` (X ) and n` = C`(X 0)σLϵ` . Note that in

this expression, the approximation comes from the development to �rst order of the logarithm
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and should remain small as long as the residuals are small. In particular, the quality of the ap-
proximation improves as the estimate of the PPS X converges to the true P(k). However, unless
C`(X 0) = C`(X ), the factor α is not equal to 1 thus this estimator yields a biased estimate of the
amplitude of R`(X ). Nevertheless, it still veri�es the �xed-point property R`(P th

k ) = 0 necessary
to converge towards the solution and unless the estimated solution X deviates signi�cantly from
X 0, the ratioC`(X 0)/C`(X ) remains limited to within a few percents. Finally, in the iterative algo-
rithm proposed in the next section, the �ducial PPS X 0 can be reset several times as the current
estimated X as the algorithm converges towards a solution, thereby removing any potential bias
on the residuals once the algorithm has converged. Besides these small caveats, the noise n` on the
estimator R`(X ) is now Gaussian, additive, with zero mean and a �xed covariance Σ independent
of the current estimate of the solution X , assumed to be diagonal with Σ` = (C`(X 0)σL)2.

5.3 the prism algorithm

5.3.1 Formulation of the inverse problem

The problem of reconstructing the PPS is stated in Equation (5.15). Solving this problem has three
inherent di�culties:

1. the singularity of the convolution operator T`k , which makes the inverse problem ill-posed
even in the absence of noise;

2. the multiplicative noise on the power spectrum;

3. the mask applied to the maps, inducing correlations on the power spectrum.

To address this complex inverse problem, we adopt the sparse regularisation framework intro-
duced in Chapter 3 to recast the reconstruction of the PPS as a convex optimisation problem of the
form:

argmin
X

1
2 ‖ C` − (MTX +N`) ‖22 +λ ‖ ΦtX ‖1 , (5.29)

where X is the reconstructed estimate for the PPS Pk . The �rst term in Equation (5.29) imposes
a `2 �delity constraint to the data while the second term promotes the sparsity of the solution in
dictionary Φ. The parameter λ tunes the sparsity constraint. This problem naturally incorporates
the inversion of both the MASTER mixing matrix and the radiative transfer function and thus
addresses the �rst and third di�culties stated earlier.

However this problem is what we would ideally like to solve but because of sample variance, the
true pseudo-power spectrumC` is unknown, not the actual measurements C̃` . This is linked to the
second di�culty; the measurements are contaminated with a multiplicative noise which cannot
be handled with the formulation of Equation (5.29). To overcome this issue, we use the variance
stabilisation scheme introduced in Section 5.2.4 to state an alternative optimisation problem which
is now tractable by the convex optimisation algorithms presented in Chapter 3:

argmin
X

1
2 ‖ Σ

−1/2R`(X ) ‖22 +λ ‖ ΦtX ‖1 , (5.30)
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where the estimatorR`(X ) has been introduced in Equation (5.26). The following section details the
algorithm used to solve this problem and addresses the problem of the choice of the regularisation
parameter λ.

5.3.2 Sparse reconstruction algorithm

As was mentioned before, the solution of the `1 regularised problem tends to be biased. To avoid
this problem, in practice the PRISM algorithm uses the re-weighted `1 approach of Candès et al.
(2008) (see Section 3.2.3) which tends to give results closer to the `0 problem. This technique
amounts to solving a sequence of weighted `1 problems of the form

min
X

1
2 ‖

1
C`(X 0)σLR`(X ) ‖22 +λ ‖ WΦtX ‖1 , (5.31)

where W is a diagonal matrix applying a di�erent weight for each wavelet coe�cient, e�ectively
modifying the shape of the `1 ball. By iteratively solving this problem and using the the previ-
ous estimate of X to de�ne weights W for the next iteration, the sparsity of the solution can be
reinforced. The steps of this reweighted analysis-based `1 recovery are summarised below:

1. Set j = 0, for each diagonal element of the weighting matrix W setw j
i = 1. Set the �rst guess

X 0 by �tting a pure scale-invariant PPS to the data C̃` .

2. Solve the weighted `1 problem (5.31) yielding a solution X j .

3. Update the �ducial PPS with the current estimate: X 0 = X j

4. Estimate the threshold levels λi by Monte-Carlo simulation.

5. Compute α j
i = ΦX j and update the weights according to:

w j+1
i =




1
|α ji |/Kλi

if |α j
i | ≥ Kλi

1 if |α j
i | < Kλi

, (5.32)

where λi is the standard deviation propagated to the wavelet coe�cients (see Section 5.3.3)
and K is a given signi�cance level.

6. Terminate on convergence or when reaching the maximum number of iterations, otherwise
go to step 2.

In practice, we �nd that three iterations of this procedure are enough to reach satisfying conver-
gence and de-biasing of our results and we see no further improvements by performing additional
re-weightings.

To solve the relaxed problem (5.31) given a weighting matrix W, one can use the popular algo-
rithm ISTA, introduced in Section 3.3.2.1. This proximal forward-backward iterative scheme relies
on the iteration

X̃n+1 = Xn + µTtMt 1
(C`(X 0)σL)2R`(Xn) , (5.33)

Xn+1 = proxK µ ‖λ�W Φt · ‖1

(
X̃n+1

)
, (5.34)
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where µ is an adapted step size and proxK µ ‖λ�W Φt · ‖1 is the proximal operator corresponding to
the sparsity constraint. The gradient descent step µ has to verify

0 < µ ≤ 2
‖ TtMt (C`(X 0)σL)−2MT ‖

, (5.35)

where ‖ · ‖ is the spectral norm of the operator.
As was explained in Section 3.3, in the absence of a closed-form expression for the proximal

operator, its value can be estimated by solving a nested optimisation problem:




û = argmin|ui |≤K µλiwi
1
2 ‖ Φu − x ‖22

proxK µ ‖λ�W Φt · ‖1(x) = x −Φû
. (5.36)

We solve this optimisation problem at each iteration of the algorithm, using FISTA (Beck and
Teboulle, 2009), a fast variant of ISTA.

The details of the algorithm solving this weighted problem are provided in Algorithm 5.1.

5.3.3 Choice of wavelet dictionary and regularisation parameter

As mentioned in the previous section, the regularisation parameter K can be set according to a
desired signi�cance level. In Equation (5.36), it can be seen that the wavelet coe�cients ui are
constrained within a weighted `1 ball and correspond to the non-signi�cant part of the signal. In
order to place the radius of this `1 ball according to the expected level of noise for each wavelet
coe�cient, we propagate the noise on the estimator R` from Equation (5.34) through the operator
ΦTtMt (C`(X 0)σL)−2 and estimate its variance at each pixel and each wavelet scale. In practice, we
estimate this noise level using Monte Carlo simulations of the noise on R` . We set each λi to the re-
sulting variance for each wavelet coe�cient. As a result, coe�cients below Kλi will be considered
as part of the noise and one only need to set a global parameter K to tune the sparsity constraint
according to the noise level. In Paykari et al. (2014), we used a very conservative threshold atK = 5
which robustly suppressed the noise while still allowing us to recover all of our test features. For
the analysis of the Planck data in Lanusse et al. (2014), we relaxed this parameter to K = 4 for
better sensitivity.

The choice of wavelet Φ will have an impact on the performance of feature recovery. In the
following study, we use bi-orthogonal Battle-Lemarié wavelets of order 1 (see Section 4.2.3). These
wavelets are very regular, have limited oscillations, are exponentially localised and have two van-
ishing moments, which makes them well suited to recover a near scale-invariant power spectrum
in logarithmic scale. We have also tried various other orthogonal and bi-orthogonal wavelets but
the Battle-Lemarié provided the best results on the features we tested. More physically motivated
dictionaries could be used to reconstruct a speci�c type of feature predicted by a given theory.

5.4 validation and results for wmap nine-year data

5.4.1 Numerical simulations

To assess the performance of our non-linear algorithm we perform a series of reconstructions
for three di�erent types of PPS: a near scale-invariant spectrum with ns = 0.972 (Hinshaw et al.,



5.4 validation and results for wmap nine-year data 65

Algorithm 5.1 Weighted analysis-based Pk sparse recovery
Require:

Pseudo power spectrum of the data: C̃` ,
Instrumental noise power spectrum N` ,
First guess PPS X 0,
Sparsity constraint parameter K ,
Weights wi for each wavelet coe�cients.

1: Initialise C0
`
= MTX 0.

2: Compute variance σi of noise ∼ N (0, 1) propagated to wavelet coe�cients through
ΦTtMt (C`(X 0)σL)−2 from Monte Carlo simulations.

3: for n = 0 to Nmax − 1 do
4: R

n
` = C

0
`
σL

(
T (C̃`) − ln(MTXn+N` )

σL

)
5: X̃n+1 = Xn + µTtMt (C`(X 0)σL)−2Rn`
6: Computing proxλµ ‖WΦt · ‖1 :

7: Initialise u1 = y0 = ΦtX
n+1, t1 = 1.

8: for k = 1 to Kmax − 1 do
9: uk = uk + µ

′Φ
(
X
n+1
−Φtuk

)
10: yk = uk − STµwiKσi (uk )
11: tk+1 = (1 +

√
1 + 4t2k )/2

12: uk+1 = yk +
tk−1
tk+1

(yk −yk−1)
13: end for

14: Update of the reconstruction:
15: Xn+1 = X̃n+1 −ΦuKmax

16: end for
17: Return: The reconstructed PPS Pk = XNmax .

2013), a spectrum with a small running of the spectral index with ns = 0.972 and αs = −0.017
(Hou et al., 2014), and a spectrum with ns = 0.972 with a compensated feature around k = 0.03
Mpc−1. The �rst two simple models are the most favoured by the current data and the spectrum
with the feature (investigated in other works, see Nicholson and Contaldi (2009)) is only used to
demonstrate the ability of the algorithm to detect and reconstruct isolated features. In all cases,
the cosmological parameters responsible for the evolution of the Universe in the radiation transfer
function are kept the same and according to the WMAP nine-year parameters; (Hinshaw et al.,
2013), Ωbh

2 = 0.02264, Ωch
2 = 0.1138, ΩΛ = 0.721, and τ = 0.089.

For a thorough comparison of our simulations to the WMAP nine-year data we perform the
Monte Carlo simulations at the level of the �ve WMAP frequency channels, taking into account
the propagation of the instrumental noise through the component separation and masking steps.
For each of the three test primordial spectra we produce a set of 2000 pseudo power spectra C̃`

by processing the simulated channels through the LGMCA component separation pipeline (Bobin
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et al., 2013) before computing the empirical power spectrum of the masked maps. In detail, the
simulations are produced using the following steps.

• Frequency channels: We simulate CMB maps at the �ve WMAP channels at frequencies 23,
33, 41, 61, and 94 GHz. The frequency dependant beams are perfectly isotropic Point Spread
Functions (PSFs) and their pro�les have been obtained as the mean value of the beam transfer
functions at each frequency as provided by the WMAP consortium (nine year version).

• Instrumental noise: Noise maps for each channel have been generated as Gaussian reali-
sations of pixel variance maps obtained by combining the nine one-year full-resolution hit
maps as provided by the WMAP consortium.

• Cosmicmicrowave background: Gaussian realisations of the CMB are computed from the
three power spectraC th

`
, which were obtained by applying the radiation transfer function T

to each of the three test PPS. The transfer function is computed using CLASS2 (Lesgourgues,
2011) according to the best-�t WMAP nine-year cosmology. The CMB signal for each channel
is then obtained by applying the corresponding beam to the simulated CMB map as well as
the HEALPix window for nside of 1024.

• LGMCA Component Separation: Full sky 15 arcmin resolution maps are obtained by ap-
plying LGMCA, with the precomputed set of parameters (Bobin et al., 2013), to the �ve simu-
lated channels for CMB and noise. Noisy full sky maps are obtained by adding the resulting
signal and noise maps.

• Masking: Final maps are obtained by applying the WMAP mask kq85 mask with fsky = 0.75.

The pseudo power spectra are obtained by applying the empirical power spectrum estimator
to the simulated maps. The noise power spectrum N` is estimated by averaging the 2000 pseudo
spectra of masked noise maps. Figure 5.1 shows an example of a masked noisy CMB map obtained
from our simulation process. Figure 5.2 shows the pseudo power spectra for the three test primor-
dial spectra as well as the instrumental noise power spectrum estimated from the simulations. The
light blue crosses show one realisation of the pseudo power spectrum for the near scale-invariant
PPS and the pink crosses show the one with a small running. As can be seen, the three di�erent
CMB spectra lie well within each other’s noise band and on large and small scales they become al-
most indistinguishable. Hence to accurately reconstruct the three underlying PPS from these CMB
spectra, a very good handle on both the instrumental noise and the sample variance is required.

5.4.2 Reconstructions of primordial power spectra

To apply PRISM to the simulated data, we build a transfer function T′ adapted to the simulations
so that it includes the e�ects of the 15 arcmin beam from LGMCA and the HEALPix window of
nside = 1024. Using the same radiation transfer function T as computed for the simulations, the
resulting transfer matrix T′ can be written as

T′ = b2`h
2
`TQ , (5.37)

2 http://class-code.net/

http://class-code.net/
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Figure 5.1: A simulated noisy CMB map at 15 arcmin resolution obtained from LGMCA and masked with
the WMAP kq85 mask. The noise level corresponds to the WMAP nine-year data. This map was
generated from a CMB power spectrum for a primordial spectrum with ns = 0.972 and αs = 0.

where b2
`

and h2
`

are the beam and the HEALPix window, respectively, and Q is an operator per-
forming a linear interpolation from the linear sampling in k of the CLASS transfer function T to
a logarithmic scale using 838 points in the range k ∼ 10−4 − 0.15 Mpc−1. We also compute the
MASTER coupling matrix Mkq85 corresponding to the kq85 high-resolution temperature analysis
mask used in the simulations.

We now have all the ingredients necessary in our algorithm: Mkq85, T′, and Φ, which we use to
construct our algorithm and apply it to the 3 × 2000 simulated pseudo power spectra. We use the
same set of parameters in PRISM for three types of primordial spectra: a Kσ signi�cance level for
the sparsity constraint withK = 5, three reweightings, and Nmax = 400 iterations per reweighting.

In Figure 5.3a we show the reconstructed primordial spectra in the range k ∼ 0.001− 0.10 Mpc−1.
The blue lines show the 2000 reconstructed spectra for the spectrum with ns = 0.972 and αs = 0.0
and the cyan lines show the reconstructions for the spectrum with ns = 0.972 and αs = −0.017. In
each case, the orange line is the mean of the reconstructions and the red line is the �ducial one.

The reconstruction of the PPS is limited by di�erent e�ects on di�erent scales. On very large
scales, there are fundamental physical limitations placed on the recovery of the PPS by both the
cosmic variance and the more severe geometrical projection of the modes. The physical limitations
in the radiation transfer function places an inherent limitation at large scales meaning the PPS can-
not be fully recovered on these scales, even in a perfect CMB measurement. On the other hand, on
small scales we are limited by the instrumental noise. This leaves us with a window through which
we can recover the PPS with a good accuracy. Nevertheless, as can be seen, for k > 0.015 Mpc−1
the PRISM algorithm can reconstruct the PPS to a great accuracy and easily distinguishes between
the two types of spectra.
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Figure 5.2: CMB pseudo power spectra for the three types of PPS. The blue solid line shows the pseudo
spectrum based on a primordial spectrum with ns = 0.972 and αs = 0. The light blue crosses
show one simulation of this spectrum, computed from the map in Figure 5.1. The red line shows
the pseudo spectrum for a primordial spectrum with ns = 0.972 and αs = −0.017 and the orange
line corresponds to a power spectrum with a localised feature at k = 0.03 Mpc−1. These spectra
include the e�ects of the mask, the 15 arcmin beam, the HEALPix window for nside of 1024, and
the instrumental noise power spectrum, which is shown by a solid black line.

Figure 5.3b shows the 2000 CMB spectra obtained from the reconstructed primordial power
spectra of each type. The blue lines show the CMB power spectra obtained from the near scale-
invariant primordial spectra and the cyan lines show the ones for the primordial spectrum with
a running. In each case, the orange line shows the mean of the reconstructions and the red line
shows the �ducial spectrum. Comparing these CMB spectra to the input simulated ones, shown in
Figure 5.2, illustrates the performance of the PRISM algorithm.

Figure 5.4 shows the performance of PRISM in reconstructing a localised feature in the PPS. The
green lines show the 2000 individual reconstructions, the orange solid line shows the mean of the
reconstructions, and the �ducial spectrum is shown in red. As can be seen, both the position and
the amplitude of the feature can be recovered with good accuracy.
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(a) Reconstructed primordial power spectra (b) Corresponding CMB pseudo power spectra

Figure 5.3: Reconstructions for the PPS and their corresponding CMB pseudo spectra are shown. In blue we
show the 2000 reconstructed spectra with ns = 0.972 and αs = 0 and in cyan the reconstruction
for ns = 0.972 and αs = −0.017. In both cases the mean of the reconstructions is shown in
orange and the �ducial input spectrum is shown in red. As can be seen, for k > 0.015 Mpc−1
PRISM can reconstruct the primordial power spectra with such accuracy that the two are easily
distinguishable, despite their very similar forms in C` space. The shaded regions in the right-
hand plot correspond to the 1σ sample (cosmic) variance, which demonstrates the similarity of
the two types of CMB spectra.

Figure 5.4: Reconstruction of the PPS with ns = 0.972, αs = 0.0, and an additional feature around k = 0.03
Mpc−1 shown in green. The 2000 reconstructions are superimposed with their mean shown in
orange. The �ducial input spectrum is shown in red.

5.4.3 Reconstruction from WMAP nine-year CMB spectrum

In the WMAP nine-year analysis (Hinshaw et al., 2013), the cosmological parameters in the radi-
ation transfer function are �tted along with ns and As , hence a power law form for the PPS is
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Figure 5.5: Reconstruction of the PPS from the LGMCA WMAP nine-year data and its corresponding
pseudo spectrum are shown in red. For comparison, we also show the mean of the reconstruc-
tion for ns = 0.972 and αs = 0 with a solid dark blue line with the 1σ interval around the mean
shown as a shaded blue region. The WMAP nine-year �ducial PPS with ns = 0.972 and αs = 0
is shown in yellow and in cyan we show the best-�t PPS with a running from WMAP nine-year
data with ns = 1.009 and αs = −0.019. On the right, we plot the LGMCA WMAP nine-year
pseudo power spectrum (blue crosses) and the estimated instrumental noise power spectrum
including the point sources power spectrum is shown (solid black line). The very small blue
region corresponds to the 1σ interval around the mean reconstructed spectrum (i.e. blue region
on the left plot).

assumed. This means the transfer function computed using these best-�t parameters will always
allow a power-law PPS to �t the observed data. However, reconstructing a free form PPS from the
data, assuming the �ducial transfer function, allows us to test this null hypothesis by looking for
signi�cant deviations between the reconstructed spectrum from data and the simulations.

The WMAP nine-year data is processed using LGMCA as described in Bobin et al. (2013), which
is the same pipeline as the one used to produce the simulations. As mentioned previously, a good
handle on the noise power spectrum is critical in order to yield an unbiased reconstruction of the
PPS. We estimate the noise power spectrum from the WMAP nine-year data by subtracting the
cross-power spectrum from the auto-power spectrum and applying a denoising, using the TOUSI
algorithm (Paykari et al., 2012). To account for the e�ect of point sources, which were not accounted
for in the simulations, we add an estimate of the point sources power spectrum, computed from 100
simulations, to the estimated noise power spectrum. Figure 5.5b shows the pseudo-power spectrum
computed from the LGMCA WMAP nine-year map (blue crosses) and the estimated instrumental
noise power spectrum (black solid line). We note that in theory, the noise power spectrum could be
computed from simulations. However, after comparing our estimated noise power spectrum from
the 2000 simulations to the actual noise power spectrum in the WMAP nine-year data we found a
small bias that we could not account for in the simulations. Hence we opted to use the data itself
to estimate the noise power spectrum.

We apply PRISM, with the same parameters as in the simulations, to the WMAP nine-year
LGMCA CMB pseudo power spectrum. The reconstructed PPS is shown in red in Figure 5.5a. In
this �gure, we overlay the 1σ interval around the mean of reconstructed primordial near scale-
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invariant spectrum, obtained from the simulations. The best-�t power-law power spectrum from
WMAP nine-year data with ns = 0.972 and αs = 0 is shown in yellow, while the best-�t power
spectrum with a running from WMAP nine-year data with ns = 1.009 and αs = −0.019 is shown in
cyan (Hinshaw et al., 2013). As can be seen, the reconstructed power spectrum from the data does
not exhibit a signi�cant deviation from the best-�t near scale-invariant spectrum. The small depar-
ture from the 1σ interval at small scales is not signi�cant, especially since our simulations did not
thoroughly take into account additional e�ects such as a beam uncertainty and point sources. To
conclude, we �nd no signi�cant departure from the WMAP nine-year best-�t near scale-invariant
spectrum.

5.5 results for planck 2013 data

Compared to WMAP, the Planck satellite is able to probe the CMB up to much higher multipoles
and thus can constrain the PPS over a wider range of scales. In this section, we apply the PRISM
algorithm on the �rst public release of the Planck data (hereafter Planck PR1) processed with the
LGMCA3 pipeline.

To estimate the mean and variance of the PRISM reconstruction, we set up a simulation pipeline
for Planck data, mimicking the complete LGMCA pipeline applied to the actual data. The steps are
very similar to the one described in Section 5.4.1.

We adopt as a base line the Planck PR1 best �t cosmology, which we used for the radiation
transfer function T (computed using CAMB4 instead of CLASS) and to de�ne a �ducial near scale
invariant PPS with As = 2.215 × 10−9 and ns = 0.9626. The lensing contribution to the CMB
temperature power spectrum, also computed with CAMB for the PR1 �ducial cosmology, was taken
into account as an additional contribution to N` .

Using this model, we generate CMB realisations for the nine Planck frequency channels. On
each of these realisations, we added simulated instrumental noise maps provided by the Planck
team5. Unfortunately, only 100 out of their 1000 independent noise realisations were made publicly
available, which dramatically reduced the number of simulations we were able to perform for the
Planck data compared to the 2000 realisations used in the previous section for WMAP data.

For each simulation, we processed the nine frequency channels through LGMCA, with the pre-
computed set of parameters (Bobin et al., 2014). Full-sky noisy maps with a 5 arcmin resolution
were obtained, which were then masked using a Galactic and point sources mask with fsky = 0.76.

The pseudo power spectra were obtained by applying the empirical power spectrum estimator
to the masked maps. We also built an estimate of the instrumental noise power spectrum N` by
processing the noise maps through the same pipeline in LGMCA, masking the resulting noise maps
and applying the pseudo spectrum estimator to these masked maps. We set our estimate of N` to
the average of the 100 noise pseudo spectra.

In contrast to the approach taken in the previous section, where the algorithm was initialised
to a scale-invariant power spectrum, we modi�ed our choice of initialisation and used the best-�t
Planck PR1 PPS to initialise the algorithm, as we search for small deviations from the best-�t power

3 LGMCA codes and Planck PR1 data are available at http://www.cosmostat.org/planck_pr1.html
4 http://camb.info
5 http://wiki.cosmos.esa.int/planckpla

http://www.cosmostat.org/planck_pr1.html
http://camb.info
http://wiki.cosmos.esa.int/planckpla
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Figure 5.6: Reconstructions for the primordial power spectra from 100 simulations and Planck 2013 data.
The 1σ and 2σ dispersion of the reconstructed spectra from the simulations are shown as blue
bands around the mean of the reconstructions (blue line). We note that these bands do not
include the errors due to point sources and beam uncertainties. The Planck �ducial power spec-
trum used for the simulations, with As = 2.215 × 10−9 and ns = 0.9626, is shown as a yellow
dashed line. The inset shows a close-up of the main �gure in linear scale.

law that already �ts the data. With this choice of initialisation, the reconstruction will not depart
from the best-�t power law in the absence of evidence from the data.

As mentioned previously, we lowered the regularisation parameter K to K = 4 in this analysis
of the Planck data, compared to K = 5 in the previous section. This lower level of regularisation
increases the sensitivity of the algorithm while still robustly rejecting the noise due to sampling
variance.

For Planck data, we expect to be able to e�ectively constrain the PPS in the range k ∼ 0.005 −
0.20 Mpc−1.

In Figure 5.6 we show the reconstructed spectra from the simulations and the data. The mean
reconstructed power spectrum perfectly �ts the input PR1 best-�t power law in the entire recon-
structed range. Of course this does not mean that the algorithm is able to perfectly reconstruct an
unknown power spectrum over this entire range, but that with the regularisation level used for
these reconstructions, no signi�cant departures from the best-�t power law have been detected.
The reconstructed spectrum from the LGMCA PR1 power spectrum remains within the 1σ bar of
the reconstructed spectra from the PR1 best-�t power law. Thus, we �nd no signi�cant departure
from the PR1 best-�t near scale-invariant spectrum.

As a complementary test of PRISM on Planck-like data we assessed the algorithm’s ability to re-
cover a small local departure from the best-�t PR1 power law. We created a set of CMB simulations
from a �ducial PPS with a small localised test feature causing a dip in the angular power spectrum
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Figure 5.7: Top panel shows a �ducial PPS with a feature around k = 0.125 Mpc−1 in red and in green
contours the 1σ and 2σ dispersion of 100 reconstructions from simulated CMB spectra. The
mean of reconstructions is shown in yellow. The bottom panel shows the residuals ∆C` between
theC` for the �ducial PPS with a feature and theC` for the best-�t Planck power law in red and
for the mean reconstructed PPS in yellow. The green bands indicate the 1σ and 2σ bands for
the ∆C` from the simulations, the dashed blue lines show the 1σ region due to cosmic variance.

around ` ∼ 1800. The aim of this set of simulations was to mimic the feature that Planck Collab-
oration et al. (2014b) proposed to be accountable for the large dip in the angular power spectrum,
which was later con�rmed as being caused by residual electromagnetic interferences. Our test PPS
was built from the best-�t PR1 power law with an added feature around k = 0.125 which causes a
dip in the angular power spectrum around ` ∼ 1800. This feature and the residuals ∆C` between
the �ducial angular power spectrum and the PR1 best �t C` are shown in Figure 5.7.

From this test PPS, we generated a set of 100 CMB simulations using the exact same procedure
as previously mentioned, and we applied PRISM to the measured angular pseudo-power spectra
with the exact same parameters. As can be seen in Figure 5.7, the feature is successfully detected,
and the reconstruction shows little bias in position and amplitude. Using the PPS reconstructed
with PRISM enables a much better �t to the data than a power law, and the reconstructed angular
power spectra fall inside the 1σ region due to cosmic variance. If such a feature existed in the
LGMCA processed Planck PR1 data, PRISM would therefore have been able to detect it.

5.6 conclusion

In this chapter, we presented a direct application of the sparse regularisation framework introduced
in Chapter 3 and Chapter 4. Based on this framework, we proposed a new non-parametric method
for the recovery of the Primordial Power Spectrum from the measured CMB power spectrum.
This inverse problem is particularly important in the current cosmological context as the PPS is a
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fundamental probe of in�ation and an accurate reconstruction of this power spectrum can provide
some much needed insight into the physics of the early Universe.

As we demonstrated on simulations, our method is able to robustly recover small isolated fea-
tures as well as the general shape of the PPS. We applied our reconstruction algorithm on WMAP
nine-year and Planck data but despite the sensitivity of the method we do not detect any signi�cant
deviations from the best-�t near scale-invariant power spectrum.

To reconstruct the PPS over a wider range of scales and with more accuracy, this method can
easily be extended to include polarisation and LSS information.
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Under General Relativity, gravitation can be understood as a consequence of the curvature of
space-time, caused by the presence of massive objects. One of the predictions of this theory is that
light propagating in a curved space-time will also be de�ected with a speci�c angle. This predic-
tion led to one of the �rst observational con�rmations of Einstein theory in 1919 by Eddington’s
expedition to observe the de�ection of starlight around the sun during a total solar eclipse Dyson
et al. (1920). Almost a century latter, gravitational lensing is now a well established cosmological
tool.

At the scale of the Universe, the light coming to us from distant galaxies propagates through
the large scale structure and gets de�ected by the gravitational potentials of these structures as
illustrated by Figure 6.1. Because of di�erential de�ections of the light bundles coming from these
galaxies, their apparent images will undergo some deformations ranging from the most subtle
shearing to extreme stretching and the formation of arcs. All these e�ects are referred to as gravi-
tational lensing but two main categories can be identi�ed, depending on the strength of the e�ect:
strong and weak gravitational lensing.

Strong lensing mostly occurs when the light from distant galaxies encounters a massive galaxy
cluster along the way or passes within the vicinity of another galaxy. In such cases, extreme e�ects
can be observed such as the formation of multiple images, arcs and even Einstein rings. An example

77
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Figure 6.1: Illustration of the lensing e�ect caused by a massive cluster of galaxies. Credit: NASA, ESA & L.
Calçada

of a strong lensing system is shown on Figure 6.2. In this image of the Abell 1689 galaxy cluster,
the presence of a massive lens can be seen by eye with the presence of a large number of arcs.

Although the spectacular deformations induced by strong lensing provide a wealth of informa-
tion about galaxy clusters and cosmology, in the rest of this thesis we will more particularly focus
on the less extreme weak lensing regime. Contrary to strong lensing, the deformations in the weak
regime are very subtle and cannot be identi�ed by eye. Although much less extreme, weak lensing
is ubiquitous. Virtually all galaxies in the sky are lensed to some extent by the large scale struc-
ture and the statistical analysis of this e�ect allows us to directly probe the matter content of the
Universe, and thus constrain cosmology.

The goal of this chapter is to introduce the various notions of weak gravitational lensing which
will be required for the following chapters. In particular, we review existing mass-mapping tech-
niques for the reconstruction of the dark matter distribution in 2D and 3D.
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Figure 6.2: Abell 1689 Galaxy cluster, as seen by the ACS camera of the Hubble Space Telescope. Sev-
eral strongly lensed galaxies are visible. Credit: NASA, N. Benitez (JHU), T. Broadhurst (Racah Institute
of Physics/The Hebrew University), H. Ford (JHU), M. Clampin (STScI), G. Hartig (STScI), G. Illingworth (UCO/Lick
Observatory), the ACS Science Team and ESA

6.1 lensing formalism

6.1.1 Propagation of light bundles in weak gravitational fields

This section outlines the derivation of the lensing equations within the context of GR, assuming
weak gravitational �elds described by a Newtonian potential Φ � c2 and slowly moving gravita-
tional lenses v � c with respect to the cosmological �ow. These basic assumptions are very well
veri�ed in the context of lensing by the large scale structure of the Universe and will always be
veri�ed within the context of this thesis.

Under GR, light propagates along null-geodesics of the space-time metric which are in�uenced
by the spatial curvature (see Section 2.2.1) . If the curvature exhibits local variation then light-rays
within a light bundle will be a�ected by slight di�erences in the local curvature which will result
in a deformation of the bundle.

A thorough derivation of the lens equation describing this e�ect can be found in Seitz et al. (1994);
Bartelmann (2010) and we outline here some of the main results leading to this equation. Let us
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consider a �ducial light ray at the center of an in�nitesimally thin light beam propagating, for now,
in an arbitrary space-time. This light ray propagates along a null geodesic denoted γ µ0 which can
be parametrised by an a�ne parameter λ chosen so that λ = 0 at the observer and increases with
the distance to the observer. Consider now the separation vector between the �ducial ray and a
neighbouring light ray de�ned by ξ µ (λ,θ ) = γ µ (λ,θ ) − γ µ0 (λ) where θ is the angular separation
between the two rays. To study the deformation of the light bundle, we are more particularly
interested in the transverse components of this separation vector which can be described by the
projection of the 4-vector on a 2-dimensional screen tangent to the sphere of directions seen by
the observer and perpendicular to the light ray. If one introduces ξ1 and ξ2, the components of
ξ µ (λ,θ ) on an orthogonal basis of this screen, then the vector ξ (λ,θ ) = (ξ1, ξ2) follows the following
equation of geodesic deviation:

d2ξ (λ,θ )
dλ2 = T (λ)ξ (λ,θ ) , (6.1)

which describes the variation of the separation vector, and thus the deformation of the light bundle,
with respect to the a�ne parameter λ in terms of the optical tidal matrix T (λ). This matrix can be
expressed in terms of the Riemann curvature tensor and encodes the e�ect of the local space-time
curvature on the propagation of light. Furthermore, based on the de�nition of λ, the separation
vector follows the initial conditions ξ (0) = 0 and dξ

dλ = θ .
The question is now how to relate the tidal matrixT , which depends on the curvature, to the mat-

ter content of the Universe. When considering local perturbations to the homogeneous Universe
under a weak, quasi-static, Newtonian gravitational potential Φ, the tidal matrix can be explicitly
computed by considering the following metric:

ds2 = a2(η)
(
−

(
1 + 2Φ

c2

)
dη2 +

(
1 − 2Φ

c2

) �
dr 2 + f 2K (r ) dΩ2�)

. (6.2)

This metric is the superposition of the FLRW metric describing the isotropic and homogeneous Uni-
verse and a comoving Newtonian metric characterising local density �uctuations of scales much
smaller than the Hubble length. These two contributions can be worked out independently and, as
a result, for weak perturbations, the tidal matrix can be expressed as the sum of two terms:

T = Tbg + Tcl , (6.3)

where Tbg captures the lensing e�ect caused by the smooth homogeneous Universe while Tcl de-
scribes the tidal e�ects resulting from the inhomogeneities of the density distribution. As derived
in Seitz et al. (1994), the tidal matrix takes the form:

Ti j (λ) = − 4πG
c2

ρ0(1 + z)5 δi j︸                 ︷︷                 ︸
Background contribution

−
(1 + z)2

c2

(
2∂i∂jΦ + δi j ∂2i jΦ

)
︸                              ︷︷                              ︸

Clump contribution

, (6.4)

where ∂i = ∂
∂ξi

. The background term remains proportional to the identity matrix which means
that in a homogeneous isotropic Universe, light bundles only undergo an isotropic scaling as a func-
tion of distance which corresponds to the angular diameter distance. On the contrary, the clump
contribution has non vanishing o�-diagonal terms which will induce anisotropic deformations of
the light bundle and will be responsible for the shearing e�ect that we will introduce latter.
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Injecting the expression of the optical tidal matrix in the equation of geodesic deviations leads
to the following equation describing the evolution of the comoving separation vector x = 1

a ξ with
respect to the comoving distance :

d2x
dr 2 +Kx = −

2
c2

(∇⊥Φ(x , r ) −∇⊥Φ(0, r )) , (6.5)

where∇⊥ = ( ∂
∂x1

, ∂
∂x2

) is the comoving gradient in the 2D screen transverse to the �ducial light ray
and K is the spatial curvature. This equation can be solved by considering the following boundary
conditions:

x(0) = 0 ; dx
dr (0) = θ , (6.6)

where θ is the apparent separation angle between the �ducial ray and its neighbour at the position
of the observer. In this case, the solution of Equation (6.5) is given by:

x(r ) = fK (r )θ − 2
c2

∫ r

0
dr ′ fK (r − r ′) (∇⊥Φ(x(r ′), r ′) −∇⊥Φ(0, r ′)) , (6.7)

In the absence of density �uctuations, the second term vanishes and this equation reduces to
x(r ) = fK (r )θ which corresponds to the angular diameter distance. Note that in this expression, the
Newtonian potential Φ is formally integrated along the perturbed light path x(r ′). However, this
expression can be simpli�ed under the assumption of small deviations by integrating the poten-
tial along the unperturbed light path fK (r ′)θ instead, leading to the so called Born approximation.
This approximation is generally very well justi�ed by numerical simulations and will be assumed
throughout this work. Under the Born approximation, the relative de�ections of the �ducial ray
and its close neighbour are negligible when computing the di�erence of the transverse potential
gradients, so that∇⊥Φ(fK (r ′)θ , r ′)−∇⊥Φ(0, r ′) ' ∇⊥ (Φ(fK (r ′)θ , r ′) − Φ(0, r ′)) where the potential
Φ can be rede�ned for convenience to Φ(fK (r ′)θ , r ′) − Φ(0, r ′). Therefore, the previous equation
can be simpli�ed as:

x(r ) = fK (r )θ − 2
c2

∫ r

0
dr ′ fK (r − r ′)∇⊥Φ(fK (r ′)θ , r ′) . (6.8)

We can now derive the lens equation for a source at distance rs by introducing the angular
separation vector β = x/fK (rs ) de�ning the unlensed angular position in the source plane. In
the absence of density �uctuations, the observed angular separation θ would correspond to β .
However, in presence of lensing by the large scale structure these two quantities are linked by the
following lens equation:

β = θ −α (θ ) , (6.9)

where the de�ection angle α is de�ned as:

α =
2
c2

∫ rs

0
dr ′ fK (rs − r

′)
fK (rs ) ∇⊥Φ(fK (r

′)θ , r ′) . (6.10)

In this expression, the gradient of the Newtonian potential is taken with respect of the transverse
comoving coordinates in the screen perpendicular to the propagation of the light beam. However,
it will be much more convenient for the following to recast this equation in terms of the deriva-
tives with respect to the angular coordinates θ . This leads to the de�nition of the e�ective lensing
potential ψ :

ψ (θ ) = 2
c2

∫ rs

0
dr ′ fK (rs − r ′)

fK (rs )fK (r ′)Φ(fK (r
′)θ , r ′) . (6.11)
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With this de�nition, the de�ection angle can simply be expressed as the gradient of the e�ective
lensing potential:

α = ∇ψ , (6.12)

where the gradient is now taken in terms of the angular coordinates θ . Note however that this
expression is only valid as long as the curvature of the sky can be neglected i.e. within the �at-sky
approximation. We will generally consider this approximation to hold for �elds of view smaller
than 10 × 10 degrees.

6.1.2 Weak lensing quantities

Shear and convergence

To describe the lensing e�ect in terms of a set of local quantities, Equation (6.9) can be approxi-
mated using a Taylor expansion to �rst order which holds to very good accuracy when the lensing
is small. The lensing equation becomes:

βi ' Ai jθ j , (6.13)

where the Jacobian A =
∂β

∂θ
is known as the ampli�cation matrix, de�ned in terms of the deriva-

tives of the lensing potential as:

Ai j (θ ) = ∂βi
∂θ j
= δi j − ∂i∂jψ (θ ) . (6.14)

The ampli�cation matrix can be separated into a trace and trace-free part:

A = *
,

1 −κ 0
0 1 −κ

+
-
− *

,

γ1 γ2

γ2 −γ1

+
-
, (6.15)

which is parametrised in terms of the complex shear γ = γ1 + iγ2 = |γ |e2iϕ and the convergence κ.
The convergence only contributes to the diagonal of the matrix and leads to isotropic deformation
of sources. On the other hand, the shear has non-vanishing o�-diagonal terms which will cause
anisotropic shearing of the source images. Both e�ects are illustrated on Figure 6.3. As we will see
in the next section, it will also be interesting to factorise the term 1−κ in the ampli�cation matrix:

A = (1 −κ) *
,
Id − *

,

д1 д2

д2 −д1

+
-

+
-
, (6.16)

where we have introduced the reduced shear д =
γ

1 −κ . As we will see, shape measurement meth-
ods used to estimate the weak lensing e�ect are only sensitive to the reduced shear д. In the weak
lensing regime where κ � 1, the reduced shear can be approximated to γ but this approximation
no longer holds when considering the lensing e�ect of massive galaxy clusters.
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Figure 6.3: Deformation of a circular source under the e�ect of the ampli�cation matrix A. The e�ects of
the anisotropic shear and isotropic convergence are separated.

Convergence and shear can be explicitly expressed in terms of the derivatives of the lensing
potential according to:

κ =
1
2

�
∂21ψ + ∂

2
2ψ

�
=

1
2∆ψ (6.17)

γ1 =
1
2

�
∂21ψ − ∂

2
2ψ

�
(6.18)

γ2 = ∂1∂2 ψ . (6.19)

These di�erential equations linking shear, convergence and lensing potential will be at the heart
of the weak lensing mapping techniques presented in Section 6.3.

The convergence κ will be of particular interest to us. It can indeed be directly interpreted as
a line of sight projection of the matter density distribution between the observer and the source.
According to Equation (6.17), the convergence can be interpreted as a source term of the 2D Poisson
equation:

κ =
1
2∆ψ , (6.20)

=
1
c2

∫ r

0

fK (r − rs )
fK (r )fK (r ′)∆Φ(fk (r

′)θ , r ′) . (6.21)

The Laplacian in this expression is taken with respect to the angular coordinates. This 2D angular
Laplacian can be turned into a 3D Laplacian in comoving coordinates by adding an additional
term ∂2Φ

∂x 2
3

to the integrand using the argument that this term is expected to vanish under the line of
sight integral under homogeneity arguments. Applying the 3D Poisson equation to the Newtonian
potential then leads to the following expression of the convergence as a function of the 3D density
contrast δ = (ρ − ρ̄)/ρ̄:

κ(θ , r ) = 3H 2
0Ωm

2c2

∫ r

0
dr ′ fK (r

′)fK (r − r ′)
fK (r )

δ (fK (r ′)θ , r ′)
a(r ′) . (6.22)

Alternatively, this expression can also be written directly in terms of the 3D density ρ:

κ(θ , r ) = 4πG
c2

∫ r

0
dr ′ fK (r

′)fK (r − r ′)
fK (r ) ρ(fK (r ′)θ , r ′) . (6.23)
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Magnification

Another consequence of the lensing e�ect is the modi�cation of the �uxes of lensed sources. Indeed,
due to shape distortions, the apparent solid angle of a lensed sources is altered while an intrinsic
property of lensing ensures that the surface brightness of the source remains constant. As a result,
the �uxes of lensed sources scales with their solid angle.

Conservation of the surface brightness is a consequence of the Liouville theorem which states
that the volume in phase space occupied by a swarm of particles is invariant as they travel along
their geodesic world lines if no absorption or emission takes place Misner et al. (1973). Consider
the �ux of photons emitted by a source characterised by a phase-space density f (x ,p) de�ned as:

f (x ,p, t) = dN
d3xd3p . (6.24)

Following Mollerach and Roulet (2002), this expression can be transformed, considering that the
beam energy is dE = Eγ dN where Eγ = cp is the energy of individual photons, while dp =
p2dpdΩ and dx = cdAdt with Ω the solid angle and A is the area perpendicular to the direction of
propagation. Then phase space density becomes:

f (x ,p, t) = dE
Eγ c dA dt p2dp dΩ =

dE
hcp3 dν dΩ dA dt =

I (ν )
hcp3

, (6.25)

where Iν is the surface brightness of the source. Therefore, the Liouville theorem implies that the
quantity I (ν )

hcp3 is constant along the trajectory of the beam in a curved space-time and therefore is
not a�ected by the presence of gravitational lenses along its path.

The magni�cation µ can then be expressed as the ratio of lensed and unlensed �uxes which
reduces to the ratio of solid angles as the surface brightness is preserved by lensing:

µ =
I dΩ
I0 dΩ0

=
dΩ
dΩ0

, (6.26)

where I0 and dΩ0 are the unlensed surface brightness and solid angles. Hence, the magni�cation
reduces to a purely geometrical e�ect which can be expressed in terms of the ampli�cation matrix
A as:

µ = | det(A)|−1 = 1
(1 −κ)2 −γ 21 −γ 22

. (6.27)

Note that this expression can lead to singularities where the determinant of the Jacobian van-
ishes. The points verifying det(A) = 0 are called critical points and form critical curves. Their
images by the coordinate transform are known as caustics. Although the magni�cation of sources
crossing the critical curves is extreme, it remains �nite despite the in�nite magni�cation predicted
by this formalism which no longer holds in these situations.

Gravitational Flexion

Convergence and shear have been derived from a �rst order Taylor expansion of the lens equation.
However, when the lensing e�ect becomes strong enough, higher order terms can be included in
the expansion to accurately describe the distortions. This leads to the gravitational �exion Gold-
berg and Bacon (2005) formalism in which the lens equation is expanded to second order:

βi ' Ai jθ j +
1
2Di jkθ jθk , (6.28)
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Figure 6.4: Distorsion of a circular image under the e�ects of shear γ (left), �rst �exion F (middle) and
second �exion G (right). Credit: Figure from Bartelmann (2010).

where the third order lensing tensor Di jk can be derived from Di jk = ∂kAi j . This additional term
gives rise to third order derivatives of the lensing potential which can be summarised as a spin-1
�eld F = ∇κ and a spin-3 �eld G = ∇γ respectively called �rst and second �exion. The tensor
Di jk can be separated into two components Di jk = Fi jk + Gi jk which can each be expressed in
terms of the �rst and second �exion:

Fi j1 = −
1
2

*
,

3F1 F2

F2 F1

+
-

; Fi j2 = −
1
2

*
,

F2 F1

F1 3F2
+
-
, (6.29)

and

Gi j1 = −
1
2

*
,

G1 G2

G2 −G1

+
-

; Gi j2 = −
1
2

*
,

G2 −G1

−G1 −G2

+
-
. (6.30)

Being due to derivatives of the shear and convergence, �exion only becomes signi�cant and
mesurable when κ and γ exhibit signi�cant variations across the length of a source, typically a
galaxy. The e�ects of both �exion components are illustrated on Figure 6.4.

Similarly to the case of the reduced shear, these two �exion components are not directly observ-
able. Instead, only the reduced �exion �elds are measured from galaxy images:

F =
F

1 −κ ; G =
G

1 −κ . (6.31)
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Figure 6.5: Illustration of the thin lens approximation. Credit: Figure from Bartelmann and Schneider (2001).

6.1.3 Thin lens approximation

The lensing equations derived in Section 6.1.1 take into account the full 3D distribution of matter
along the line of sight. However, in practice, it is generally unlikely to �nd several signi�cant
structures along the same line of sight. Yang et al. (2011) �nd on numerical simulation that the
vast majority of high convergence peaks are due to a single lens along the line of sight. In such
cases, it is much more convenient to model the matter distribution as a single thin lens (the radial
extension of structures such as galaxy clusters is always small compared to cosmological distances)
and to neglect the rest of the density �uctuations along the line of sight. For strong lenses, this
approximation generally holds at the percent level (Schneider, 2014). Considering a single thin lens
along the line of sight, Equation (6.23) can be simpli�ed in the following way:

κ(θi ) = 4πG
c2

∫ rs

0
dr ′ fK (r

′)fK (rs − r ′)
fK (rs ) ρ(fK (r ′)θi , r ′) , (6.32)

=
4πG
c2

fK (rl )fK (rs − rl )
fK (rs )

∫
dr ′ρ(fK (r ′)θi , r ′) , (6.33)

where rl is the distance to the lens and rs is the distance to the source. This expression can be
interpreted as the ratio between two quantities:

κ(θi ) = Σ(θi )
Σcr it

, (6.34)
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Figure 6.6: Inverse critical surface mass density as a function of source redshift for two lenses at redshifts
zl = 0.3 and zl = 1.0. The dashed lines correspond to the asymptotes for zs → ∞.

where Σ(θi ) is the surface mass density of the lens, corresponding to the line of sight integration
of the 3D mass density ρ:

Σ(θi ) =
∫

drρ(fK (r )θi , r ) , (6.35)

and Σcr it is known as the critical surface mass density de�ned as:

Σ−1cr it =
4πG
c2

fK (rl )fK (rs − rl )
fK (rs ) , (6.36)

=
4πG
c2

DLDLS

DS
. (6.37)

Therefore, for a given surface mass density Σ(θi ), the intensity of the lensing e�ect only depends
on the ratio of distances between the observer, the lens and the source, as illustrated on Figure 6.5.

Up to now, we have described the lensing e�ect for sources located on a single redshift plane.
However, as can be seen in Equation (6.34), the intensity of the lensing e�ect is directly propor-
tional to the ratio of distances DLS

DS
between the lens and the source. As a result, for a given lens,

images of galaxies at di�erent redshifts will experience di�erent convergence κ(z) and shear γ (z)
as a function of their individual redshifts z. This evolution in redshift is determined by the critical
surface mass density which can be expressed as a function of source redshift as:

Σ−1cr it (z) =
4πG
c2

fK (rl )fK (r (z) − rl )
fK (r (z)) . (6.38)

As the comoving distance convergences to a �nite value when the redshift tends to in�nity, so does
Σcr it (z). The behavior of the critical mass density as a function of source redshift is illustrated on
Figure 6.6. As the critical surface mass density converges to a �nite value Σcr it (z) −−−−→

z→∞
Σ∞cr it , its
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limit at in�nity can be used as a reference to de�ne a convergence �eld κ∞ independent of the
redshifts of individual sources:

κ∞(θ ) = Σ(θ )
Σ∞cr it

. (6.39)

Given this convergence for sources at in�nite redshift, the convergence for a source at �nite red-
shift zs > zl can be expressed as:

κ(θ , zs ) = Σ(θ )
Σcr it (zs ) , (6.40)

=
Σ∞cr it

Σcr it (zs )
Σ(θ )
Σ∞cr it

, (6.41)

= Z (zs ) κ∞(θ ) , (6.42)

where Z is a cosmological weight function de�ned for a lens at redshift zl as:

Z (zs ) = Σ∞cr it
Σcr it (zs )H (zs − zl ) , (6.43)

= lim
u→∞

fK (r (zs ) − r (zl )) fK (u)
fK (r (u) − r (zl )) fK (zs )H (zs − zl ) , (6.44)

where H is the Heaviside step function which only accounts for the fact that sources located at
lower redshift than the lens are not lensed. The following lensing quantities depend linearly on
the convergence and can therefore be rescaled in the same way:

γ (θ , zs ) = Z (zs )γ∞(θ ) ; F (θ , zs ) = Z (zs )F∞(θ ) ; G(θ , zs ) = Z (zs )G∞(θ ) . (6.45)

6.1.4 Mass-sheet degeneracy

One of the most notorious issue in weak lensing mass mapping is the so called mass-sheet degener-
acy. This degeneracy is due to the fact that the shear is left invariant by the addition of a constant
mass-sheet to the lens surface density. As a result, the observed reduced shear is invariant under
the following λ-transformation:

κ ′ = λκ + (1 − λ) , (6.46)

Indeed, if д′ is the reduced shear generated by κ ′ then:

д′ =
λγ

1 − λκ − 1 + λ =
λγ

λ − λκ
= д , (6.47)

By the same mechanism, the reduced �exions F andG are also invariant under the same λ-transformation.
This issue is particularly problematic for measuring the mass of galaxy clusters from weak-

lensing. Indeed, these measurements are typically performed on small �elds where it cannot simply
be assumed that the convergence goes to zero outside the �eld without biasing the measurement
(Bartelmann, 1995). Although it is true that from shear alone the mass-sheet degeneracy can not
be lifted, it can nonetheless be mitigated when including additional information about the rela-
tive distances between the lens and the di�erent sources. Indeed, as was pointed out in Bradac
et al. (2004), knowledge of individual photometric redshifts of background galaxies is enough to
constrain the mass-sheet for strong enough lenses.
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Let us considerγ∞(θ ) andκ∞(θ ) the shear and convergence of a given lens, for sources at in�nite
redshift. The actual shear and convergence applied to a galaxy at a speci�c redshift zs can be
expressed as κ(θ , zs ) = Z (zs )κ∞(θ ) and γ (θ , zs ) = Z (zs )γ∞(θ ) where Z is a cosmological weight
introduced in Equation (6.43). If we now consider the reduced shear measured on the galaxy as a
function of κ∞ and γ∞, it takes the form:

д(θ , zs ) = Z (zs )γ∞(θ )
1 −Z (zs )κ∞(θ ) . (6.48)

This expression alone is just a rewriting of the measured reduced shear, which makes explicit the
dependency on the redshift of the source. Therefore, the convergence is still subject to the mass-
sheet degeneracy which can now be made explicit in term of zs :

κ ′ = λκ +
1 − λ
Z (zs ) . (6.49)

It is easily shown that such a transformation leaves the measured reduced shear invariant. How-
ever, as soon as the reduced shear is measured for galaxies at two di�erent redshifts, the mass-sheet
degeneracy is automatically lifted thanks to the di�erent cosmological weights. As a result, simul-
taneously constraining the convergence to �t the reduced shear at di�erent redshifts formally leads
to λ = 1:




κ = λκ0 +
1−λ
Z

κ = λ′κ0 +
1−λ′
Z ′

, (6.50)

⇒(λ − λ′)κ0 = Z ′(1 − λ) −Z (1 − λ′)
ZZ ′

, (6.51)

⇒λ = λ′ and (Z ′ −Z )(1 − λ) = 0 , (6.52)

Therefore, if the redshifts of the sources are di�erent, Z , Z ′, which leads to λ = 1.
Note that the degeneracy is only lifted if the convergence is strong enough. In the linear regime,

the transformation κ ′ = κ + λ has no dependency on the redshift of the source. Therefore, this
mechanism is only e�cient outside of the weak lensing regime. For the purpose of mapping galaxy
clusters this is will generally be the case and using the redshift information of individual galaxies
will contribute to mitigate the degeneracy and thus provide more reliable density reconstructions
for the purpose of weighting clusters.

6.2 weak lensing measurement

The previous section introduced the gravitational lensing formalism which describes how the im-
ages of distant galaxies are distorted by the matter overdensities along the line of sight. Now the
question is how to measure in practice these distortions on telescope images, especially when the
distortions are weak. This section introduces the basic principles of shear measurements along
with the main practical di�culties.
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Figure 6.7: Measurement process of weak gravitational lensing, from the original galaxy image to the ob-
served pixelated galaxy image. The lensed galaxy image is �rst blurred by the PSF of the in-
strument and then pixelised by the detector. To distinguish between the lensing e�ect and in-
strumental PSF, the latter can be measured by imaging stars which can be considered as point
sources. Credit: Figure from Mandelbaum et al. (2014), adapted from Kitching et al. (2011).

6.2.1 Imaging process

Measurements of weak lensing in practice with su�cient accuracy to derive reliable cosmological
constraints has proven to be a di�cult task which requires excellent image quality and advanced
image processing techniques. The weak lensing e�ect we are interested in measuring induces only
very faint deformations of the images of background galaxies which are extremely di�cult to
disentangle from instrumental e�ects.

The di�erent steps of a typical acquisition process are illustrated on Figure 6.7. The original
galaxy image is �rst slightly deformed as the light propagates through the large scale structure
of the Universe. In the case of space based instrument such as Euclid, the light of the distant
galaxy then directly reaches the telescope without having to propagate through the atmosphere
which is an important source of perturbations. Nevertheless, even without deformations due to
atmospheric turbulence, because of fundamental limitations of any optical system, the image of
the galaxy formed by the telescope on the focal plane is not perfect and will be slightly blurred.
Finally this blurred image is acquired by a detector to produce the noisy and pixelated galaxy
image actually measured. These additional e�ects corrupting the images of the observed galaxies
need to be precisely taken into account in order to extract the lensing signal.

The response of the instrument can be characterised by its Point Spread Function (PSF) i.e. the
impulse response of the entire imaging system from the optics to the detector. As the main e�ect
of weak lensing will be to shear the image of galaxies, it is particularly crucial to account for any
anisotropies in the PSF, which creates a spurious shearing orders of magnitudes stronger than
the cosmological signal. For space-based telescopes, which are not hindered by the atmosphere,
this PSF can be directly estimated using an optical model of the instrument (e.g Rhodes et al.,
2007). Another approach consists in estimating the PSF by imaging a clean sample of stars of our
own galaxy which can be considered as point sources. As illustrated on the top of Figure 6.7, the
image of the star will undergo the same blurring e�ects and directly produce an image of the PSF.
Another di�culty comes from the fact that the PSF is generally not stationary across the �eld and
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is only sampled on a limited number of points using stars. Therefore it must be interpolated at the
position of each observed galaxy to properly correct the measured shape.

6.2.2 Galaxy ellipticity as a shear estimator

As was mentioned in the previous section, gravitational shear causes an anisotropic stretching
of the galaxy images which directly a�ects their apparent ellipticity. We now describe how the
observed galaxy ellipticities can be used to build shear estimators.

In order to de�ne this ellipticity for arbitrary galaxy images, we �rst need to introduce descrip-
tors of what is actually measured by the detector: the surface brightness I (θ ). One way of charac-
terising the image of an isolated galaxy is to consider the moments of the I (θ ), starting with the
�rst brightness moment which de�nes the centroid of the galaxy:

θ =

∫
dθ I (θ )W (θ )θ∫
dθ I (θ )W (θ ) , (6.53)

whereW (θ ) is an arbitrary weight function which plays an important role in practice, to ensure the
convergence of the integral and to control the impact of instrumental noise. Once the centroid of
the image is identi�ed, information about the shape of the galaxy can be captured by considering
the second brightness moments {Qi j}i ,j ∈{1,2} de�ned as:

Qi j =

∫
dθ I (θ )W (θ )(θi − θ i )(θ j − θ j )∫

dθ I (θ )W (θ ) . (6.54)

From this tensor, one can build the following complex ellipticity:

ϵ =
Q11 −Q22 + 2iQ12

Q11 +Q22 + 2(Q11Q22 −Q
2
12)1/2 . (6.55)

This quantity has the interesting property that one can directly relate the complex ellipticity of the
unlensed source image ϵ (s) to that of the observed lensed image ϵ in terms of the reduced shear
(Seitz and Schneider, 1997):

ϵ =




ϵs +д

1 +д∗ϵs when |д| ≤ 1

1 −дϵ∗

ϵ∗ −д∗
when |д| > 1

, (6.56)

where ϵ∗ designates the complex conjugate of the ellipticity. Although several de�nitions of the
complex ellipticity have been proposed in the literature, this speci�c choice has the remarkable
property that expectation value of the measured ϵ does not depend on the probability distribution
of the source ellipticity as long as it is isotropic (see (Seitz and Schneider, 1997), Appendix A1):

< ϵ >ϵs=




д when |д| ≤ 1

1
д∗

when |д| > 1
. (6.57)



92 weak gravitational lensing

Therefore, for sub-critical lensing and assuming that the intrinsic orientations of the source galax-
ies are uniformly distributed, this de�nition of the ellipticity provides an unbiased estimator of the
reduced shear.

In practice, to estimate this expectation value and therefore the reduced shear, it is necessary to
average the ellipticities measured for a population of galaxies experiencing a similar shear i.e. in
the same small patch of the sky:

ϵ̄ =

Nдal∑
k=0

ϵk . (6.58)

As is generally assumed, if the intrinsic ellipticity of the galaxies is Gaussian distributed with zero
mean and variance σ 2

ϵ , then this estimator can be modelled as:

ϵ̄ = д +n with n ∼ N (0, σ 2
ϵ

Nдal
) , (6.59)

where n is a Gaussian shape noise.

6.2.3 Shape measurement methods

Now that we have described how the ellipticity ϵ provides an estimator for the shear, the ques-
tion is how to measure this ellipticity in practice on blurred, pixelated and noisy images acquired
through the steps described at the beginning of this section. There are mainly two families of meth-
ods: direct ellipticity measurement using moments of the image or ellipticity estimation through
forward-�tting methods.

In the family of ellipticity measurements based on moments, the most notable example is the
KSB method (Kaiser et al., 1995) and its improved KSB+ successor (Luppino and Kaiser, 1997; Hoek-
stra et al., 1998). This method relies on the weighted second moments of the light distribution
and approximates the e�ect of the PSF by a linear operation, assuming that both shear and PSF
anisotropies are small.

The second family of forward �tting approaches is more recent with the �rst method proposed
by Kuijken (1999). Contrary to the previous methods which use moments of the light distribution,
in this class of methods a model for the unlensed galaxy is used and then convolved with the PSF
and sheared to �t the observed image, yielding an estimate of the shear. A notable example of
this class of methods is lens�t (Miller et al., 2007; Kitching et al., 2008a) which provides a fully
Bayesian estimation of the shear. Another example is the maximum likelihood g�t (Gentile et al.,
2012) method.

Despite the large number of methods developed so far, accurate shear measurements meeting the
requirements of the future Stage-IV dark energy surveys are still di�cult to obtain. Staring with the
Shear TEsting Programme (STEP) program (Heymans et al., 2006), a series of challenges have been
organised to test these algorithms, investigate their limitations and determine the methodoligical
improvements necessary to reach the requirements of future surveys. The third GRavitational
lEnsing Accuracy Testing (GREAT3) (Mandelbaum et al., 2014) is the latest of these challenges
and provides the most recent assessment of the performance of shear measurement methods. The
general conclusion of this challenge (Mandelbaum et al., 2015) is that �tting methods generally
outperform moments methods. In particular, GREAT3 demonstrated that even when using very
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simple galaxy models (either a single or a combination of two Sérsic pro�les), �tting methods were
still e�ective when including realistic galaxy morphologies in the simulations (GREAT3 galaxies
were based on Hubble Space Telescope (HST) imaging).

6.3 2d mass mapping

6.3.1 Kaiser-Squires inversion

It was originally realised by Kaiser and Squires (Kaiser and Squires, 1993) that weak lensing can be
used to directly map the mass distribution. Indeed, weak lensing provides a direct estimate of the
shearγ (in the weak regime) which can be related to the convergenceκ through a set of di�erential
equations established in Section 6.1.2. In the Fourier domain, these relations can be written as:

γ̃1 =
1
2

�
k21 − k

2
2

�
ψ̃ ; γ̃2 = k1k2ψ̃ ; κ̃ =

1
2 (k

2
1 + k

2
2)ψ̃ . (6.60)

As can be seen, the convergence can directly be obtained from the lensing potential. In turn, the
lensing potential can be independently estimated from both components of the shear. The idea
of the Kaiser-Squires method is to combine this set of equations to build a minimum variance
estimator of the convergence, which leads to

ˆ̃κγ =
k21 − k

2
2

k2
γ̃1 +

2k1k2
k2

γ̃2 , (6.61)

where k2 = k21 +k22 . An important point to notice is that this formula is not de�ned for k1 = k2 = 0,
which means that the convergence can only be recovered up to a constant term. This is the famous
mass-sheet degeneracy. Equivalently, this estimator can be expressed in the direct domain as a
convolution product of the form:

κ(θ ) −κ0 = 1
π

∫
dθ ′D(θ − θ ′)γ (θ ′) , (6.62)

where κ0 is a constant o�set due to the mass sheet degeneracy which cannot be determined from
the shear alone and D = 1

(θ ∗)2 is just the Fourier transform of the kernel in Equation (6.61).
An important aspect of this estimator is its linearity, which allows us to derive the noise on the

estimated convergence given the noise on the input shear. Assuming that both components of the
shear are uncorrelated and have variance σ 2

ϵ , the variance of the estimator becomes:

< ˆ̃κ∗ ˆ̃κ > =
(k21 − k22)2

k4
σ 2
ϵ +

4k21k22
k4

σ 2
ϵ , (6.63)

= σ 2
ϵ . (6.64)

Thus the Kaiser-Squires estimator has the same noise variance as the input shear. As was men-
tioned in Section 6.1.2 the noise on the shear estimates can be modelled as an additive Gaussian
noise of variance σ 2

ϵ
Nд

where Nд is the mean number of galaxies per angular bins. Therefore, the
convergence maps built from a binned shear map will have a white Gaussian noise of the same
variance σ 2

ϵ
Nд

.
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The Kaiser-Squires estimator is de�ned in terms of the shear γ whereas in practice, only the
reduced shear д = γ

1−κ is accessible. This is not a particular issue when mapping the large scale
dark matter distribution, as the lensing signal on large scale is well within the weak regime so
that д ' γ . However, on smaller scales, for instance at the close vicinity of galaxy clusters, the
convergence can become signi�cant so that the reduced shear can no longer be directly used as
an estimator of the shear. Unfortunately, the inversion problem becomes non-linear and can no
longer be solved by a simple convolution. Nevertheless, as was noted in Seitz and Schneider (1995),
the Kaiser-Squires estimator can still be used in an iterative scheme which applies a correction
factor to the reduced shear based on an estimate κ̄ of the convergence which is re�ned at each
iteration. The estimator becomes:

κ(θ ) −κ0 = 1
π

∫
dθ ′[1 − κ̄(θ ′)]D(θ − θ ′)д(θ ′) , (6.65)

which is generally found to converge to a solution in a few iterations by replacing κ̄ with the
current estimate of the convergence. As was described in Section 6.1.2, the solution of this problem
is still subject to the mass-sheet degeneracy. Contrary to the weak regime, this degeneracy is not
a simple additive constant term, instead the convergence is recovered up to the λ-transformation
introduced in the previous section:

κ ′ = λκ + (1 − λ) . (6.66)

The measured reduced shear д remains invariant under this transformation.

Although this inversion technique has some very desirable properties including linearity (in the
weak regime), minimum variance and the ability to accommodate reduced shear, it has one major
shortcoming, namely that is not well de�ned on bounded domains, even less so on domains with
complex geometries and missing data which occurs in actual surveys. Indeed, the convolution in
Equation (6.62) is performed over the entire R2 plane.

This has led to the development of complementary or alternative methods, the most important of
which being the Seitz and Schneider inversion (Seitz and Schneider, 1996). This particular method
aims at solving the inversion problem using local di�erential relations between the convergence
and the derivatives of the shear and is theoretically well de�ned on bounded domains for noiseless
data. However, in practice, the Seitz and Schneider method is not very robust to noise, unless the
data is �rst smoothed by a large Gaussian, and it was found that in general, even on small �eld,
the Kaiser-Squires inversion generally faired better than the Seitz-Schneider method(Schneider,
2006).

Another alternative to the simple Kaiser-Squires method has also been developed to mitigate
the impact of the mask by Pires et al. (2009). This method is an application of sparse inpainting
to the weak lensing inversion problem. The solution is required to be sparse in a DCT dictionary,
which is shown to dramatically reduce the impact of the mask on second order statistics.

6.3.2 Extension to flexion reconstruction

Similarly to the Kaiser-Squires inversion for the shear, Bacon et al. (2006) proposed a minimum
variance �lter for estimating the convergence from �rst �exion F . As the �exion is only the gradi-
ent of the convergence (see Section 6.1.2), these two quantities can be related in the Fourier domain
as:

F̃1 = −ik1κ̃ ; F̃2 = −ik2κ̃ . (6.67)
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With the same approach as the Kaiser-Squires inversion, the two components of the �rst �exion
can be combined in order to yield a minimum variance estimator of the convergence, which takes
the simple expression:

ˆ̃κF =
ik1F̃1 + ik2F̃2

k2
. (6.68)

Note that just as with the Kaiser-Squires inversion, this expression is only valid for k1 , 0 and
k2 , 0, which means that the �exion reconstruction is still subject to the mass sheet degeneracy.
Contrary to the previous Kaiser-Squires inversion, this estimator does not have a �at noise power
spectrum. Indeed, assuming uncorrelated �exion measurements with intrinsic variance σ 2

F , the
variance of this estimator is:

< ˆ̃κ∗F ˆ̃κF > =
k21
k4
σ 2
F +

k22
k4
σ 2
F , (6.69)

=
1
k2
σ 2
F . (6.70)

This makes the reconstruction of mass maps from �exion alone using this estimator very problem-
atic on large scales where the noise will always dominate the signal. This means that applying any
low-pass smoothing actually reduces the signal to noise ratio of the reconstruction.
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Figure 6.8: Noise power spectra of the minimum variance estimators for shear alone (blue line), �exion
alone (green line) and shear and �exion combined (red line). The dashed cyan line shows the
�exion noise level wrongly estimated in Pires and Amara (2010). The vertical line indicates the
arcminute scale computed as k = 2π/r . These noise power spectra assume σF = 0.04 arcsec−1,
σγ = 0.3 and nд = 50 gal/arcmin2 with 14 arcsecs pixels, as in Pires and Amara (2010).

This has led Pires and Amara (2010) to conclude that �exion was unusable for mass mapping,
claiming that the Signal to Noise Ratio (SNR) of the �exion reconstruction could only surpass that
of the shear reconstruction at the scale of a few arcsecs. However, this conclusion was based on
an erroneous interpretation of Fourier frequencies with respect to angular scales. Using the same
setting as Pires and Amara (2010), we �nd the angular scale where �exion reaches the noise level
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of the shear to be around 45 arcsecs. As a result, based solely on noise levels using these Fourier
estimators, we argue that �exion can be used to help resolve sub-arcmins structures. Figure 6.8
shows the noise power spectra of a shear inversion alone (blue) and �exion inversion alone (green),
the arc-minute scale is marked by the vertical line.

It is clear from Figure 6.8 that although �exion can help constrain small features, it is not com-
petitive with respect to the shear on scales larger than 1 arcmin. To simultaneously bene�t from
both shear and �exion, Bacon et al. (2006) proposed a minimum variance �lter combining both
measurements. Although they present reconstructions using this combined �lter, they do not ex-
plicitly provide its expression, which can easily be derived (see Appendix B) and takes the form:

ˆ̃κγ F =
1

k2 +
σ 2
F
σ 2
γ

*
,
ik1F̃1 + ik2F̃2 +

σ 2
F

σ 2
γ

(
k21 − k

2
2

k2
γ̃1 +

2k1k2
k2

γ̃2

)
+
-
. (6.71)

The noise variance of this estimator is now:

< ˆ̃κ∗γ F ˆ̃κγ F >=
σ 2
F

k2 +
σ 2
F
σ 2
γ

. (6.72)

Figure 6.8 illustrates the noise power spectrum of this estimator (red line) in realistic conditions.
We see that the combined estimator starts improving over the shear alone around the arcminute
scale.

An example of reconstruction using this combined estimator is shown on Figure 6.9. The input
convergence map is reconstructed from shear alone, �exion alone and combining shear and �exion.
As expected, the shear alone reconstruction is very noisy, especially on small scales because of its
�at noise power spectrum. On the contrary, the �exion alone reconstruction is noise dominated on
scales larger than 1 arcmin. However, by combining both shear and �exion information, the noise
is e�ectively suppressed on small scales and not ampli�ed on large scales which makes the cluster
and some of its substructure clearly identi�able without any additional �ltering. Note however that
this simple example only illustrates the noise properties of these estimators but is unrealistic in the
sense that it does not consider the problem of missing data. A reconstruction strategy combining
shear and �exion and properly accounting for missing data will be presented in Chapter 7.

6.3.3 Maximum likelihood methods

The direct inversion methods presented so far only amount to applying a �lter to the measured
shear and/or �exion. They are not regularised and another �ltering step is usually required to beat
down the noise and recover the signal. Furthermore, this framework does not allow the combina-
tion of additional constraints such as strong lensing or magni�cation.

Another approach originally suggested in Bartelmann et al. (1996) consists in de�ning a like-
lihood function which incorporates both a data �delity term and a regularisation term to avoid
over-�tting the data and thus control the level of noise. This class of methods can seamlessly in-
corporate all available information (shear, �exion, magni�cation, strong lensing, etc.) into a joint
reconstruction. They have mainly be used in the context of strong lensing.

The general approach in non-parametric maximum likelihood methods is to de�ne a discretised
lensing potential ψ on a grid. The choice of reconstructing the lensing potential and not the con-
vergence is due to the more direct relationships between the potential ψ and the observables (for
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Figure 6.9: Reconstruction of a small 10 × 10 arcmin2 �eld containing a massive cluster using the shear
alone Kaiser-Squires estimator (c), the �exion alone minimum variance estimator (d) and the
combined minimum variance estimator (b). The noise level correspond to σF = 0.04 arcsec−1,
σγ = 0.3 and nд = 50 gal/arcmin2 with 6 arcsecs pixels.

instance computing the shear from the convergence involves an inverse Laplacian). The potential
is �tted to the di�erent constraints available by minimising a multi-component χ 2-function:

χ 2(ψ ) = χ 21 (ψ ) + χ 22 (ψ ) + χ 23 (ψ ) + . . . , (6.73)
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where each χ 2i corresponds to a di�erent observational constraint. For instance the χ 2 for weak
lensing data can be expressed as:

χ 2д =

Nдal∑
i=1

|ϵi −д(θi ,ψ )|2
σ 2
i

, (6.74)

where д(θi ,ψ ) is the reduced shear evaluated at the position of the galaxy of index i , given the
lensing potentialψ .

Despite combining di�erent constraints, the inversion problem remains ill-posed and minimis-
ing the data �delity χ 2 without additional regularisation leads to an important over-�tting of the
noise. To avoid over-�tting, a regularisation term R is added to the total χ 2:

χ 2r eд(ψ ) = χ 2(ψ ) + λR(ψ ) , (6.75)

where λ tunes the strength of the regularisation. Di�erent kinds of regularisation functions R

have been used in the literature such as the maximum-entropy (Seitz et al., 1998) or the quadratic
deviation from a model (Bradac et al., 2005).

Recovering the lensing potentialψ now amounts to minimising the regularised χ 2r eд(ψ ). Solving
this optimisation problem is challenging in practice as the χ 2 is usually a non-linear function of
the potentialψ , which requires one to iteratively solve a linearisation of the problem. Furthermore,
the computational cost of evaluating and/or di�erentiating the χ 2-function scales rapidly with the
size and resolution of the �eld which limits the applicability of these methods to relatively small
areas.

6.4 3d mass mapping

3D weak lensing was �rst introduced in Taylor (2001) as an extension of 2D mass mapping. How-
ever, since then only a handful of additional methods have been proposed (Hu and Keeton, 2002;
Simon et al., 2009; VanderPlas et al., 2011; Leonard et al., 2012) and despite the increasing avail-
ability of lensing and photometric redshift data, very few studies have actually applied 3D lensing
techniques to lensing surveys. In this section, we review existing 3D lensing methods and high-
light some of their drawbacks which can explain why 3D lensing approaches have not been more
widespread until now.

In Chapter 8 we will introduce a new 3D lensing technique, based on sparse regularisation,
which overcomes most of the limitations of the linear methods presented in this section.

6.4.1 The Taylor direct inversion method

The �rst 3D weak lensing mass-mapping method was proposed by Taylor (2001) and further devel-
oped in Bacon and Taylor (2003). This method aims at mapping the 3D gravitational potential Φ
from the tomographic lensing potentialψ . These two potentials are related through the following
line of sight integration:

ψ (r ) = 2
∫ r

0
dr ′

(
r − r ′

rr ′

)
Φ(r ′) , (6.76)
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assuming a �at Universe and where r is the radial comoving distance. If the lensing potential is
known, the 3D gravitational potential can readily be recovered as (Taylor, 2001):

Φ =
1
2∂rr

2∂rψ . (6.77)

The lensing potential is not directly observable but can be estimated from the measured tomo-
graphic shear through a Kaiser-Squires inversion:

ψ̃ = 2∂−4∂i∂jγi j , (6.78)

where ∂−2 is the inverse 2D Laplacian. This inversion is of course subject to the mass-sheet degen-
eracy, which means that the tomographic lensing potential can only be recovered up to an additive
function of the comoving distance r : ψ̃ (r ,θ ) = ψ (r ,θ )+ f (r ). This degeneracy can however be mit-
igated for large enough surveys since for each tomographic slice the mean potential is expected to
vanish due to homogeneity and isotropy properties, which leads to < ψ̃ >=< ψ > +f = f . In this
case, subtracting the mean of estimated lensing potential per slice removes the bias caused by the
mass sheet degeneracy. Based on this lensing potential estimator, the 3D gravitational potential
estimator becomes:

Φ̃ =
1
2∂rr

2∂r
�
ψ̃− < ψ̃ >

�
. (6.79)

Although Equation (6.79) formally allows the recovery of the 3D gravitational potential, it re-
quires the evaluation of both angular and radial derivatives which cannot be directly computed
from a discretely sampled galaxy catalogue. The �rst step of the method is to perform angular and
radial binning of the catalogue before applying an additional angular and/or radial smoothing in
order to compute these derivatives on a 3D grid. It is important to stress that in the radial direc-
tion the Newtonian potential is recovered through two consecutive di�erentiations which strongly
ampli�es the noise, thus the radial smoothing has a strong impact on the overall variance of the
estimator (Bacon and Taylor (2003) �nd that the noise variance on the gravitational potential is
proportional to the inverse �fth power of the width of radial smoothing).

In practice, even with binning and smoothing the galaxy catalogue, the primary map recovered
by the estimator in Equation (6.79) is still highly noise dominated and an additional �ltering step
is required to recover a meaningful mass map.

Wiener �ltering of the primary map was proposed in Bacon and Taylor (2003) and Hu and Kee-
ton (2002) to beat down the noise assuming a given covariance matrix for the signal. In Bacon and
Taylor (2003), the signal covariance matrix is just proportional to the unit matrix, with an ampli-
tude tuned to match the expected signal for a cluster of a given mass. A more accurate modelling of
the signal covariance matrix for recovering the large scale structure was suggested in Hu and Kee-
ton (2002) based on the matter power spectrum, but the principles of the Wiener �lter remain the
same. The results of this method on simulations is illustatred on Figure 6.10 from Bacon and Taylor
(2003). In this example, a space based lensing survey is simulated with nд = 100 galaxies/arcmin2

and an intrinsic shape noise of σϵ = 0.2. The �eld contains two NFW pro�le clusters at z = 0.25
and z = 0.4 of mass 8 × 1013M� within a radius of 2 arcmin. The �eld reconstructed after Wiener
�ltering is shown on Figure 6.10b where the white crosses indicate the positions of the clusters.
This method was �rst applied to the COMBO-17 survey (Wolf et al., 2003) in Taylor et al. (2004)
to produce a 3D map of the dark matter environment of the A901/2 supercluster. It was also used
in Massey et al. (2007) to map the 3D distribution of dark matter in the COSMOS survey (Scoville
et al., 2007).
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(a) Input gravitational potential (b) Reconstructed gravitational potential after
Wiener �ltering

Figure 6.10: Reconstruction of two simulated clusters of masses 8× 1013M� within a radius of 2 arcmin for a
space based lensing survey (nд = 100 galaxies/arcmin2 andσϵ = 0.2) using the 3D gravitational
potential technique and Wiener �ltering. Figures from Bacon and Taylor (2003)

For the recovery of isolated clusters, Hu and Keeton (2002) suggest two alternatives to the
Wiener �lter: the Maximum Entropy Method (MEM) and the Point Source method. They �nd that
both methods can achieve remarkable localisation in redshift of individual clusters, for a good
choice of prior. Interestingly, the Point Source method described by the authors is nothing more
than an `0 sparse recovery problem. They are looking for the sparsest solution (the smallest num-
ber of halos) that �ts the measured tomographic shear. This approach bears great resemblance to
the 3D lensing technique presented in Chapter 8.

6.4.2 Regularised linear inversion

In the previous section the mapping was done in two steps. A �rst noisy estimation of the 3D
gravitational potential using a Taylor inversion. However, this inversion of the lensing kernel
is extremely ill-conditioned and tends to amplify the noise. Therefore, a second �ltering step is
required in order to produce a meaningful map. The limitation of this approach is that the inversion
and �ltering are considered in two separate steps and in its implementation the covariance matrix
of the noise after inversion is computed by randomisation of the shear catalogue, not derived from
the covariance matrix of the shear.

Simon et al. (2009) proposed a di�erent approach, combining the inversion of the lensing ker-
nel and the �ltering of the map into one single minimum variance estimator. They consider the
inversion of the following matrix problem:

γ = PQδ +n (6.80)

where Q is a matrix obtained by discretisation of the line of sight lensing e�ciency kernel (see
Chapter 8 for its expression) so that κ = Qδ and P is the 2D Kaiser-Squires operator which com-
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putes the shear from the convergence γ = Pκ . The authors propose the following minimum vari-
ance estimator to invert this problem:

δ̂ =
�
α Id + SRtN−1R

�−1 SRtN−1γ (6.81)

In this expression, N is the covariance matrix of the noise at the level of the pixelated shear and
can therefore be explicitly described in terms of the shear ellipticity variance and individual shear
weights. This is in contrast with the previous approach. S is a model for the signal covariance,
R = PQ is the forward 3D lensing operator relating density contrast to shear and α is a tuning
parameter. For α = 0, this estimator reduces to a simple minimum variance estimator without any
prior on the signal. However, since the inversion of R is ill-posed, in the absence of regularisation
the solution is extremely noisy. On the contrary, for α = 1 this estimator becomes a Wiener �lter
and the regularisation of the inversion comes from the assumed model for the signal covariance
S. Therefore α makes it possible to tune the strength of the regularisation, to mitigate potential
biases induced by the prior. Simon et al. (2009) propose two di�erent priors for their Wiener �lter
by considering separately the radial and transverse power spectra of the 3D matter density.

This leads on one hand to a purely transverseWiener �lter which only puts a prior on the angular
correlations of the 3D density �eld and consider di�erent redshift slices as independent. Although
this approach successfully attenuates the noise in the angular domain it does not add information
to help constrain the redshift of the structures. In particular, the authors �nd that transverse �lter
induces an important and systematic broadening and biasing of the structures in redshift. On the
other hand, the purely radial Wiener �lter treats di�erent lines of sight as independent and only
consider the radial correlation of the 3D matter density. This method is actually very similar to the
Wiener �lter applied in the previous section for the Taylor inversion. However, this �lter is much
less successful at controlling the noise and the authors �nd that an additional Gaussian smoothing
in the angular domain is necessary to recover a meaningful map.

The transverse Wiener �lter method was applied in Simon et al. (2012) to the STAGES survey
(Gray et al., 2009) which covers the same Abell 901/902 supercluster as the COMBO-17 survey
mentioned in the previous section. Although the Wiener �ltered map was able to recover the main
structures, the authors conclude with a pessimistic view of the future of 3D lensing arguing that
the linear �lter they propose remains heavily biased and noisy and that only the most massive
structures have a chance of being detected in a 3D map.

VanderPlas et al. (2011) follow a similar approach but instead of using a prior on the power
spectrum to regularise the inversion they propose a Singular Value Decomposition (SVD) regular-
isation of the lensing operator which does not make any assumptions on the signal to recover. In
their approach, the authors simply truncate a given percentage of lowest singular values which
improves the condition number of the operator and greatly reduces the ampli�cation of the noise
during the inversion. This estimator can be written as:

δ̂ = VΣ−1UtN−1/2γ (6.82)

where U,V and Σ correspond to the SVD of the operator N −1/2R = UΣVt and Σ−1 is the regularised
inverse singular value matrix matrix where a given percentage of the lowest singular values are
discarded. Unfortunately, the modes associated with the remaining highest amplitude singular
values are very broad in redshift and do not allow a good redshift resolution. Improving the redshift
resolution necessarily requires to include modes associated with lower singular values at the price
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of increasing the noise in the reconstruction. These authors �nd very comparable results with the
radial Wiener �ltering although their SVD method is about 500 times faster than the Wiener �lter
(thanks to a clever implementation of the SVD for sparse matrices).

These three di�erent methods are presented on Figure 6.11 for a simulated NFW pro�le with a
mass of 1015M� at redshift z = 0.55 under noise conditions similar to that of the Euclid survey
(nдal = 30 arcmin−2 and intrinsic ellipticity standard deviation σϵ = 0.25). This �gure illustrates
the main issues with the linear inversion methods. First and foremost, the recovered structures are
systematically biased in redshift. This issue is particularly predominant for the transverse Wiener
�lter and was thoroughly studied in Simon et al. (2009). Another fundamental limitation is the red-
shift resolution of the reconstruction, all three methods presented here present a trade-o� between
redshift resolution and noise-reduction. In particular, VanderPlas et al. (2011) reach the conclusion
that linear, non-parametric methods are fundamentally limited in redshift resolution.

These important limitations have hindered so far the generalisation of 3D lensing to more data
sets. In Chapter 8 we present a new approach to this problem based on non-linear sparse recovery
which is not bound by the same limitations as the linear methods presented here. In particular, we
demonstrate a much improved redshift resolution and a robust estimation of the density contrast,
which signi�catively broadens the range of applications of 3D lensing.

6.5 conclusion

We introduced in this chapter the framework behind weak gravitational lensing and we also re-
viewed the fundamentals of mass-mapping techniques using gravitational shear to infer the dark
matter distribution in 2D and in 3D. These concepts will be put to use in the following chapters
where we develop new mass-mapping techniques based on the sparse optimisation framework
introduced in the �rst part of this thesis.
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(a) Transverse Wiener �lter

(b) Radial Wiener �lter

(c) SVD

Figure 6.11: Reconstruction of a 1015M� cluster at redshift z = 0.6 using the 3 linear inversion methods. The
noise level corresponds to a survey with nдal = 30gal/arcmin−2 and σϵ = 0.25. The left panels
show a slice in the 3D reconstructed density contrast at z = 0.6. The right panels show the
central line of sight in the reconstruction. The gray wedges show the input density constrast
and the solid blue lines show the E-mode signal and the dashed line show the B-mode signal.
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In this chapter, we present a new weak lensing mass mapping technique, speci�cally designed
to reconstruct the surface mass density of galaxy clusters with high resolution. As gravitational
shear is generally noise dominated on small scales, we combine shear with gravitational �exion
which allows us to recover small cluster substructures at the 10 arcsec scale.

While relying on Fourier estimators, our method does not require any binning or smoothing of
the input galaxy catalogue, thus preserving small scale information. Instead, we treat the irregular
galaxy sampling as part of an inverse problem which we address with the sparse regularisation
framework introduced in Chapter 3.

We test our reconstruction method on a set of realistic weak lensing simulations corresponding
to typical Hubble Space Telescope (HST)/Advanced Camera for Surveys (ACS) cluster observations
and demonstrate our ability to recover substructures with the inclusion of �exion.

7.1 the cluster density mapping problem

Although very powerful, strong lensing is only e�ective within the Einstein radius of the cluster
which represents for most clusters only a fraction of their total area. Outside of this region, con-
straints from gravitational shear are generally very poor below the arcminute scale which makes
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the detection of substructures extremely unlikely. A promising avenue to bridge the gap between
shear and strong lensing, and help resolve substructure outside of the innermost regions of galaxy
clusters is gravitational �exion, which has already been shown to provide valuable constraints at
these intermediate scales (Leonard et al., 2007).

Measuring �exion has proven to be a di�cult task in practice but a new promising shape mea-
surement method has recently been proposed by Cain et al. (2011). Whereas previous methods were
based on shapelet (Goldberg and Bacon, 2005) or brightness moments (Okura et al., 2007), this new
approach, called Analytic Image Models (AIM), is the �rst model �tting technique applied to the
measurement of �exion. Among the bene�ts of this new method are a complete invariance under
the mass-sheet degeneracy and a better characterisation of the measurement errors. Cain et al.
(2015) demonstrated the possibility to use AIM measurements in combination to strong lensing to
reconstruct cluster sub-structures.

Very few methods have been developed for mass-mapping including �exion. The �rst recon-
struction technique using �exion has been proposed in Bacon et al. (2006) as an extension of the
Kaiser-Squires Fourier estimator (see Section 6.3.2). Leonard et al. (2009); Leonard and King (2010)
proposed an extension of aperture mass �lters to the case of �exion. Finally, Cain et al. (2015) intro-
duced a maximum likelihood approach combining shear, �exion and strong lensing for performing
a joint reconstruction of the mass map. This last method being the most advanced combined re-
construction technique, we will be particularly interested in comparing our results to theirs.

In this chapter we develop a new approach for mapping the surface mass density of galaxy
clusters from shear and �exion, which we speci�cally design to be able to recover small scale
substructures. This mass-mapping problem is complex and involves a number of sub-problems
listed below.

irregular sampling In any lensing survey, the shear �eld is only sampled at the position of
background galaxies which are randomly distributed. When mapping the matter distribution on
large scales, these galaxies can be binned into regular pixels, smaller than the scales of interest, thus
providing a regular sampling of the �eld from which the convergence map can be conveniently
computed (for instance using a Kaiser-Squires technique). Although this approach is convenient,
information on scales smaller than the bin size are irremediably lost. In the method developed
in this chapter we aim to avoid any smoothing or binning of the input data, thus preserving all
available information. This comes at a cost however, as the mass-mapping problem becomes in
this case an ill-posed inverse problem. As we will demonstrate, this problem can be successfully
solved using the sparse regularisation framework introduced in Chapter 3.

noise regularisation Intrinsic shear and �exion noise becomes a particular problem on
small scales as the signal cannot be averaged over a large number of galaxies. In fact, very few
details can be expected to reach a signi�cant SNR on the smallest scales (smaller than 10 arcsec-
onds). Yet, very locally the signal can still become signi�cant, for instance at the vicinity of small
substructures. While a simple smoothing is an e�ective way of suppressing these noise dominated
scales, it will also suppress any small substructure, even the few that reach signi�cant amplitudes.
Therefore, ideally the noise regularisation should be adaptive and allow the detection of features
at di�erent scales based on their SNR. This is an issue with most maximum likelihood techniques
which generally assume a smoothness prior to regularise the reconstruction when using shear in-
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formation. In the method developed in this chapter, our regularisation will be based on a mutliscale
sparsity prior, which is a much more powerful denoising technique.

non-linearity While the mass-mapping problem remains linear in the weak lensing regime
(κ � 1.), at the close vicinity of the galaxy clusters we aim to reconstruct in this chapter this
condition no longer holds. The inversion method needs to properly take into account the reduced
shear д = γ

1−κ and reduced �exion F = F
1−κ in order to avoid important systematic biases in

the reconstructed map. However, in this case, the inversion problem becomes non-linear and the
algorithms for sparse regularisation presented in Chapter 3 no longer formally apply. The problem
will require some linearisation scheme in order to remain tractable by the same methods.

mass-sheet degeneracy A well known issue with all weak lensing mass-mapping tech-
niques is the mass-sheet degeneracy. In the non-linear regime we are considering in this chapter,
the reconstructed convergence map is invariant under the λ-transform introduced in Section 6.1.4.
However, as was explained in that section, when including redshift information for individual
galaxies, the degeneracy can be lifted at the close vicinity of the most signi�cant structures. As
our method avoids binning the input galaxies, it is possible to incorporate individual reshift esti-
mates for the sources. Even if not very e�ective in general at breaking the mass-sheet degeneracy,
the redshift information is still important to ensure a proper scaling of the reconstructed surface
mass density from which physical masses can be measured.

combining flexion Small scales details such as cluster substructures are generally lost when
using shear information alone as the noise becomes very important on small scales. On the con-
trary, while �exion becomes noise dominated on large scales, on small scales (below 0.5 arcmin)
it becomes far less noisy than the shear and thus becomes sensitive to substructures which would
have been otherwise lost. Shear and �exion are therefore complementary but the inclusion of �ex-
ion adds to the complexity of the inverse problem. In particular, it is important to ensure that shear
and �exion are optimally combined, in a way which is coherent with the noise regularisation.

In order to disentangle these various di�culties, the method presented in the following sections
will progressively build up in complexity. We start by addressing the linear weak lensing inver-
sion and the noise regularisation in Section 7.2. In Section 7.3, we incorporate the non-linearity
induced by the reduced shear, we add redshift information for individual galaxies and we extend
the framework to include �exion. Finally, in Section 7.4 we demonstrate on realistic cluster simu-
lation that our method is successful at reconstructing the surface mass density and we illustrate
the importance of �exion for the recovery of small-scale substructures.

7.2 sparse regularisation of the linear inverse problem

In Fourier based methods, the fundamental motivation behind regular binning is to enable the
computation of the DFT of the shear, in order to apply the Kaiser-Squires estimator. Indeed, the
DFT is not well de�ned outside of a regular grid with no gaps. Since in practice the shear is only
sampled at the position of randomly distributed background galaxies, this binning is therefore a
necessary step to ensure a well de�ned inversion. However, preventing gaps in the sampling of the
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shear can require a potentially coarse binning, thus irremediably losing small scale information.
Even then, gaps in the data are unavoidable due to various various masks applied in practice to
the survey (bright stars, CCD defects,...).

We propose in this section a new method for reconstructing the convergence map, based on
Fourier estimators, which does not require any binning or smoothing of the input shear. Although
this approach allows us to preserve small-scale information which would otherwise be lost, it does
turn the reconstruction problem into an ill-posed inverse problem, which we address using the
sparse regularisation framework introduced in Chapter 3.

We only consider the linear weak lensing problem in this section, reconstructing the conver-
gence map assuming knowledge of the shear. The full treatment of the complete problem is ad-
dressed in the next section.

7.2.1 Non-equispaced Discrete Fourier Transform

When either the spatial or frequency space is not regularly sampled, the DFT can be generalised
to the Non-equispaced Discrete Fourier Transform (NDFT). The NDFT is of course no longer an
orthogonal transform and is usually not even invertible. We will consider the case where only the
spatial nodes x = (xl )0≤l<M are arbitrary while the frequency nodes k = J0,N J are N regularly
spaced integers. Computing the NDFT from a set of Fourier coe�cients f̂ =

(
f̂k

)
0≤k<N

simply
amounts to evaluating the trigonometric polynomials:

∀l ∈ J0,MJ, fl =
1
√
N

N−1∑
k=0

f̂ke
2π ikxl . (7.1)

This operation can more conveniently be expressed using matrix notations as:

f = T f̂ with Tlk =
1
√
N
e2π ikxl , (7.2)

where T is the NDFT matrix, with matrix elementsTlk . Note that in the case of equispaced spatial
nodes such that xl = 1

N l , this operation corresponds to the conventional DFT and T reduces to the
Fourier matrix F de�ned as:

Flk =
1
√
N
e2π ikl/N . (7.3)

This Fourier matrix is unitary and its inverse is simply its Hermitian conjugate: F−1 = F∗. On the
contrary, for non-equispaced spatial nodes x , the operator T is typically neither orthogonal nor
admits an inverse. Still, one can consider the adjoint NDFT operator T∗:

T ∗kl =
1
√
N
e−2π ikxl/N . (7.4)

Although this adjoint operation no longer corresponds to the inverse of the transform, it can be
used in practice to estimate the inverse through a least squares problem of the form:

f̂ = argmin
x̂

‖ f − Tx̂ ‖22 . (7.5)

This problem can e�ciently be solved using iterative algorithms (in particular using a conjugate
gradient) which involve the computation of both T and T∗.
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It is therefore important to have fast algorithms for the computation of the NDFT and its ad-
joint. Note that a naive evaluation of the sum in Equation (7.1) would scale as O(N ×M) which is
prohibitively large for most applications (including for our mass-mapping problem). In this work,
we use a fast approximate algorithm1 to evaluate the NDFT and its adjoint, called Non-equispaced
Fast Fourier Transform (NFFT) (Keiner et al., 2009), which only scales as O(N log(N )+ | log(ϵ)|M)
where ϵ is the desired accuracy. For a given sampling of the frequency space (i.e. for a given N ), the
NFFT only linearly scales with the numberM of spatial nodes xl , which in our case will correspond
to the number of galaxies in the survey.

7.2.2 Sparse regularisation of the inversion problem

Consider a lensing survey withNд galaxies. We can write the expression of the shearγ = (γi )i ∈J0,NдJ
at the position of each galaxy given a convergence map κ as

γ = TPF∗κ (7.6)

In this expression, F is the Fourier matrix and T is the NDFT matrix de�ned for arbitrary spatial
nodes x placed at the position of each galaxy in the survey. The diagonal operator P implements
the transformation from convergence to shear in Fourier space:

γ̂ = Pκ̂ =
(
k21 − k

2
2

k2
+ i

2k1k2
k2

)
κ̂ (7.7)

Of course, this expression is not de�ned for k1 = k2 = 0, which corresponds to the well known
mass-sheet degeneracy and by convention we will set the mean to 0. We are using complex no-
tations for both shear and convergence, with in particular κ = κE + iκB where κE and κB are
respectively E- and B-modes maps.

An important point to stress is that the operator P is unitary, with P∗ P = Id, just like the Fourier
matrix F, and as such is readily invertible. Solving Equation (7.6) therefore reduces to the inversion
of the NDFT operator, which is the only di�cult step. As mentioned in the previous section, if the
spatial nodes are not regularly spaced, estimating the inverse NDFT is in the general case an ill-
posed inverse problem.

Our aim is to apply the sparse regularisation framework introduced in Chapter 3 to the inversion
of the NDFT operator, thus yielding an estimate of the convergence. We consider the following
sparse optimisation problem:

argmin
κ

1
2 ‖ γ − TPF∗κ ‖22 +λ ‖ w ◦Φ

tκ ‖1 +i=(·)=0(κ) . (7.8)

Let us detail each term in this expression. The �rst term is a quadratic data �delity term, where we
assumed a shear covariance matrix proportional to the identity matrix for simplicity. In practice,
di�erent inverse variance weights can be applied to each galaxy, but the covariance matrix remains
diagonal as we are treating galaxies independently. The second term is an analysis-based sparsity
constraint where Φ is a dictionary providing a sparse representation of the signal we want to
recover, ◦ is the Hadamard product, and w is a vector of weights allowing us to adaptively adjust

1 The C++ library NFFT 3 is available at https://www-user.tu-chemnitz.de/~potts/nfft

https://www-user.tu-chemnitz.de/~potts/nfft
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the `1 ball based on the local level of noise (see next section). Finally, the last term imposes the
imaginary part of the solution (i.e. B-modes) to vanish. Remember that the indicator function iC
of a set C is de�ned by

iC(x) =



0 if x ∈ C

+∞ otherwise
(7.9)

Here, C =
�
κ ∈ CN×N | =(κ) = 0

	
where N × N is the size of the reconstruction grid, and

as a result any solution with a non-zero imaginary part is excluded. This additional constraint is
crucial as the irregular galaxy sampling leads to important leakage between E- and B-modes. As E-
modes are constrained by the sparsity prior, most of the signal would tend to leak towards B-modes
without this additional term. Vanishing B-modes is of course a completely physically motivated
prior as gravitational lensing only produces E-modes, but this also means that this method will be
sensitive to spurious B-modes resulting from uncorrected systematics which will contaminate the
recovered signal.

To e�ciently solve this problem, we adopt the primal-dual algorithm from Vu (2013), introduced
in Section 3.3.2.4. This algorithm is capable of handling the 3 terms of Equation (7.8) and especially
the lack of explicit proximal operator for the analysis-based sparsity constraint. Given that the
proximity operator of i=(·)=0(κ) is simply the real part of κ, proxi=(·)=0(κ) = <(κ), the specialisation
of this algorithm to the problem at hand is straightforward and described in Algorithm 7.1.

Algorithm 7.1 Analysis-based κ sparse recovery from shear
Require:

Shear of each galaxy in the survey γ .
Sparsity constraint parameter λ > 0.
Weights wi > 0.
τ = 2/(‖ Φ ‖2 + ‖ T ‖2).

1: κ (0) = 0
2: ∀i , λ′i = λwi

3: for n = 0 to Nmax − 1 do
4: ∇(n) = FP∗T∗

�
γ − TPF∗κ (n)

�

5: κ (n+1) = <
�
κ (n) + τ

�
∇(n) −Φα (n)��

6: α (n+1) = (Id − STλ′)
�
α (n) +Φt �

2κ (n+1) −κ (n)
��

7: end for
8: return κ(Nmax).

The solution of this optimisation problem tends to be biased as a side e�ect of the `1 sparsity
constraint. In order to correct for this bias and improve the quality of the solution we implement
the reweighted-`1 strategy of Candès et al. (2008) which was detailed in Section 3.2.3. This method
relies on iteratively solving Equation (7.8), adjusting each time the weightsw based on the previous
estimate of the solution. This procedure is described below:

1. Set the iteration count ` = 0 and initialise the weights w (0) according to the procedure
described in Section 7.2.4.
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2. Solve the weighted `1 minimisation problem of Equation (7.8) using Algorithm 7.1, yielding
a solution κ (`).

3. Update the weights based on the wavelet transform of the solution α (`) = Φtκ (`):

w (`+1)
i =




w (0)
i

|α (`)
i |/λw (0)

i

if |α (`)
i | ≥ λw (0)

i

w (0)
i if |α (`)

i | < λw (0)
i

, (7.10)

4. Terminate on convergence. Otherwise, increment ` and go to step 2.

In practice we �nd that 3 to 5 re-weightings are generally su�cient to reach a satisfying solution.

7.2.3 Choice of dictionary

For any sparse regularisation method, an appropriate choice of dictionary is important for the
quality of the result. This is especially true for noise dominated problems where the prior takes
prevalence when the data is not constraining. Previous sparsity based methods developed for weak
lensing mass-mapping either employed starlets (see Section 4.3.2) for denoising (Starck et al., 2006)
or DCT for inpainting (Pires et al., 2009). Indeed, at small scale, the non-Gaussian convergence
signal essentially generated by isolated galaxy clusters is extremely well represented using the
starlet dictionary which features isotropic atoms, adapted to the average circular pro�le of dark
matter halos. On the other hand, on large scales, the DCT is more e�cient at capturing the Gaussian
part of the convergence signal and has proven to be an excellent dictionary to inpaint missing data
due to masks without altering the power spectrum of the reconstructed maps.

In this work, we aim at reconstructing the convergence map on small scales and we therefore
adopt the starlet dictionary for the reasons stated above. However, we �nd that when using the star-
let alone, details at the �nest scale are not su�ciently constrained, in particular spurious isolated
pixels tend to contaminate the solution, as shown on Figure 7.1a. To help penalise this unwanted
behaviour, we build an hybrid dictionary by concatenating to the starlet dictionary the �rst scale
of an undecimated bi-orthogonal wavelet transform, more speci�cally a Battle-Lemarié wavelet
of order 5 (see Section 4.2.3). Contrary to starlet atoms, Battle-Lemarié wavelets are much more
oscillatory and have a larger support (formally in�nite but with an exponential decay). This makes
them relatively ine�cient at sparsely representing singularities such as isolated pixels, which are
therefore more strongly penalised by the sparsity prior.

To illustrate the bene�ts of using this hybrid dictionary, we compare in Figure 7.1 the results of
our reconstruction algorithm in a simple noiseless case when using starlets alone or the hybrid
dictionary described above, all other parameters being kept �xed. As this simple qualitative com-
parison demonstrates, starlets alone tend to create small pixel-sized artefacts, even in the absence
of noise. These are completely eliminated by the inclusion of the Battle-Lemarié wavelets.

We add that although we �nd this dictionary to be e�ective at regularising the mass-mapping
inversion, it remains generic and was not speci�cally designed for an optimal representation of
convergence maps. More speci�c dictionaries could be used just as well, for instance using DL
techniques, and would potentially improve further our results.
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Figure 7.1: Comparison of reconstruction using starlets or a combination of starlets and Battle-Lemarié
wavelets as the dictionary Φ. The Battle-Lemarié atoms are very e�ective at penalising isolated
pixels.

7.2.4 Adjusting the sparsity constraint

A recurring issue with sparse recovery problems such as the one stated in Equation (7.8) is the
choice of the regularisation parameter λ. There is unfortunately no general rule indicating how to
set this parameter in practice. For this application, we adopt the approach that was proposed in
Chapter 5, which consists in de�ning this parameter with respect to the noise level.

Formally, the parameter λ scales the `1 ball used in the sparsity constraint. In practice, it de�nes
the level of Soft Thresholding applied to the dual variable α (see line 6 in Algorithm 7.1) and there-
fore discriminates between signi�cant and non-signi�cant coe�cients. While this threshold can
be set according to a given sparsity model of the signal to recover, for noise dominated problems,
it is much more crucial to de�ne this threshold with respect to the noise level. As the noise statis-
tics vary across the �eld, depending on the speci�c galaxy distribution, we introduce a vector of
weights w (found in the `1 term in Equation (7.8)) with the purpose of locally scaling the sparsity
constraint based on the standard deviation of the noise propagated to the coe�cients α . For each
wavelet coe�cient αi we set the weight wi to the estimated standard deviation σ (αi ). As a result,
the level of Soft Thresholding applied to each coe�cient αi is λ′i = λwi and accounts for noise
variations across the �eld. As the threshold is proportional to the standard deviation of the noise,
it can be interpreted as an hypothesis test to determine if a coe�cient is due to signal or noise,
assuming Gaussian statistics for the noise, which adds a powerful detection aspect to the sparsity
constraint.

To estimate this noise level, and therefore set the weights w , it is �rst necessary to understand
how the noise in the data propagates to the dual variableα . By considering Algorithm 7.1, it can be
seen that the noise at the level of the shearγN is propagated to the wavelet coe�cients through the
operation Φt<

�
FP∗T∗γN

�
. In practice, we estimate the standard deviation of wavelet coe�cients

by generating Monte-Carlo noise simulations, obtained by keeping the galaxies at their observed
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Figure 7.2: Standard deviation maps w used to scale the sparsity constraint, obtained by propagating the
shear noise to the wavelet coe�cients. We show here noise maps for �ve successive starlet
scales.

position while randomising their orientation. Note that this step needs only to be performed once,
outside of the main iteration of Algorithm 7.1. An example of the resulting standard deviation maps
for di�erent wavelet scales is shown on Figure 7.2. As can be seen, at the �nest scales, the noise
level has important �uctuations across the �eld and the contribution of individual galaxies can be
seen. On larger scales, these local �uctuations are smoothed out and the noise level becomes much
more homogeneous.

Using this strategy therefore allows us to tune locally the sparsity constraint to take into account
the speci�c galaxy distribution of the survey and leaves only one free parameter λ.

7.2.5 Numerical experiment

The algorithm presented in this section is only meant to address the two �rst di�culties of the
complete mass-mapping problem, namely the irregular sampling of the shear and the presence of
noise, the complete problem being solved in the next section. In this simpli�ed setting, we present
a small numerical experiment to check the algorithm’s e�ectiveness at solving the linear inverse
problem. We compare our results to a standard Kaiser-Squires inversion and to the FLens DCT
sparse inpainting technique of Pires et al. (2009).
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Figure 7.3: Test convergence map generated from an N-body simulation. The clusters are located at zl = 0.3
while the source plane is placed at zs = 1.2.

We simulate a 10 × 10 arcmin2 �eld, containing a group of galaxy clusters extracted from the
Bolshoi N-body simulations (Klypin et al., 2011) (see Section 7.4.1 for more details), as shown on
Figure 7.3. These clusters are placed at redshift zl = 0.3 and we simulate a lensing catalogue with
randomly distributed sources on a single lens plane at redshift zs = 1.2. Note that we only simulate
shear measurements from the input convergence map and not the reduced shear.

We consider here the noiseless inpainting problem where the input shear is exactly known at
the position of the sources. Of course this problem is unrealistic but does illustrate the impact of
missing data on the mass-mapping inversion using Fourier estimators.

We generate a �rst shear catalogue with a density of 30 galaxies per square arcminute which
corresponds to a typical Euclid density. To exacerbate the e�ects of missing data, we reconstruct
the input convergence map on a grid with 3 arcsecond pixels. Binning the input catalogue at this
resolution corresponds to an average of 0.075 galaxies per pixels, which means mostly empty pixels
as illustrated by the mask on Figure 7.4a where empty pixels are shown in white. The result of a
blunt Kaiser-Squires inversion with such a mask is shown on Figure 7.4b which corresponds to
the solution of the inverse problem in the absence of regularisation. In order to recover the main
structures we also show the result of a Gaussian smoothing with a kernel of 0.25 arcminute on
Figure 7.4c. Note that on this last �gure the color scale is adjusted for better visualisation but the
amplitude of the reconstruction is an order of magnitude below the input signal smoothed with
the same kernel. As illustrated by these plots, small scale information is lost with this approach
and although using larger bins would regularise the inversion these details would still be lost.

We now apply Algorithm 7.1 to the same catalogue. As the weighting scheme presented in Sec-
tion 7.2.4 is not meant to be used on noiseless data, we use a noisy version of the shear data to
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(b) Kaiser-Squires inversion
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Figure 7.4: Reconstruction of the input convergence map using 30 galaxies per square arcminute using
a simple Kaiser-Squires estimator without additional regularisation. The left panel shows the
mask applied to the binned shear map with empty pixels marked in white.

estimate the weights w and we set the regularisation parameter λ to a very low value (0.01) to ap-
ply the algorithm on noiseless data. To compare our results with a similar inpainting technique we
also use the FLens method of Pires et al. (2009). Figure 7.5a and Figure 7.5b show the recovered con-
vergence maps. In both case, the results constitute an improvement over a simple Kaiser-Squires
inversion but the quality of the reconstruction is much better using the method introduced in this
section, which is able to recover pixel scale details. The main reason explaining this di�erence of
behaviour between two similar sparsity based methods is the di�erence of dictionaries used for
the sparsity constraint. In the case of FLens, a DCT dictionary is used while a wavelet transform
is used in our method. If the DCT is a good choice for capturing the lensing signal on larger scales
(texture-like, mostly stationary signal) it is not adapted to individual galaxy clusters which are
much more sparsely represented by wavelets (smooth signal with local singularities). This illus-
trates the importance of the choice of representation in sparse regularisation techniques.

We also generate a second catalogue with a higher density of 100 galaxies per square arcminute,
which is more typical for HST deep lensing surveys for the study of individual clusters. As shown
on Figure 7.5c and Figure 7.5d �ner details are recovered by both methods.

There are two reasons explaining how pixel scale details can still be recovered using our method
when about 93 % of the data is missing. First and foremost, the shear information is non local
and even small structures formally impact the shear across all the �eld, albeit with an amplitude
decaying to the square of the angular distance. The second reason is the use of isotropic wavelets
which provide a sparse representation of the true convergence map while being morphologically
distinct from the response of individual galaxies which is quadrupolar. As a result, the sparsity
constraint greatly favours the true convergence map, which is smooth with small isotropic features,
over anisotropic artefacts resulting from the irregular shear sampling.

The point of this numerical experiment is to show that although the shear �eld is randomly sam-
pled at a relatively low rate, high frequency information can still be recovered using our method.
Of course, in practice small-scale details are generally lost in the considerable amount of noise
coming from intrinsic galaxy ellipticities, but not necessarily at the close vicinity of the center of
galaxy clusters where the shear signal can become signi�cant even on small scales. The ability to
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(a) FLens inpainting with 30 gal/arcmin−2
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(b) This method with 30 gal/arcmin−2
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(c) FLens inpainting with 100 gal/arcmin−2
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(d) This method with 100 gal/arcmin−2

Figure 7.5: Recovered convergence maps using the method introduced in this chapter and the FLens in-
painting method for 30 and 100 galaxies per square arcminute.

reconstruct small-scale details is even more relevant when including �exion information as the
noise power spectrum of the �exion estimator drops at small scales.

7.3 cluster density mapping

In the previous section, we have introduced an algorithm based on sparse regularisation for solving
the simpli�ed linear inversion problem. Although not realistic, this problem is still an important
step towards the complete surface density reconstruction that we address now in this section.

We detail how the algorithm of the previous section can be modi�ed to take into account the
reduced, redshift information for individual galaxies, and �exion information.
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7.3.1 Handling the reduced shear

The problem addressed in the previous section assumed knowledge of the shear, in which case the
inverse problem remains linear. While this assumption can be made in the weak regime, it breaks
down at the vicinity of the structures (galaxy clusters) we are interested in mapping. Although
the method presented in the previous section no longer directly applies, we present in this section
how it can be extended to take into account the reduced shear д = γ

1−κ , which makes the inversion
problem non-linear.

Throughout this chapter, we will restrict ourselves to the case |д| ≤ 1 for simplicity, assuming
that the sources which do not verify this condition can be identi�ed and excluded from the sample.
The method presented here could be extended using an iterative procedure to identify and thus
treat accordingly sources lying in the region |д| > 1.

Replacing the shear by the reduced shear in the inversion problem stated in Equation (7.8) yields:

argmin
κ

1
2 ‖ д −

TPF∗κ
1 − TF∗κ

‖22 +λ ‖ w ◦Φ
tκ ‖1 +i=(·)=0(κ) . (7.11)

Note that at the denominator the NDFT operator is only used to evaluate the convergence at the
position of each galaxy. In this form, the full problem cannot be directly addressed using the algo-
rithm presented in the previous section as the operator to invert is no longer linear. Nonetheless,
following a common strategy to handle this non-linearity, the term C−1κ = 1/(1 − TF∗κ) can be
factored out and be interpreted as a diagonal covariance matrix, which depends on the signal κ :

argmin
κ

1
2 ‖ C

−1
κ [(1 − TF∗κ)д − TPF∗κ] ‖22 +λ ‖ w ◦Φtκ ‖1 +i=(·)=0(κ) . (7.12)

If the factor C−1κ is kept �xed, the problem is now linear and can be solved once again using the
algorithms presented in Chapter 3. By iteratively solving this linearised problem, updating each
time the matrix C−1κ with the current estimate of κ can recover the solution of the original problem
in Equation (7.11). This is for instance the strategy adopted in Merten et al. (2009).

The gradient of the quadratic term in Equation (7.12) becomes:

−
1
2
∂

∂κ
χ 2(κ) = FP∗T∗C−2κ [(1 − TF∗κ)д − TPF∗κ] + FT∗д∗C−2κ [(1 − TF∗κ)д − TPF∗κ] (7.13)

The �rst term of this expression simply corresponds to the same gradient as in the linear case but
corrected for the reduced shear. In particular, the noise a�ecting the measured shear still propa-
gates linearly. On the contrary, the second term is completely new compared to the linear case and
is problematic in the sense that it becomes a quadratic function of the reduced shear д. If one as-
sumes the reduced shear noise to be Gaussian, the noise contribution of this second term becomes
χ 2 distributed. As explained in the previous section, our regularisation scheme is de�ned in terms
of the standard deviation of the noise propagated to the wavelet coe�cients. While this scheme
proves very e�ective for Gaussian noise, it is not appropriate for χ 2 distributed noise.

Therefore, in the approach presented here, we choose to use a suboptimal gradient for the
quadratic data �delity term by keeping only the �rst term of Equation (7.13), which is the price
to pay in order to keep the very e�ective regularisation scheme introduced in the linear case. Note
that this suboptimal gradient still corresponds to the reduced shear correction scheme suggested
in Seitz and Schneider (1995) and presented in Section 6.3.1.
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7.3.2 Including redshi� information

So far we have not given any consideration to the fact that lensing sources are not located on a
single plane but are distributed in redshift. As was described in Section 6.1.3, for a lens at a given
redshift, the amplitude of the lensing e�ect experienced by each source will depend on its own
redshift. This redshift dependence can be expressed as a simple cosmological weight Z (z) (de�ned
by Equation (6.43)) which scales convergence and shear according to:

κ(z) = Z (z) κ∞ ; γ (z) = Z (z) γ∞ (7.14)

where κ∞ and γ∞ are the convergence and shear for sources at in�nite redshift. In practice, when
mapping known galaxy clusters, the redshift zl of the lens is generally well known but the redshifts
of the background galaxies used in weak lensing studies is often determined photometrically and
is therefore not precisely known. In this case, we will de�ne a lensing weight Zi for a given source
of i by marginalising over its photo-z distribution pi (z):

Zi =

∫
Z (z)pi (z) dz =

∫ ∞

zL

Σ∞cr it
Σcr it (z)pi (z) dz , (7.15)

where Σcr it (z) is the critical density for a lens at redshift zl and a source at redshift zs = z while
Σ∞cr it is the critical density for sources at in�nite redshift. With this de�nition, the reduced shear
дi and reduced �exion Fi for a given source can be described as a function of the shear, �exion and
convergence for sources at in�nite redshift γ∞, F∞ and κ∞:

дi =
Ziγ∞

1 −Ziκ∞
; Fi =

ZiF∞
1 −Ziκ∞

. (7.16)

Let us note Z the diagonal matrix of weights Zi , the reduced shear can be computed from the
convergence κ using the Fourier operators introduced thus far as:

д =
ZTPF∗κ
1 −ZTF∗κ

(7.17)

where κ is understood to be the convergence at in�nite redshift. With this new operator, the full
inversion problem becomes:

argmin
κ

1
2 ‖ C

−1
κ [(1 −ZTF∗κ)д −ZTPF∗κ] ‖22 +λ ‖ w ◦Φtκ ‖1 +i=(·)=0(κ) . (7.18)

where the matrix C−1κ now becomes C−1κ = 1/(1 − ZTF∗κ). This is simply a generalisation of
Equation (7.12), which can be recovered when no redshift information is available by settingZ = Id,
and can be solved exactly in the same way.

The main advantage of using redshift estimates for individual galaxies is the proper scaling of
the resulting convergence map, which can be translated into a physical surface mass density map
Σ of the lens plane:

Σ(θ ) = κ(θ )Σ∞crit . (7.19)

The mass of the lens can then be estimated by integrating Σ within a given radius. The second
advantage of using individual redshifts is that it can help mitigate the mass-sheet degeneracy, as
was described in Bradac et al. (2004) and presented in Section 6.1.4. We stress however that this
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degeneracy cannot be completed lifted using the method presented in the previous section as, of
the two terms in the gradient of the χ 2, we only retain the one that is insensitive to the mean.
Therefore, the mean value of the �eld remains unconstrained by the data using our algorithm.
Nevertheless, we expect the additional redshift information to locally break the degeneracy and
help recover the correct amplitude for the most signi�cant structures.

7.3.3 Improving angular resolution with flexion

We demonstrated in the �rst section that our sparse recovery algorithm is capable of reconstruct-
ing small scale details in the absence of noise despite the irregular galaxy sampling. In practice
however, the shear is noise dominated on those scales, which makes recovering high frequency
information from shear measurements unlikely.

As was explained in Section 6.3.2, while the Kaiser-Squires estimator for shear has a �at noise
power spectrum, the noise power spectrum of the minimum variance estimator for �exion has a
1/k2 dependency. As a result, although �exion measurements are generally very noisy, the noise
level of the estimated map eventually drops below that of the shear on su�ciently small scales.
Flexion can therefore bring useful information but only below a given scale. While Pires and Amara
(2010) claimed that �exion remained noisier than shear up to scales of a few arcseconds we show
in Section 6.3.2 that �exion becomes competitive much closer to the arcminute scale, at around
45 arcsec (assuming intrinsic shear and �exion dispersion of σϵ = 0.3 and σF = 0.04 arcsec−1).
Therefore �exion is very complementary to shear and can help bridge the gap between the typical
weak and strong lensing scales (i.e. between arcminutes and arcseconds) and allow us to map some
cluster sub-structures below the arcminute scale.

Our aim is therefore to improve the mass map reconstruction on small scales by extending our
reconstruction method to incorporate �exion information. In the interest of simplicity, we consider
here only the linear problem without redshift information, to highlight the di�culties inherent to
the inclusion of �exion. The full problem is solved in the next section.

Following the approach developed in the �rst section, we address the problem using Fourier esti-
mators. We �rst introduce the diagonal operator Q implementing the transform from convergence
κ to �rst �exion F in Fourier space, de�ned as:

F̂ = Qκ̂ = (k2 − ik1) κ̂ , (7.20)

where we use complex notations for the �exion with F = F1 + iF2. Contrary to the shear operator
P, this operator Q is not unitary but is still invertible:

κ̂ = Q−1F̂ =
Q∗

k2
F̂ =

k2 + ik1
k2

F̂ . (7.21)

To extend the algorithm presented in the previous section, a �rst straightforward approach would
be to simply add a �exion term to the χ 2 of Equation (7.8) and solve the following problem:

argmin
κ

1
2 ‖ γ − TPF∗κ ‖22 +

1
2 ‖ F − TQF∗κ ‖22 +λ ‖ w ◦Φ

tκ ‖1 +i=(·)=0(κ) . (7.22)

Although formally correct, solving this problem using the primal-dual algorithm presented in the
previous section leads to a number of technical issues linked to the fact that the operator Q being
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not unitary it now contributes to the di�culty of the inverse problem. In particular, this impacts
our ability to robustly identify signi�cant coe�cients in the gradient of the data �delity term
(key to the regularisation strategy presented in the previous section), which is now a�ected by a
mixture of a �at shear noise and a �exion noise with a power spectrum in k2. Furthermore, even
without considering the regularisation, the inversion of the operator Q, which is essentially a 2D
gradient, requires a large number of iterations if solved with a standard gradient descent. These
considerations make the algorithm much slower and far less robust to noise than when solving
the problem from shear alone.

This needs not be the case however as the inverse of this operator is explicit in Fourier space and
these di�culties can be avoided if we make proper use of this explicit inverse. We propose therefore
to address the combined shear and �exion reconstruction as the following sparse optimisation
problem:

argmin
κ ,F̃

1
2 ‖ γ − TPF∗κ ‖22 +

1
2 ‖ F − TF∗F̃ ‖22 +λ ‖ w ◦Φtκ ‖1 +iIm(R) *

,



κ

F̃


+
-

(7.23)

where we introduce the application R : RN×N → C2N×N , κ 7→


κ

FQF∗κ


, with N × N the size of

the reconstruction grid.

Thanks to the inclusion of the auxiliary variable F̃ we have now decoupled the problem of the
inversion of the NDFT operator T from the conversion between �exion and convergence which
is now addressed implicitly in the last term. Remember that the indicator function iC is in�nite
outside of the set C and therefore exclude any solution which do not belong to C. In our case, we
require the solution to be in the image of the operator R:

Im(R) =





κ

F̃


∈ C2N×N | ∃κ ∈ RN×N , F̃ = FQF∗κ




(7.24)

The constraint iIm(R) therefore implies two conditions. First, the recovered convergence has to be
real, which is equivalent to enforcing the vanishing B-modes condition already used for the shear
alone inversion problem. The second is that the recovered �exion F̃ needs to match the �exion
derived from the recovered convergence, which makes the connection between the two variables
κ and F̃ . In order to use the same primal-dual algorithm as in the previous section, we need the
expression of the proximity operator of iIm(R), which can be explicitly computed from its de�nition:

proxiIm(R)
*
,



κ

F̃


+
-
= argmin

(xκ ,xF )
1
2 ‖



κ

F̃


−



xκ

xF


‖22 +iIm(R) *

,



xκ

xF


+
-

(7.25)

= R argmin
xκ ∈RN×N

‖



κ

F̃


−



xκ

FQF∗xκ


‖22 (7.26)

= R<
*..
,
F

1

k2 +
σ 2
F

σ 2
ϵ

*
,
k2Q−1F∗F̃ +

σ 2
F

σ 2
ϵ

F∗κ+
-

+//
-
. (7.27)
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In this expression,σ 2
ϵ is the variance of the intrinsic ellipticity andσ 2

F
is the variance of the intrinsic

�exion. Let us detail what is computed by this proximity operator. We �rst use the de�nition of
Im(R) to rewrite the minimisation problem in terms of a single unknown, from which the output
convergence and �exion can be computed by applying the operator R. Then, remembering that in
Equation (7.23) κ is �tted to the shear, the problem is equivalent to �nding the minimum variance
�lter combining shear and �exion, developed in Appendix B. To summarise, this operator computes
the optimal combination of the two input variables, making explicit use of the �exion Fourier
operator and its inverse Q−1 = Q∗/k2, thus eliminating the need to solve this additional problem
as part of the main minimisation problem.

Furthermore, in the primal-dual algorithm used throughout this chapter, this proximity opera-
tor is applied to the gradient of the data �delity term before updating the dual variable α . This
means that only the minimum variance combination of both shear and �exion gradient terms is
propagated to the wavelet coe�cients, which can only increase the SNR of the signal, especially
on small scales where �exion is the most useful (see the noise power spectrum of the combined
estimator in Figure 6.8).

7.3.4 Complete density mapping algorithm

We now present the complete reconstruction algorithm combining reduced shear д and reduced
�exion F , taking into account individual redshift estimates for the sources. The complete problem
we aim to solve is the following:

argmin
κ ,F̃

1
2 ‖ C

−1
κ [(1 −ZTF∗κ)д −ZTPF∗κ] ‖22 +

1
2 ‖ C

−1
κ

�(1 −ZTF∗κ)F −ZTF∗F̃
�
‖22 (7.28)

+ λ ‖ w ◦Φtκ ‖1 +iIm(R) *
,



κ

F̃


+
-
.

This problem can be solved with the same primal-dual algorithm from Vu (2013) as in the �rst
section of this chapter and the specialisation of this algorithm to Equation (7.28) is provided in
Algorithm 7.2.

Just as with the linear problem, we apply a reweighted-`1 strategy to correct for the bias caused
by the `1 sparsity constraint. As the non-linear correction also requires to iteratively solve this
problem we combine the update of the weightsw and the update of the matrix Cκ in the following
iterative procedure:

1. Set the iteration count ` = 0, C(0)κ = 1.0 and initialise the weights w (0) according to the
procedure described in Section 7.2.4.

2. Solve the weighted `1 minimisation problem of Equation (7.28) using Algorithm 7.2, yielding
a solution κ (`).

3. Update the matrix C(`)κ = (1 −ZTF∗κ (l ))
4. Update the weights based on the wavelet transform of the solution α (`) = Φtκ (`):

w (`+1)
i =




w (0)
i

|α (`)
i |/λw (0)

i

if |α (`)
i | ≥ λw (0)

i

w (0)
i if |α (`)

i | < λw (0)
i

, (7.29)
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Algorithm 7.2 Analysis-based density mapping algorithm from reduced shear and �exion
Require:

Reduced shear and �exion of each galaxy in the survey д and F .
Redshift weights for each galaxy in the survey Z.
Reduced shear correction matrix C−1κ .
Sparsity constraint parameter λ > 0.
Weights wi > 0.
τ = 2/(‖ Φ ‖2 + ‖ T ‖2).

1: κ (0) = 0 ; F̃ (0)
= 0

2: ∀i , λ′i = λwi

3: for n = 0 to Nmax − 1 do
4: ∇(n) = FP∗T∗ZC−2κ

�(1 − ZTF∗κ (n))д − ZTPF∗κ (n)
�
+FT∗ZC−2κ

(
(1 − ZTF∗κ (n))F − ZTF∗F̃ (n))

5: *
,

κ (n+1)

F̃
(n+1)+

-
= proxIm(R) *

,
*
,

κ (n)

F̃
(n)+

-
+ τ

�
∇(n) − RΦα (n)�+

-
6: α (n+1) = (Id − STλ′)

�
α (n) +Φt �

2κ (n+1) −κ (n)
��

7: end for
8: return κ(Nmax).

5. Terminate on convergence. Otherwise, increment ` and go to step 2.

As for the linear problem we �nd that 3 to 5 iterations of this procedure are generally su�cient to
reach a satisfying solution.

7.4 verification on simulations

As was mentioned in the introduction, the most advanced reconstruction technique combining
shear, �exion and strong lensing yet is the method proposed in Cain et al. (2015). Therefore, in order
to compare our method to state of the art results, we present in this section a set of simulations
intended to mimic their test data set. However, while their simulations rely on simple analytic
pro�les we chose to use realistic cluster pro�les extracted from N-body simulations.

7.4.1 Simulations

In order to assess the performance of the algorithm, we created a realistic test data set based on
N-body simulations. Three massive clusters were extracted at z=0 from the Bolshoi simulations
(Klypin et al., 2011) using the CosmoSim2 interface. These clusters were selected because of their
complex geometry with substantial substructure. In each case, at least one halo above 1013h−1M�
can be found within the virial radius of the central halo. The masses of the three clusters we
consider in this work can found in Table 4.

2 http://www.cosmosim.org

http://www.cosmosim.org


7.4 verification on simulations 123

4 2 0 2 4

4

2

0

2

4

Field 1

4 2 0 2 4

Field 2

4 2 0 2 4

Field 3

0.00

0.15

0.30

0.45

0.60

0.75

0.90

1.05

1.20

1.35

1.50

Figure 7.6: Convergence maps for sources at in�nity for the three di�erent clusters extracted from the
N-body simulation.

Field number Virial mass Virial radius
[h−1M�] [h−1Mpc]

1 1.09 × 1015 2.14
2 3.02 × 1014 1.43
3 2.70 × 1014 1.45

Table 4: Parameters of the three halos extracted from the Bolshoi simulation.

Density maps were obtained for these three clusters by projecting and binning the particle data
with a high resolution, corresponding to pixels with an angular size of 0.5 arcsec if the clusters
are located at redshift zL = 0.3. A multiscale Poisson denoising was subsequently applied to the
binned density maps to remove shot noise from the numerical simulation. The resulting surface
density maps were then scaled to create convergence maps corresponding to clusters at a redshift
zL = 0.3 lensing background galaxies at in�nite redshift. Although we acknowledge that these
three particular clusters, selected at z = 0, are not necessarily representative of clusters at zL = 0.3,
for the purpose of testing the mapping algorithm they provide more realistic density distributions
than simple models based on SIS or NFW pro�les. Shear and �exion maps were then derived from
these reference convergence maps and only the center 10 × 10 arcmin central region of each �eld
is kept. At the redshift of the lenses, this corresponds to a physical size of 1.88 × 1.88 h−1Mpc.
Figure 7.6 illustrates the convergence maps scaled for sources at in�nite redshift for the 3 �elds
we consider.

Finally, 100 mock galaxy catalogues were produced for each of the three �elds using for each
realisation a uniform spatial distribution of background galaxies with a density of 80 gal/arcmin2

and the following redshift distribution:

p(z) ∝ z2

2z30
exp(−z/z0) (7.30)

with z0 = 2/3. The median redshift of this distribution is zmed = 1.75 and we truncate the distribu-
tion at zmax = 5 to exclude very distant faint galaxies. This particular distribution has been used
in a number of di�erent works and in particular in Cain et al. (2015) to represent the actual galaxy
distribution for a typical HST/ACS �eld. We compute the reduced shear and �exion for each galaxy



124 high resolution mass mapping combining shear and flexion

based on their redshift and on the redshift of the lens which we choose to be zL = 0.3 for the 3 dif-
ferent �elds. In the �nal mock catalogues we assume photometric redshifts for each sources with
Gaussian redshifts errors according to σz = 0.05(1+ z) and an intrinsic shape noise of σϵ = 0.3 for
the reduced shear measurements and σF = 0.029 arcsec−1 for the reduced �exion measurements.
This particular value for the �exion noise is in accordance with previous works (Rowe et al., 2013)
and corresponds to the median dispersion of the �exion measurements obtained using the AIM
method on HST data for the Abel 1689 cluster (Cain et al., 2011).

Some �nal cuts are applied to the galaxy catalog to exclude strongly lensed sources which our
algorithm is not capable to handle and for which the �exion measurements are no longer reliable.
In practice we exclude all sources which verify |д| ≥ 1 or |F | ≥ 1.0 arcsec−1. The �exion cut is
based on recommendations from Cain et al. (2015) and constitutes a simple approximation to the
practical limit encountered on real data when estimating �exion for extremely lensed sources.

We have chosen this setting to match the simulations used in Cain et al. (2015) so that our
results can be qualitatively compared to theirs. However, we stress that contrary to their work,
our reconstruction method relies only on shear and �exion and does not include strong lensing
constraint which are very powerful to map the very center of the clusters.

Throughout this section, we assume a �ducial ΛCDM model for computing distances with Ωm =

0.25, ΩΛ = 0.75 and H0 = 70 km/s/Mpc. Cosmological computations are implemented using the
NICAEA library3.

7.4.2 Results

As demonstrated in the �rst section, the algorithm is extremely e�cient at solving the noiseless
linear problem. With the realistic simulations described in Section 7.4.1 we can now assess the
performance of the complete algorithm described in Section 7.3.4 when noise and non-linear e�ects
are included.

Parameter Value
Pixel size 0.05 arcmin
Number of wavelet scales 7
K−sigma threshold 5
Number of iterations 500
Number of re-weightings 5

Table 5: Parameters of the reconstruction algorithm

For each of the mock catalogues generated for each �eld, we perform the inversion with and
without the �exion information to assess how much can the �exion help to recover the substruc-
ture of the clusters. The same parameters are used for all the three di�erent �elds and are sum-
marised in Table 5. The pixel size can in theory be arbitrarily small but we choose 0.05 arcmin as a
good compromise between resolution and computational cost. The number of wavelet scales is not
crucial to the quality of the reconstruction, we adjust it so that the maximum scale corresponds

3 http://www.cosmostat.org/software/nicaea

http://www.cosmostat.org/software/nicaea
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Figure 7.7: Mean of the 100 independent signal realisations for the 3 clusters. The top row corresponds to
reconstructions using the shear alone. The bottom row corresponds to simulations using shear
and �exion.

roughly to the order of the maximum size of the structures we want to recover. Finally, we use a
su�cient number of iterations to ensure that the algorithm has converged.

Assessing the quality of the inversion from a single realisation of the galaxy catalog is di�cult
as the ability to detect small structures will depend on the speci�c positions of the galaxies in one
realisation. Therefore, we compute the mean and standard deviation of the reconstructed maps
over 100 realisation of both shape noise and galaxy positions.

The mean of the reconstructions for the 3 �elds with and without �exion is represented in
Figure 7.7. The most striking di�erence between the 2 sets of reconstructions is the �exion’s ability
to detect very small substructures at the 10 arcsec scale which are not detected from shear alone.
This is clearly visible for the �rst halo, on the left column of Figure 7.7.

Flexion does not only enable the detection of very small structures, it also helps to constrain
the small scale shape of the main halos. Indeed, in shear reconstructions, the noise dominates the
signal at these scales which makes the sparsity prior apparent on small scales. As we are using
isotropic wavelets, without su�cient evidence from the data, the reconstruction will be biased
towards isotropic shape. This is visible for instance at the center of the �rst halo, on the top left
image of Figure 7.7, where the elongation of the very center of the cluster, visible in Figure 7.6,
is clearly lost. On the contrary, including �exion information helps to constrain the shape of the
center of the cluster.

We also note that on large scales, where the shear dominates, the two sets of reconstructions
agree with each other as �exion does not add information on these scales. This is illustrated by
Table 6 where the aperture mass within a 2′′ radius is computed on the reconstruction with and
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Figure 7.8: Standard deviation of the 100 independent signal realisations for the 3 clusters. The top row cor-
responds to reconstructions using the shear alone. The bottom row corresponds to simulations
using shear and �exion.

without �exion. As can be seen, tight constraints on the halo masses can be obtained for the three
�elds considered from shear only and the addition of �exion does not change the mass estimates
on scales larger than the arcminute.

Field Input Map Shear only Map Combined Map

1014 h−1M� 1014 h−1M� 1014 h−1M�
1 4.08 3.91 ± 0.18 3.89 ± 0.17
2 1.88 1.90 ± 0.20 1.86 ± 0.18
3 1.59 1.60 ± 0.18 1.61 ± 0.18

Table 6: Aperture mass in the central 2′′ of each �eld.

The errors on the reconstructed mass maps are estimated by taking the standard deviation of
each pixel in the 100 independent mock catalogues realisation. It is important to stress that the
observed dispersion of the reconstructions are due to 2 e�ects: di�erent noise realisations and
di�erent galaxy distributions in angular position and redshift. The standard deviation with and
without �exion for all 3 �elds is illustrated in Figure 7.8. As can be seen on this �gure, we only
observe signi�cant dispersion on small scales, around detected structures. This is expected as these
scales have the lowest SNR in the data which makes the reconstruction of these features strongly
dependent on the speci�c noise and galaxy distribution realisation. Nevertheless, we �nd that the
reconstruction is remarkably stable between realisations. Figure 7.9 shows reconstructions of the
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Figure 7.9: Reconstruction of the 3 clusters for one noise realisation. The top row corresponds to recon-
structions using the shear alone. The bottom row corresponds to simulations using shear and
�exion.

mass maps for one realisation of the galaxy catalogues. We see that for a single realisation the
reconstructed maps is very close to the mean maps. One small feature is not detected in �eld 2
whereas it appears on the mean map while on the contrary the sub-halo at the bottom of �eld
3 appears stronger in this particular realisation than in the average maps. Such deviations are
unavoidable but the shape of the halos can be reliably reconstructed from a single data set, as
would be the case for actual data.

Finally, we compare the azimuthally averaged radial density pro�les for the three di�erent �elds.
Figure 7.10 shows the mean and 68% con�dence level of the reconstructed pro�les for the three
�elds with and without �exion. Again, the mean and dispersion are evaluated from the same 100
independent catalogue realisations. The reconstructed pro�les show very little dispersion and the
shape of the pro�le is accurately recovered in all cases. The impact of �exion is particularly obvious
on �eld 3 where the small scale structure of the central region of the �eld cannot be recovered
accurately from shear alone.

7.5 conclusion

We have developed in this chapter a new 2D mass-mapping technique, based on sparse regular-
isation, combining shear and �exion to reconstruct the surface mass density of galaxy clusters.
We �nd that the inclusion of �exion signi�cantly improves the quality of the reconstruction on
small scales. In particular, on simulated lensing catalogues corresponding to a typical HST/ACS
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Figure 7.10: Comparison of the convergence pro�le recovered using shear alone (yellow line) and �exion
and shear combined (blue line). Contours indicate the 1-sigma region.

cluster survey we are able to recover cluster substructures below the 10 arcsecond scale using weak
lensing alone (i.e. shear and �exion), without any strong lensing information.

This technique is particularly promising for mapping the substructure of galaxy clusters outside
of their Einstein radius or even when the clusters are non-critical.
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In the previous chapter we have focused on 2D weak lensing mass mapping in the case where
information about the redshift of the lens and sources is available. Then, a density map of the
lens can be recovered by scaling the reconstructed convergence map thanks to the knowledge of
the relative distances between lens and sources. This density map can in turn be used to directly
measure the mass of the clusters. However, prior knowledge of the lens redshift (available for
instance for spectroscopically con�rmed clusters) is not always available.

In this chapter, we consider a di�erent situation where only the redshift of the sources is known.
The aim is to reconstruct in three dimensions the dark matter map from gravitational lensing with-
out external information about the position of the structures in redshift. Just as the mapping prob-
lems considered in the previous chapter, this problem still corresponds to a linear inverse problem
but with an additional major degeneracy along the redshift dimension which makes constraining
the redshift of the detected structures the main di�culty of 3D lensing.

We present a new algorithm for 3D mass mapping, called GLIMPSE based on the sparse regu-
larisation framework of Chapter 3 and using wavelets introduced in Chapter 4. We compare the
results of our algorithm with the state of the art methods introduced in Section 6.4 and �nd that
we successfully overcome the main limitations of theses methods. Finally we thoroughly test the
algorithm on a large set of simple simulations to demonstrate its ability to recover the redshifts
and even the masses of galaxy clusters.

The results presented in this chapter were published in Leonard et al. (2014, 2015). This work
has been conducted in collaboration with Adrienne Leonard and Jean-Luc Starck.
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8.1 the glimpse algorithm

8.1.1 Forward modelling of the 3D lensing problem

The �rst step in setting up the 3D reconstruction problem is to link the 3D dark matter density to
the measured ellipticities. A standard tomographic binning approach, similar to Simon et al. (2009),
was adopted to introduce a discrete lensing operator.

We consider that we have a catalog of measured ellipticities ϵk from galaxies at angular positions
θk and photometric redshifts zk . For the purpose of reconstructing the 3D density contrast, this
catalog can be binned into Nz tomographic shear mapsγ (1), . . . ,γ (n) of size Nx ×Ny where Nx and
Ny are the number of pixels on the 2D cartesian grid in the angular domain. On each pixel, the
shear value is estimated by averaging the ellipticities of the galaxies belonging to this pixel:

γ (n)
i ,j =

∑
k ∈G

(n)
i ,j

wkϵk∑
k ∈G

(n)
i ,j

wk
, (8.1)

where wk is a statistical weight for the measurement on galaxy k and G
(n)
i ,j contains the indices of

the galaxies belonging to the pixel (i , j) of the redshift bin n.
Previous 3D weak lensing works (VanderPlas et al., 2011; Simon et al., 2009; Bacon and Taylor,

2003) have all chosen to bin their shear catalogues in redshift bins that are of equal width ∆z. We
chose to adopt a di�erent approach, and to bin our shear maps adaptively such that each redshift
bin contains the same mean number of galaxies, and therefore each redshift bin has the same noise
variance. However, the speci�c choice of binning strategy seem to have little impact on the quality
of the reconstruction.

Our goal is now to establish a forward linear model to relate the 3D overdensity distribution
to the measured tomographic shear. We can �rst compute for a given 3D distribution δ the cor-
responding tomographic convergence by means of the lensing kernel. To integrate photometric
redshift uncertainties into our formalism, sources are assumed to be distributed in redshift accord-
ing to some probability distribution function p(z). For a given density constrast δ , the e�ective
convergence κ(n) for sources in bin n can be obtained by marginalising the lensing kernel over the
distribution of sources:

κ(n)i ,j =
3H 2

0ΩM

2c2

∫ rh

0
dr д(n)(r )fK (r )δ (fK (r )θi ,j )

a(r ) , (8.2)

with
д(n)(r ) =

∫ rh

r
dr ′ fK (r

′ − r )
fK (r ′)

{
p(n)(z)dzdr

}
z=z(r ′)

. (8.3)

To model these photometric redshifts errors we assume a common Gaussian distribution with
a standard deviation which varies as a function of redshift as σz (1 + z) and a potential bias zbias ,
but without catastrophic failures. Following Ma et al. (2006), the true redshift distribution p(n)(z)
of a tomographic bin n can be obtained through:

p(n)(z) = 1
2p(z) [erf(xn+1) − erf(xn)] (8.4)
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with
xn =

zn+1 − z + zbias
√
2σz (1 + z)

. (8.5)

We can now discretise the lensing kernel by binning the overdensity distribution into Nlp lens
planes δ (n). Equation (8.2) can be approximated by a discrete sum over lens planes along a given
line of sight:

κ(n)i ,j =

Nlp∑
p=1

Qnpδ
(p)
i ,j , (8.6)

where Q is now a matrix operator de�ned by the following matrix elements:

Qnp =
3H 2

0ΩM

2c2

∫ rp+1

rp
dr д(n)(r ) fK (r )

a(r ) . (8.7)

Given the tomographic convergence, the corresponding tomographic shear can be computed
through a 2D convolution (see the Kaiser-Squires method in Section 6.3.1). We introduce the for-
ward 2D lensing operator P which preforms this inversion in the Fourier domain independently
for each redshift bin so that:

γ (n) = Pκ(n) (8.8)

The complete 3D lensing problem can now be stated in terms of the discretized overdensity and
tomographic shear as:

γ = PQδ +n (8.9)

where n is an additive shape noise assumed to be Gaussian with diagonal covariance matrix Σ.

8.1.2 Sparse reconstruction algorithm

The GLIMPSE algorithm aims to solve the ill-posed inverse problem in Equation (8.9) by recasting
it as an instance of a BPDN problem. This class of problems, introduced in Section 3.2.1, aims at
�nding a solution to the problem which can be synthesised from a sparse set of atoms from an
adapted dictionary. In the speci�c instance of 3D lensing, using the operators introduced in the
previous section, this optimization problem can be written as:

argmin
α

1
2 ‖ Σ−1/2 �

γ − PQΦα
�
‖22 +λ ‖ α ‖1 , (8.10)

where α are the coe�cients of the density contrast δ in the dictionary Φ and Σ is the diagonal
covariance matrix of the shear measurements.

The choice of the dictionary Φ is a crucial step to ensure the success of the sparse recovery. For
our application, it is important to use a dictionary adapted to the morphology of the 3D distribution
of dark matter. Many experiments, in particular cosmological N-body simulations, have shown the
dark matter to be largely distributed in halos connected by thin �laments. Our primary interest
will be to map the halos as the �lamentary part of the distribution is much fainter; however we
note that the method presented here is entirely general, and other dictionaries can be added to
our algorithm to detect other types of structure with no modi�cation to the overall approach (e.g.
ridgelets or curvelets to detect �lamentary structures).
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Figure 8.1: Representation of single atom of our 2D-1D dictionary composed of Isotropic Undecimated
Wavelet in the angular domain and Diracs in the radial domain

At the redshift resolution we are able to attain, clusters of galaxies are small compared to the
radial length of a given redshift bin. Therefore, a dark matter halo can be considered to have no
radial depth and can be represented as a �at disc. This prompts us to choose a 2D-1D dictionary Φ
composed of Isotropic Undecimated Wavelets in the 2D angular plane and Dirac δ -functions along
the radial dimension. The wavelet transform used in this work is the second generation Starlet
(Starck et al., 2007) detailed in Section 4.3.3. This transform is particularly well suited to represent
positive, isotropic objects. A single atom of dictionary Φ is illustrated in Figure 8.1.

The optimisation problem (8.10) is relatively simple as a combination of a di�erentiable quadratic
term and an `1 regularisation term with explicit proximity operator. In theory, it can be e�ciently
solved using the FISTA algorithm (Beck and Teboulle, 2009) which has been introduced in Sec-
tion 3.3.2.1. The main iteration of the algorithm would therefore be:

Xn+1 = STλ
(
αn + µΦtQtPtγκΣ−1

�
γ − PγκQΦαn

�)
, (8.11)

where STλ is the Soft Thresholding operator introduced in Chapter 3 and µ is the gradient descent
step ensuring convergence of the algorithm. Xn+1 is an updated estimation of the coe�cients α
of the reconstruction. The particularity of the FISTA algorithm is that the actual update of the
coe�cients requires an additional step amounting to a simple weighted average between current
and previous estimates:

tn =
1 +

√
1 + 4t2n
2 , (8.12)

αn+1 = Xn+1 +

(
tn − 1
tn+1

(Xn+1 −Xn)
)
, (8.13)

with t0 = 1 and X0 = α
′
0. This algorithm converges as long as the gradient descent step µ veri�es

0 < µ < 1
‖ ΦtQ′tPtγκΣ−1PγκQ′Φ ‖

, (8.14)

where ‖ · ‖ is the spectral norm of the operator.
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In practice however, the line of sight operator Q, the inversion of which constitutes the major
di�culty in 3D lensing, is extremely badly conditioned, leading to a prohibitively slow convergence
of the gradient descent in the FISTA algorithm.

To circumvent this problem, we apply a change of variable which will allow us to normalise the
columns of the Q matrix. We de�ne a new operator Q′ = QN −

1
2 whereN is a diagonal matrix with

diagonal elements equal to the square of the `2 norm of the corresponding column of the matrix
Q:

∀1 ≤ n ≤ Nlp , Nnn =
∑
p

Q2
pn . (8.15)

This change of operator corresponds to the change of variable δ → δ ′ (and equivalently α → α ′)
de�ned by δ ′(n)i ,j = N

1
2
nnδ

(n)
i ,j .

This renormalization of the lensing operator has a limited e�ect on the condition number of the
matrix. More interestingly, applying the transpose operator Q′t to a vectorκ amounts to computing
the correlation between the signal κ and each column of Q which contain the convergence pro�les
for density deltas at each lens planes. Therefore, now that the columns are normalised to unity, the
vector Q′tκ peaks at the redshift for which the lensing signal of a thin lens correlates the best with
the vector κ. As a result, after a gradient descent step, the coe�cients of highest amplitudes are
expected to be at the right redshift. As discussed in the following paragraph, this will allow us
to speed up the convergence of the algorithm by implementing an adaptive penalisation of the
coe�cients based on their amplitudes.

GLIMPSE is an implementation of FISTA which di�ers only in the thresholding operator used in
the backward step. Instead of using standard Soft Thresholding, which is known to introduce a bias
in the amplitude of the reconstruction and which does not discriminate coe�cients based on their
amplitude above the threshold, we use Firm Thresholding (Gao and Bruce, 1997). Firm Thresholding
results in an unbiased solution by de�ning a signi�cance criterion above which coe�cients will no
longer be altered or shrunk. Sparsity is imposed by shrinking all coe�cients below the required
signi�cance level, with a shrinkage that is dependent on the amplitude of the coe�cient and tends
to favour the most signi�cant coe�cients.

The �rm thresholding operator therefore depends on two parameters, λ1 and λ2, and is de�ned
by

FTλ1,λ2(x) =



0, if |x | ≤ λ1,
sgn(x) λ2(|x |−λ1)λ2−λ1

, if λ1 < |x | ≤ λ2,
x , if |x | > λ2.

(8.16)

This operator is used instead of the soft thresholding operator STλ in each iteration of the algorithm
(c.f. Equation (8.11)). The parameter λ1 sets the minimum signi�cance level above which coe�cients
are retained in the solution estimate, thereby e�ectively denoising the solution, while λ2 de�nes
the signi�cance level above which the shrinkage vanishes. The behaviour of the two thresholding
operators is illustrated on Figure 8.2.

In order to provide an intuitive method for choosing λ1, we relate it directly to the noise levelσ (p)
in redshift bin p, estimated at each iteration by considering the Median Absolute Deviation (MAD)
of the residual

σ (p) =
µ

0.6747 MAD
( [

Q′tPtγκΣ−1
�
γ − PγκQ′Φα ′n

�] (p)
i ,j

)
. (8.17)
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Figure 8.2: Comparison of the responses of the Firm Thresholding (blue) and Soft Thresholding (dashed
red) operators.

With this estimation of the noise level, the threshold λ1 is set for each redshift plane in the recon-
struction to λ1 = kσ (p), where the level of signi�cance k is iteratively adjusted using a decreasing
threshold scheme until reaching a minimum level kmin set by the user. For small �elds, it may not
be practical to estimate the MAD of the residual for each redshift bin separately. Renormalising
the residual in each redshift bin by

R(p) =


∑
p

Q′2pqΣ
−1
pp



− 1
2

(8.18)

allows the MAD to be estimated over the entire 3D �eld by approximately equalising the vari-
ance of the residual in each redshift bin. This method ignores correlations between redshift bins
introduced by the application of the Q′t operator on the data, which can be signi�cant, but for
small �elds this may be preferable to computing the MAD over a statistically small number of
pixels when estimating the threshold. Note that if the data are binned such that the data noise
covariance Σ is proportional to the identity, R(p) will be equal for each redshift bin p due to the
normalisation of the Q′ operator.

For the reconstructions presented here, we choose kmin = 4. We further choose λ2 = σ (p)/µ,
such that reconstructed coe�cients with this signi�cance level are not a�ected by shrinkage. This
results in an unbiased estimator of the density contrast.

At the �rst iteration, the most signi�cant wavelet coe�cient (highest SNR) is selected and the
level k is set to the average between the �rst and second highest SNR coe�cients in the residuals.
Therefore, at the beginning only this selected coe�cient is allowed to enter the reconstruction. An
update of the level k occurs whenever the SNR s of a di�erent wavelet coe�cient becomes greater
than the SNR s0 of this selected coe�cient. This update is controlled by a su�cient decrease pa-
rameter csd , which we set to 0.1, and is only allowed when s−s0

s−kmin
≥ csd . When this condition

is met, the most signi�cant wavelet coe�cient is selected and the threshold level is decreased to
the average between the �rst and second highest SNR in the residuals. The procedure is repeated
until the minimum thresholding level kmin is reached. This will lead to a slowly decreasing thresh-
old, allowing at most only one coe�cient to become active at each iteration. This scheme further
promotes the sparsity of the solution and improves the speed of the reconstruction.
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Finally, we do not want to impose the same sparsity constraint along the line of sight and in the
tangential plane. To relax the sparsity constraint on each redshift plane, we identify the real space
support of detected wavelet coe�cients and we set the thresholding level k for any other wavelet
coe�cients within this spatial domain to the lowest level kmin .

The full description of the method is provided in Algorithm 8.1.
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Algorithm 8.1 GLIMPSE reconstruction algorithm
Require: 3D data arrays:

• γ : Complex 3D array of the binned shear.
• Σ: Diagonal 3D noise covariance matrix.

Require: Parameters:

• Nscale : Number of wavelet scales.
• kmin : Minimum threshold level.
• csd : Su�cient decrease parameter.

1: Initialisation: α ′0 = 0, t0 = 1, X0 = α ′0, s0 = 0, (x0,y0, z0, j0) = (0, 0, 0, 0), µ set according to
Equation (8.14)

2: for n = 0 to Nmax − 1 do
3: δ ′n = Φα ′n % Estimated density contrast
4: rn = µΦtQ′tPtγκΣ−1(γ − PγκQ′δ ′n) % Forward gradient descent step
5: X̃n+1 = αn + rn

6: % Noise estimation on each redshift bin and each wavelet scale
7: for p = 1 to Nlp and j = 1 to Nscale do
8: σ

(p)
j = MAD(r (p)n,j )/0.6747

9: end for

10: % Update of the threshold level, max2 gives the second highest value
11: s0 = |r (z0)n,j0 [x0,y0]|/σ (z0)

j0
12: s = max(|rn |/σ )
13: if s − s0 ≥ csd (s − kmin) then
14: k = (s +max2(|rn |/σ ))/2
15: (x0,y0, z0, j0)← set to indices of maximum SNR coe�cient
16: end if

17: % Backward thresholding step
18: for all x ,y,p and j = 1 to Nscale do
19: if δ ′(p)n [x ,y] , 0 then
20: X

(p)
n+1,j [x ,y] = FTkminσ

(p)
j ,σ (p)

j /µ (X̃
(p)
n+1,j [x ,y])

21: else
22: X

(p)
n+1,j [x ,y] = FTkσ (p)

j ,σ (p)
j /µ (X̃

(p)
n+1,j [x ,y])

23: end if
24: end for

25: % FISTA speci�c update of the coe�cients

26: tn =
1+
√
1+4t 2n
2

27: α ′n+1 = Xn+1 +
(
tn−1
tn+1

(Xn+1 −Xn)
)

28: end for
29: return Density contrast δ = NΦα ′Nmax
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(a) Input simulated density contrast (b) Density contrast reconstruction using GLIMPSE

(c) SNR map thresholded at 4.5σ using Transverse
Wiener Filtering

(d) SNR map thresholded at 4.5σ using Radial
Wiener Filtering and Transverse Gaussian
smoothing σt=2 arcmin

Figure 8.3: Reconstruction on an input density pro�le using GLIMPSE and transverse and radial Wiener �l-
tering. The input density pro�le corresponds to an NFW pro�le for a cluster of mass 1015h−1M�
at redshift z = 0.55. The noise level corresponds to 30 gal/arcmin2 and σϵ . The vertical axis cor-
responds to redshift and ranges from z = 0 to z = 2 for all four plots but the Wiener �ltering is
limited to 20 redshift bins against 60 for GLIMPSE.

8.1.3 Comparison to state of the art methods

A thorough characterisation of the performance of the algorithm will be performed in the next
section. As a �rst test, we compare in a simple case the results of the GLIMPSE algorithm to the
Wiener �lter method of Simon et al. (2009) presented in Section 6.4.

For this comparison, we simulate the lensing signal produced by a dark matter halo of mass
1015h−1M� at redshift z = 0.55 according to an NFW pro�le (Navarro et al., 1997). We assume noise
levels corresponding to a realistic Euclid-like space survey (number density of galaxies nдal = 30
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Figure 8.4: Mean density contrast along the central four lines of sight of the cluster from the input (black
diamond) and the reconstruction (orange triangle) of a single noise realisation.

arcmin−2 with a shape noise level of σϵ = 0.25 ). We also assume photometric redshift errors using
a centred Gaussian model for the errors, with a variance of σz = 0.05(1+ z). Finally, the size of the
3D �eld is 64 × 64 arcmin2, with 1 arcmin2 angular bins, up to a depth in redshift of z = 2. The
input simulated density contrast is binned in redshift using 60 bins (∆z = 0.03) while we compute
the shear for only 20 redshift bins of �xed width ∆z = 0.1. A halo of this mass and at this redshift
corresponds to a high SNR regime and we are consequently above the detection limit for all the
reconstruction techniques considered. The input density �eld is shown on Figure 8.3a.

We have applied to this simulated lensing signal the two wiener �ltering methods of Simon et al.
(2009) and the GLIMPSE algorithm. Results are illustrated on Figure 8.3. It is important to stress
that for the GLIMPSE method on Figure 8.3b it is the reconstructed density from a single noise
realisation that is plotted whereas we plot SNR maps computed from 200 noise realisations and
thresholded at 4.5σ for the Wiener �ltering methods.

Even in this high SNR regime considered here, the improvement over the linear methods is ob-
vious. The GLIMPSE algorithm has successfully reconstructed the dark matter halo, at the correct
redshift and with the correct shape while the Wiener �ltering can at best provide imprecise SNR
maps with redshift smearing and at a much lower redshift resolution. The amplitude of the re-
constructed cluster using GLIMPSE is also very close to the original amplitude as can be seen on
Figure 8.4 where we plot the input and reconstructed central line of sight.

8.2 characterisation on cluster simulations

8.2.1 Simulations

The GLIMPSE method is nonlinear, and therefore the performance of the algorithm cannot be
derived analytically, but rather needs to be assessed through numerical simulations. To do this, we
generated a suite of cluster simulations similar to the one presented in Section 8.1.3, spanning a
range of redshifts between 0.05 ≤ z ≤ 0.75 and virial masses in the range 3× 1013h−1M� ≤ Mvir ≤

1015h−1M� . For the density pro�le of the clusters we adopted an NFW (Navarro et al., 1997) pro�le
given by

ρ(r ) = ρs
(cr/rvir)(1 + cr/rvir)2 , (8.19)
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where ρs is the central density parameter, rvir is the virial radius and c is the concentration param-
eter. As described in Takada and Jain (2003), the number of degrees of freedom for this pro�le can
be reduced to 2, keeping only a dependence in mass M and redshift z. First, the central density
parameter ρs can be eliminated from the de�nition of the virial mass

M =

∫ rvir

0
4πr 2drρ(r ) = 4πρsr 3vir

c3

[
ln(1 + c) − c

1 + c

]
. (8.20)

Then the virial radius can be linked to the mass of the halo through the spherical collapse model

M =
4π
3 ρ0∆vir(z)a−3r 3vir , (8.21)

where ρ0 is the mean density of matter today and ∆vir(z) is the critical overdensity of collapse at
redshift z. Following Coupon et al. (2012), we use the �tting formula for ∆vir(z) from Weinberg and
Kamionkowski (2003):

∆vir(z) = 18π 2 �
1 + 0.399(Ω−1m − 1)0.941

�
. (8.22)

Finally, we assume a mass and redshift dependance for the concentration parameter c(M , z) given
by

c(M , z) = c0(1 + z)−1
[
M

M?

] β
, (8.23)

where M? is the non-linear mass scale at present day de�ned by δc (z = 0) = σ (M?), in which
δc is the linear critical density and σ (M) is the RMS of density �uctuations in a sphere of radius
(3/4πMρ0)1/3. We adopt the parameterisation from Coupon et al. (2012): c0 = 11 and β = 0.13.

These relations allow us to parametrise the simulated halos only by their mass and redshift
within the framework of the halo model. From the NFW density pro�le, we computed the corre-
sponding shear signal, which is derived analytically in Takada and Jain (2003). The computations
required to simulate the halos were performed making extensive use of the NICAEA software
package1, using a �at ΛCDM cosmology with ΩM = 0.264, ΩΛ = 0.736, and H0 = 71km/s/Mpc.

The shear signal was simulated for each cluster in an otherwise empty �eld of 1◦ × 1◦, with an
angular pixel size of 1′ × 1′ on 30 tomographic redshift bins, with a galaxy redshift distribution
given by

n(z) = zα exp *
,
−

[
z

z0

] β
+
-
, (8.24)

where we take z0 = 1/1.4, α = 2 and β = 1.5.
In this work, we consider the redshift information to be provided by photometric redshift mea-

surements with Gaussian errors with a standard deviation that varies as a function of redshift as
σz (1 + z), and a potential bias zbias , but without catastrophic failures. Following Ma et al. (2006),
the true redshift distribution p(n)(z) of a tomographic bin n can be obtained through:

p(n)(z) = 1
2p(z) [erf(xn+1) − erf(xn)] (8.25)

with
xn =

zn+1 − z + zbias
√
2σz (1 + z)

. (8.26)

1 http://www.cosmostat.org/software/nicaea/

http://www.cosmostat.org/software/nicaea/
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Figure 8.5: Global redshift probability distribution and 10 photometric redshift bins with an equal num-
ber of galaxies per bin assuming unbiased photometric redshift estimates with Gaussian errors
whose width varies as a function of redshift as σ = 0.05(1 + z).

For the work presented here, we took zbias = 0 and σz = 0.05, the latter being in line with the
minimum required accuracy for photometric redshifts in the Euclid survey. The global redshift
distribution is plotted in Figure 8.5, with the galaxy distribution for 10 tomographic redshift bins
overplotted, each containing the same number of galaxies per bin.

The �nal simulated �elds were obtained by adding independent Gaussian shape noise to the
shear signal with a standard deviation of σε = 0.25, and we assumed a number density of galaxies
of nд = 30/arcmin2. For each halo, we generated 1000 such noisy �elds from independent noise
realisations, in order to estimate our reconstruction errors. Figure 8.6 shows the distribution in
virial mass and redshift of the 96 haloes simulated. The values were chosen to approximately trace
the mass function (at the high mass end) and our estimated detection limits (at the low-mass end),
but these sample points should not be taken to represent a complete sample of haloes detectable
with our method.

Note that, for these simulations, we assumed pixellated data from the start, thereby implicitly
assuming a uniform distribution of galaxies in x and y. This is not realistic; however, the method
presented is entirely general, and can account for binned/pixellated data where the noise level per
pixel varies.

Remark about the simulations

After the publication of the results presented in this section, we discovered an error in our simu-
lations. Because of a confusion between proper distances and comoving distances, the factor a−3
was initially missing in Equation (8.21). The direct consequence of this error is an important under-
estimation of the density contrast of the simulated clusters, and thus of the lensing signal, as well
as an underestimation of the virial radius. Although our simulated clusters are still NFW pro�les,
for a given mass, their lensing signal is smaller than for realistic clusters in the ΛCDM cosmology
we consider in this chapter.
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Figure 8.6: Mass and redshift distribution of simulated cluster haloes.

We have corrected this error and updated our results when possible or relevant, in particular
the selection function presented in Figure 8.8.

As these simulations remain very simplistic, we have not run the complete analysis on the cor-
rected simulations (running GLIMPSE on all 96000 �elds takes between 1 and 2 months with the
resources at our disposal) and have instead preferred working towards characterising our algo-
rithm on much more realistic N-body simulations integrating the e�ects of the large scale struc-
tures. This work however is still ongoing. As a result, the redshift estimation in Figure 8.10 are
still using the �rst set of simulations and are therefore very conservative, especially for clusters at
high redshift, since the SNR of the simulated clusters should have been higher.

8.2.2 Processing of the reconstructions and identification of peaks

The 1000 independent noise realisations generated for each of the 96 �elds were all processed by
GLIMPSE using the same set of parameters described in the previous section. Having processed
these simulations, it is now necessary to identify in the reconstructed �elds actual detections and
disentangle those from spurious structures due to noise.

Individual detections were isolated in each �eld by identifying peaks in the reconstructed density
contrast using the Clump�nd algorithm2 (Williams et al., 1994). This method identi�es connected
pixels above a given threshold within a 3D map and is able to e�ectively deblend overlapping
structures. We use a minimum threshold of δmin = 1 and we determine the 3D position of each

2 http://www.ifa.hawaii.edu/users/jpw/clumpfind.shtml

http://www.ifa.hawaii.edu/users/jpw/clumpfind.shtml
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(a) Field 48 (b) Field 53

Figure 8.7: The distribution of the x − y locations of peaks detected in 1000 reconstructions of a given
cluster �eld. Plotted are the distributions for �eld 48 (left panel, Mvir = 2 × 1014h−1M� , z48 =
0.35) and �eld 53 (right panel, Mvir = 7 × 1014h−1M� , z53 = 0.35). In both �elds, the central
cluster is clearly identi�ed, however the cluster in �eld 48 is less massive, and therefore the
frequency of its detection is lower than that of the cluster in �eld 53. Away from the centre of
the �eld, the distribution of (false) peaks is seen to be uniform, except near the edge of the �eld
where a small overdensity is seen.

detected peak by computing the weighted centroid of the structure. This position information
will allow to disentangle actual detections of the central cluster, which are expected to be located
around the center of the �eld, from spurious noise contamination.

To illustrate the angular distribution of peaks identi�ed by this procedure in the reconstructed
�elds, Figure 8.7 shows the speci�c case of two cluster �elds. The left panel shows the distribution
of x andy angular positions on the sky of all peaks detected in the 1000 realisations of the simulated
data for �eld 48 (Mvir = 2 × 1014h−1M� , z48 = 0.35), while the right panel shows the distribution
in x and y for the 1000 realisations of �eld 53 (Mvir = 7× 1014h−1M� , z53 = 0.35). The distribution
of the peak positions is largely seen to be uniform over the �eld, but with a notable excess at
{x ,y} = {32′, 32′}. We can clearly recognise the detections due to the actual cluster at the center
and the low level uniform background of detections due to noise. We also notice a slight excess
seen near the edges of the �eld, which is indicative of some systematic edge e�ects resulting from
our method, which can most probably be attributed border conditions in the computation of the
wavelet transform which would require a speci�c treatment in our noise model. This is however
not an issue as in practice the size of the reconstructed �eld can be increased as to avoid these
border e�ects. For all but two �elds (�elds 77 and 87), the x-y peak distribution was well �tted by
a Gaussian plus a constant, with the width of the Gaussian consistently found to be in the range
0.5 . [σx ,σy ] . 1.0. For �elds 77 and 87 (both with Mvir = 1014h−1M�; z77 = 0.65, z87 = 0.75), the
SNR of the central cluster was too low for consistent detection and no signi�cant bump could be
identi�ed in the x −y distribution of the detected peaks around the center of the �eld.

Given the measured dispersion in the position of the central peak, we consider that any peak
found to lie within 30′ < [x ,y] < 34′ correspond to a detection of the cluster. This cut rejects most
of the spurious noise peaks but is not guaranteed to yield a perfect purity. In particular, we put no
constraint on the redshift at which the peak was detected. In rare cases, a high redshift detection
is seen in the reconstruction in addition to a lower-redshift peak. We opted to keep both peaks as
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Figure 8.8: Fraction of �elds with a central cluster detection, fdet as a function of cluster virial mass and
redshift.

cluster detections in all of the analysis which follows, as there is no truly blind way to discard one
or other of the peaks as being a false peak. For this work, we wish to analyse the accuracy with
which we can recover the mass and redshift of the simulated clusters, and to do this in an unbiased
way, we cannot preferentially discard either detection based on our prior knowledge of the true
location of the cluster. This will add to the dispersion in our redshift and mass estimates, but will
ensure that we are not preferentially biasing our results, and thereby unfairly shrinking our error
bars.

8.2.3 Detection rates

The number of times the central cluster is detected in the ensemble of noise realisations is indicative
of both the �delity of the detection of a given structure (i.e. whether that structure is a real structure
or simply due to the noise) and diagnostic of the trade-o� between noise removal and sensitivity
to real structures. We expect that the probability of detecting a cluster halo will depend on both
the mass of that halo and its redshift, for a �xed noise and threshold level.

Plotted in Figure 8.8 is the fraction of noise realisations (out of 1000) in which one or more
central density peak was detected as a function of virial mass, with di�erent coloured curves cor-
responding to cluster haloes at di�erent redshifts. We denote this fraction in the analysis that
follows by fdet .

These curves e�ectively show the probability of reconstructing haloes of a given mass and red-
shift from a set of noisy data, given our choice of threshold parameter and shape noise level. Clearly,
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Figure 8.9: The mean number of false detections per randomisation for each of the 96 simulated cluster
�elds. The histogram shows the number of cluster �elds (the count) with a speci�ed mean false
detection rate. This mean is taken by considering the number of peaks detected in 1000 di�erent
reconstructions whose centroids lie outside of the central 4 × 4 pixels.

as clusters are moved to higher redshift, they become more di�cult to detect; however at the high
end of the mass function (& 8 × 1014h−1M�), we can still expect to detect & 60% of clusters at
redshift zcl = 0.75, and this trend is expected to continue to higher redshifts, though with an
increasing mass threshold. Lowering our denoising threshold would be expected to increase the
completeness at all redshifts, allowing us to detect lower mass haloes, but will come at the cost of
an increased number of false detections.

Figure 8.9 shows the mean number of false detections per reconstruction for each of the 96
simulated �elds. This number is consistently around 1 per reconstruction, with no dependence
seen on the mass and redshift of the simulated cluster in that �eld. Stricter thresholding would be
expected to reduce this number, at the cost of lowering the detection rates of actual clusters.

8.2.4 Redshi� estimation

We now consider the redshift accuracy of our reconstructions, by assessing how closely the redshift
of a reconstructed cluster matches that of the original simulation. To do this, we consider the
distribution in redshift of any peaks identi�ed as a true detection by the procedure detailed in the
previous paragraph. For each cluster �eld, we considered the distribution in the estimated redshift
over the ensemble of noise realisations.

We consider two redshift estimators for the cluster. The �rst is the median redshift in this distri-
bution, for which error bars were computed by �nding the redshift range, centred on the median
value zmed , that encompassed 68.2% of the redshift estimates (thereby representing the 1σ con�-
dence interval of the redshift estimate).

We also estimated the Probability Density Function (PDF) for the redshift estimates using an
Adaptive Kernel Density Estimate (AKDE) with a standard Epanechnikov kernel (Silverman, 1986).
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From this, we estimated cluster redshift zpeak as the peak in the PDF. A 1σ con�dence interval was
then computed from the cumulative distribution function obtained by integrating the PDF, always
ensuring that 68.2% of the estimated redshift values fell within this interval.

Figure 8.10 shows the estimated vs true redshift for clusters in our sample as a function of mass.
Note that the results for Mvir = 3 × 1013h−1M� are not plotted in the interests of space, but are
consistent with the Mvir = 4 × 1013h−1M� clusters. Shown in the �gure are the median estimate
and the AKDE peak redshift, the latter being o�set by δz = 0.01 in both directions for visualisation
purposes. Both estimates clearly yield an accurate estimate of the redshift, with the peak estimate
seen to have smaller error bars in many cases. No systematic bias is seen in the peak case, while
the median estimate does appear to slightly overestimate the redshifts for low-mass haloes. The
error bars are seen to increase in size with increasing redshift, and with decreasing halo mass, as
expected.

As will be discussed more fully in the next section, an error in redshift will naturally give rise
to a bias in the estimated mass of the cluster. We can parametrise this error through the relation
M(zest ) = (1 ± |fm |)M(ztrue ). The contours labelled |fm | = 0.1 and |fm | = 0.5 refer to the redshift
ranges within which the fractional error on the mass is less than 10% and 50%, respectively. For the
96 simulated �elds, 56 [36] yield median [AKDE] redshift estimates that fall within the contours
of |fm | = 0.1 and 76 [77] fall within |fm | = 0.5. The outliers tend to arise in low signal-to-noise
clusters: for the 71 clusters with a detection fraction fdet ≥ 0.2, 74.6% [46.5%] yielded median
[AKDE] redshift estimates within the contours of |fm | = 0.1, and 87.3% [85.9%] within |fm | = 0.5.

8.2.5 Mass estimation

Given our ability to accurately estimate the redshifts of clusters using GLIMPSE, we now consider
how accurately we might be able to estimate the masses of the haloes detected. Estimating the
masses of clusters detected using our method is complicated by several factors, however.

Firstly, for any given noise realisation, the cluster will be detected at a given redshift zi . The
density contrast is related to the mass by

Mn =
∑
n

δ (n)(zi )ρ(zi )Vpix (zi ) , (8.27)

where ρ(zi ) is the mean matter density at redshift zi andVpix (zi ) is the comoving volume covered
by one pixel in our reconstruction at that redshift, and the mass Mn is the mass enclosed by n

angular pixels. Therefore, the estimated mass depends on redshift through both ρ and Vpix , and
any redshift error in a given reconstruction will bias the mass estimate by a corresponding factor.
If the cluster is detected at a di�erent redshift, then for the same amplitude in δ , the estimated
mass will change proportionately as ρVpix .

Moreover, the density contrast estimate itself will be biased if the cluster is placed at the wrong
redshift. Recall that Q ∝ Dls/Ds . This means that if a cluster is detected, for example, at a higher
redshift, it will be reconstructed with a larger amplitude in order to compensate for the decrease
in the estimated Dls/Ds . This scaling is encoded by the normalisation matrix N de�ned in Equa-
tion (8.15), N (zn) ≡ Nnn =

∑
p Q2

pn , where the index n refers to a given redshift slice. As the nor-
malised density contrast, the quantity we reconstruct with GLIMPSE, is related to δ via δ ′ = Nδ ,
the density contrast estimated at a given redshift (and thereby the estimated mass at that redshift)
is scaled by Mn(z) ∝ δ (z) ∝ N −1(z).
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Figure 8.10: Estimated vs true redshift for the 96 clusters in our sample, separated by cluster virial mass. Red
points indicate the peak of the AKDE distribution, while black points indicate the median value
considering all noise realisations. The red points have been shifted by 0.01 in both directions
for visualisation purposes.
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Figure 8.11: The mass estimate within the central four angular pixels M4 as a function of estimated redshift
for the reconstructions of cluster �eld 53. The red curve shows M4 measured from the input
simulation, and rescaled with redshift according to the relation in Equation (8.28).

The estimated mass at redshift zest is therefore related to the mass estimate at the true redshift
ztrue via:

Mn(zest )
Mn(ztrue ) =

ρ(zest )
ρ(ztrue )

Vpix (zest )
Vpix (ztrue )

N (ztrue )
N (zest ) . (8.28)

In Figure 8.11, we plot the estimated mass over the central four pixels M4 for all the reconstruc-
tions of �eld 53 (Mvir = 7× 1014h−2M� , z53 = 0.35), computed simply by multiplying the integrated
density contrast by the mean density and the pixel volume at the redshift of detection, without ac-
counting for any biases. It is very clear that there is a strong dependence of the mass estimate on
the redshift. The red curve in the �gure shows M4 estimated on the true density contrast map of
the cluster, scaled as a function of redshift according to Equation (8.28).

This curve shows an excellent �t to the measured data, and we can therefore use the relationship
in Equation (8.28) to rescale the mass estimates for a given cluster onto the same redshift, to allow
us to compare their values, and to compute an overall mass estimate for the cluster, and error bars
associated with this estimate.

In order to assess the ability of our method to constrain the angular pro�le of a cluster, we
consider the mass within the central 2 × 2 pixels (M4), 4 × 4 pixels (M16), 6 × 6 pixels (M36) and
8 × 8 pixels (M64). For each detected cluster, the density contrast was rescaled by N , and then
summed within the central n angular pixels at all redshifts associated with the cluster. We then
compute the mass assuming the true redshift of the cluster. As none of these mass measures directly
corresponds to the virial mass of the simulated cluster, we also compute these values directly from
the simulated maps for comparison.

Given the distribution of estimated masses across all the noise realisations, we can then compute
the median and 68.2% con�dence regions as for the redshift. Figure 8.12 shows our results. Included
are only results for clusters in which the fraction of detections fdet > 0.3 (i.e. for which we have
more than 300 detections out of the 1000 randomisations). This limit was placed to ensure that we
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Figure 8.12: Mass estimates at four di�erent integration scales plotted against the true mass measured from
the simulation. The mass estimates use the median rescaled mass over all the realisations of
the �eld, and the error bars are 68.2% con�dence intervals computed symmetrically about the
median value.

have adequate sample points for our derived statistics. In Figure 8.12, the four di�erent estimators
are shown on the same plot, and the clusters are divided up by redshift.

At the lowest simulated cluster redshift of zcl = 0.05, we see a tendency to underestimate the
masses at all scales, while the opposite trend is seen at high redshift. However, in most cases, and
particularly for M4, this is at most a 1σ e�ect. In the intermediate redshift regime 0.15 ≤ zcl ≤ 0.55,
excellent agreement is seen in M4. The trend to overestimate the mass at larger radii implies that
our �t to the angular pro�le of the cluster is not perfect; however, the deviations seen remain at
the 1σ level.

We can conclude from these results that we are able to accurately recover the masses of most
clusters in our sample, even at high redshift, with very little bias seen. However, this analysis has
relied on the assumption that the true redshift of the cluster is known, which it will not be in real
data.

Using Equation (8.28), we can compute the expected bias on the mass that will be obtained by
assuming the median or peak AKDE estimate of the redshift, instead of the true redshift. As in the
previous section, we model this as

M(zest )
M(ztrue ) = 1 + fm . (8.29)

Equation (8.28) then directly gives us a measure of fm . In Figure 8.13 we show the histogram of
fm for the clusters included in Figure 8.12 (i.e. all the clusters with fdet > 0.3). We plot this mass
bias factor for the case in which we assume as the cluster redshift the median estimate (solid black
line) and the peak AKDE redshift (dashed red line). In the case of the median estimator, the vast
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Figure 8.13: Mass bias associated with a redshift error for the clusters included in Figure 8.12, shown for
both the median redshift estimate and the peak AKDE estimate. The bias is generally very low
for the median estimate, with |fm | ≤ 0.05 in most cases. The peak redshift estimate shows a
wider distribution, but no extreme outliers with |fm | > 0.5.

majority of clusters fall within the ±0.05 region, implying a smaller than 5% induced bias from
errors in the redshift estimate. The peak AKDE redshift shows a wider spread in fm values, but in
contrast to the median redshift does not show any extreme outliers of |fm | > 0.5.

8.3 comparison of 2d and 3d detection efficiency

As was demonstrated in the previous section, GLIMPSE is capable of detecting galaxy clusters from
3D weak lensing. A natural question to ask is whether a conventional 2D mass-mapping method
would fare better or worse in terms of detection e�ciency. To shed some light on this question,
we perform in this section a simple experiment using the simulations described in Section 8.2.1
to compare the detection e�ciency of GLIMPSE with that of a conventional 2D Kaiser-Squires
inversion followed by a simple wavelet �ltering, performed using MRLens (Starck et al., 2006).

8.3.1 2D detection using MRLens

The MRLens method (Starck et al., 2006) relies on a Multi-Resolution Entropy �ltering. Formally,
the �lter recovers a denoised map κ from the noisy convergence κn by minimising:

min
κ

1
2 ‖ κn −κ ‖

2 −H (κ) . (8.30)

The second term, H (κ) encodes the prior on the solution, expressed in wavelet space as:

H (κ) =
J−1∑
j=1

∑
k ,l

h(w j ,k ,l ) , (8.31)
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where J is the number of dyadic wavelet scales and w j ,k ,l are the starlet coe�cients of κ. The in-
formation content H (κ) is therefore de�ned as the sum of the information content of each wavelet
coe�cient h(w j ,k ,l ), de�ned by the function h (see Starck et al., 2006, for details on the choice of
this function). However, MRLens does not apply regularisation for coe�cients that are clearly de-
tected above the noise (i.e. signi�cant coe�cients). In this case, the multi-scale entropy becomes:

hm(w j ,k ,l ) = M(j,k , l)h(w j ,k ,l ) , (8.32)

where M(j,k , l) = 1 −M(j,k , l) and M(j,k , l) is a multiresolution support de�ned as:

M(j,k , l) =



1 if w j ,k ,l is signi�cant
0 if w j ,k ,l is not signi�cant

(8.33)

As a result, entropy based regularisation will only be applied to wavelet coe�cients considered to
be not signi�cant, while no regularisation is applied to signi�cant coe�cients.

For the purpose of detecting galaxy clusters from noisy convergence maps, we are only inter-
ested in those signi�cant wavelet coe�cients. We therefore base our 2D detection method on the
multiresolution mask M itself and not directly on the denoised map. We �rst collapse the multires-
olution mask across wavelet scales to produce a binary 2D map. We then use this map to de�ne
a detection as a group of connected non-zero pixels and �nally compute a convergence-weighted
centroid for the detection from the denoised converge map.

In the case of Gaussian noise, the multiresolution support is de�ned by identifying as signi�cant
those wavelet coe�cients w j ,k ,l that verify |w j ,k ,l | > Kσj , where σj is the noise standard deviation
at a particular wavelet scale j, and the indices [k , l] denote the pixel location in the 2D convergence
map. Typically, this threshold K is chosen to be between 3 and 5.

Note that we use the same thresholdK across all scales. This is not however the default option in
MRLens which rather de�nes a scale dependent threshold based on a user de�ned False Detection
Rate (FDR) but we use a �xed threshold for ease of comparison with GLIMPSE.

This 2D detection procedure using MRLens is very close to the 3D GLIMPSE detection procedure
detailed in the previous section. Both methods are based on an isotropic starlet transform and use
a similar Kσ detection strategy, leaving the 2D and 3D nature of the two approaches as the main
di�erence.

8.3.2 Results

Our aim is to compare the detection e�ciency of the two methods, at the same false detection rate,
which is set in both methods by the Kσ level used for the detection. A full ROC curve analysis
would require to run both methods for a wide set of parameterK , however given the computational
cost of running the 3D reconstructions we keep the GLIMPSE detection level �xed at 4σ , thus also
�xing a false detection rate of 0.78 false detections per square degree. For a meaningful comparison,
we use MRLens with three di�erent detection threshold at 3, 3.5 and 4 σ corresponding to false
detections rate above and below the reference set by GLIMPSE. These rates of false detections are
listed on Table 7. As can be seen, using MRLens with the 3.5σ threshold gives the number of false
detections closest to that of GLIMPSE at 4σ .
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Algorithm Threshold False detection per square degree
MRLens 3σ 2.087 ± 0.357
MRLens 3.5σ 0.373 ± 0.069
MRLens 4σ 0.056 ± 0.018
GLIMPSE 4σ 0.781 ± 0.047

Table 7: Number of false detections per �eld for the 96 cluster �elds analysed with MRLens at 3 di�erent
denoising thresholds and GLIMPSE at a denoising threshold of 4σ .

The detection rates of the central cluster, for di�erent masses and redshifts, using MRLens and
GLIMPSE with the parameters described above are given on Figure 8.14. At low redshift (upper
left panel), we can check that the GLIMPSE 4σ and MRLens 3.5σ results, which correspond to
roughly the same number of false detections, are very comparable. As one would expect, the more
conservative MRLens 4σ has a lower detection e�ciency while at 3σ MRLens is able to recover
more clusters, of course at the cost of a larger number of false detection.

The interesting result of this study is the evolution of the detection rates with the redshift of
the cluster. While the hierarchy between the three MRLens detection rates remains the same, the
relative e�ciency of GLIMPSE starts increasing with the redshift of the cluster after z ' 0.3 to the
point where it outperforms MRLens for all three parameters (see lower right panel).

Although this experiment is fairly simple, it perfectly illustrates the potential gain of exploiting
the 3D information for the purpose of detecting galaxy clusters from weak lensing. This was �rst
demonstrated in Hennawi and Spergel (2005) where the use of a tomographic matched �lter en-
hanced the number of cluster detected with an SNR above 4.5 by as much as 76% compared to a
non tomographic analysis. The reason for this important di�erence between 2D and 3D approaches
comes the speci�c line-of-sight response of a thin-lens which constitutes valuable information to
discriminate between noise and actual signal. In our GLIMPSE approach, the algorithm e�ectively
applies at each iteration a matched �lter for isolated density peaks in redshift. This enhances the
SNR of actual clusters by adequately weighting the tomographic lensing signal compared to a
simple 2D analysis.

8.4 conclusion

In this chapter we have introduced a new 3D weak lensing based on sparse regularisation. While
previous linear methods remained very limited, especially in their redshift resolution, we demon-
strate that our non-linear reconstruction algorithm is successful at recovering not only accurate
redshift but also density contrast estimates which can directly be used to constrain the masses of
detected dark matter haloes.
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Figure 8.14: Detection rate of the central cluster using MRLens (blue) and GLIMPSE (black) for di�erent
cluster redshifts. The parameters of the two methods are calibrated to yield a similar false
detection rate. At low redshift, the detection rates are similar but at high redshift, GLIMPSE
clearly outperforms MRLens.
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In this chapter, we introduce a new isotropic wavelet on the 3D ball as an extension of the 2D
starlet transform introduced in Chapter 4. Such representations are of particular interest for the
analysis of �elds most naturally expressed in spherical coordinates. In particular, these wavelets
are a promising tool for the study of current and future wide spectroscopic and photometric galaxy
surveys. They open the door to a number of applications of sparse methodologies to these data
sets, such as detection, denoising or deconvolution.

As these wavelets are based on the Spherical Fourier-Bessel Transform (SFBT), this chapter also
provides an introduction to the Spherical Fourier-Bessel (SFB) framework used in the analysis
presented in Chapter 10.

The results presented in this chapter were published in Lanusse et al. (2012). This work has been
conducted in collaboration with Jean-Luc Starck and Anais Rassat.

9.1 sparse representations on the 3d ball

Wavelets were introduced in Chapter 4, where we detailed the construction of 2D discrete wavelets.
As was illustrated on multiple occasions throughout this thesis, wavelets are fundamental tools
which �nd many applications, especially when combined with sparse regularisation. Based on the
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framework presented in that chapter, 3D wavelets can be easily derived on a 3D Cartesian grid
(see Lanusse et al. (2014) for a review of 3D sparse representations). However, these transforms
are not adapted to the spherical geometry of signals living on the 3D ball. Such signals arise for
instance in astrophysics in the study of the 3D distribution of galaxies (e.g. Heavens and Taylor,
1995; Rassat and Refregier, 2012). Indeed, modern cosmological surveys, either lensing or galaxy
surveys, are probing the Universe in three dimensions, combining the angular position of objects
on the sky with their radial distance.

While there is great interest in developing sparse representations for signals on the ball, until
very recently there were no 3D wavelet on the ball which allowed analysis and synthesis in a
discrete setting (although continuous wavelets on the ball had been introduced before, mainly for
applications in geophysics (e.g Michel, 2005)).

In this chapter, we will present the �rst wavelet transform on the 3D ball which allows both syn-
thesis and analysis in the discrete and continuous domain. This wavelet is based on the Spherical
Fourier-Bessel Transform (SFBT), which is the natural harmonic expansion of 3D data in spherical
coordinates and preserves the link between angular and radial scales. This allows us to build a
shift invariant, isotropic wavelet decomposition on the 3D ball.

Very shortly after the publication of the wavelet transform presented in this chapter, a di�erent
expansion was introduced in Leistedt and McEwen (2012) which di�ers mainly by their choice of
harmonic expansion on the ball. It is constructed from an exact sampling theorem in the angular
domain based on McEwen and Wiaux (2011) and in the radial domain is based on the orthogonality
of Laguerre polynomials. The resulting Fourier-Laguerre transform allows for exact decomposition
and reconstruction of band limited signals on the 3D ball and is used to implement a wavelet trans-
form (named �aglets) with exact decomposition and reconstruction formulae1. Due to the choice
of independent basis for the radial and angular domains, �aglets probe independently angular and
radial scales. However, separating angular and radial domains breaks the 3D translational invari-
ance of the harmonic expansion. Although this separation can be desirable to disentangle purely
radial and angular e�ects (for instance angular masks and photometric redshift errors), it is not
optimal when probing for isotropic features (for instance cosmic voids).

While the SFBT presented in Section 9.2 has a number desirable properties, the main drawback
of this transform however is that no exact sampling theorem exists in the radial domain (Lemoine,
1994). Contrary to the Fourier-Laguerre transform, the spherical Fourier-Bessel Transform cannot
be computed exactly for a discretely sampled band limited signal on the ball. To circumvent this
issue, we introduce in Section 9.3 aDiscrete Spherical Fourier-Bessel Transform (DSBT) which allows
in practice the evaluation of this transform to any desired accuracy. We then describe in Section 9.4
our isotropic wavelet on the 3D ball, which is exact in the spherical Fourier-Bessel domain and for
which wavelet coe�cients can be recovered in the direct domain using the DSBT.

9.2 the spherical fourier-bessel transform

In this section, we introduce the Spherical Fourier-Bessel transform and its two components, the
Spherical Harmonics Transform and Spherical Bessel Transform. We also provide a key result

1 The source code for this transform is publicly available at http://www.jasonmcewen.org

http://www.jasonmcewen.org
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regarding convolutions in SFB space which will be at the core of the wavelet transform described
in Section 9.4.

9.2.1 Spherical Harmonics Transform

Laplace’s spherical harmonics are a set of functions that form an orthonormal basis of the Hilbert
space of square-integrable functions de�ned on the unit sphere. They are also eigenfunctions of
the angular part of Laplace’s equation which makes them very useful in Physics and especially in
Quantum Mechanics.

They are indexed by two indices ` ∈ N andm ∈ J−`, `K and can be formally de�ned as:

Y`m(θ ,φ) =
√

(2l + 1)
4π

(` −m)!
(` +m)!P

m
` (cos(θ ))eimφ , (9.1)

where P`m(cos(θ )) is an associated Legendre polynomial. This de�nition, ensures the normalisa-
tion of the spherical harmonics so that

∫ |Y`m |2dΩ = 1. These functions verify the following or-
thonormalisation property :∫ 2π

0

∫ π

0
Y ∗`m(θ ,φ)Y`′m′(θ ,φ) sin(θ ) dθ dφ = δ``′δmm′ . (9.2)

Since they form an orthonormal basis, spherical harmonics can be used to develop any square-
integrable scalar �eld de�ned on the unit sphere. Let f (θ ,φ) be such a function, then by projecting
f onto the {Y`m}`m basis using the Hermitian product we get:

∀` ∈ N,∀m ∈ J−`, `K f`m =

∫ 2π

0

∫ π

0
Y ∗`m(θ ,φ)f (θ ,φ) sin(θ ) dθ dφ . (9.3)

This leads to the spherical harmonics expansion of f :

f (θ ,φ) =
∞∑
`=0

∑̀
m=−`

f`mY`m(θ ,φ) . (9.4)

Relations Equation (9.3) and Equation (9.4) respectively de�ne the Spherical Harmonics Transform
(SHT) and its inverse.

Discrete data representation on the sphere

In practice, data acquired on the sphere needs to be pixelated in order to compute a SHT and vari-
ous schemes exist in the literature. These include the Equidistant Coordinate Partition (ECP), the
Icosahedron method (Tegmark, 1996), IGLOO (Crittenden and Turok, 1998),Hierarchical Equal Area
isoLatitude Pixelization of a sphere (HEALPix) (Gorski et al., 2005), Gauss-Legendre Sky Pixeliza-
tion (GLESP) (Doroshkevich et al., 2005). Some of these sampling schemes allow for exact forward
and backward SHT of band limited signals on the sphere. This is for instance the case of GLESP,
which directly derives its pixelisation scheme from the Gauss-Legendre quadrature leading to an
exact SHT. More recently, exact sampling schemes based on an ECP grid have been proposed with
a particular focus on spin spherical harmonics. In particular, McEwen (2008) introduced a sampling
scheme for theoretically exact and fast spin SHT for arbitrary spin numbers but found the forward
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(a) HEALPix map at base resolution Nside = 1 (b) HEALPix maps for Nside = 1, 2, 4, 8

Figure 9.1: HEALPix pixelisation scheme. Credit: Gorski et al. (2005)

transform to be extremely unstable to the point that multipoles over ` ' 32 could not be reliably
computed in practice. Hu�enberger and Wandelt (2010) proposed a similar exact equiangular sam-
pling scheme while providing a stable forward algorithm thus solving the crucial limitation of the
previous scheme and allowing for extremely accurate forward and backward spin SHT up to high
multipoles (over ` ' 4096). This stable forward algorithm was subsequently reused in McEwen
and Wiaux (2011) but with a reduction of a factor 2 in the number of sampling points necessary to
the exact quadrature scheme (of the order of 2L2 versus 4L2 for Hu�enberger and Wandelt (2010),
where L is the band limit of the signal).

Although any of these representations could be used for our purpose, we chose to use the popular
HEALPix representation for the results presented in this chapter (for which the SHT is not exact
but can still be evaluated to acceptable accuracy). This choice was essentially motivated by the
excellent software package2 publicly available but HEALPix also boasts a number of very desirable
properties in practice which are not necessarily found in exact sampling schemes such as GLESP or
McEwen and Wiaux (2011) such as its uniform sampling of the sphere and its hierarchical nature.

The HEALPix representation is a curvilinear hierarchical partition of the sphere into quadrilat-
eral pixels of exactly equal area but with varying shape. The base resolution divides the sphere
into 12 quadrilateral faces of equal area placed on three rings around the poles and equator. Each
face is subsequently divided into N 2

side pixels following a quadrilateral multiscale tree structure
(see Figure 9.1). The pixel centres are located on iso-latitude rings, and pixels from the same ring
are equispaced in azimuth, which is critical for e�cient SHT algorithms.

9.2.2 Spherical Bessel Transform

The Spherical Bessel Transform (SBT), is an integral transform, part of the family of Hankel trans-
forms which are based on a set of Bessel functions. There are several �avours of these Bessel

2 http://healpix.jpl.nasa.gov .

http://healpix.jpl.nasa.gov
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Figure 9.2: Spherical Bessel Function of the �rst kind j`(r ) for ` = 0, 1, 2, 4. Credit: NIST

functions which can all be expressed in terms of the Bessel function of the �rst kind Jν , de�ned
for z ∈ C and ν ∈ R as:

Jν (z) =
∞∑
k=0

(−1)kzν+2k
2ν+2k k ! Γ(ν + k + 1) . (9.5)

The SBT uses speci�cally spherical Bessel functions of the �rst kind j`(r ) which are derivatives of
Jν and can be de�ned for ` ∈ N as:

j`(r ) =
√

π

2r J`+1/2(r ); . (9.6)

Most importantly, these functions verify the following orthogonality relation:

∀k ,k ′ ∈ R+,
∫ ∞

0
j`(kr )j`(k ′r )r 2 dr = π

2k2δ (k − k
′) . (9.7)

Given a function f de�ned on [0,+∞[ which veri�es
∫∞
0 |f (r )|r dr < +∞, the SBT of order ` ≥ 0

and its inverse are de�ned as:

f̃`(k) =
√

2
π

∫
f (r )j`(kr )r 2 dr , (9.8)

f (r ) =
√

2
π

∫
f̃ (k)j`(kr )k2 dk , (9.9)

where we denote by f̃` the SBT of f . Note that one particular property of Hankel transforms is
that they are involutions. As can be seen, the inverse SBT has the same expression as the direct
SBT.

An important remark about conventions can be made at this point. Based on the de�nition in
Equation (9.8), we opt in this chapter for the symmetrical formulation of the SBT, which was for
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instance used in Heavens and Taylor (1995). Although much more convenient for the derivations
presented in this chapter, this is not the preferred convention in cosmology and most works (e.g.
Castro et al., 2005; Leistedt et al., 2012; Rassat and Refregier, 2012; Pratten and Munshi, 2013) use
instead the following de�nition for the direct and inverse transforms:

f̃ (k) =
√

2
π

∫
f (r )jl (kr )kr 2 dr , (9.10)

f (r ) =
√

2
π

∫
f̃ (k)jl (kr )k dk , (9.11)

As can be seen these two transforms are no longer identical. This choice however is motivated by
the very simple relationship between the 3D power spectrum P(k) and the SFB power spectrum
C(k) of a SIH �eld: P(k) = C(k) 3 . Because this convention is widespread in cosmology, it will be
used in Chapter 10 which centres more on the cosmological exploitation of galaxy surveys.

9.2.3 Spherical Fourier-Bessel Transform

The Spherical Fourier-Bessel Transform (SFBT) arises when dealing with three dimensional prob-
lems best described in spherical coordinates. It is a projection on a set of orthogonal functions, com-
posed of Spherical Harmonics and Spherical Bessel functions, which are solutions of Helmholtz’s
equation (∆ + k2)f (r ,θ ,φ) = 0 and is therefore widely used in physics.

We de�ne this set of orthogonal functions by the following relations:

∀` ∈ N,∀m ∈ J−`, `K,∀k ∈ R+∗, Ψ`mk (r ,θ ,φ) =
√

2
π
j`(kr )Y`m(θ ,φ) (9.12)

Using the orthogonality relations of both Spherical Harmonics and Spherical Bessel functions, we
can easily show that these functions are orthogonal:∫

Ψ∗`mk (r)Ψ`′m′k ′(r) dr = 2
π

∫
j`(k ′r )j`(kr )r 2 dr

∫
Ω
Y ∗`m(θ ,φ)Y`′m′(θ ,φ) dΩ (9.13)

=
1
k2
δ (k − k ′)δ``′δmm′ (9.14)

Let f be a three dimensional, square-integrable scalar �eld. The SFB transform of f is de�ned
as its projection onto the set of orthogonal functions {Ψ`mk}:

f̃`m(k) =
∫

Ψ∗`mk (r ,θ ,φ)f (r ,θ ,φ)r 2 sin(θ ) dθ dφ dr

=

∫ 2π

0

∫ π

0



√
2
π

∫ ∞

0
f (r ,θ ,φ)j`(kr )r 2 dr


Y ∗`m(θ ,φ) sin(θ ) dθ dφ (9.15)

=

√
2
π

∫ ∞

0

[∫ 2π

0

∫ π

0
f (r ,θ ,φ)Y ∗`m(θ ,φ) sin(θ ) dθ dφ

]
j`(kr )r 2 dr (9.16)

We see with this de�nition that the SFBT is no more than the commutative composition of a SHT
and a SBT. The inversion formula for the SFBT is as follows:

f (r ,θ ,φ) =
√

2
π

∞∑
`=0

∑̀
m=−`

∫
f̃`m(k)k2j`(kr ) dk Y`m(θ ,φ) (9.17)

3 With the symmetric convention of this chapter, this relation would become P(k) = k2C(k).
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9.2.4 Convolution in the Spherical Fourier-Bessel domain

A key property of the SFBT is the existence of an SFB expression for the convolution h = f ∗ д

of two functions f ,д ∈ L2(R3) which reduces to a very simple formula in the case of an isotropic
function д (Baddour, 2010).

The convolution in the SFB domain can be expressed from the well known expression in the
Fourier domain:

ĥ(k ,θk ,φk ) = F {f ∗д}(k ,θk ,φk ) (9.18)

=

√
(2π )3 f̂ (k ,θk ,φk )д̂(k ,θk ,φk ) , (9.19)

using the following unitary convention for the Fourier Transform :

f̂ (k) = 1√(2π )3
∫

f (r )e−ik .r dr ; f (r ) = 1√(2π )3
∫

f̂ (k)eik .r dk . (9.20)

To relate Fourier and SFB coe�cients, one can use the expansion of the Fourier kernel in spherical
coordinates:

e−ik .r = 4π
∞∑
`=0

∑̀
m=−`

(−i)` j`(kr )Y ∗`m(θr ,φr )Y`m(θk ,φk ) . (9.21)

When injected in the de�nition of the Fourier transform (see Section C.1), this expression directly
leads to the following relation between Fourier and SFB transforms:

f̂ (k ,θk ,φk ) =
∞∑
`=0

∑̀
m=−`

[(−i)` f̃`m(k)
]
Y`m(θk ,φk ) . (9.22)

It is worth noticing that the SFBT f̃`m(k) of f is merely an SHT applied on shells of radii k in
Fourier space (up to a factor (−i)l ): f̂`m(k) = (−i)` f̃`m(k).

This expression for the Fourier transform combined with the Fourier convolution formula in
Equation (9.19) yields the SFB convolution formula (see Section C.2 for the full derivation):

h̃`m(k) = (i)`
√
(2π )3

∞∑
`′=0

`′∑
m′=−`′

(−i)`′ f̃`′m′(k)
`+`′∑

`′′=|`−`′|
c`
′′(`,m, `′,m′)(−i)`′′д̃`′′m−m′(k) , (9.23)

where c`′′(`,m, `′,m′) are Slater integrals:

c`
′′(`,m, `′,m′) =

∫∫
Y ∗`m(θ ,φ)Y`′m′(θ ,φ)Ym−m′

`′′ (θ ,φ)dΩ . (9.24)

These integrals are only non-zero for |` − `′| ≤ `′′ ≤ ` + `′.
As previously mentioned, this expression reduces to a simple form when д is isotropic. In this

case, д has no angular dependence in the Fourier domain therefore д̂ is constant on spherical
shells and д̂`m(k) = 0 = д̃`m(k) for all (`,m) , (0, 0). Then, knowing that c0(`,m, `,m) = 1/

√
4π

Equation (C.8) becomes:
h̃`m(k) =

√
2πд̃00(k) f̃`m(k) . (9.25)

This expression can therefore be used to express in the spherical Fourier-Bessel domain a convo-
lution by any isotropic �lter д.
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9.3 discrete spherical fourier-bessel transform

The transform introduced so far bene�t from a natural discretisation in the angular domain thanks
to the spherical harmonics, however in the radial domain, the SBT is purely continuous. In order
to implement wavelets in the harmonic domain and to be able to compute wavelet coe�cients
in the direct domain, a discretisation scheme for the SBT is required. The main di�culty comes
from the lack of an exact quadrature formula for this radial transform and therefore the lack of
an exact sampling theorem. To circumvent this issue, we propose an approximated discrete SBT
for a radially limited signal, extension of the discrete Bessel Transform introduced in Lemoine
(1994). Although this discrete transform is not exact, it can be evaluated to any desired accuracy
by increasing the number of sampling points. Combined with the HEALpix (Gorski et al., 2005)
sampling in the angular domain we build a sampling grid in spherical coordinates which allows
for back and forth computation of the SFBT.

9.3.1 The 1D Discrete Spherical Bessel Transform

The transform described here is an extension to the Spherical Bessel Transform of the discrete
Bessel transform from Lemoine (1994). This discretisation of the SBT uses the well known orthog-
onality property of the spherical Bessel functions on the interval [0,R]. If f is a continuous func-
tion de�ned on [0,R] which veri�es the boundary condition f (R) = 0 then the spherical Bessel
transform de�ned Equation (9.8) can be expressed using spherical Fourier-Bessel series:

f̃`(k`n) =
√

2
π

∫ R

0
f (r )j`(k`nr )r 2 dr , (9.26)

f (r ) =
∞∑
n=1

f̃`(k`n)ρ`n j`(k`nr ) . (9.27)

In this expression, k`n = q`n
R where q`n is the nth zero of the Bessel function of the �rst kind of

order ` and the weights ρ`n are de�ned as:

ρ`n =

√
2πR−3

j2
`+1(q`n)

. (9.28)

Although this formulation provides a discretisation of the inverse SBT and of the k spectrum,
the direct transform is still continuous and another discretisation step is necessary. Assuming that
a boundary condition of the same kind can be applied to f̃`(k) so that f̃`(K`) = 0, then by using
the same result, the spherical Fourier-Bessel expansion of f̃`(k) is obtained by:

˜̃
f`(r`n) =

√
2
π

∫ K

0
f̃`(k)j`(r`nk)k2 dk (9.29)

f̃`(k) =
∞∑
n=1

˜̃
f`(r`n)κ`n j`(r`nk) , (9.30)

where r`n = q`n
Kl

and where the weights ρ`n are de�ned as:

κ`n =

√
2πK−3

`

j2
`+1(q`n)

. (9.31)
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The SBT being an involution, ˜̃
f = f so that ˜̃

f`(r`n) = f (r`n). Much like the previous set of equa-
tions had introduced a discrete k`n grid, a discrete r`n grid is obtained for the radial component.
Since Equation (9.27) and Equation (9.30) can be used to compute f and f̃` for any value of r and
k , they can in particular be used to compute f (r`n) and f̃`(r`′n) where `′ does not have to match `.

The Spherical Bessel Transform and its inverse can then be expressed only in terms of series:

f̃`(k`′n) =
∞∑
p=1

f (r`p )κ`p j`(r`pk`′n) (9.32)

f (r`′n) =
∞∑
p=1

f̃`(k`p )ρ`p j`(r`′nk`p ) . (9.33)

Thanks to this last set of equations one can compute the SBT and its inverse without the need of
evaluating any integral. Furthermore only discrete values of f and f̃ respectively sampled on r`n
and k`n are required.

However, this expression of the direct and inverse SBT is only valid if f is both band limited
( f̃`(K`) = 0) and radially limited (f (R) = 0). It is well known that these two conditions can never
be veri�ed at the same time. The same problem arises for the Fourier transform, a band limited
signal necessarily has an in�nite time support. In practice, by increasing the band limit K` to any
arbitrary value, one can recover an approximation of the exact transform to any required accuracy.

The second di�culty comes from the in�nite sums over p in Equation (9.32) and Equation (9.33).
In practical applications, for a given value of ` only a limited number N of f̃`(k`n) and f (r`n)
coe�cients can be stored so that r`N = R and k`N = K` . Since r`n is de�ned by r`n =

q`n
K`

, for
n = N , R and K` are bound by the following relation:

q`N = K`R . (9.34)

Therefore, the value of K` is �xed for a choice of N and R.
Nevertheless, the main point remains that any desired accuracy in the evaluation of the direct

and inverse transform can be reached by increasing the number of points N and arti�cially increas-
ing R above the actual radial limit of the signal.

The truncation of the direct and inverse series to N coe�cients yields a convenient matrix
formulation to de�ne theDiscrete Spherical Bessel Transfrom and its inverse. Consider the following
transform matrix T``′ :

T ``′

pq =
*
,

√
2π

j2
`+1(q`q)

j`(q`
′pq`q

q`N
)+
-pq

. (9.35)

We de�ne the direct discrete SBT as:


f̃`(k`′1)
f̃`(k`′2)

...
f̃`(k`′N )



=
1
K3
`

T``′



f (r`1)
f (r`2)

...
f (r`N )



. (9.36)
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Reciprocally, the values of f can be recovered on any r`′n grid from f̃` sampled on k`n using the
inverse discrete SBT, based on the exact same matrix:



f (r`′1)
f (r`′2)

...
f (r`′N )



=
1
R3 T``′



f̃`(k`1)
f̃`(k`2)

...
f̃`(k`N )



. (9.37)

A simpli�ed form of the transform could have been de�ned only for ` = `′ so that T``′ = T` .
However, keeping the distinction between the order of the transform ` and the order of the grid
on which the results are provided `′ will be crucial to the implementation of the 3D transform
introduced in the next section. Indeed, the order of the grid on which the function is sampled has
to match the order of the transform but the resulting transform coe�cients do not. Therefore, it
will be possible to compute the result of the inverse SBT of any order ` on a grid of order `0 so
that only one radial grid of order `0 will be required. Nevertheless, for the direct transform, if the
�eld is sampled on the radial grid of order `0, only the transform of order `0 can be computed. An
additional result is required to be able to relate the SBT of di�erent orders. This is achieved by
combining Equation (9.26) and Equation (9.27):

f̃`(k`n) =
√

2
π

∫ R

0



∞∑
m=1

f̃`0(k`0m)ρ`0m j`0(k`0mr )

j`(k`nr )r 2 dr ,

=

√
2
π

∞∑
m=1

f̃`0(k`0m)ρ`0m
∫ R

0
j`0(k`0mr )j`(k`nr )r 2 dr ,

=

∞∑
m=1

f̂`0(k`0m)
2

j2
`0+1(q`0m)

∫ 1

0
j`0(q`0mx)j`(q`nx)x2 dx ,

=

∞∑
m=1

f̂`0(k`0m)
2

j2
`0+1(q`0m)

W `0`
nm , (9.38)

where the weightsW ``′
nm are de�ned as:

W `0`
nm =

∫ 1

0
j`0(q`0mx)j`(q`nx)x2 dx . (9.39)

The �nal expression in Equation (9.38) is an important result which shows that the SBT of a given
order can be expressed as the sum of the coe�cients obtained for a di�erent order of the transform,
with the appropriate weighting. This means we can convert the Spherical Bessel coe�cients of
order `0 into coe�cients of any other order `, which considerably speeds up calculations for the
SBT. It is also worth noticing that the weightsW ``′

nm are simply geometric terms, i.e. independent
of the �eld and can thus be tabulated.

We note that this approach is an extension of the Discrete Bessel Transform introduced in
Lemoine (1994) but using spherical Bessel functions and where the transform in Lemoine (1994)
can be considered as a special case where ` = `′.
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9.3.2 The 3D Discrete Spherical Fourier-Bessel Transform

As presented in section 9.2.3, the SFBT is the composition of a SHT for the angular component
and a SBT for the radial component. Since these two transforms can commute, they can be treated
independently and by combining discrete algorithms for both transforms, one can build a Discrete
Spherical Fourier-Bessel Transform. A convenient choice for the angular part of the transform is
the HEALPix (Gorski et al., 2005) pixelisation scheme introduced in Section 9.2.1. The radial com-
ponent can be discretised using the discrete SBT algorithm presented in the previous section. The
choice of these two algorithms introduces a discretisation of the Fourier-Bessel coe�cients as well
as a pixelisation of the 3D space in spherical coordinates.

The SFB coe�cients f̃`m(k) are de�ned by Equation (9.15) for continuous values of k . Assuming
a boundary condition on the density �eld f , the discrete SBT can be used to discretise the values
of k . The discrete SFB coe�cients are therefore de�ned as:

a`mn = f̃`m(k`n) , (9.40)

for 0 ≤ ` ≤ Lmax , −` ≤ m ≤ ` and 1 ≤ n ≤ Nmax . These discrete coe�cients are simply obtained
by sampling the continuous coe�cients on the k`n grid introduced in the previous section.

To this discretised Fourier-Bessel space corresponds a dual grid of the 3D space de�ned by com-
bining the HEALPix pixelisation scheme and the discrete SBT.

In the angular domain, for a given value of r , the �eld f (r ,θ ,φ) can be sampled on a �nite number
of points using HEALPix. The radial component of the transform is conveniently performed using
the discrete SBT. Indeed, this algorithm introduces a radial grid compatible with the discretised
k`n spectrum. Although this radial grid r`n depends on the order ` of the SBT, it will be justi�ed in
the next section that only one grid r`0n is required to sample the �eld along the radial dimension.
The value of `0 is set to `0 = 0 for convenience as the properties of the zeros of the Bessel function
ensure that r0n will be regularly spaced between 0 and R:

r0n =
n

Nmax
R . (9.41)

For given values of θi and φ j , the �eld f (r ,θi ,φ j ) can now be sampled on discrete values of r = r0n .

Combining angular and radial grids, the 3D spherical grid is de�ned as a set of Nmax HEALPix
maps equally spaced between 0 and R. An illustration of this grid is provided on Figure 9.3 where
only one quarter of the space is represented for clarity.

Using this 3D grid it becomes possible to compute back and forth the SFB transform between
a density �eld and its SFB coe�cients. Here, a detailed description of the algorithm for both the
direct and inverse discrete SFB transform is provided below.

inverse transform Let a`mn be the discrete SFB coe�cients of the density �eld f . The re-
construction of f on the spherical 3D grid requires two steps:
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Figure 9.3: Representation of the spherical 3D grid for the Discrete Spherical Fourier-Bessel Transform
(R = 1 and Nmax = 4)

1) First, from the a`mn , the inverse discrete SBT is computed for all ` and m. This transform
can easily be evaluated thanks to a matrix product:




∀ 0 ≤ ` ≤ Lmax

∀ −` ≤ m ≤ `
,



f`m(r`01)
f`m(r`02)

...
f`m(r`0Nmax )



=
T``0

R3



a`m1

a`m2
...

a`mNmax



. (9.42)

Here, it is worth noticing that the matrix T``0 allows the evaluation of the SBT of order `
and provides the results on the grid of order `0.

2) From the spherical harmonics coe�cients f`m(r`0n) given at speci�c radial distances r`0n it
is possible to compute the inverse SHT. For eachn between 1 and Nmax the HEALPix inverse
SHT is performed on the set of coe�cients {f`m(r`0n)}`,m . This yields Nmax HEALPix maps
which constitute the sampling of the reconstructed density �eld on the 3D spherical grid.

direct transform Given a density �eld f sampled on the spherical 3D grid, the SFB coe�-
cients a`mn are computed in three steps:

1) For each n between 1 and Nmax the SHT of the HEALPix map of radius r`0n is computed.
This yields f`m(r`0n) coe�cients.
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2) The next step is to compute the SBT of order `0 from the f`m(r`0n) coe�cients for every
(`,m). Again, this operation is a simple matrix product:




∀ 0 ≤ ` ≤ Lmax

∀ −` ≤ m ≤ `
,



f̃ `0
`m(k`01)
f̃ `0
`m(k`02)...

f̃ `0
`m(k`0Nmax )



=
T`0`0

K3



f`m(r`01)
f`m(r`02)

...
f`m(r`0Nmax )



. (9.43)

This operation yields f̂ `0
`m(k`0n) coe�cients which are not yet SFB coe�cients because the

order of the spherical Bessel coe�cients `0 does not match the order of the spherical har-
monics coe�cients `. An additional step is necessary.

3) The last step required to gain access to the SFB coe�cients a`mn is to convert the spherical
Bessel coe�cients for order `0 to the correct order ` that matches the spherical harmonics
order. This is done by using relation Equation (9.38):




∀ 0 ≤ ` ≤ Lmax

∀ −` ≤ m ≤ `

∀ 1 ≤ n ≤ Nmax

, f̃`m(k`n) =
Nmax∑
p=1

f̃ `0
`m(k`0p )

2W `0`
np

j2
`0+1(q`p )

, (9.44)

whereW `0`
np are de�ned by Equation (9.39). This operation �nally yields the a`mn = f̃`m(k`n)

coe�cients.

9.4 isotropic wavelets on the 3d ball

The aim of this section is to introduce a new wavelet transform, based on the SFB transform,
which extends to the 3D ball the concepts of the 2D Starlet introduced in Chapter 4. Indeed, the
isotropic wavelet transform behind the Starlet can be fully de�ned using isotropic �lters which
are simple to express in the SFB domain as seen in section Section 9.2.4. Based on this idea, we
build an isotropic 3D wavelet on the ball implemented in SFB space, which is only made possible
by the practical algorithm introduced in the previous section to evaluate the direct and inverse
SFB transform.

9.4.1 Wavelet decomposition

As was detailed in Chapter 4, the key to the discrete wavelet transform is the ability to recursively
compute wavelet and approximation coe�cients from one resolution to the next by simple con-
volution with a �lter bank (h,д) which eliminated the need to explicitly compute the hermitian
product between the signal and the wavelets. When the strict requirements of non-redundant or-
thogonal wavelet transforms are relaxed, one is free to design a wavelet simply by de�ning these
two �lters h and д which must only verify the exact reconstruction formula Equation (4.50).

Taking full advantage of this freedom of design, Starck and Murtagh (2006) proposed a 2D
isotropic undecimated wavelet transform entirely de�ned by an isotropic �lter h, and such that
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д = δ −h (which automatically satis�es the perfect reconstruction requirement). As the �lter h is
linked to the scaling function ϕ through the scaling equation in Equation (4.16), this transform is
equivalently de�ned in terms of a scaling functionϕ. As one particular example of such an isotropic
wavelet transform, Starck and Murtagh (2006) introduced the Starlet transform (see Section 4.3.2)
entirely de�ned by the choice of a B-spline of order 3 for the scaling function. This transform
was subsequently transposed to the sphere Starck and Murtagh (2006), thus de�ning an isotropic
undecimated wavelet on the sphere, by implementing the convolution with the �lters h and д in
the spherical harmonics domain. While convolution by a �lter on the sphere is generally di�cult to
perform, it becomes very simple in the spherical harmonics domain when the �lter is azimuthaly
symmetric.

In much the same way that the 2D undecimated isotropic wavelet was transposed to the sphere,
it can now be transposed to the 3D ball since the convolution by an isotropic �lter is trivial in SFB
space from Equation (9.25).

Our Isotropic 3D wavelet on the ball is de�ned from an isotropic scaling function ϕ(r ,θr ,φr ). In
complete analogy to the wavelet decomposition described in Chapter 4, we use the scaling equation
given in Equation (4.16) to de�ne a low-pass �lter h as:

1
√
2
ϕ

(r
2

)
= h ∗ϕ(r ) . (9.45)

Thanks to the isotropy of the scaling function, the convolution formula in Equation (9.25) applies
and this expression can equivalently be written in the SFB domain where the �lter h can be made
explicit in terms of the scaling function:

h̃00(k) = 1
π

ϕ̃00(2k)
ϕ̃00(k)

, (9.46)

and h̃`m = 0 for all (`,m) , 0. At a given scale 2j , we de�ne the rescaled version of this �lter as:

h̃(j)00 (k) =
1
π

ϕ̃00(2j+1k)
ϕ̃00(2jk)

= h̃00(2jk) . (9.47)

Following the same approach as for the Starlet, we now de�ne a high-pass �lter д as д = δ − h,
which implies the following choice of wavelet function ψ (r ) = ϕ(r ) − 1√

2ϕ(r2 ). The �lter д shares
the isotropy of h and its expression in SFB space is also very simple:

д̃(j)00 (k) =
1
π

*
,

1
√
2
−
ϕ̃00(2j+1k)
ϕ̃00(2jk)

+
-
. (9.48)

Just as for the 2D undecimated wavelet transform, the approximation and detail coe�cients can
recursively be computed from one resolution to the next by applying the �lter bank (h,д):

aj+1(r ) = h(j) ∗ aj (r ) , (9.49)
d j+1(r ) = д(j) ∗ aj (r ) , (9.50)

The strength of the Cartesian discrete undecimated wavelet transform was the ability to e�ciently
compute this convolution product in direct space, which is no longer the case in a spherical coor-
dinate system. Nevertheless, we can still evaluate this product in SFB space, which yields:

ãj+1
`m (k) = √2π h̃(j)00 (k) ãj`m(k) , (9.51)

d̃ j+1
`m (k) = √2π д̃(j)00 (k) ãj`m(k) , (9.52)
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These relations allow us to implement the wavelet decomposition recursively directly in SFB space.
However, in order to apply these formulae, the SFBT of the signal f (r ) must �rst be performed and
then the wavelet coe�cients themselves d j (r ) must be recovered from their SFB transform d j

`m(k).
This is made possible by the discrete SFBT introduced in the previous section and its associated
sampling of the 3D ball.

Consider a function f de�ned on the ball, such that f (R) = 0, then a discrete set of SFB coe�-
cients can be computed using only a discrete sampling of f on the ball as described in Section 9.3.2.
This leads to the complete algorithm for computing the 3D isotropic wavelet on the ball presented
in Algorithm 9.1. Using this algorithm, we can in practice compute the wavelet decomposition
W = {d1,d2, · · · ,d J ,a J } of a function f sampled on the 3D spherical grid introduced in the pre-
vious section.

Algorithm 9.1 Discrete 3D isotropic wavelet on the ball
Require:

Input data f (r ,θ ,φ) sampled on the spherical grid de�ned in Section 9.3.2.
Number of scales J .

1: Set a0 = f .
2: Tabulate the �lter h(j)00 (k0n) for j ∈ [1, J ].
3: Compute a0

`mn , the discrete SFBT of a0.

4: for j = 0 to J − 1 do
5: Compute approximation coe�cients: ãj+1

`mn =
√
2π h̃(j)00 (k0n)ãj`mn .

6: Compute wavelet coe�cients: d̃ j+1
`mn = ãj

`mn − ãj+1
`mn .

7: end for
8: Compute the inverse discrete SFBT of {d1

`mn ,d
2
`mn , · · · ,d

J
`mn ,a

J
`mn} to get {d1,d2, · · · ,d J ,a J }.

9: return The wavelet decomposition {d1,d2, · · · ,d J ,a J }, sampled on the 3D spherical grid.

9.4.2 Inverse Transform

Since the wavelet coe�cients are de�ned as the di�erence between two resolutions, the reconstruc-
tion from the wavelet decompositionW = {d1, . . . ,d J ,a J } is straightforward and corresponds to
the reconstruction formula of the à trous algorithm:

a0 = a J +

J∑
j=1

d j . (9.53)

However, given the redundancy of the transform, the reconstruction is not unique. It is possible
to take advantage of this redundancy to reconstruct aj from aj+1 and d j+1 by using a least squares
estimate.

From the recursive wavelet decomposition de�ned in Equation (9.51) and Equation (9.52), by re-
spectively multiplying these equations by h̃∗j

`m(k) and д̃∗j
`m(k), the following expression is obtained

for the least squares estimate of aj from aj+1 and d j+1:

ãj
`m(k) = ãj+1

`m (k)H̃ (j)
`m(k) + d̃ j+1`m G̃(j)

`m(k) , (9.54)
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(a) Scaling function ϕ̃2
−jkc
00 (k) for j = 0, 1, 2 (b) Wavelet function ψ̃ 2−jkc

00 (k) for j = 0, 1, 2

Figure 9.4: Scaling function and Wavelet function for kc = 1

where H̃ (j) and G̃(j) are de�ned as follows:

H̃ (j)
`m(k) =

1
√
2π

h̃∗j
`m(k)

|h̃j
`m(k)|2 + |д̃j`m(k)|2

, (9.55)

G̃(j)
`m(k) =

1
√
2π

д̃∗j
`m(k)

|h̃j
`m(k)|2 + |д̃j`m(k)|2

, (9.56)

for (`,m) = 0, otherwise H̃ (j)
`m(k) = 0 and G̃(j)

`m(k) = 0.

9.4.3 Choice of a scaling function

Any function with spherical symmetry and a cut-o� frequency kc would do as a scaling function
but we choose to use a B-spline function of order 3 to de�ne our scaling function:

ϕ̃kc
`m(k) =

3
2B3

(
2k
kc

)
δ`0δm0 . (9.57)

where
B3(x) = 1

12
�|x − 2|3 − 4|x − 1|3 + 6|x |3 − 4|x + 1|3 + |x + 2|3�

. (9.58)

This scaling function and its corresponding wavelet function are plotted in SFB space for di�erent
values of j in Figure 9.4

Other functions such as Meyer wavelets or the needlet function Marinucci et al. (2008) can
be used as well. In particular, needlet wavelet functions have a much better frequency localisation
than the wavelet function derived from the B3-spline, but the price to pay is more oscillations in the
direct space. To illustrate this, we show in Figure 9.5 two di�erent wavelet functions. Figure 9.5 left
shows the 1D pro�le of the spline (continuous line) and needlet (dotted line) wavelet functions at
a given scale. Figure 9.5 right shows the same function, but we have plotted the absolute value
in order to better visualize their respective ringing. As can be seen, for wavelet functions with
the same main lob, the needlet wavelet oscillate much more than the spline wavelet. Hence, the
best wavelet choice certainly depends on the �nal applications. For statistical analysis, detection
or restoration applications, we may prefer to use a wavelet which does not oscillate too much and
with a smaller support, and the spline wavelet is clearly the correct choice. For spectral or bispectral
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Figure 9.5: Comparaison between spline and needlet wavelet functions on the sphere.

analysis, where the frequency localization is fundamental, then needlet should be preferred to the
spline wavelet.

To illustrate this wavelet transform, a set of SFB coe�cients was extracted from a 3D density
�eld using our discrete SFBT algorithm. The test density �eld, described more in details in the next
section, was provided by a cosmological n-body simulation which was carried out by the Virgo
Supercomputing Consortium using computers based at Computing Centre of the Max-Planck So-
ciety in Garching and at the Edinburgh Parallel Computing Centre4.
The wavelet decomposition presented above can then be computed from the SFB coe�cients of
the test density �eld and yields the SFB coe�cients of the various wavelet scales and smoothed
away density. Using the inverse discrete SFBT, the actual wavelet coe�cients can be retrieved in
the form of 3D density �elds. These density �elds are shown on Figure 9.6.

9.4.4 Toy experiment

In this section, we present a simple wavelet denoising application on a density �eld in spherical
coordinates using the Isotropic 3D Wavelet transform on the ball.

Denoising using sparse transforms can be performed very easily, by applying a simple thresh-
olding on the coe�cients. One can use a soft or hard thresholding (see Chapter 3) according to
whether we want more accuracy or less artefacts. The threshold level is typically such that, for
an additive gaussian noise, the thresholding operator kills all noise coe�cients except a small
percentage, keeping only the signi�cant coe�cients which contain most of the information. The
threshold we use is typically a simple κσ , with κ ∈ [3, 4], which corresponds respectively to 0.27%
and 6.3 · 10−5 false detections. Other methods exist, that estimate automatically the threshold to
use in each band like the False Discovery Rate (see Benjamini and Hochberg (1995); Miller et al.
(2001)). The correlation between neighbour coe�cients intra-band and/or inter-band may also be
taken into account (see Sendur and Selesnick (2002b,a)).

This experiment is performed on the same N-body simulation from the Virgo Consortium as the
one presented in the previous section on Figure 9.6. The Virgo large box simulation5 provides us
with a Cartesian density cube. The SFB coe�cients of the test density �eld are �rst computed by

4 The data is publicly available at http://www.mpa-garching.mpg.de/Virgo/VLS.html
5 a ΛCDM simulation at z = 0, which was calculated using 5123 particles for the following cosmology: Ωm = 0.3, ΩΛ =

0.7, H0 = 70km s−1Mpc−1,σ8 = 0.9. The data cube provided is 479 h−1Mpc in length.

http://www.mpa-garching.mpg.de/Virgo/VLS.html
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(a) Density from the initial
spherical Fourier-Bessel
coe�cients

(b) First wavelet scale (c) Second wavelet scale

(d) Third wavelet scale (e) Fourth wavelet scale (f) Smooth approximation

Figure 9.6: Isotropic Spherical 3D wavelet decomposition of a density �eld. Only a cube at the center of the
spherical �eld is displayed.

sampling the Virgo density �eld on the spherical 3D grid illustrated on Figure 9.3, for nside = 2048,
lmax = 1023 and nmax = 512. In order to perform the SFB decomposition, the observer is placed at
the center of the box, and the SFB coe�cients are calculated out to R = 479/2 h−1Mpc, setting the
density �eld to zero outside of this spherical volume.

A Gaussian noise was then added to the SFB coe�cients to produce a noisy density �eld. Fig-
ure 9.7a and Figure 9.7b show the central portion of slices taken in the middle of respectively the
original and noisy spherical density �elds. The level of the noise is comparable to the amplitude
of the faint �lamentary structures that can be seen in the original density �eld on Figure 9.7a. Us-
ing Hard Thresholding of the wavelet coe�cients, the noisy �eld is �ltered to yield the restored
density displayed on Figure 9.7c. The residuals after denoising are shown on Figure 9.7d. The arti-
�cially added noise is successfully removed, without much loss to the large scale structure, though
some of the smaller �lamentary structures are removed. This however is to be expected given the
isotropic nature of the wavelet transform used here, better suited to restore more isotropic features
such as clusters.
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(a) Original �eld (b) Noisy �eld

(c) Denoised �eld (d) Residuals

Figure 9.7: Isotropic Undecimated Spherical 3D wavelet Hard thresholding applied to a test density �eld.

9.5 conclusion

Modern cosmology requires the analysis of 3D �elds on large areas of the sky, which are best
described in spherical coordinates. In this con�guration, the Spherical Fourier-Bessel Transform
(SFBT) is the most natural and e�ective way to statistically analyse the �eld. As an example, we
will see in Chapter 10 that an SFB analysis is better suited than a tomographic analysis in spherical
shells to extract cosmological information from spectroscopic galaxy surveys.

On the other hand, as was illustrated throughout this thesis, wavelets are fundamental tools of
modern signal processing. In particular, combined with the sparse regularisation framework intro-
duced in Chapter 3, they �nd many applications such as denoising, deconvolution or inpainting.
Therefore, there is great interest in developing wavelets adapted to the analysis of cosmological
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�elds. For instance, the extension of wavelets to the sphere has lead to many applications for the
analysis of the CMB.

In this chapter, we have presented a new wavelet on the 3D ball, which is based on the SFBT,
and is therefore ideally suited for the analysis of large scale galaxy surveys. In order to derive
this wavelet, we have �rst presented a new sampling scheme of the 3D ball which enables the
back and forth computation of the discrete SFBT for radially limited �elds. The derivation of this
discrete SFBT has required the introduction of a new discrete algorithm for the evaluation of the
1D Spherical Bessel Transform (SBT), which can �nd many applications, including the computation
of theoretical SFB power spectra of galaxy clustering as will be illustrated in the next chapter.

To the best of our knowledge, the wavelet presented in this chapter is the only isotropic wavelet
on the 3D ball. Furthermore, due to our particular choice of scaling function, our wavelet exhibit
minimal oscillations in direct space. These two properties are very desirable for applications such
as the detection of voids or galaxy clusters in galaxy surveys.
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In this chapter, we compare two di�erent types of 3D analyses of spectroscopic galaxy sur-
veys. Although there is theoretical motivation and novel tools to explore these surveys using a
3D Spherical Fourier-Bessel (SFB) expansion of the data (introduced in Chapter 9), most survey
optimisations and forecasts are based on a tomographic spherical harmonics analysis. Our aim is
to compare these two methods in terms of cosmological parameter constraints and in particular
their robustness to unavoidable systematics due to uncertainties on the galaxy bias.

We �nd that in the absence of systematics on the galaxy bias, both techniques can recover com-
parable constraints. However, the 3D SFB seems to be more robust to this source of systematics,
suggesting that this approach should be preferred for the design and analysis of future wide-�eld
spectroscopic surveys.

The results presented in this chapter were published in Lanusse et al. (2015). This analysis has
been conducted in collaboration with Anais Rassat and Jean-Luc Starck.

10.1 introduction

Understanding the nature of the dark universe is one of the fundamental challenges of modern
cosmology today. Galaxy clustering - the statistical analysis of the spatial distribution of galaxy
number counts - has been identi�ed as one of the most promising probes available to explore

175
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this (Peebles, 1980; Albrecht et al., 2006; Peacock et al., 2006), with spectroscopic surveys being
particularly useful in probing both tangential and radial modes in the Universe.

Galaxy number counts have been extensively studied with current and planned future surveys,
and the analysis can be performed in various spaces, for example, Fourier space (Seo and Eisen-
stein, 2003, 2007), con�guration space (Eisenstein et al., 2005; Slosar et al., 2009; Xu et al., 2010),
and spherical harmonic space (e.g., Dolney et al., 2006; Kirk et al., 2012). For future wide-�eld spec-
troscopic surveys, the galaxy �eld will cover large areas on the sky so that an analysis in spherical
space provides a natural decomposition for certain physical e�ects as well as selection e�ects. For
wide-�eld spectroscopic surveys, the depth of the survey means that a 3D spherical Fourier-Bessel
(SFB) analysis is the most natural to perform (Fisher et al., 1995; Heavens and Taylor, 1995; Rassat
and Refregier, 2012).

Previous SFB analyses of the local Universe (e.g., Erdogdu et al., 2006a,b) used relatively small
data sets, where straightforward summation methods were su�cient to measure the SFB coef-
�cients. Today, novel numerical methods for 3D spherical analysis are available (Leistedt et al.,
2012; Lanusse et al., 2012) to prepare for future wide-�eld surveys that will map the large-scale
structure of the Universe with a large number of galaxies. The 3D SFB analysis can also be ap-
plied to other probes, for instance weak-lensing (Heavens, 2003; Castro et al., 2005; Kitching et al.,
2008b, 2011; Merkel and Schafer, 2013; Grassi and Schafer, 2014; Kitching et al., 2014) and the inte-
grated Sachs-Wolfe e�ect (e.g. Shapiro et al., 2012), which will be crucial for high-precision probe
combinations.

Even given the existing 3D SFB tools and the theoretical motivation for this approach, most
existing forecasts and survey optimisation for future wide-�eld surveys focus on a tomographic
analysis, that is, one where the survey is split into redshift bins, and 2D spherical harmonic auto-
and cross-power spectra Ci j (`) are measured (e.g., Laureijs et al., 2011; Kirk et al., 2012). One of
the advantages of a tomographic spherical harmonics analysis is that there are several available
codes to rapidly calculate the tomographic spectra, either for galaxy correlations or for other com-
plementary probes (e.g., Di Dio et al., 2013; Refregier et al., 2011); another advantage is that it is
straightforward to convert survey observables (θ ,ϕ, z) into a power spectrum measurement with-
out assuming a distance-redshift relation (which can be based on a �ducial cosmology), while the
3D SFB analysis requires such a relation to translate the observables into the 3D SFB spectrum.
However, in the tomographic analysis, some of the radial information may be lost as a result of
redshift binning, while the 3D SFB analysis potentially uses the entire 3D information, especially
for a spectroscopic survey. With this in mind, a natural hypothesis is that a 3D SFB spectroscopic
analysis might extract more information than a tomographic one.

Several studies have already investigated this, for example, Di Dio et al. (2014) and Asorey
et al. (2012) found that a tomographic analysis returned equivalent or better constraints than a
3D Fourier power spectrum analysis. They concluded that the tomographic approach should be
preferred as it avoids the need to assume a particular cosmology to convert redshifts into comov-
ing distances and simpli�es the combination with other probes such as weak-lensing. Nevertheless,
they both acknowledged that for a spectroscopic survey the tomographic analysis would require
a large number of redshift bins to recover the full 3D information, which is limited by shot noise
problems. For the �rst time, Nicola et al. (2014) compared the tomographic analysis to a 3D SFB
analysis and found the tomographic constraints to be superior, but they still noted that the 3D
SFB approach was stable with regard to the choice of �ducial cosmology for the necessary conver-
sion from redshift to comoving distance. However, their treatment of the non-linear scale cut-o�
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used in the Fisher matrix comparison is not equivalent between the tomographic and the 3D SFB
analysis. While the 3D power spectra is cut o� at a physical scale (k) corresponding to nonlinear
e�ects, the tomographic power spectra are truncated at �xed arbitrary angular scales. This ignores
the interplay between the redshift of the tomographic bins and the wavenumber of the SFB spec-
trum. As a result, the non-linear cut-o� in Nicola et al. (2014) does not allow a fair comparison
between 2D and 3D methods, which means understanding the strength of each method is still an
open question. We address this question by carefully excluding non-linear scales.

Understanding how best to extract information for a 3D galaxy survey is of utmost importance
to address the fundamental questions in modern cosmology today, and also to ensure that future
planned surveys are e�ciently analysed as well as optimised. To address this pressing question,
we propose here a new investigation of the information that can be extracted from a spectroscopic
galaxy survey by tomographic vs. 3D SFB analysis. Our approach focuses on the seven common
parameters that are currently used in wide-�eld survey optimisation and planning, that is, on
~θ = {Ωm ,h,w0,wa ,σ8,Ωb ,ns}, while putting forward a coherent approach regarding the exclusion
of non-linear scales for both the 2D and 3D methods for the �rst time. In addition, we investigate for
the �rst time how tomographic and 3D SFB methods are a�ected by nuisance parameters related
to the galaxy bias, which we allow to be both redshift- and scale-dependent. However, we do not
include Redshift Space Distortions (RSD) or relativistic e�ects in our study. Including RSDs, which
will be present in the data, provides an additional probe, which improves constraints. Although a
prescription for RSDs in SFB space exists (Heavens and Taylor, 1995), as a �rst approach, we do
not include them here in either the tomographic or the SFB analysis to ensure that we compare
like with like. Their impact should nonetheless be assessed, which we plan to do in a future work.

Finally, in the spirit of reproducible research, we make available all tomographic and 3D SFB
codes used for this analysis, along with the scripts to reproduce our results.

This chapter is structured as follows: in Section 10.2, we brie�y review the theory behind the sta-
tistical analysis of galaxy number counts, including the prescription for the tomographic analysis
and the 3D SFB. In Section 10.3, we provide an overview of the Fisher matrix forecasting-approach
that we used to compare the relative constraining power of each method, and include the descrip-
tion of the future spectroscopic wide-�eld survey for which we calculate forecasts, of the question
of non-linear scale treatment, and galaxy bias nuisance parameters. In Section 10.4, we present
the comparison between the constraining power of the 3D SFB and tomographic methods and in-
vestigate how this comparison holds in the presence of galaxy bias nuisance parameters. We also
determine how this a�ects a future wide-�eld survey optimisation. In Section 10.5, we present our
conclusions in the context of high-precision cosmology with future wide-�eld surveys.

10.2 modelling of spectroscopic galaxy surveys

In this section we describe the formalism behind the analysis of galaxy clustering in the context
of a spectroscopic survey. We present the two methodologies compared in this chapter, one based
on a tomographic analysis of angular correlations, the other based on the correlations of the 3D
expansion of the galaxy �eld on a spherical Fourier-Bessel basis.
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10.2.1 Galaxy and ma�er fields

In a galaxy survey, the quantity observed is the galaxy number density n(r = (r ,θ ,φ)), which can
be de�ned in terms of the galaxy overdensity δд through

n(r) = n̄(r )(1 + δд(r, z(r ))) , (10.1)

where n̄(r ) is the mean number density of observed galaxies at comoving distance r . In this expres-
sion, the time dependence of the observed overdensity as a function of comoving distance is made
explicit through the z(r ) relation. The mean number density n̄(r ) can be expressed in terms of the
survey selection function ϕ(r ) as

n̄(r ) = ϕ(r )n̄ = N

V
ϕ(r ) , (10.2)

with n̄ the mean number density of observed galaxies, N the total number of observed galaxies,
andV the volume of the survey that ful�lsV =

∫
ϕ(r )dr. Note that in the general case, the selection

function has both an angular and a radial dependence (see Section 10.2.4), but we do not consider
here the full impact of an angular mask and we will only account for partial coverage of the sky
through a multiplicative fsky factor.

In Equation (10.1), the time (or redshift) dependence of the galaxy overdensity is due to the
growth of structure and the evolution of galaxy bias with respect to the matter density �eld with
time. Following the approach of Rassat and Refregier (2012), in the linear regime this dependence
on redshift can be separated in the form of growth and bias prefactors,

δд(r, z(r )) = b(r ,k)D(r )δ (r) + ϵ(r) , (10.3)

where b(r ,k) is a bias with a possible scale dependence, D(r ) is the growth factor, δ (r) = δ (r, z = 0)
is the matter overdensity �eld at present day, and ϵ(r) is a Poisson noise term arising from the
discrete nature of the observed galaxy number density. As in Rassat et al. (2008), we considered
the linear relation Equation (10.3) to hold in the standard cosmological model on large scales up to
a redshift-dependent kmax(z) with kmax(z = 0) ' 0.12hMpc−1 and kmax(z = 2) ' 0.25hMpc−1. We
then proceeded to de�ne a modi�ed selection function that includes the e�ects of bias and growth
in the linear regime,

ϕevol = b(r ,k)D(r )ϕ(r ) . (10.4)

Using this modi�ed selection function, the observed galaxy density can now be expressed directly
as a function of the true matter overdensity at present time:

n(r)
n̄
= ϕ(r ) +ϕevol(r ,k)δ (r) +ϕ(r )ϵ(r) . (10.5)

10.2.2 Tomographic analysis of galaxy clustering

In the tomographic analysis, the survey is decomposed into spectroscopic redshift bins from which
are computed classical angular correlation functions. The angular number density for one spectro-
scopic bin (i) limited between z(i)min and z(i)max is de�ned as

n(i)(θ ) = n̄(i) (1 + δ (i)(θ )) = ∫ z(i )max

z(i )min

n(z,θ )dz , (10.6)
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where n̄(i) is the average galaxy number density per steradians in tomographic bin (i) and δ (i)(θ )
is the angular galaxy overdensity in bin (i). Expanding the angular overdensity in spherical har-
monics yields

n(i)
`m =

∫
n(i)(θ )Y ∗`m(θ )dθ , (10.7)

From this spherical harmonics expansion, the tomographic angular correlation functions between
bins (i) and (j), noted C

(i j)
` , is de�ned for ` ≥ 1 as

C
mm′

``′

(i j)
≡

1
n̄(i)2

< n(i)
`mn

(j)∗
`′m′ > , (10.8)

= *
,
C(i j)
`
+
δKi j

n̄(i)
+
-
δK``′δ

K
mm′ , (10.9)

where δK is the Kronecker symbol. In the last equation, the �rst term C(i j)
`

is the contribution
from galaxy clustering and the second term 1

n̄(i ) is the contribution from shot noise, which only
a�ects the auto-correlation power spectra. Note that di�erent angular modes are predicted to be
uncorrelated in linear theory for a Gaussian random �eld; these can become correlated as a result of
non-linearities or lack of full-sky coverage, e�ects that we did not consider in this work. Formally,
the correlation functionsC(i j)

`
are related to the matter power spectrum P(k) at z = 0, in the linear

regime, according to

C(i j)
`
=

2
π

∫
dkP(k)k2

∫
w (i)

evol(r ,k)j`(kr )dr
∫

w (j)
evol(r ′,k)j`(kr ′)dr ′ , (10.10)

where w (i)
evol is a window function for bin (i), which includes the e�ects of spectroscopic selection,

linear growth, and bias:
w (i)

evol = ϕ
evol(r ,k)s(i)(r ) , (10.11)

withϕevol is the modi�ed selection function including growth and bias introduced in Equation (10.4)
and s(i) is the spectroscopic selection function that de�nes the redshift bin i , that is, s(i)(z) = 1 if
z ∈ [z(i)min, z

(i)
max], s(i)(z) = 0 otherwise.

This expression is the full general expression of the tomographic angular power spectrum. How-
ever, it is common to evaluate the angular power spectrum through the well-known Limber ap-
proximation. To the �rst order (Loverde and Afshordi, 2008), the Limber approximation applied to
the previous equation yields

C(i j)
`|Limber

=

∫ dr
r 2

P

(
` + 1/2

r

)
w (j)

evol

(
r , ` + 1/2

r

)
w (i)

evol

(
r , ` + 1/2

r

)
. (10.12)

The Limber approximation holds to very good accuracy for the auto-correlations under the as-
sumption that the bin window functions do not vary too rapidly or that the overlap between bins
is not too small.

10.2.3 3D spherical Fourier-Bessel analysis of galaxy clustering

The Spherical Fourier-Bessel decomposition is the natural expansion of 3D �elds described in
spherical coordinates and was introduced in details in Section 9.2.3. We now present how this
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expansion can be applied to the analysis of galaxy clustering. The Spherical Fourier-Bessel Trans-
form (SFBT) of the galaxy number density n(r) is de�ned as

n`m(k) =
√

2
π

∫
n(r)kj`(kr )Y ∗`m(θ ,φ)dr , (10.13)

where j` are spherical Bessel functions, Y`m are spherical harmonics, ` and m are multipole mo-
ments, and k is the wavenumber. Note that contrary to the symmetric convention adopted in the
previous chapter (which matched for instance the formalism of Heavens and Taylor (1995), see
Section 9.2.2), we use here the widespread orthonormal convention for the SFB, as in Rassat and
Refregier (2012), Fisher et al. (1995), or Pratten and Munshi (2013). From the SFB coe�cients n`m(k),
the number density can be recovered through the inverse SFB transform as

n(r ,θ ,φ) =
√

2
π

∑
`,m

∫
n`m(k)kj`(kr )dkY`m(θ ,φ) . (10.14)

Although the SFB expansion is performed in comoving space, in practice, the galaxy number den-
sity is only observed in redshift space. This means that a �ducial cosmology has to be assumed
to relate observed redshift and comoving distance of the galaxies in the survey. To distinguish
between true comoving distance r and estimated comoving distance, we introduce the notation

r̃ ≡ r |�d(z) . (10.15)

When the �ducial cosmology exactly corresponds to the true cosmology, r̃ = r , but in general,
this is not the case. The importance of making this distinction has been stressed in Heavens et al.
(2006), especially when constraining dark energy parameters, which are very sensitive to the r (z)
relation.

For multipoles of order ` ≥ 1, the 3D SFB spectrum of the observed galaxy density can be
expressed in the form

C
mm′

``′ (k ,k ′) ≡ 1
n̄2
< n`m(k)n∗`′m′(k ′) > , (10.16)

= (C`(k ,k ′) +N`(k ,k ′))δ``′δmm′ . (10.17)

This expression can be directly compared to the de�nition of the tomographic power spectra in
Equation (10.9). Just like in the tomographic case, di�erent angular multipoles are not correlated
when an angular mask is neglected. In this expression, the signal power spectrum C`(k ,k ′) takes
the form (see Rassat and Refregier (2012) for this exact prescription or Heavens and Taylor (1995))

C`(k ,k ′) =
( 2
π

)2 ∫
k ′′2P(k ′′)W evol

` (k ,k ′′)W evol
` (k ′,k ′′)dk ′′ , (10.18)

where the following window function includes the e�ects of linear growth and bias and the �ducial
redshift-comoving distance relation:

W evol
` (k ,k ′′) = k

∫
ϕevol(r ,k ′′)j`(kr̃ )j`(k ′′r )r 2dr . (10.19)

The noise covariance matrix can be expressed as

N`(k ,k ′) = 2kk ′
n̄π

∫
ϕ(r )j`(kr̃ )j`(k ′r̃ )r 2dr . (10.20)
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This expression is equivalent to that used in Yoo and Desjacques (2013) and a derivation can be
found in Section D.3.

When considering a realistic galaxy survey with �nite depth, the observed galaxy number den-
sity vanishes above a given rmax and ful�ls

∀(θ ,ϕ), n(rmax,θ ,ϕ) = 0 . (10.21)

Under this boundary condition, the spherical Fourier-Bessel transform can be inverted from dis-
cretely sampled coe�cients n`m(k`n) and Equation (10.14) becomes

n(r ,θ ,ϕ) =
∑
`,m,n

κ`nn`m(k`n)k`n j`(k`nr )Y`m(θ ,φ) , (10.22)

where the discrete wavenumbers k`n are de�ned in terms of the zeros of the spherical Bessel
function q`n as

k`n =
q`n
rmax

, (10.23)

and the normalisation factors κ`n are de�ned as κ`n =
√
2π r−3max

j2l+1(qln )
(Fisher et al., 1995).

In the context of Fisher matrix forecasting, the main consequence of this discretisation is that it
imposes a discrete sampling of the SFB spectrum that can be represented in matrix formC`(n,n′) =
C`(k`n ,k`n′) without loss of information. Furthermore, our discrete Spherical Bessel Transform
(SBT) algorithm de�ned in Section 9.3.1 applies in this case and allows us to e�ciently compute
C`(n,n′) in practice.

10.2.4 E�ect of partial sky coverage

So far, we have assumed complete sky coverage. However, obscuration and confusion due to our
own galaxy means that only a portion of the sky is observable in practice. This e�ect can be mod-
elled in a similar way for both tomographic and SFB derivations by applying an angular weighting
function M(θ ,φ) to the galaxy density �eld, for instance with M(θ ,φ) = 0 in masked areas and
M(θ ,φ) = 1 otherwise. The e�ect of such a mask on angular power spectra is well known and
results in a coupling of angular modes that would otherwise remain uncorrelated. Formally, the
signal part of both tomographic and SFB power spectra becomes

Cmm′(i j)
``′

=
∑
`′′m′′

M`m`′′m′′M`′m′`′′m′′C
(i j)
`′′

, (10.24)

Cmm′
``′ (k ,k ′) =

∑
`′′m′′

M`m`′′m′′M`′m′`′′m′′

∫∫
K``′′(k ,k1)K`′`′′(k ′,k2)

× C`′′(k1,k2) dk1dk2 , (10.25)

where M`m`′′m′′ is an angular coupling kernel de�ned in terms of the angular mask as

M`m`′m′ =

∫
Ω
Y`′m′(Ω)M(Ω)Y ∗`m(Ω) dΩ , (10.26)

and K``′(k ,k ′) is a wavenumber coupling kernel de�ned as

K``′(k ,k ′) = 2
π
k ′2

∫
r
j`(kr )j`′(k ′r )r 2 dr . (10.27)
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The noise part of the power spectra due to shot noise can be approximated as only a�ected by a
simple area scaling (Kitching et al., 2014). Note that the coupling matrix K``′(k ,k ′) reduces to a
Dirac delta function when ` = `′ thanks to the orthogonality of the spherical Bessel functions. In
both cases, the mask will induce a coupling of angular modes. In the SFB case, this also means that
the coupling kernels K``′(k ,k ′) can no longer be considered as Dirac delta functions and induce
an additional coupling between di�erent wavenumbers.

In practice, the impact of the mask can conveniently be taken into account using the pseudo-C`

methodology, which is well known for studies of the CMB (Hivon et al., 2002). In the tomographic
as well as the SFB analysis, the pseudo-C` estimator can be linked to the theoretical C` power
spectrum using either a 2D or 3D mixing matrix:

< C̃`(k`n ,k`n′) > =
∑
`′n1n2

M3D
``′nn1n′n2C`′(k`′n1 ,k`′n2) , (10.28)

< C̃(i j)
`
> =

∑
``′

M2D
``′C

(i j)
`′

. (10.29)

A derivation of the 2D mixing matrix can be found in Hivon et al. (2002), while the 3D matrix for
the galaxy clustering SFB power spectrum is derived in Pratten and Munshi (2013).

It is important to point out that the e�ect of the mask can be taken into account in a similar
way using pseudo-C`s for the two methodologies explored here. Consequently, in a likelihood
analyses using these expressions for the measured power spectra, the e�ect of the mask should be
equivalent for the tomographic and SFB approaches. Therefore we only took partial sky coverage
through the common fsky scaling factor into account here for simplicity. This is standard practice
for Fisher matrix analyses.

10.3 forecasting cosmological constraints

10.3.1 Fisher matrix forecasting

Expected cosmological constraints using the two di�erent analysis techniques introduced in the
previous section can be estimated with the Fisher matrix formalism (Tegmark et al., 1997). The
Fisher information matrix provides a lower bound on the expected errors on cosmological param-
eters under the assumption that the likelihood can be approximated by a Gaussian at its peaks. It
is formally de�ned as the expectation value of the second derivative of the logarithmic likelihood
with respect to the parameters Θα ,Θβ :

Fα β = −

〈
∂2 lnL
∂Θα ∂Θβ

〉
. (10.30)

From this matrix, the marginal error on parameter Θα in particular can be extracted as
√(F−1)αα

, and the error on Θα , all other parameters being �xed, is bounded by (Fαα )−1/2.
The Fisher matrix may be computed from the covariance matrix of the observable and its deriva-

tives as
Fα β =

1
2Tr [C

−1C,αC
−1C,β ] . (10.31)
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10.3.1.1 Implementing the tomographic Fisher matrix

For the tomographic spectra C(i j)
`

, we computed the covariances between spectra under the Gaus-
sian approximation following the approach of Hu and Jain (2004) and Joachimi and Bridle (2010).
Denoting by ∆C(i j)

`
the di�erence between the ensemble average of the spectrum and its estimator,

the tomographic power spectra covariance is de�ned as

Cov(i jkl )
`

≡
〈
∆C(i j)

`
∆C(kl )

`

〉
, (10.32)

=
δ``′

fsky (2` + 1)
[
C̄(ik )
`

C̄(jl )
`
+ C̄(il )

`
C̄(jk )
`

]
, (10.33)

where fsky accounts for partial coverage of the sky and C̄(i j)
`

is the tomographic power spectrum
including shot noise de�ned in Equation (10.9). The expression of the tomographic Fisher matrix
becomes

F tomo
α β =

∑
(i j),(kl )

`max(i jkl )∑
`

∂C(i j)
`

∂Θα
Cov−1(i jkl )`

∂C(kl )
`

∂Θβ
, (10.34)

where the sum over (ij), (kl) indices loops over all Nzbins (Nzbins + 1)/2 combinations of bins, and
`max is a cut in multipole. The aim of this cut is to restrict the Fisher matrix to linear scales. Several
strategies are possible to de�ne `max; we describe the one adopted in this work in Section 10.3.1.4.

For the binning strategy, we chose to use equal galaxy density bins with no overlap. This choice
led to bins with irregular widths, but constant shot noise.

10.3.1.2 Implementing the SFB Fisher matrix

The Fisher matrix for the 3D SFB spectra was computed using the non-diagonal covariance matrix
obtained by discretising wavenumbers k under the boundary condition n(rmax) = 0 as explained in
Section 10.2.3. Details of computing the non-diagonal covariance matrix are given in Section D.2.
In the absence of angular mask, Equation (10.17) shows that the SFB coe�cients are uncorrelated
between di�erent angular multipoles `. Therefore, the Fisher matrix for the SFB spectra takes the
following form:

F SFBα β = fsky
∑
`

(2` + 1)
2 Tr


Ĉ−1`
∂Ĉ`

∂Θα
Ĉ−1`
∂Ĉ`

∂Θβ


, (10.35)

where the matrices Ĉ` are de�ned as

Ĉ` =



C`(0, 0) C`(0, 1) . . . C`(0,n`max)
C`(1, 0) C`(1, 1) . . . C`(1,n`max)

...
... . . . ...

C`(n`max, 0) C`(n`max, 1) . . . C`(n`max,n`max)



, (10.36)

withC`(n,p) = C`(k`n ,k`p )+N`(k`n ,k`p ). The size of each of this matrix Ĉ` is n`max ×n
`
max , where

n`max de�nes the maximum wavenumber included in the Fisher analysis for each multipole `. This
allows us to restrict the analysis to linear scales. Again, di�erent strategies can be adopted to de�ne
this cut in wavenumber; they are described in Section 10.3.1.4.
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10.3.1.3 Fisher analysis baseline

To conduct this study, we adopted as a �ducial model a ‘Vanilla’ concordance �at cosmology with
h = 0.7, Ωb = 0.045, Ωm = 0.25, ΩΛ = 0.75, Ωb = 0.045, w0 = −0.95, wa = 0, ns = 1, τ = 0.09, and
σ8 = 0.8. We adopted the standard parametrisation for the dark energy equation of state (Chevallier
and Polarski, 2001),

w(a) = w0 +wa(1 − a) . (10.37)

This �ducial cosmology was also used to compute the r̃ = r�d(z). In this model, we computed the
linear matter power spectra, including baryonic oscillations, using the �tting formula of Eisenstein
and Hu (1998).
We performed our Fisher analysis, under the constraint of a �at cosmology, on the following pa-
rameters Θ = (h,Ωm ,w0,wa ,Ωb ,ns ,σ8)

For our baseline analysis we considered a spectroscopic survey with a very small redshift un-
certainty σz = 0.003(1 + z) and a Smail-type galaxy distribution p(z) (Smail et al., 1994),

p(z) ∝ z2e−( z
0.708 )1.5 , (10.38)

which corresponds to a median redshift of zmed = 1, and we used a mean number density of
galaxies of n̄ = 0.9 gal. arcmin−2. To account for partial coverage of the sky, we scaled the Fisher
information by fsky = 0.3636, which corresponds to a survey size of 15,000 square degrees. This
setting was chosen to correspond to the speci�cation of the Euclid spectroscopic survey (Laureijs
et al., 2011).

Finally, we adopted a redshift dependent �ducial galaxy bias of the form

b(z,k) = √1 + z , (10.39)

as in Rassat et al. (2008). In Section 10.3.1.5 we describe how we accounted for our lack of knowledge
on the actual galaxy bias by parametrising this relation through nuisance parameters.

10.3.1.4 Restriction to linear scales

The constraints we aim to extract from a galaxy survey result from the information contained in
the matter power spectrum. However, since the galaxies are only biased tracers of the actual under-
lying matter density, our knowledge of the matter power spectrum is limited by our understanding
of the bias. This bias becomes more uncertain on small non-linear scales. Assuming an optimistic
knowledge of the bias could result in overestimated or cosmologically biased constraints. Hence,
following previous galaxy clustering studies (e.g., Rassat et al., 2007, 2008; Joachimi and Bridle,
2010), we completely discarded the mildly to non-linear scales and express our uncertainty of the
bias on large scales by using nuisance parameters in the next section.

As the aim of this work is to compare the constraining power of two di�erent approaches to
galaxy clustering analysis, it is important to apply the exclusion of non-linear scales to the two
methods in a coherent way to avoid biasing our results towards the method with the less con-
servative cut. Following the approach taken in Joachimi and Bridle (2010), which was based on
results from Rassat et al. (2008), we aim to only retain linear scales through the following redshift-
dependent cut in wavenumber kmax

lin :

kmax
lin (z) ≈ min[0.132z, 0.25] hMpc−1 . (10.40)
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This formula is a linear �t to the non-linearity scale in Fig. 2 of Rassat et al. (2008), which was com-
puted as a function of redshift by selecting scales that ful�l σ (R) < 0.20 and kmax < 0.25hMpc−1,
where σ (R) corresponds to the amplitude of �uctuations at R hMpc−1. However, it provides a con-
servative cut at lower redshift (below z=0.5). Since the purpose of this work is to compare two
methodologies given the same framework and set of assumptions, we used this model for the sake
of simplicity. An accurate computation of the non-linear scale could be used just as well, but this
is not expected to change the conclusions of the comparative analysis.

Because we computed the tomographic power spectra within the Limber approximation, we
related wavenumbers k to angular modes ` through k = `+1/2

r . As a result, the non-linear scale cut
translates into multipoles ` for redshift bin (i) as

`
(i)
max = k

max
lin (z(i)med)r (z(i)min) . (10.41)

This cut allows us to reject all the multipoles for a given bin (i) that is a�ected by scales above
kmax
lin (z(i)med). When computing the correlation function between two di�erent bins (i), (j) we applied

the most conservative cut: `(i j)max = min(`(i)max , `(j)max ).
In the SFB framework, applying a corresponding wavenumber cut leads to an ` dependent max-

imum number of discrete wavenumbers k`n , noted n`max, which can be obtained as the solution of
the equation

k`n`
max

r *
,

0.132
k`n`

max

+
-
= ` , (10.42)

under the constraint k`n`
max
≤ 0.25 hMpc−1. Both cuts are illustrated in Figure 10.1.

Thanks to this prescription, the same scales are excluded from the tomographic and SFB analysis.
This point is the main di�erence between our work and the analysis performed in Nicola et al.
(2014), where the exclusion of non-linear scales is not coherent between the two methodologies.
In their work, the angular power spectra are truncated at `max = 50 for all redshifts, whereas as
shown in Figure 10.1, `max should be a function of the median redshifts of the tomographic bins to
take into account the time evolution of the non-linear scale as well as the physical size of angular
modes as a function of redshift. Similarly, in the SFB analysis performed in their work, a �xed cut
at kmax = 0.20 hMpc−1 was applied, which not only ignores the interplay between angular modes
and z illustrated by Figure 10.1, but is also incoherent with the cut applied in the tomographic
analysis.

10.3.1.5 Nuisance parameters

As mentioned in the previous section, restricting the study to linear scales avoids the high uncer-
tainty on the bias that arises in the non-linear regime. Nevertheless, we also wish to express our
uncertainty on the bias even on linear scales. Following the approach of Bridle and King (2007),
Joachimi and Bridle (2010), and Kirk et al. (2012), we parametrised the bias in redshift and scale
using a grid of nuisance parameters such that the galaxy bias becomes

b(k , z) = AQ(k , z)b0(k , z) , (10.43)
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where b0 is our �ducial bias relation introduced in Equation (10.39), A is an overall amplitude and
Q(k , z) encodes perturbations around the �ducial bias and is de�ned in terms of an Nz × Nk grid
of parameters Bi j :

lnQ(k , z) = Ki (k)Z j (z)Bi j + [1 −Ki (k)]Z jB(i+1)j
+Ki [1 −Z j (z)]Bi(j+1) + [1 −Ki (k)][1 −Z j (z)]B(i+1)(j+1) , (10.44)

for ki ≤ k ≤ ki+1 and zj < z ≤ zj+1, where the coe�cients Z j and Ki are expressed as

Ki (k) = ln(k) − ln(ki )
ln(ki+1) − ln(ki ) , (10.45)

Z j (k) = ln(1 + z) − ln(1 + zj )
ln(1 + zj+1) − ln(1 + zj ) . (10.46)

The ki and zj �x the nodes of the grid and are spaced logarithmically in the intervals k ∈ [10−4, 1.0]
and z ∈ [0, 5] such that k0 = kmin, kNk+1 = kmax and z0 = zmin, zNz+1 = zmax.
The Fisher matrices are then obtained by marginalising over theseNk ×Nz + 1 nuisance parameters�
A,B00,B01,B10, . . . ,BNkNz

�
.
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10.3.2 Figures of merit

Throughout the rest of this work we compare the constraining power of the tomographic and SFB
methods by evaluating their respective Figure of Merit (FoM). We consider two FoMs, �rst the total
�gure of merit FoMTOT de�ned according to Joachimi and Bridle (2010) as

FoMTOT = ln
(

1
det(F−1)

)
, (10.47)

and second, the dark energy �gure of merit recommended by the report of the Dark Energy Task
Force (DETF) (Albrecht et al., 2006),

FoMDETF =
1√

det(F−1)w0wa

. (10.48)

The DETF FoM was designed to measure the strength of a given future survey or probe in con-
straining cosmological parameters related to the nature of dark energy, such that a large FoMDETF
value meant a high constraining power on w0 and wa . The total FoM (i.e. FoMTOT) was designed
to encompass the strength of a future survey or probe in constraining several parameters across
di�erent sectors of cosmology, such as the nature of dark matter and dark energy and initial condi-
tions. A high value of FoMTOT therefore means a good constraining power across all cosmological
sectors. The parameter is taken as an ln value, since we consider this number for seven cosmolog-
ical parameters, and the FoMTOT value would grow very quickly otherwise.

10.4 results: sfb vs. tomographic analysis

10.4.1 Comparison of SFB and tomographic analysis in the absence of systematics

We now compare the relative constraining power of the tomographic and SFB analysis of galaxy
clustering presented in Section 10.2 using the Fisher matrix formalism and the �ducial cosmology
and survey baseline described in Section 10.3. We investigate �rst the impact of the number of
redshift bins and whether the same constraints can be recovered from the two di�erent analysis.
Figure 10.2 shows the FoMs obtained using both methods as a function of number of tomographic
spectroscopic bins when assuming perfect knowledge of the bias (in dark blue).

As expected, the two FoMs for the tomographic analysis increase with the number of redshift
bins and eventually reach the performance of the SFB analysis for 30 redshift bins. Not only do the
two methodologies yield equivalent �gures of merit for this number of bins, but the 1σ contours for
all cosmological parameters are extremely similar, both in size of the ellipse and for the direction
of the degeneracies. Figure 10.3 shows the 1σ contours on all pairs of cosmological parameters
considered for the two analysis techniques using 30 tomographic bins with and without nuisance
parameters for the bias. For the �xed bias, the contours obtained by the tomographic analysis are
plotted in red and are almost indistinguishable from the contours for the SFB analysis, which are
depicted in orange.

We conclude that exactly the same information is extracted from the two methodologies for an
appropriate number of redshift bins, 30 in our case.

This result disagrees with the conclusions of Nicola et al. (2014), who found that the SFB analysis
is weaker than a tomographic analysis and not capable of extracting the same radial information.
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Figure 10.2: Comparison of the total FoMTOT (top) and dark energy FoMDETF (bottom) �gures of merit for
the 3D Fourier-Bessel analysis (horizontal dashed lines) vs. tomographic analysis (solid lines)
as a function of number of redshift bins. The upper lines (dashed and triangle) result from
assuming a �xed bias, the lower lines (dotted and circle) are obtained when assuming a grid
of 5 × 5 nuisance parameters in scale and redshift described in Section 10.3.1.5.

The di�erence in these conclusions is probably related to the choice of non-linear prescription. In
Nicola et al. (2014), the tomographic SHT analysis was limited to a �xed `max for all bins, while the
SFB analysis was restricted to a �xed kmax for all multipoles. However, we show in Figure 10.1 that
to apply equivalent cuts for the tomographic and SFB analysis, redshift-dependent `max(zmed ) and
`-dependent kmax(`) cuts need to be used.

Additionally, Figure 10.2 shows that when the number of bins is increased, the tomographic anal-
ysis eventually surpasses the SFB analysis. This behaviour is expected, because when the width
of the redshift bins reaches the non-linearity scale, the tomographic analysis probes more modes
than a 3D analysis (Asorey et al., 2012; Di Dio et al., 2014). Indeed, only non-linear angular scales
are excluded from the tomographic analysis, but for very thin redshift bins, small radial scales are
being probed that are potentially beyond the non-linear cut-o�. Asorey et al. (2012) found that a
tomographic analysis with a bin width of ∆r ' 0.8 2π

kmax
was equivalent to a 3D power spectrum

analysis including scales up to kmax. We found that the tomographic analysis recovers the infor-
mation from the 3D analysis for about 30 redshift bins. If one expects the two methodologies to
give similar results for ∆r ' 2π

kmax
, then one would expect a larger number of tomographic bins to
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Figure 10.3: 1σ contours for all pairs of cosmological parameters for the SFB analysis and the tomographic
analysis for 30 bins with and without nuisance parameters. Inner orange and red contours (al-
most indistinguishable) result from the SFB and tomographic analysis when assuming a �xed
bias. Outer yellow and purple contours are obtained from the SFB and tomographic analysis
when using a 5 × 5 nuisance parameter grid in scale and redshift for the bias.

be necessary. Here, our 30 bins correspond to a minimum bin width ∆r ' 0.55 2π
kmax

, which is not
as close to the non-linearity scale as the results from Asorey et al. (2012), but remains of the same
order of magnitude.

However, we stress that such a direct comparison is subject to several factors that complicate
the interpretation. Firstly, the tomographic spectra are computed within the Limber approximation,
which may not be accurate for a large number of thin bins. A recent study of the e�ect of the Limber
approximation for a spectroscopic survey can be found in Eriksen and Gaztanaga (2015). Because
we restricted our analysis to large linear scales, we limited the number of tomographic bins to 30
in the rest of the analysis, which corresponds to redshift widths between ∆z = 0.1 and ∆z = 0.05.
In this case, according to Eriksen and Gaztanaga (2015), the error of approximation remains limited
(below 15% for most bins). Therefore, we do not expect the full computation to signi�cantly alter
the results of the comparative study lead in this work. Nevertheless, this point should be kept in
mind and deserves a thorough analysis, which we will include in future work. We also stress that
although care has been taken to apply similar non-linear cuts, they are not strictly equivalent, and
di�erent strategies to restrict angular modes in the tomographic analysis would a�ect the results.

Therefore, we consider that for a �xed bias, both analysis methodologies recover the same in-
formation for 30 tomographic bins, which corresponds to a minimum bin width of the order of
the non-linearity scale. We also acknowledge that the exact number of bins is likely to change
for di�erent binning strategy, computation techniques of angular power spectra, restrictions of
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Figure 10.4: Total FoMTOT (top) and dark energy FoMDETF (bottom) �gures of merit as a function of the
number of nuisance parameters in redshift (left) and scale (right), for a tomographic with
30 bins (red triangle) and an SFB (blue dot) analysis. When varying the number of nuisance
parameters in scale or redshift, the other number of parameters is kept �xed at 5.

non-linear scales and with the inclusion of additional e�ects such as redshift space distortions or
relativistic e�ects. A thorough study of all these e�ects will be addressed in a future work.

10.4.2 Impact of systematics due to galaxy bias

After establishing that the same information can be recovered from both methodologies in the ab-
sence of systematics on the bias, we now investigate the impact of an unknown bias. As described
in Section 10.3.1.5, we include in the analysis an uncertainty on the galaxy bias using a grid of nui-
sance parameters in scale and redshift. Figure 10.2 demonstrates how the FoMs for both analysis
are degraded when using a free bias parametrised in scale and redshift by a 5× 5 nuisance param-
eter grid (in cyan). Whereas the FoMs were equivalent with 30 tomographic bins in the �xed bias
case, the tomographic analysis can no longer recover the same information as the SFB analysis in
the free bias case, even with 60 redshift bins. The tomographic analysis is much more sensitive to
systematics resulting from the unknown bias than the SFB analysis.

We investigated the e�ect of the number of nuisance parameters in scale and redshift Nk × Nz

on the FoMs for the tomographic (red triangle) and SFB (blue dot) analysis in Figure 10.4. We
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varied Nk and Nz independently while keeping the other parameter �xed to 5. When the number
of nuisance parameters increases, the constraints from both analyses decreases, although the FoMs
from the tomographic analysis degrade faster than for the SFB analysis.

Although the FoMs reach a plateau at about Nz = 12 and Nk = 6, these numbers would cor-
respond to a very conservative model of the galaxy bias and therefore are probably unrealistic.
Indeed, the evolution of galaxy bias should be smooth on large scales, which prompts us to limit
the �ducial parameter grid used in this section to Nz = 5 and Nk = 5. Since the trends in FoMs
do not change with the number of nuisance parameters, a more complex grid (increasing either
Nz or Nk ) would not change the conclusions on the relative strength of the two methodologies
investigated here (the SFB FoM remains higher for any choice of nuisance parameters).

The e�ect of the free bias on the 1σ contours on cosmological parameters is shown in Figure 10.3,
where the purple and yellow contours are computed from the 30-bin tomographic analysis and the
SFB analysis. Interestingly, the constraints on σ8 and ns are a�ected in the same way for the two
methodologies by the inclusion of nuisance parameters; the contours are almost equivalent for
(ns ,σ8) with or without nuisance parameters. In contrast, all other parameters are much more
degraded by the including nuisance parameters in the case of the tomographic analysis compared
to the SFB analysis. This is particularly true for the dark energy parameters w0 and wa .

These results agree with Asorey et al. (2012), who noted that the tomographic constraints de-
grade faster than a 3D power spectrum analysis when a single nuisance parameter on the amplitude
of the bias was included. We �nd a similar behaviour with a more �exible parameterisation of the
bias and for the 3D SFB analysis.

Furthermore, these results highlight the well-known sensitivity of galaxy clustering studies to
the galaxy bias, which is one of its most important systematics. Although other approaches such
as the measurement of the BAO scale are less sensitive to the galaxy bias, this results in the usual
trade-o� between systematics and statistical constraining power, so that BAO studies alone (i.e.
using only BAO scale measurement) only provide conservative constraints without relying on
external priors (Rassat et al., 2008).

10.4.3 Optimisation of a stage-IV survey

Since we have shown in Section 10.4.2 that the 3D SFB and tomographic methods depend di�erently
on nuisance parameters, we are interested in investigating whether there are other di�erences in
using one method or the other to plan for future wide-�eld surveys.

In this section we investigate the in�uence of the median redshift on the constraining power of
a stage-IV spectroscopic survey using the two techniques. To perform this comparison, we used
the same 5 × 5 nuisance parameter grid for the bias as in the previous section. We also adapted
the number of tomographic bins to the median redshift of the survey to preserve the equivalence
between tomographic and SFB constraints in the absence of systematics found in Section 10.4.1.
The smallest radial scales probed by a tomographic analysis depend on the depth of the survey and
on the number of bins. Therefore, to remain coherent for di�erent median redshifts with the SFB
analysis, the number of bins needs to be adjusted to the median redshift. We �nd that for a median
redshift of zmed ' 0.4, the number of bins of the tomographic analysis should be N = 26 and for
zmed ' 1.7 this number increases to N = 42. To illustrate this point, we plot in Figure 10.5 the FoMs
as red triangles as a function of the median redshift using this adapted number of bins. The cyan
line shows the evolution of the FoMs when keeping the number of bins �xed at N = 30. Since this
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Figure 10.5: Total FoMTOT (top) and dark energy FoMDETF (bottom) �gures of merit as a function of median
redshift of a stage-IV spectroscopic survey using a tomographic analysis (red triangles) and an
SFB analysis (blue dots). The cyan line shows the �gures of merit for the tomographic analysis
when the number of bins is not adapted to the depth of the survey and kept at 30 bins. For the
red-dashed lines, the number of bins has been adapted to each median redshift. In all cases, a
grid of 5 × 5 nuisance parameters in scale and redshift is used to parametrise the galaxy bias.

number of 30 tomographic bins was chosen in the previous section based on our �ducial survey
with a median redshift of 1, we see that the red and cyan curves cross at zmed = 1. However, using
30 bins below zmed = 1 means probing smaller radial scales, which are beyond the scales probed
by the SFB analysis, and this increases the FoMs. In contrast, above zmed = 1, this means using
wider tomographic bins and thus probing larger radial scales, which lowers the FoMs compared
to when the number of bins is adapted.

We also plot in Figure 10.5 the 3D SFB FoMs as a function of the median redshift of the survey,
using blue circles. This curve should be compared to the red triangles showing the FoMs for the
tomographic analysis where we have adapted the number of tomographic bins based on the me-
dian redshift, as described above. The two techniques exhibit a similar scaling with the median
redshift of the survey, although the SFB constraints are consistently better than the tomographic
constraints. Interestingly, for median redshifts above zmed = 1.4, the SFB dark energy FoM exhibits
a better scaling than the tomographic one.

In conclusion, in the presence of galaxy bias systematics, any desired FoM level can be reached
for shallower surveys if a 3D SFB analysis is performed. Furthermore, increasing the depth of the
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survey is more pro�table in terms of FOMDETF for the 3D SFB analysis because the tomographic
method reaches a plateau somewhat after z = 1, whereas the 3D method continues to increase
signi�cantly up to z = 1.8, potentially pushing the optimisations towards higher median redshifts.

10.5 conclusion

We have compared two di�erent approaches to the three-dimensional analysis of galaxy clustering
in the context of wide and deep future spectroscopic galaxy surveys. Based on the Fisher matrix
analysis, we have compared the tomographic spherical harmonics and Spherical Fourier-Bessel
methodologies in terms of �gures of merit and cosmological parameter constraints.

We focused on the seven common parameters that are currently used in wide-�eld survey optimi-
sation and planning: ~θ = {Ωm ,h,w0,wa ,σ8,Ωb ,ns}, while putting forward a coherent and realistic
approach regarding the exclusion of non-linear scales for both the 2D and 3D methods. In addition,
we investigated for the �rst time how tomographic and 3D SFB methods are a�ected by nuisance
parameters related to the galaxy bias, which we allowed to be both redshift- and scale-dependent.

In the absence of systematics, for an appropriate number of tomographic bins the two method-
ologies are equivalent and are able to recover the exact same constraints - both in value and in
direction of degeneracy between di�erent parameters. Increasing the number of redshift bins fur-
ther leads to stronger constraints for the tomographic analysis, as seen by Asorey et al. (2012),
Di Dio et al. (2014), and Nicola et al. (2014). Nevertheless, this e�ect could result from including
radial scales in the tomographic analysis that are beyond the non-linear cut-o� applied to the SFB
analysis, and should be investigated further.

On the other hand, when we included unavoidable systematics due to the galaxy bias through
a grid of nuisance parameters in scale and redshift, we found that the SFB analysis is more robust
than the tomographic analysis, whose constraints su�er more from including nuisance parameters.
As a result, we found that when we optimised the median redshift of a stage-IV type spectroscopic
galaxy survey, a given level of accuracy can be achieved for shallower surveys if a 3D SFB analysis
is performed. Moreover, the scaling of the dark energy �gure of merit with median redshift is better
for the 3D SFB analysis in the presence of systematics, which means that a given increase of the
survey depth yields more information using an SFB analysis than a tomographic analysis.

Our results suggest that an SFB analysis is preferable to a tomographic analysis for realistic
future spectroscopic wide-�eld surveys where the galaxy bias can be both redshift- and scale-
dependent, and is unknown. These conclusions should be investigated in more detail, for example
regarding the potential e�ect of the exact computation of angular power spectra, binning strategy,
and including RSD.

In the spirit of reproducible research, the Python package CosmicPy developed to produce all
the results presented in this work is freely available at

http://cosmicpy.github.io .

This package allows for simple and interactive computation of tomographic and 3D SFB power
spectra as well as Fisher matrices while relying on a fast C++ implementation of Fourier-Bessel
related computations.

http://cosmicpy.github.io




11 C O N C L U S I O N

The main goal of this thesis has been the development of new algorithms, based on recent ad-
vances in the �eld of sparse regularisation, to address several inverse problems in cosmology, with
a particular focus on weak lensing mass-mapping.

The �rst part of this thesis introduced the concepts and tools of sparse regularisation and
presents an application of these methods to the reconstruction of the power spectrum of primor-
dial perturbations. The method I developed is non parametric and capable of reconstructing small
deviations from a power law spectrum. I applied this new technique on WMAP-9 year and Planck
data but do not �nd any signi�cant deviations from the currently preferred near scale invariant
power spectrum. These results are in accordance with the most recent Planck analysis.

The second part of this thesis focused on the particular problem of the reconstruction of the
dark matter mass-map from weak lensing measurements. The partial and irregular sampling of
the shear �eld make this inverse problem ill-posed, especially when reconstructing the dark matter
density in three dimensions. I �rst developed a new 2D mass mapping technique, based on sparse
regularisation, speci�cally designed for the high resolution density mapping of galaxy clusters
from weak lensing. To complement the shear signal, which is noise dominated on small scales,
this method can incorporate �exion information (higher order lensing deformations) to improve
angular resolution and recover some of the substructures, as was demonstrated on a set of cluster
simulations.

I then considered the more complex problem of the 3D reconstruction of the dark matter distri-
bution. Compared to the 2D case, this problem involves an additional layer of complexity linked
to the inversion of the radial lensing operator, which is particularly di�cult. Previous attempts
at 3D mass-mapping, based on linear methods, have had mitigated success and exhibited in par-
ticular extremely poor redshift resolution. For a long time, the limitations of linear methods have
hindered potential applications of 3D mass-maps. To overcome these limitations, I developed a
new non-linear reconstruction technique which dramatically improves the quality of 3D maps. As
demonstrated on a large set of simulations, this new method is not only capable of accurately re-
covering the redshift of dark matter halos but can also be used to directly estimate their masses,
which had never been considered with previous techniques.

In the �nal part of this thesis, I presented developments for the 3D analysis of cosmological
surveys in spherical coordinates. I �rst constructed a new isotropic wavelet on the 3D ball based on
the SFB expansion, ideally suited for the analysis of galaxy surveys. This wavelet boasts a number
of very desirable properties, in particular translation invariance, isotropy and compact support
in direct space with minimal oscillations. As wavelets are fundamental tools in data analysis but
also building blocs for developing sparsity based methods, this new wavelets opens a wide range
of applications, from the detection of voids to the estimation of the 3D dark matter distribution.
Finally, I conducted a comparison of methods for the 3D analysis of spectroscopic galaxy surveys,
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investigating the relative constraining power of a tomographic spherical harmonics analysis and
a full 3D SFB analysis. If both methods can recover similar constraints, we �nd the SFB analysis
to be more robust to unavoidable systematics related to the galaxy bias and allows a much more
rigorous rejection of non-linear scales.

outlook

primordial power spectrum reconstruction The method presented in this thesis can
be improved and extended in a number of ways. First and foremost, while we have only consid-
ered the reconstruction problem from CMB temperature anisotropies, additional data sets can be
incorporated to improve the precision, sensitivity as well as the wavenumber range of the recon-
struction. A �rst straightforward extension would be the inclusion of CMB polarisation data from
Planck but LSS data, for instance from the future Euclid mission, can increase the range of scales
included in the reconstruction. Another important point which we have not addressed in this work
is the joint estimation of the primordial power spectrum with the other cosmological parameters,
which could be implemented by integrating our reconstruction algorithm as part of an MCMC
exploration, similar to the approach followed in Nicholson et al. (2010).

2d cluster density mapping The 2D mapping technique developed in this thesis is one
of the very �rst methods combining shear and �exion. With the recent improvement of �exion
measurement methods, it will become possible to map in much more details a wider range of galaxy
clusters, especially when constraints from strong lensing are poor. This is of particular interest for
investigations into the nature of dark matter (Massey et al., 2015; Harvey et al., 2015). This method
can be further developed in a number of ways, starting with the inclusion of additional constraints
from strong lensing, when available, but also by using speci�cally designed dictionaries instead of
the generic wavelets used in this work.

3d mass mapping This thesis has demonstrated that the fundamental limitations which seemed
to plague 3D weak lensing mass-mapping are not insurmountable and rather inherent to the linear
methods used in previous reconstruction techniques. With the sparse recovery algorithm I devel-
oped in this thesis it becomes possible to detect, locate in redshift, and weight dark matter halos
using a 3D reconstruction. This opens a range of very interesting new applications and in partic-
ular these maps could be used in cluster number counts analyses in the future Euclid mission, as
a complement of optical cluster �nders. Although already very e�ective, the algorithm developed
in this thesis can be further improved by incorporating the various developments made for the
2D mapping algorithm. In particular, the tomographic binning of the input shear catalogue can be
entirely avoided in order to fully take into account individual redshift estimates for each lensing
source.

3d wavelets on the ball Similarly to the numerous applications made possible by the de-
velopment of wavelets on the sphere, wavelets on the ball, such as the one that I have developed
in this thesis, have a wide range of applications for future cosmological surveys, which include
not only galaxy surveys but also 21 cm radio surveys. The application of wavelets on the ball
to the detection of cosmic voids was already suggested in Leistedt et al. (2013), a task for which
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our isotropic, minimally oscillating wavelets would be extremely well adapted. Another possible
application would be the estimation of the matter density �eld from galaxy surveys, combining
the Multi-Scale Variance Stabilisation Transform for Poisson processes developed in Zhang et al.
(2007) and sparse inpainting algorithms to accommodate missing data due to angular masks.

3d sfb analysis There is now a signi�cant amount of literature on the analysis of galaxy
clustering and weak lensing using a full SFB expansion. An interesting prospect is the joint analysis
of both probes using this framework for the self-calibration of intrinsic alignment and galaxy bias,
as a direct extension of the method proposed in Joachimi and Bridle (2010). As the results of the
analysis performed in this thesis seem to suggest, an SFB expansion should outperform a standard
tomographic analysis for this task.





Part IV

A P P E N D I X





A S N I A D E T E C T I O N I N T H E S N L S

P H O T O M E T R I C A N A LY S I S U S I N G

M O R P H O L O G I C A L C O M P O N E N T A N A LY S I S

The following article presents an application of sparse signal processing to the removal of artefacts
corrupting the image stacks used for the detection of type Ia supernovae in the deferred photomet-
ric pipeline of the SuperNova Legacy Survey (SNLS). The main problematic in this application is to
robustly identify supernovae candidates from so called subtracted images i.e. images from which a
reference frame of the background sky has been subtracted. These subtracted images should only
contain transient objects such as supernovae. However, in practice due to imperfect image subtrac-
tions, these subtracted contain a number of artefacts which lead to an overwhelming number of
false positives in the detection pipeline. Although these false positives can be removed latter on in
the analysis by considering the light curves, they considerably slow down the analysis of the data.

Our goal in this application is to take advantage of the morphological di�erence between arte-
facts and supernovae candidates in order to disentangle the signal of interest from subtraction
artefacts. We apply a Morphological Component Analysis (MCA) decomposition algorithm which
disentangles the di�erent morphological components of an image based on their relative sparsity
in di�erent dictionaries. This algorithm allows us to �lter out most of the artefacts present in the
original data and therefore reduce the number of false positives.

An example of a subtracted image before and after MCA cleaning is shown on Figure A.1. The
left panels are the stack images while the right panels are detection maps. As can be clearly seen
in this example the large stellar residuals present in the original image are successfully removed
by the separation algorithm.

(a) Before MCA cleaning (b) After MCA cleaning

Figure A.1: Image stack for �eld D4 (left) and its corresponding detection map (right) before (a) and after
(b) MCA cleaning. Before cleaning, detections clearly follow the shadow of the star while after
cleaning most of these spurious detections are eliminated.
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Abstract. Detection of supernovae (SNe) and, more generally, of transient events in large
surveys can provide numerous false detections. In the case of a deferred processing of survey
images, this implies reconstructing complete light curves for all detections, requiring sizable
processing time and resources. Optimizing the detection of transient events is thus an impor-
tant issue for both present and future surveys. We present here the optimization done in the
SuperNova Legacy Survey (SNLS) for the 5-year data deferred photometric analysis. In this
analysis, detections are derived from stacks of subtracted images with one stack per luna-
tion. The 3-year analysis provided 300,000 detections dominated by signals of bright objects
that were not perfectly subtracted. Allowing these artifacts to be detected leads not only to
a waste of resources but also to possible signal coordinate contamination. We developed a
subtracted image stack treatment to reduce the number of non SN-like events using morpho-
logical component analysis. This technique exploits the morphological diversity of objects to
be detected to extract the signal of interest. At the level of our subtraction stacks, SN-like
events are rather circular objects while most spurious detections exhibit different shapes. A
two-step procedure was necessary to have a proper evaluation of the noise in the subtracted
image stacks and thus a reliable signal extraction. We also set up a new detection strategy
to obtain coordinates with good resolution for the extracted signal. SNIa Monte-Carlo (MC)
generated images were used to study detection efficiency and coordinate resolution. When
tested on SNLS 3-year data this procedure decreases the number of detections by a factor
of two, while losing only 10% of SN-like events, almost all faint ones. MC results show that
SNIa detection efficiency is equivalent to that of the original method for bright events, while
the coordinate resolution is improved.

1Corresponding author.
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1 Introduction

Surveys of distant type Ia supernovae (SNe Ia) revealed at the end of the twentieth century
the acceleration of the expansion of the Universe [1, 2]. Since then, other surveys such as
SNLS and SDSS-II [3] have been set in place to obtain measurements of SNe Ia with higher
precision. The first step for detecting SNe events is to make a sample of transient events to be
later classified. Detection using only photometry with difference images in one filter, where a
reference image is subtracted, provides a good approach. However, difference images are filled
with various artifacts from instrumental defects and incomplete subtraction of permanent
objects. Disentangling real transient events from artifacts becomes an important requirement
especially for photometric only pipelines such as the one developed in the deferred analysis of
SNLS [4]. This is also of interest for future surveys which will process large amounts of data,
such as LSST which expects to detect one million SNe per year [5].

SNLS is part of the Deep Synoptic Survey conducted on the Canada-France-Hawaii
Telescope (CFHT). It was designed for detecting hundreds of SNe Ia in a redshift range
between 0.2 and 1. Using the MegaCam imager [6], an array of 36 CCD with 340 million of
pixels, four one square degree fields were targeted throughout 5 to 7 consecutive lunations per
year using four different broadband filters gM , rM , iM and zM in the wavelength range from
400 to 1000 nm. Images were preprocessed at CFHT to perform flat-fielding and to remove
defects. These pre-processed images were submitted to different pipelines. The real-time one
provides detections of SNIa candidates and includes the result of spectroscopic follow-up for
further classification and redshift determination [7]. This pipeline will not be addressed in
this work.

The deferred photometric pipeline is independent of this real time analysis. Transient
events are detected in one filter and multi-band light-curves are processed for all detections.
Then, these light-curves are used to select SN-like events which are assigned host galaxy
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photometric redshifts from an external catalogue. Light-curves and redshifts are then used to
classify objects in SN Ia and core collapse types. The feasibility of detecting SNIa with this
deferred analysis was proven for the 3-year SNLS data in [4]. In the era of large future surveys,
spectroscopic resources will be limited for candidate follow-up and classification, which makes
photometric pipelines interesting to study, e.g. [8].

The SNLS photometric pipeline is described in more detail in [4]. In the following we
will summarize the main features of the detection step which are relevant to our study. De-
tection of transient events is done only in the iM filter because distant SNe in SNLS have
their maximum flux in this band. Reference images are constructed for each field from a
set of best quality images which are coadded. Each image of the survey has the reference
image subtracted. The subtraction is done using determination of the sky background and a
convolution kernel which allows the subtraction to be adapted to different observing condi-
tions. In order to increase the signal-to-noise ratio, subtracted images for each lunation are
stacked. Lunation detection catalogues are constructed from these subtracted image stacks
keeping only events which have a S/N ratio of 2.5 σ w.r.t. the sky background. The final
detection catalogue is obtained by merging all lunation catalogues. All detection catalogues
are constructed using SExtractor [9].

For the SNLS 3-year (SNLS3) analysis [4], the detection resulted in 300,000 transient
candidates for which four-filter light curves were reconstructed. However, detections were
dominated by spurious objects due to bad subtraction. Spurious detections came mostly
from imperfectly subtracted objects such as bright stars, resampling defects and masks (see
e.g. Figures 1, 2). Processing light curves of such a large number of detections knowing that
80% of those will be rejected by the early steps of the scientific analysis and do not contribute
to science results [4] represents a waste of time. Therefore, in order to reduce the number of
detections, it is necessary to disentangle true signal from artifacts in subtracted image stacks.

In this paper we present a new approach for improving transient event detection based
on morphological component analysis [10] for difference image stacks in the SNLS deferred
processing. Our goal is to obtain a reduction of the number of detections while limiting the
loss of SNe Ia in the detection sample. We exploit the different morphologies of objects in
the stacks to separate transient objects from artifacts. Other methods to achieve such a goal
exist, such as the one recently introduced by [11] based on machine learning and principal
component analysis using SDSS images. We also describe a new strategy for extracting signal
coordinates from our cleaned image stacks with a good resolution.

The outline of the paper is as follows. Morphological component analysis is introduced in
Section 2. The method proposed to clean subtracted image stacks in order to severe spurious
detections is presented in Section 3. Section 4 describes the new detection strategy based
on the cleaned stacks. Results on SNLS3 data and MC efficiency and coordinate resolution
studies are presented in Section 5.

2 Morphological Component Analysis

The Morphological Component Analysis (MCA) framework assumes that an observed image
can be described as the sum of several components, each exhibiting a distinct morphology.
The aim of MCA is to leverage these characteristic morphologies to disentangle the different
components of an image. More formally, given an image X, assumed to be the sum of K
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morphologically different components xk,

X =
K∑

k=1

xk , (2.1)

morphological component analysis can be used to recover each individual contribution xk.
In the context of SN detection in image stacks, this approach can be used to disentangle
transient objects from artifacts as they exhibit different morphologies.

To actually perform this separation, MCA relies on the theory of sparse representation
of signals. Any signal can be represented in a number of different domains (e.g. time domain,
Fourier domain, wavelet domain) but the coefficients of this signal will exhibit different prop-
erties depending on the domain. One property of particular interest is the so called sparsity
of the coefficients, i.e. the property that only a small number of coefficients are non zero.
As a general rule, the coefficients of the signal will be sparse when the basis functions of the
domain (so called atoms) are very similar to the signal itself.

In fact, this sparsity property is extremely desirable as it can be used as a very powerful
prior in the regularization of a wide range of inverse problems. Some applications to astronomy
and astrophysics include denoising [12], deconvolution [13], blind source separation for CMB
analysis [14], weak gravitational lensing [15].

More formally, let us denote α the coefficients of a signal x in a dictionary Φ (a dictionary
being the set of atoms φi of a given domain):

x = Φα =
∑

i

φiαi , (2.2)

If x is sparse in dictionary Φ then only a small number of coefficients in α are non zero. Given
image X defined in (2.1) as the sum ofK different morphological components, let us introduce
K different dictionaries Φk, each adapted only to the particular morphology of component
xk i.e. such that the αk coefficients, {αki}, of xk in Φk are sparse but not the coefficients
of xl for l 6= k. Then performing the separation of the different morphological components
can be achieved by finding an optimal set of coefficients αk maximizing the sparsity of the
decomposition of each component in the corresponding dictionary.

The Morphological Component Analysis (MCA) algorithm has been proposed by [16] as
a practical way to perform this decomposition as the solution of an `1 minimisation problem,
where `1 denotes the `1-norm. Observed images, Y , are assumed to be a combination of
signals, X, plus some noise, N . The decomposition algorithm solves iteratively the following
optimization problem:

min
x1,...,xK

K∑

k=1

‖ Φ∗xk ‖1 such that ‖ Y −
K∑

k=1

xk ‖2≤ σ , (2.3)

where Φ∗xk = αk and σ is the standard deviation of the noise contaminating the data,
assumed to be stationary and Gaussian distributed. Note that dictionaries and scales are
chosen prior to minimization. The `1-norm promotes the sparsity of the decomposition of each
component [17]. At convergence, each morphological component is obtained as xk = Φkαk.
This component reconstruction can be restricted to a sub-sample of {αki}, for example to
some size scales in a given dictionary.
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(a) (b) (c)

Figure 1: Different defects on the subtracted image stacks that yield spurious detections on
large scale: (a) shows a saturated star with some areas masked by subtraction, (b) a saturated
star plus the camera mounting shadow and (c) defects from sampling and dead pixel lines.

(a) (b)

Figure 2: Defects on the subtracted image stacks that yield spurious detections on small
scale: (a) and (b) dipoles from imperfect galaxy subtraction. These are adjacent positive and
negative areas on the stacks.

3 Reducing artifacts in SNLS subtraction stacks

Morphological component analysis allows to disentangle artifacts from other signals and can
be adapted to treat subtracted image stacks in SNLS. First, we choose dictionaries which
characterize signal and artifacts distinctively at different size scales. Then, we present a two-
step treatment designed to extract interesting SN-like signals and rejects spurious detections.

A sub-sample of SNLS3 data was used to characterize artifacts and to assign the al-
gorithm parameter values. Field D4 was chosen since it is a summer field with very good
observing conditions and a large number of both detections and events classified as SN-like
candidates as in [4].

3.1 Choice of dictionaries

The aim of the filtering approach presented in this section is to separate the signal of interest
(SN-like events) from a complex background. The latter is constituted by noise, defects that
cannot be subtracted (e.g. Figure 1) and features from imperfect subtractions (e.g. Figure 2).

Because these artifacts are structured, a naive strategy based on detection through a
simple threshold on signal-over-noise ratio yields a large number of spurious detections. Our
aim is to leverage additional morphological information to separate the signal of interest from
artifacts and noise, by exploiting their stark contrast in both shape and scale.
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(d) Ridgelet

Figure 3: Typical atoms from the dictionaries used in the MCA algorithm. (a) starlet atom
representing circular-like signals, (b) bi-orthogonal wavelets for dipole features, (c) curvelets
for elliptical signals and (d) ridgelets representing line features.

As explained in the previous section, the MCA algorithm separates images into a num-
ber of morphological components, using the sparsity level of each component in appropriate
dictionaries as a discriminant. Therefore, in the case of the SNLS data, it is important to
select, on one hand, a dictionary adapted to the morphology of the signal of interest and,
on the other hand, additional dictionaries adapted to the artifacts we want to reject. More
information on available dictionaries can be found in [18].

SN-like signals are small scale circular type shaped objects. A wavelet based dictionary
is suited to this kind of morphology. We choose in particular the starlet dictionary since it is
composed of isotropic atoms, especially efficient for representing positive structures such as
our SN candidates. An example of a starlet atom is presented on Figure 3a.

For the small scale artifacts presented in Figure 2 we adopt a bi-orthogonal wavelet
dictionary (Figure 3b). These artifacts result from improper subtraction of galaxies which
lead to characteristic dipole features. The bi-orthogonal dictionary has the advantage of
representing such features more efficiently than the starlet, enabling us to discriminate these
artifacts from the signal.

For large scale curved or line artifacts such as the one in Figure 1, we adopt curvelet
and ridgelet dictionaries. The curvelet dictionary is composed of localized, elongated atoms,
at different scales, which are known to provide a sparse representation for curved features,
see Figure 3c. The ridgelet atoms are line of different widths and orientations (see Figure 3d)
which are perfect to represent the second type of artifacts.

An important aspect of all the dictionaries introduced here is that they are based on
multiresolution transforms, meaning that they can be used to probe features at different
discrete scales j ∈ J0, NK. Typically, atoms of these transforms at scale j have a characteristic
size of 2j , starting with the finest resolution with details at the pixel scale for j = 0. Note that
this j scale index is embedded together with pixel coordinates in the i index in equation 2.2.
The advantage of choosing different scales for each dictionary is that we are able to separate
small scale signals from large scale defects. We make use of this scale information within the
MCA algorithm as explained in the next section.

3.2 First treatment: removal of main artifacts

The MCA algorithm in [16] was adapted to treat our subtracted image stacks. To disentangle
signal artifacts we chose the previously described dictionaries: starlets, bi-orthogonal wavelets,
curvelets and ridgelets. SNLS3 D4 test sample was used to decompose known artifacts and
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select the scales in each dictionary that allowed the best characterization. The best choices
were 5 scales in dictionaries representing mostly artifacts (curvelets, ridgelets, bi-orthogonal),
and 3 scales in the starlet dictionary which efficiently decompose circular-like signals as can
be seen in Figure 4. Both positive and negative signals were decomposed since some SNe may
have part of their flux included in the references, in which case subtraction yields a negative
signal.

(a) (b) (c) (d)

Figure 4: MCA Decomposition of a SNIa event. (a) shows the original subtracted image
stack centered on the SN event (yellow spot), (b) the starlet component, where the SN signal
(yellow spot) is surrounded by remaining galaxy residuals (green spots), (c) the curvelet
component and (d) the residuals left after the decomposition.

(a) (b) (c)

Figure 5: MCA Decomposition of a SNIa event where some part of the signal leaks into
residuals. (a) shows the original subtracted image stack, (b) the starlet component and (c)
the residuals after decomposition containing part of the signal.

Once dictionaries and scales are set, other algorithm parameters must be chosen such
as the number of iterations in the optimization. The choice of parameters resulted from a
trade-off between reducing the total number of detections and keeping most of the SN-like
objects in the D4 test sample. A compromise between number of iterations and computation
time was achieved with 30 iterations for the decomposition.

The transforms used in the algorithm, especially that of the curvelet dictionary, do not
scale well with the image size and too much CPU time and memory would be required for a
SNLS survey image of 2176 by 4912 pixels. Therefore, tiling of the images was done both to
reduce time and memory resources and to allow parallel processing. For reference, one SNLS
image divided in 8 tiles requires on average 6 days of HS06 CPU time and 500 Mb of virtual
memory to be treated.

The algorithm assumes a stationary and Gaussian noise in the input images which is
not the case for our subtracted image stacks, that are built from the coaddition of subtracted
images spanning several weeks of observations. Thus, the signal we aimed at recovering was

– 6 –



(a)

(b)

Figure 6: A SNIa event shown in different lunations around maximum light in the original
subtracted image stack (a) and after both treatments of the cleaning procedure (b).

not properly decomposed and was partially in the residuals, e.g. Figure 5. To tackle this, a
second treatment was developed which uses as input the starlet component and the residuals
of our first treatment decomposition (e.g. components (b) and (d) of Figure 4).

3.3 Second treatment: signal extraction with varying noise

A utility based on the algorithm in [18] was developed. It handles non-stationary noise
and exploits further morphological decomposition. Non-stationary noise requires varying the
threshold in the decomposition depending on the position of the analyzed pixel. Such a feature
can be easily implemented in the wavelet dictionary since it can handle actual noise maps.
The latter were computed from the first treatment output images using a median absolute
deviation estimator. This computation used a sliding window with a fixed size larger than
what is expected for a SN-like signal. Since some of the SNe may have part of their flux
included in the references, both positive and negative signals were treated.

We used again the starlet dictionary but this time handling varying noise, in order to
select significant coefficients. All signals present in the output can be considered as morpho-
logically compatible with circular-like objects. An example can be seen in Figure 6.

This utility does not require tiling images since only the wavelet dictionary is used. One
SNLS image takes on average 3 hours of HS06 CPU time and 100 Mb of virtual memory to
be treated.

4 New Detection strategy

A detection strategy includes both extracting events from an image and reconstructing their
coordinates. Event extraction depends on the image and its characteristics, e.g. its local noise
information. The TERAPIX tool SExtractor [9] was used for the whole detection strategy
both in the original procedure and the new procedure adjusting its parameters accordingly.

In [4] the detection strategy consisted in constructing lunation catalogues with SExtrac-
tor with deblending, requiring for each detection at least 4 pixels with signal of more than
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Figure 7: New detection strategy schema. Doted lines represent catalogue ASCII files while
continuous lines images.

2.5σ w.r.t. sky background. A final detection catalogue was obtained by merging all lunation
catalogues obtained in three years and converting the result into an image where each detec-
tion was replaced by a Gaussian of height and width of 1. This image was processed with
SExtractor selecting only pixels with a content above a value of 0.01 and deblending objects.
In this way, any object detected on several lunations at the same position (within a pixel) gave
only one detection, with a position averaged over all lunation stacks. This is described on the
top part of Figure 7. Even though the lunation stacking reduces the number of detections
(typically by a factor 3), when adding many years it can degrade signal coordinate resolution
due to close-by spurious detections as can be seen in Figure 8a.

Our two-step treatment outputs image stacks which do not have the same properties
as the original subtracted image stacks. The noise has been removed and sources are recon-
structed using inverse transformations. As transformed images they have less objects but
coordinates cannot be extracted accurately from them. We thus propose a new detection
strategy (see Figure 7 bottom) which also addresses the degradation of coordinate resolution
when using several years of data. This strategy was set up on SNLS3 D4 data.

Lunation catalogs are constructed from our cleaned subtraction stacks using SExtractor,
requiring at least 200 pixels with a signal value above one to confirm an object. Deblending is
imposed in order to separate adjacent objects. The values of the SExtractor parameters were
tuned using the SNLS3 test sample. They resulted from a trade-off between the reduction
of the total number of detections and the number of SN-like objects detected on the cleaned
image stacks. To each object detected in a lunation we assign the coordinates of the closest
detection in the same lunation catalogue of the original procedure. In this way we maintain
the reduced number of candidates while having precise coordinates.

In the original procedure coordinates were averaged over all lunations which degrades
signal coordinate resolution due to close-by spurious detections. The latter are not always
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(a)

(b)

Figure 8: A SNIa event (center of the image) with galaxy residuals shown in different
lunations around maximum light in the original subtracted image stacks (a) and after cleaning
(b). In the original stacks, galaxy residuals are present in all lunations. The cleaning removes
them in some cases.

completely removed by cleaning as can be seen in Figure 8b. When adding data from other
seasons, the coordinate resolution degradation becomes even more important. Real SN-like
events can be present in at most three adjacent lunation catalogs but not over several seasons.
Hence, to address this in the new procedure we first build a catalogue for each season as we
did for the final catalogue in the original procedure. Then, we build the new final catalogue
from the season catalogues in the same way.

In this way, coordinate averaging is done first for a season were a transient object can
be present and then detections are added from other years. It is equivalent to assigning a
weight for a given detection taking into account that a SN will be detected only during one
season.

5 Results

5.1 SNLS data

The SNLS3 D4 test sample contained 90,971 detections from which 362 events were extracted
as SN-like objects as described in [4]. After our processing, the number of detections is reduced
to 40,575. This represents more than a factor 2 reduction on the number of candidates to
be further processed. Loss of SN-like candidates is less than 5% and all lost events are faint
(observed magnitude at peak in iM > 24.2) and so not suitable for further cosmological
analysis. The complete procedure with parameters as determined from D4 data was then
applied to the three other fields. Results are summarized in Table 1. The reduction of the
number of detections is similar in all fields. The loss of SN-like events is less than 5% in D3 and
15% in D1 and D2. It must be noted that D1 and D2 are the fall and winter fields which have
less suitable weather conditions than D3 and D4. All lost events are faint with the exception
of one medium brightness event in D1 which is lost during our new detection procedure. This
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Old procedure New procedure
Field # detected # SN-like # detected # SN-like
D1 76,806 444 34,314 382
D2 64,763 300 28,627 258
D3 70,447 377 29,292 359
D4 90,971 362 40,575 346
All 302,987 1,483 127,808 1,345

Table 1: Number of detected and SN-like events for the original and new proceedures applied
on SNLS3 data.

Old procedure New procedure
No season stacks With season stacks

coordinate magnitude coordinate magnitude coordinate magnitude
Stack resolution bias resolution bias resolution bias

±0.002 ±0.0001 ±0.002 ±0.0001 ±0.002 ±0.0001
1-year 0.374 0.0093 0.368 0.0090 0.368 0.0090
3-year 0.392 0.0104 0.388 0.0100 0.381 0.0096
5-year 0.408 0.0111 0.406 0.0109 0.398 0.0105

Table 2: Coordinate resolutions (pixels) and corresponding magnitude bias of SNIa detection
original, new procedure with no season stacks or complete new procedure with season stacks:
for year 3 MC data (1-year stack), adding two additional years of data (3-year stack) and
adding 4 additional years of data (5-year stack). Uncertainties shown here are from the
statistics of generated SNIa.

event is found on the output images of the two-step treatment but the number of pixels above
threshold is smaller than our criteria to validate a detection.

5.2 Monte-Carlo efficiency and coordinate resolution

The performance of our treatment was studied using Monte Carlo (MC) artificial images in the
iM filter generated in the D1 field [19]. The MC images were constructed by adding simulated
supernovae to real raw images, on host galaxies identified from deep image stacks of the CFHT-
LS Deep Fields [20]. Using a two-dimensional gaussian for modeling the galaxies, SN positions
within their hosts were randomly generated up to a distance of 2σ from the host galaxy centers.
This method provided compatible simulated and observed SN-host galaxy angular distance
distributions. The redshift assigned to each SN was that of its host galaxy and was restricted
to the range between 0.2 and 1.2. For each SN the iM light curve was simulated according
to the SN properties (redshift, color, stretch) and the generated SN flux as deduced from
the light curve at each observation date was added to the corresponding raw image. The
MC images were then processed by the deferred pipeline as real images. Subtracted MC
image stacks were then processed by our optimized pipeline. The corresponding results were
compared to the ones of the original procedure in [4].

Detection efficiency was defined as the fraction of recovered simulated supernovae at
the end of each processing. For both the original and the new procedure we computed the
detection efficiency for one year of simulated SNe Ia as a function of the generated SN peak
magnitude as can be seen in Figure 9. The efficiency is nearly magnitude independent up
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to m0i = 23.5 and then steeply declines at faint magnitudes. When compared to the old
procedure, the new procedure corresponds to a loss of 0.5% in the plateau efficiency and a
0.2 downward shift of the magnitude corresponding to 0.50 efficiency. Note that after the
new procedure the efficiency behavior as a function of magnitude is close to the original one
and is consistent with that expected from a magnitude limited survey. This MC result will
allow us to correct the Malmquist bias of the photometric sample to be derived from the new
procedure in order to perform a cosmological analysis.

Figure 9: Efficiency of detection as a function of the generated peak magnitude in iM . The
new procedure (blue line) is compared to the original one (red line).

The SNIa coordinate resolution was studied for new and old procedures as can be seen
in Table 2. The resolution was given by the RMS of the distance between the coordinate
at generation and at detection. Coordinate resolution is improved first by reducing spurious
detection with our cleaning procedure (Table 2, column 2). Further gain is obtained by the
modified detection strategy (Table 2, column 3).

The coordinate resolution for one year simulated SNe Ia in our complete optimized
pipeline was found to be 0.368 ± 0.002 pixels to be compared to 0.374 ± 0.002 pixels in the
original pipeline. We also studied the effect of adding other years of survey data (without
simulated SN signal), constructing catalogues with two or 4 additional years. A degradation
of coordinate resolution is seen but the new procedure handles better many years of data
than the original one.

Position measurement inaccuracy leads to underestimated fluxes. Using appendix B of
[21] we computed an indicative magnitude bias corresponding to our coordinate resolution.
Thanks to the improved coordinate resolution, the new procedure applied on 5-year stacks
has similar performance to the old procedure applied on 3-year stacks.The latter was found
accurate enough for photometric typing as shown in [4]. The application of the new procedure
to the whole set of SNLS data will be the subject of a future work.

6 Discussion

Morphological component analysis has proven to be a useful approach for cleaning subtracted
image stacks such as the ones in the SNLS deferred processing. Our experience shows that
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the precise nature of the input images was a key point when choosing and adapting this
type of algorithms. The choice of algorithm was based on the availability of a robust tool
that could decompose our subtracted image stacks efficiently and within our CPU and time
resources. For adapting the algorithms to the defects present in our input images we had
to use a two-step procedure. In the first step we needed several dictionaries and scales to
eliminate the various artifacts. Note that many of these defects came from the fact that we
used subtracted images that usually have many residuals. For the second algorithm the goal
was to handle non-stationary noise (typical from stacks) in addition to SN-like signals which
provided a natural choice of the starlet dictionary for the decomposition. Finally, the choice
of algorithm parameters (e.g. number of iterations) was heavily dependent on the efficiency
and purity we wanted to achieve and on computing resources.

We note that besides improving the subtraction algorithm itself, eliminating artifacts
at the level of subtracted images instead of stacks can provide a higher reduction of the
number of detections. However, this should be applied at the beginning of the survey. For
implementing such methods, a thorough analysis must be done of the trade-off between gain
on signal extraction and removal of artifacts with respect to the high computational and time
costs of processing using dictionary decomposition.

Future surveys like LSST may detect around ten thousands SNe Ia a year [22], which
is two orders of magnitude higher than in SNLS. Extrapolating what we experienced in the
deferred processing of SNLS, the anticipated number of detections in LSST may be as high as
107 per year which is too large to process. To reduce the number of candidate transient events
to process further, cleaning images with a fast multi-resolution method can be of interest.
But due to the huge number of detections, additional multi-band and temporal information
will be necessary. The above arguments are valid for both real-time and deferred processings,
which will both face too large numbers of detections to process. Differences between the
two approaches would affect the choice of cleaning algorithms and selection criteria based on
multi-band and temporal information.

7 Conclusions

In this paper we presented a new procedure for detecting supernovae in the SNLS photometric
analysis. We developed a two-step procedure for cleaning subtracted image stacks, reducing
artifacts and extracting SN-like signals using morphological component analysis. A new
detection strategy, adapted to the cleaned image stacks was also presented.

The performance of the new procedure was evaluated using MC artificial images. De-
tection efficiency of SNeIa in the old and the new procedure is almost unchanged for bright
events. However, there is a small reduction for events at higher magnitudes, which is ex-
pected since signal separation is not perfect and some SN-like signal may not be properly
transformed. When applied to real SNLS3 data, 10% percent of SN-like events were lost
while the number of detections was reduced by more than a factor two. Almost all lost events
were faint with the exception of one medium brightness event which was lost in the detection
step. This result agrees with MC findings.

Coordinate resolution of SNIa events was equivalent for one year of MC for both proce-
dures. Furthermore, since SNLS is a five-year survey, coordinate resolution was also studied
adding other years of data. The new procedure yields slightly better SNIa coordinate resolu-
tion with respect to the original procedure when adding 4 additional years of data, simulating
a five-year stack. Therefore, for a five-year photometric analysis this new procedure yields
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a slightly smaller magnitude bias for SNe Ia when compared to the original procedure. The
new procedure presented in this work will be applied to the final SNLS 5-year photometric
analysis which will be the subject of a forthcoming paper.

This work is a first step on morphological component analysis applied for SN-like signal
detection and may be used as a starting point for future surveys. For those surveys that will
detect a large number of events such as the LSST a fast multi resolution algorithm can be of
interest, provided additional information (e.g. other filters, partial light curves) is also used.
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B M I N I M U M VA R I A N C E F I L T E R F O R S H E A R

A N D F L E X I O N

The convergence can be estimated from �exion and shear by combining the following operators:
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where we note k2 = k21 + k22 . We are looking for a minimum variance �lter of the form:
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The optimum values for a,b and c should minimize the variance of the estimator, which is:
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where we assume no intrinsic correlation between shear and �exion components. We now �nd the
minimum variance by di�erentiating each variable:
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218 minimum variance filter for shear and flexion
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Let us note λ = 4σ 2
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2 )2 , we now have to solve the following system of equations:
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From this system, we can �rst obtain the following:
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which results in the following expression for a:

(1 + k22λ)a = 1 −b − c (B.18)

(1 + k22λ)a = 1 −
k22
k21

a −
k22λ

µ
a (B.19)

a =
k21

k2 + k21k
2
2λ(1 + µ−1)

(B.20)

From which we directly derive the expressions for all variables a,b and c:
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Which yields the following expression for the minimum variance �lter:
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C S P H E R I C A L F O U R I E R - B E S S E L T R A N S F O R M

A N D 3 D C O N V O L U T I O N

c.1 relation to the 3d fourier transform

In order to have a better understanding of the SFB coe�cients and of how to use them to perform �l-
tering, the SFB transform can be related to the 3D Fourier transform. We follow a similar de�nition
as the one presented in Baddour (2010), but using our conventions for the di�erent transforms.The
following convention will be used for the Fourier transform:

F (~k) = 1√(2π )3
∫

f (~r )e−i~k .~rd~r , (C.1)

where F denotes the Fourier transform of f . This formulation does not assume any coordinate sys-
tem. However, to relate this transform to the SFB transform, it is possible to express this equation
in spherical coordinates using the following expansion for the Fourier kernel:

e−i
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where (k ,θk ,φk ) and (r ,θr ,φr ) are respectively the spherical coordinates of vectors ~k and ~r .
Substituting this expression for the kernel in the de�nition of the 3D Fourier transform yields:
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Y`m(θk ,φk ). (C.3)

In the last equation, the expression of the Spherical Harmonics Expansion of F (k ,θk ,φk ) for a
given value of k can be recognised. In the Fourier space, the (−i)` f̂`m(k) are the Spherical Har-
monics coe�cients of F on a sphere of given radius k . In other words, the Spherical Harmonics
coe�cients F`m(k) of the 3D Fourier transform F (k ,θk ,φk ) on a sphere of given radius k in Fourier
space are the SFB coe�cients f̂`m(k) for the same value k but multiplied by factor (−i)` .

The relationship between 3D Fourier transform and SFB transform is therefore very simple. The
SFB transform can be thought of as a mere Fourier transform in spherical coordinates. In the next
sections, this relationship will be used to derive convolution and �ltering relations for the SFB
transform using the well known relations veri�ed by the Fourier transform.
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220 spherical fourier-bessel transform and 3d convolution

c.2 3d convolution product using the sfb transform

A prerequisite to the establishment of �ltering relations is the expression of a 3D convolution prod-
uct in terms of SFB coe�cients. Letv(r ,θr ,φr ) be the 3D convolution of f (r ,θr ,φr ) andu(r ,θr ,φr ).
Then the 3D Fourier transform of v veri�es:

V (k ,θk ,φk ) = F {f ∗u}(k ,θk ,φk ) ,
=

√
(2π )3F (k ,θk ,φk )U (k ,θk ,φk ) , (C.4)

where F denotes the 3D Fourier transform. From Equation (C.3) the expression of the 3D Fourier
transform in spherical coordinates is known in terms of SFB coe�cients. Applying this relationship
to V (k ,θk ,φk ) in the last equation yields:
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∫ π
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√
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Then, by applying Equation (C.3) to F and U one gets:

v̂lm(k) = (i)l
√
(2π )3

∫∫ ∞∑
l ′=0

l ′∑
m′=−l ′

(−i)l ′ f̂l ′m′(k)Ym′
l ′ (θk ,φk )

×

∞∑
l ′′=0

l ′′∑
m′′=−l ′′

(−i)l ′′ûl ′′m′′(k)Ym′′
l ′′ (θk ,φk )

× Ym
l (θk ,φk ) sin(φk )dφkdθk ,

= (i)l
√
(2π )3

∞∑
l ′=0

l ′∑
m′=−l ′

(−i)l ′ f̂l ′m′(k)

×

∞∑
l ′′=0

l ′′∑
m′′=−l ′′

(−i)l ′′ûl ′′m′′(k)

×

∫∫
Ym′
l ′ (θk ,φk )Ym′′

l ′′ (θk ,φk )Ym
l (θk ,φk )dΩk . (C.6)

The last integral over the two angular variables can be expressed as a Slater integral (which is a
special case of the Gaunt integral) de�ned as:

cl
′′(l ,m, l ′,m′) =

∫∫
Ym
l (θ ,φ)Ym′

l ′ (θ ,φ)Ym−m′
l ′′ (θ ,φ)dΩ . (C.7)

The Slater integrals are only nonzero for |l − l ′| ≤ l ′′ ≤ l + l ′ which simpli�es the expression of
v̂lm(k).

The SFB transform of the 3D convolution product is therefore:

F(f ∗u)lm(k) = (i)l
√
(2π )3

∞∑
l ′=0

l ′∑
m′=−l ′

(−i)l ′ f̂l ′m′(k)
l+l ′∑

l ′′=|l−l ′|
cl
′′(l ,m, l ′,m′)(−i)l ′′ûl ′′m−m′(k). (C.8)
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d.1 the cosmicpy package

CosmicPy is an interactive Python package that allows for simple cosmological computations.
Designed to be modular, well-documented and easily extensible, this package aims to be a con-
venient tool for forecasting cosmological parameter constraints for di�erent probes and di�erent
statistics. Currently, the package includes basic functionalities such as cosmological distances and
matter power spectra (based on Eisenstein and Hu (1998) and Smith et al. (2003)), and facilities for
computing tomographic (using the Limber approximation) and 3D SFB power spectra for galaxy
clustering and the associated Fisher matrices.

Listing 1 illustrates how CosmicPy can be used to easily compute the 3D SFB Fisher matrix,
extract the �gure of merit, and generate the associated corner plot similar to Figure 10.3.

The full documentation of the package and a number of tutorials demonstrating how to use
the di�erent functionalities and reproduce the results of Chapter 10 is provided at the CosmicPy
webpage: http://cosmicpy.github.io .

Although CosmicPy is primarily written in Python for code readability, it also includes a simple
interface to C/C++, allowing critical parts of the codes to have a fast C++ implementation as well
as enabling existing codes to be easily interfaced with CosmicPy.

Contributions to the package are very welcome and can be in the form of feedback, requests for
additional features, documentation, or even code contributions. This is made simple through the
GitHub hosting of the project at

https://github.com/cosmicpy/cosmicpy .

d.2 computing the sfb covariance matrix

Performing a Fisher analysis requires computing the SFB covariance matrix, and more importantly,
computing the inverse of this matrix. This last step can be quite challenging as the covariance of
the spherical Fourier-Bessel coe�cients is a continuous quantityC`(k ,k ′). Two approaches can be
considered to de�ne a covariance matrix in this situation: (i) only using the diagonal covariance
C`(ki ,ki ) at discrete points ki (advocated by Nicola et al. (2014)), or (ii) binning C`(k ,k ′) into bins
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>>> from cosmicpy import *

# Create a standard cosmology
>>> cosmo = cosmology()

# Setup a spectroscopic survey specifying the redshift distribution,
# fsky, redshift errors and galaxy density per square arcmin.
>>> surv = survey(nzparams={’type’:’smail’,

’a’:2.0,
’b’:1.5,
’z0’:0.71},

fsky=0.3636, zphot_sig=1e-3, ngal=0.9, nzbins=30)

# Cosmological parameters to include in the Fisher matrix analysis
>>> params = (’Omega_m’, ’w0’, ’wa’, ’h’, ’Omega_b’, ’sigma8’, ’n’)

# Create a 3D SFB Fisher matrix given a cosmology and survey.
>>> f3d = fisher3d(cosmo, surv, params)

# Create a Tomographic Fisher matrix given a cosmology and survey.
>>> ftomo = fisherTomo(cosmo, surv, params, ’g’,

cutNonLinearScales=’realistic’))

# Output the total Figure of Merit
>>> f3d.FoM
67.516476905327863

>>> ftomo.FoM
67.495159354357327

# Display a corner plot for both fisher matrices
>>> ftomo.corner_plot(nstd=1)

>>> f3d.corner_plot(nstd=1,color=’r’)

Listing 1: Example of 3D SFB and tomographic Fisher matrix computations using CosmicPy.

of size ∆k . However, by neglecting the correlation between neighbouring wavenumbers, the �rst
approach overestimates the information content if the interval between wavenumbers is too small,
while the second approach would lose information for bins of increasing size and become numeri-
cally challenging to invert for bins too small. Another problem is to select the largest scale kmin to
include in the covariance matrix. Indeed, C`(k ,k) becomes extremely small and numerically chal-
lenging to compute for very small k , but small wavenumbers can still potentially contribute to the
Fisher information. A careful study is necessary to select a kmin that does not lose information.

Instead, using the kln sampling de�ned by Equation (10.23) naturally introduces a minimum
wavenumber and a discrete sampling of scales that preserves all the information. As an added
bene�t, this approach yields numerically invertible covariance matrices in practice for sensible
choices of the boundary condition rmax. Indeed, as kln =

qln
rmax

, the choice of cut-o� radius sets
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Figure D.1: Contribution to the SFB Fisher matrix element F SFBw0w0 as a function of angular mode, computed
with di�erent values of rmax. The excellent agreement between the two curves shows that our
computation of the Fisher matrix is robust to our arbitrary choice of rmax.

the �neness of the C`(n,n′) matrix and a�ects its condition number. However, we �nd that the
Fisher information remains largely una�ected by varying rmax above a certain distance because
cutting the very end of the galaxy distribution has little e�ect. In practice, we have arbitrarily set
rmax to the comoving distance at which ϕ(r ) reaches 10−5 of its maximum value. This choice has
proven stable in all situations considered in this work. The robustness of our computation of the
Fisher matrix with respect to the choice of rmax is illustrated in Figure D.1, where we show the
contributions of each angular mode to the Fisher matrix element F SFBw0w0 . Our empirical choice for
rmax in this case is 5420 h−1Mpc, but the results are not a�ected by increasing rmax to 5700 h−1 Mpc
even more.

d.3 deriving the spherical fourier-bessel shot noise power

spectrum

Here, we derive the expression of the shot noise by discretising the survey in cells that either
contain one or zero galaxies (Peebles, 1980). This method was used in Heavens et al. (2006) to
yield the expression of the shot noise in the case of 3D cosmic shear. We considered a point process
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de�ned on small cells c , each of which contains nc = 0 or 1 depending on whether the cell contains
a galaxy or not:

n(r) = 1
V

∑
c

ncδc (r) , (D.1)

where δc (r) = 1 if r is within the cell c , 0 otherwise, and where nc ful�ls (Peebles, 1980)

< nc >=< n2c >= ρ̄
obs
д ϕ(rc )∆c , (D.2)

where ∆c is the volume of cell c and ρ̄obsд ϕ(rc ) is the average number density of galaxies of the
survey at distance rc . Furthermore, the cross-term for c , d is

< ncnd >= ρ̄obsд
2
ϕ(rc )ϕ(rd )∆c∆d [1 + ξ (|rc − rd|)] . (D.3)

The SFB expansion of the density �eld can now be expressed as a sum over small cells c:

n`m(k) =
√

2
π

∑
c

nckj`(krc )Y`m(Ωc) . (D.4)

From this expression, we can derive the two-point correlation function of this �eld:

< n`m(k)n`′m′(k′) > = 2
π

∑
c ,d
< ncnd > kk ′j`(krc )j`′(k ′rd )Y ∗`m(Ωc)Y`′m′(Ωd) (D.5)

=
2
π

∑
c=d

n̄ϕ(rc )∆ckk
′j`(krc )j`′(k ′rc )Y ∗`m(Ωc)Y`′m′(Ωc)

+
2
π

∑
c,d

n̄ 2 ϕ(rc )ϕ(rd )∆c∆d [1 + ξд(|rc − rd|)]

× kk ′j`(krc )j`′(k ′rd )Y ∗`m(Ωc)Y ∗`′m′(Ωd) .
In the last equation, the �rst term for c = d contains the shot noise contribution and the second
term contains the monopole contribution and the correlation function of the density �uctuations.
Returning to continuous integration by decreasing the volume of cells ∆c , we have

< n`m(k)n`′m′(k′) >
n̄ 2 =

2kk ′
π

∫
ϕ(r )
n̄

j`(kr )j`(k ′r )r 2dr δ``′δmm′︸                                              ︷︷                                              ︸
Shot noise

(D.6)

+
2
π

∫
ϕ(r )kj`(kr )r 2dr

∫
ϕ(r )k ′j`′(k ′r )r 2dr δ`0δm0δ`′0δm′0︸                                                                       ︷︷                                                                       ︸

Monopole contribution

+
2
π

∫∫
ξд(|r − r′|)ϕ(r )ϕ(r ′)kk ′j`(kr )j`′(k ′r )Y ∗`m(Ω)Y`′m′(Ω′)drdr′ .

In this expression, we recognise in order three terms:

• the shot noise contribution, only for l = l ′ andm =m′:

2kk ′
πn̄

∫
ϕ(r ,k ′)j`(kr )j`(k ′r )r 2dr , (D.7)
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• the monopole contribution, only for l = 0 andm = 0:

M`m(k)M`′m′(k ′) , (D.8)

with
√

2
π

∫
ϕ(r )kj`(kr )r 2drδ`0δm0.

• the contribution from the power spectrum, only for l = l ′ andm =m′:

C`(k ,k ′) . (D.9)
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Titre : Reconstruction de la carte de masse de matière noire par e�et de lentille gravitationnelle.
Mots clés : E�et de lentille gravitationnelle faible, cosmologie, parcimonie

Resumé : L’e�et de lentille gravitationnelle, qui se
traduit par une déformation des images nous parvenant de
galaxies lointaines, constitue l’une des techniques les plus
prometteuse pour répondre aux nombreuses questions
portant sur la nature de l’énergie sombre et de la matière
noire. Cet e�et de lentille étant sensible à la masse totale,
il permet de sonder directement la distribution de matière
noire, qui resterait autrement invisible. En mesurant la
forme d’un grand nombre de galaxies lointaines, il est pos-
sible d’estimer statistiquement les déformations causées
par l’e�et de lentille gravitationnelle puis d’en inférer la
distribution de masse de la lentille. La reconstruction de
ces cartes de masse constitue un problème inverse qui se
trouve être mal posé dans un certain nombre de situations
d’intérêt, en particulier lors de la reconstruction de la carte
de masse aux petites échelles ou en trois dimensions. Dans
ces situations, il devient impossible de reconstruire une
carte sans l’ajout d’information a priori.
Une classe particulière de méthodes, basées sur un a pri-
ori de parcimonie, s’est révélée remarquablement e�cace
pour résoudre des problèmes inverses similaires pour un
large champ d’applications tels que la géophysique et
l’imagerie médicale. Le but principal de cette thèse est

donc d’adapter ces techniques de régularisation parci-
monieuses au problème de la cartographie de la matière
noire a�n de developper une nouvelle generation de méth-
odes. Nous développons en particulier de nouveaux algo-
rithmes permettant la reconstruction de cartes de masse
bi-dimensionnelles de haute résolution ainsi que de cartes
de masse tri-dimensionnelles.
Nous appliquons de plus les mêmes méthodes de régulari-
sation parcimonieuse au problème de la reconstruction du
spectre de puissance des �uctuations primordiales de den-
sités à partir de mesures du fond di�us cosmologique, ce
qui constitue un problème inverse particulièrement di�-
cile à résoudre. Nous développons un nouvel algorithme
pour résoudre ce problème, que nous appliquons aux don-
nées du satellite Planck.
En�n, nous investiguons de nouvelles méthodes pour
l’analyse de relevés cosmologiques exprimés en coordon-
nées sphériques. Nous développons une nouvelle transfor-
mée en ondelettes pour champs scalaires exprimés sur la
boule 3D et nous comparons di�érentes méthodes pour
l’analyse cosmologique de relevés de galaxies spectro-
scopiques.

Title : Sparse reconstruction of the dark matter mass map rom weak gravitational lensing.
Keywords : Weak gravitational lensing, cosmology, sparsity

Resumé : Gravitational lensing, that is the distortion of
the images of distant galaxies by intervening massive ob-
jects, has been identi�ed as one of the most promising
probes to help answer questions relative to the nature
of dark matter and dark energy. As the lensing e�ect is
caused by the total matter content, it can directly probe
the distribution of the otherwise invisible dark matter. By
measuring the shapes of distant galaxies and statistically
estimating the deformations caused by gravitational lens-
ing, it is possible to reconstruct the distribution of the in-
tervening mass. This mass-mapping process can be seen
as an instance of a linear inverse problem, which can be ill-
posed in many situations of interest, especially when map-
ping the dark matter on small angular scales or in three di-
mensions. As a result, recovering a meaningful mass-map
in these situations is not possible without prior informa-
tion.
In recent years, a class of methods based on a so-called
sparse prior has proven remarkably successful at solving
similar linear inverse problems in a wide range of �elds

such as medical imaging or geophysics. The primary goal
of this thesis is to apply these sparse regularisation tech-
niques to the gravitational lensing problem in order to
build next-generation dark matter mass-mapping tools.
We propose in particular new algorithms for the recon-
struction of high-resolution 2D mass-maps and 3D mass-
maps and demonstrate in both cases the e�ectiveness of
the sparse prior. We also apply the same sparse method-
ologies to the reconstruction the primordial density �uctu-
ation power spectrum from measurements of the Cosmic
Microwave Background which constitutes another noto-
riously di�cult inverse problem. We apply the resulting
algorithm to reconstruct the primordial power spectrum
using data from the Planck satellite.
Finally, we investigate new methodologies for the analysis
of cosmological surveys in spherical coordinates. We de-
velop a new wavelet transform for the analysis of scalar
�elds on the 3D ball. We also conduct a comparison of
methods for the 3D analysis of spectroscopic galaxy sur-
vey.
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