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C’est Francis Ford Coppola qui disait:

"je mets toujours une recette de cuisine dans mes films, comme ça même si on n’aime pas

mon film, au on a moins appris quelque chose".

It’s Francis Ford Coppola who used to say:

"I always add a cooking recipe in my movies, so that if people don’t like the movie, at least they

learned something."

— Alexandre Astier about science in a comedy show.

To my parents.
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Abstract

Strong gravitational is a natural phenomenon that produces distorted images of distant galax-

ies due to massive galaxies or clusters, called deflectors or lenses, lying along the line of sight.

Due to the mass of the deflector, and as a result of general relativity, the light coming from

galaxies at the background follows a path that appears to us as bent, thus forming magnified

and sheared images. The spectacular images of gravitational lens systems give us information

about a wealth of cosmological and physical processes, from the expansion of the Universe to

the nature of dark matter.

The study of strong gravitational lenses requires being able to extract information from images

of such systems. When faced with this task, many problems arise. First, there is the problem

of finding them. So far, only a few hundreds of strong gravitational lens systems are known,

but future surveys are expected to bring hundreds of thousands new systems, to be found

amongst billions of light sources. The second problem is to be able to identify lensed features

and separate them from the light profile of the foreground deflector. The third problem is to

be able to reconstruct the image of a lensed background source as if it had been unaffected by

lensing. The last problem is the reconstruction of the deflector’s mass distribution. In practice,

the last two problems have to be solved as one. Recovering the light distribution of the source

requires being able to invert the distortion by the gravitational lens, which depends on its

mass distribution. In turn, the lens mass distribution is constrained by the distortions applied

to the source’s image.

In this thesis I propose to address these problems with the tools provided by sparse inverse

problem solving with a particular emphasis on the problem of separating lens and source

luminosity profiles. The problem of separating two overlapping light profiles is known as

deblending.

I introduce three new techniques for the deblending of strong gravitational lenses that exploit

different properties of lens systems and that each contribute to solving the problems of strong

lens finding and modelling. The first technique allows the general subtraction of galaxies light

profiles in large survey in order to facilitate the search for strong gravitational lenses. The

second technique allows to separate lens and source light profiles based on their difference

in colour and the sparsity of a galaxy’s light profile in the wavelet. This technique allows, in

particular, to remove most of the light from foreground galaxy clusters, which facilitates the

identification of lensed galaxies in view of the modelling of the cluster’s mass distribution.
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Finally, I show that lensing itself can be used to separate the unperturbed light profile of a

lens galaxy from the distorted profile of a lensed source. This technique involves the joint

reconstruction of the source in its own referential based again on sparsity. At this stage, the

joint reconstruction and separation is performed at fixed mass model, but this work paves the

way for the development of a free form lens mass distribution reconstruction technique in the

near future, based on the combination of these separation and reconstruction techniques.

Keywords: Strong gravitational lensing – linear inverse problems – sparsity – morphological

component analysis – cluster lensing – galaxy surveys.
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Résumé

L’effet de lentille gravitationnelle fort est un phénomène naturel qui produit la distortion

d’images de galaxies lointaines par la présence galaxies et amas massifs, appelés déflecteurs,

où lentilles, sur la ligne de visée. La relativité générale nous indique que la masse du déflecteur

induit une apparente courbure de la trajectoire des photons émis par la galaxie d’arrière-

plan, formant ainsi des images magnifiés et cisaillées. Les spectaculaires images de lentilles

gravitationelles nous apportent une foule d’information sur la cosmologie et la physique de

notre Univers, de l’expansion de l’Univers, à la nature de la matière noire.

L’étude des lentilles gravitationnelles fortes requiert la capacité d’interprêter les images de

ces systèmes, ce qui pose plusieurs problèmes. Premièrement, le problème se pose de la

recherche de ces images. Actuellement, nous connaissons quelques centaines de lentilles

gravitationnelles fortes, mais les observations futures pourraient nous apporter des centaines

de milliers de nouveaux systèmes qu’il nous faudra trouver parmis des milliards de cibles. Le

second problème consiste à identifier les structures des galaxies lentillées afin de les séparer

de la lumière du déflecteur situé à l’avant plan. Le troisième problème est la reconstruction

du profil de lumière de la galaxie source d’arrière plan telle qu’elle apparaîtrait sans effet de

lentillage. Le dernier problème est la reconstruction de la distribution de masse dans la lentille.

En pratique, les deux derniers problèmes n’en forment qu’un. Reconstruire la distribution de

lumière de la source requiert le connaissance de la distortion par la lentille, qu’elle a subi. à son,

tour, la détermination du profil de masse de la lentille est contrainte par la compréhension

des distorsions subies par l’image de la source.

Dans cette thèse, je propose d’adresser ces problèmes à l’aide des outils fournis par la résolu-

tion de problèmes parcimonieux inverse, avec un intérêt tout particulier pour les problèmes de

séparation des profils de lumière des galaxies sources et lentilles. Les problèmes de séparation

de sources lumineuses mélangées sont connus sous le nom de dé-mixage.

J’introduis ici trois nouvelles méthode de démixage des lentilles gravitationnelles fortes qui ex-

ploitent différentes propriétés des systèmes de lentilles et contribuent chacunes à la résolution

d’un des problèmes de recherche et modélisation des lentilles. La première méthode permet

la soustraction des profils de lumières des potentielles galaxies lentilles d’un relevé afin de

faciliter la recherche automatique de systèmes de lentilles fortes. La seconde méthode permet

la separation de galaxies sources et lentilles sur la base de leur différence de couleur et sur la

parcimonie de leurs profils de lumière dans l’espace des ondelettes. Cette technique permet,
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en particulier, de soustraire la lumière des galaxies d’un amas, ce qui facilite l’identification

de sources lentillées à l’arrière plan, en vue de la modélisation de la distribution de masse de

l’amas. Enfin, je montre que l’effet de lentille gravitationnelle lui-même permet de séparer

la lumière non perturbée d’une galaxie lentille du profil de lumière distordu d’une galaxie

source. Cette technique implique la reconstruction jointe du profil de lumière de la source,

basé, encore une fois, sur la sparsité de la source dans son propre référentiel. À ce point de

mes recherches, la reconstruction et séparation jointe sont faites pour un profil de masse

supposé connu, cependant je montre que ce travail ouvre la voie au développement, dans un

future proche, d’une méthode de reconstruction numérique de profils de masses basée sur la

combinaison de ces techniques de séparation et reconstruction jointes.

Mots-clefs : Lentillage gravitationnel fort – problèmes linéaires inverse – parcimonie – Analyse

en composante morphologique – lentillage d’amas – relevé de galaxies.
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Introduction

"Strong gravitational lensing is the most beautiful phenomenon nature has given us to ob-

serve". This statement in itself is reason enough to start a thesis. What better motivation

is there but to study what amazes and intrigues the eye? Not only is gravitational lensing a

fascinating observational phenomenon, but it also constitutes a massive source of information

for astrophysicists and cosmologists alike. A century ago, gravitational lensing provided one

of the first tests of Einstein’s theory of general relativity, and today, it remains one of the most

promising probes to investigate dark matter, the expansion of the Universe, and the birth of

the first galaxies.

The goal of my thesis is to apply modern techniques for image processing to analyse strong

gravitational lens images. In particular, I want to address here the problem of separating

images of different light sources that appear superimposed, or blended on the plane of the sky.

All throughout this dissertation, we will refer to this problem as deblending.

Despite the very technical aspect of this thesis with regard to the study of strong gravitational

lenses, I would like to give this dissertation a very observational-driven aspect. The goal is

here to extract all the information that nature gives us in the least biased way possible. There

are two concepts that I want to emphasize in this thesis and that resonate with this idea

of unbiased and wonderstruck exploration of nature: accessibility and reproducibility. In

the following pages I will attempt to provide a content that I want accessible to most future

students willing to work on similar subjects by providing illustrated, but accurate descriptions

of the concepts I use. On the side of reproducibility, I intend, when possible, to make public

all the codes used to generate the illustrations I created for the purpose of this manuscript.

To me, the ability to recreate the support of an argumentation, and the possibility to proof

read and reuse the algorithms that are presented in any scientific work are paramount to the

quality and the continuity of the scientific production.

The generic goal set for this thesis is the agnostic analysis and modelling of strong gravitational

lenses. Many techniques already exist that provide satisfactory estimates of strong lenses mass

and light distributions. So far these methods rely on the assumption that at either light or
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mass is distributed according to a specific law, described by a mathematical model. While this

assumption simplifies the problem to solve by reducing drastically the number of parameters

to investigate when modelling lenses, it sometimes fail to represent the most complex objects

and reduces our possibilities to explore new models. For this reason, several methods have

started to emerge in the past decade that rely on semi-analytic models and decompositions

with a much larger number of degrees of freedom. With the progress made in the fields of

optimisation and computational astronomy, it becomes possible to consider full free-form

modelling techniques that also have to be automated in order to be able to deal with the large

amount of data of the upcoming years.

The first two chapters are dedicated to the introduction of the mathematical concepts used in

this thesis: lensing formalism and linear inverse problem solving. While I could have extended

these introductions to the broader picture in which they contribute, namely cosmology, I

choose, on the contrary to give a more practical approach of my work by attempting to describe

thoroughly the drivers of my work and the tools I have used. I designed these chapters so

that they consist in a practical and illustrated introduction to the tools I have learned to use

during these past four years. If I failed to make my introduction useful for students and

scientists willing to reproduce my results or algorithms, interested readers should claim a

complementary lecture to me.

Chapters 3, 4 and 5 detail my contribution to the strong gravitational lens search and modelling.

These chapters heavily refer to the introductory chapters and contain technical details about

the codes I developed and applied. In chapter 3, I show how the most rudimentary machine

learning algorithm technique, Principal Component Analysis , can be used to facilitate the

search for strong gravitational lenses. Chapter 4 gives the details of a colour-based deblending

technique called MuSCADeT. The method was successfully applied to several datasets for which

we show the results. The scope of applications of MuSCADeT extended beyond the problem of

galaxy-scale strong lens deblending which it was designed to address and found significant

applications in cluster lensing. In chapter 5 I set the first stone of a new lens modelling

technique by detailing a source reconstruction method. The properties of sparsity that are

used in the source reconstruction allowed to impose a separation criteria for the deblending

of the lens and source light profiles in single-band images, which relies on the solving of the

source inversion problem. Finally, I conclude by merging together all the concepts seen in the

technical chapter to show how, the combination of these technique will allow to build a full,

free form, lens modelling method based on linear optimisation.
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1 Introduction to Strong Gravitational
Lensing

Lensing is not a field of study, it is a tool.

— Paul Schechter

This chapter serves as an introduction to the broader context in which this thesis contributes.

Although this work does not pretend solving any significant scientific questionings of modern

Cosmology, it nonetheless intends to constitute one of the stones of a much larger structure.

The following sections aim at giving the reader an overview of the main challenges in field

and an outline of the few problems this work addresses, along with a clear description of the

physical phenomenon studied here: strong gravitational lensing.

First, I would like to start by giving a shallow, conceptual view of what gravitational lensing is.

The goal being to give the reader the necessary tools to appreciate the observational tour of

gravitational lensing we are going to embark, and understand their relevance for cosmology.

The next section is aimed at giving the reader a few examples of what gravitational lenses look

like in a telescope, in order to fix a few ideas and concepts before delving in the more abstract

sections that will follow. In the next section, we will see the details of lensing formalism,

in particular, how images of gravitational systems form and what information they contain.

Finally, we will review the latest discoveries and challenges in the field that this thesis intends

to contribute addressing.

1.1 A history of gravitational lensing

1.1.1 The Newtonian case

Gravitational lensing refers to the bending of a light under the influence of a gravitational

field. The first mention of such effect is attributed to Isaac Newton in his 1704 book Opticks

(Newton, 1979, re-edition), where he considers the possibility that "bodies [could] act upon

light at a distance and by their action bend its rays". This idea was used later by Johann Georg

von Soldner who used the Newtonian law of gravity, under that assumption that light rays

are made of low mass particles, to compute the deflection of a light ray emitted tangeantially

3



Chapter 1. Introduction to Strong Gravitational Lensing

at the surface of the Earth (Soldner, 1804, accessed from Jaki (1978)). From this calculation,

Soldner computed the deflection angle α̂ of a light ray emitted by a distant star and cruising

near the surface of the Sun (see figure 1.1). This can be expressed as:

α̂= 2GM

bc2 , (1.1)

where G is the Newtonian constant of gravitation, c is the speed of light, M is the mass of

the Sun (or, more generally, the mass of the deflector), and b is the impact parameter of the

incoming light ray, i.e. the smallest distance between the center of the Sun and the incoming

light ray had it not been deflected (see figure 1.1). With an estimated value of α̂= 0.84", Soldner

concluded that if one was to observe a Star near the surface of the Sun, one would have to

take this deflection into account to determine the actual position of the star in the sky. Figure

1.1, shows a scheme of the deflection of a light by the Sun. The trajectory of a light ray, in red,

follows a hyperbola with the Sun at its focal point. Since an observer on Earth would only

see the incidence of the light ray at the position of Earth, the star that emitted the light ray

would appear to be at the position of the empty star in figure 1.1 instead of its actual position

signalled by the filled star.

R
b

Figure 1.1 – Deflection of light by the Sun.
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1.1.2 The bending of light in general relativity

Later, in 1911, Einstein, having already formulated the hypothesis of light energy quanta

(Einstein, 1905, accessed in english from Arons & Peppard (1965)) that would later become

photons, reproduced Soldner’s calculation, which he was unaware of, and found the same

expression and value as Soldner’s for the deflection angle of light at the surface of the Sun

(Einstein, 1911). Before anyone could verify this value through observation, gladly for Einstein,

the latter had formulated his theory of general relativity (GR Einstein, 1915b). Using the

framework of GR, Einstein recalculated the deflection angle of a massless photon cruising by

the Sun and found the angle to be twice the angle he (and Soldner) had previously computed:

α̂= 4GM

bc2 , (1.2)

The main difference from Newtonian physics introduced by GR, with regard to gravitation,

stems from the realisation that space and time are intertwined and that gravity can be viewed

as a local contraction of the metric in the vicinity of massive objects. These two concepts put

together, we realise that the pull that massive objects exert on us results from a contraction of

the space around us, but also that time is contracted in the same way as space is. As a result,

a very intuitive way of explaining the factor two between the Newtonian and the relativistic

values is to consider that a photon follows a path that is bent in space (1× α̂) but also in

time (2× α̂). In the case of a massive, non-relativistic particle, cruising by the Sun at a speed

v << c , however, the deflection angle computed by Soldner would be a valid approximation. A

simplistic justification of this difference can be found when comparing the travel of a photon

and a massive particle through space and time. Due to its high velocity, a photon explores as

much as it explores space, while a massive particle with low velocity will explore much less

space than a photon in the same duration. As a result, a photon is as sensitive to distortions

of time as it is to distortions of space. This illustrates how the Newtonian law of gravity can

be viewed as an approximation of Einstein’s theory of gravity at small velocities and weak

gravitational fields.

It is very important to notice here that the photon itself was never deflected, properly speaking.

Instead, it followed a straight line, that, from the point of view of a distant observer, happens

to be bent by the presence of a massive object, the Sun. From the point of view of the photon,

its course was never altered and followed a straight line, due to the fact that its perception of

space and time was altered.

1.1.3 Picturing lenses

With a value of a deflection angle larger than previously thought, the door was open to imagin-

ing observations of even more spectacular light bending phenomena. For instance, Chwolson

(1924) argued that the perfect alignment between Earth, a background star and a massive

foreground star would be observed as a ring around the foreground star and that a slight
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misalignment would form two images of the background star form on either side of the fore-

ground star. Einstein showed later that the angular separation between the multiple images of

the background source and the deflector would be too small to provide good chances of ever

observing such phenomenon (Einstein, 1936). Despite this pessimistic prediction, the Swiss

astrophysicist Fritz Zwicky considered (Zwicky, 1937b,a) the alignment of two extragalactic

nebulae (galaxies) and by doing so, opened the race for the search of gravitational lenses. As

we will see it took many years before such phenomena could be observed, but it has now

become a very active field of research, with more than 7000 papers published with the keyword

"gravitational lensing"1 to date.

The result of light deflection as predicted by general relativity, is therefore to create "mirage",

or more accurately, multiple images, of background sources. Not only background images

that are lensed may be seen multiple times around a deflector, but their images might also be

distorted and magnified depending on the properties of the source and the geometry of the

system. This will be expanded on in section 1.3.

1.1.4 Nomenclature

We use this opportunity of having described a gravitational lens to give the definition of

the names and conventions we are going to use all throughout this thesis. As stated earlier,

gravitational lensing refers to the bending of light by a massive object. The event of observing

an alignment of objects such that the light from the background luminous object (the plain

star in figure 1.1) is deflected by the foreground, massive object (the Sun in figure 1.1) before

reaching us, is a gravitational lens event. By extension, we call gravitational lens system the

observation, or the image of such an event . The background luminous object is referred

to as the background source or simply, the source . The foreground object that causes the

deflection is called a deflector or a lens . Very often in this thesis we will assimilate the light

profile of the source or lens to the source or lens itself. The lensed image of a background

source (e.g. an arc, an Einstein ring or a multiply imaged object) is referred to as the lensed

galaxy or the lensed source. It is possible that when discussing separation of lens galaxy and

lensed source, I assimilate the lensed source to the source.

Because lensing is caused by the alignment of objects in three dimensions, it is useful to define

to planes with their respective coordinate systems. The source plane, will refer to the plane

attached to the background source, while the lens plane will refer to the plane of the deflector,

where photons are being deflected.

1https://ui.adsabs.harvard.edu/#search/q=keyword%3A%22Gravitational%20lensing%22&sort=date%
20desc%2C%20bibcode%20desc&p_=0
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1.2 First observations of gravitational lenses

1.2.1 Lensing by a Star

With Einstein’s prediction of the possibility of observing the light from a star at grazing inci-

dence with the surface of the Sun deflected by 1.74", it became possible to test whether this

deflection was actually observed. With the light from the Sun making the observation of star

in its vicinity impossible, this observation had to be conducted during a total solar eclipse.

In 1919, two expeditions were commissioned to observe the solar eclipse from Sobral and

from Principe, that reported the successful observation of the deflection of a background star

(Dyson et al., 1920) with a deflection angle coherent with Einstein’s prediction. This constitutes

the first observation of the gravitational lens effect and provided yet another confirmation of

Einstein’s theory of relativity, after Einstein successfully explained the precession of Mercury’s

orbit (Einstein, 1915a).

1.2.2 First lensed quasar

Despite an early observation of the first gravitational lens event, four years after Einstein’s pre-

diction, it took decades before another gravitational lens event was observed: QSO 0957+561.

It is only in 1979 that two quasi stellar objects (QSO, or quasars) were identified and reported

in Walsh et al. (1979) as presenting similar properties that could qualify them as multiple

images of a same object. The small angular separation on the plane of the sky (5.7"), combined

with the similarity between their respective spectrum (see Walsh et al., 1979, figure 2) lead the

authors to formulate the gravitational lens hypothesis. Later observations would finally reveal

the presence of a galaxy at the foreground, between the two QSO images (Stockton, 1980) that

could play the role of a massive deflector. This galaxy happens to be the brightest member of

a galaxy cluster that is the actual deflector. The image of the lens galaxy could not have been

observed before due to the relative brightness of the QSO images and their small separation

in the sky. A recent composite image taken with the Hubble space telescope of the lens sys-

tem QSO 0957+561 is shown in figure 1.2, that shows the apparent difference in magnitude

between the two bright quasar images and the image of the lens galaxy in the middle. This

single discovery confirmed the prediction made by Zwicky that lensing by extragalactic objects

would produce gravitational lenses as well as the prediction made by Chwolson (1924) that two

sources in an almost perfect alignment would produce two images of the same background

source.

The discovery of such system would soon become a very active area of research, as recently

demonstrated with the H0LiCOW publication Bonvin et al. (2017), where the authors derived

a value of H0 (More on this subject in section 1.4) at 3.5% accuracy from the monitoring of

three lensed quasars.
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Figure 1.2 – Optical image of the doubly imaged QSO 0957. Credit: Hubble NASA/ESA

1.2.3 First arc

The next leap in the field of gravitational lens observation comes from the discovery elongated

arcs. While the previous observations of lensed objects had always consisted in the lensing of

point sources (stars or QSOs), the detection of an extended, blue arc in galaxy cluster Abell

370 (Lynds & Petrosian, 1986; Soucail et al., 1987a), constituted the first observation of the

lensing of an extended source. While the favoured hypothesis for explaining this arc-like

structure at the time of the discovery was a star forming region, fuelled by the cooling of gas

falling towards the center of the cluster (Soucail et al., 1987a), it was soon established that the

arc was in fact at the background of the cluster (Soucail et al., 1987b) and therefore had to

be a background galaxy, lensed by the massive cluster. A recent, high resolution composite

image of cluster Abell 370 is shown in figure 1.3, where the stretching of the arc is clearly

visible. Another characteristic of the gravitational arc in figure 1.3 is the brightness of the

lensed galaxy. Contrary to the case of the lensed quasars, where the source had a high intrinsic

luminosity, in this case, the high brightness of the lensed galaxy has to be imputed by the

magnification of the lensing that makes the source galaxy appear 32 times brighter than it

actually is (Richard et al., 2010). Due to their high concentration of matter, galaxy clusters

are among the most powerful lenses in the Universe and as such, act as natural telescopes to

observe distant galaxies by magnifying the images of objects at the background as recently

illustrated by the discovery of a galaxy at redshift z > 10 by Oesch et al. (2016) and by the study

of the detailed clumpy star forming structures in an extended lensed arc by Cava et al. (2018).

Due to their size, galaxy clusters also provide a formidable laboratory to study the distribution

of mass at large scales. The large number of sources lying at the background of these clusters

that are lensed provide us with as many constraints on the deflection angles their images

were subject to, which tells us about the distribution of mass in these clusters at all scales
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Figure 1.3 – Optical image of lensed arc in galaxy cluster Abell 370. Credit: Hubble NASA/ESA

(Harvey et al., 2016; Priewe et al., 2017; Diego et al., 2016; Sebesta et al., 2016; Jauzac et al.,

2016; Meneghetti et al., 2017).

1.2.4 Einstein ring

The first Einstein ring was finally observed in the radio domain and reported in Hewitt et al.

(1988). Its confirmation as a gravitational lens owes to the fact that the system could be fitted

by a simple lens model (Kochanek et al., 1989). Lensing of extended sources by individual

galaxies developed into yet another prolific field. With a current sample of a few hundreds

galaxy-scale lens systems with a wide variety of lens galaxies: early-type galaxies (SLACS Bolton

et al., 2008, see figure1.4), spiral galaxies (SWELLS Treu et al., 2011), emission lines galaxies

(BELLS Bolton et al., 2012), groups of galaxies (More et al., 2012) and even lensing by AGNs

(Courbin et al., 2012); future surveys such as DES (Dark Energy Survey), LSST (Large Synoptic

Survey Telescope) or Euclid are expected to bring hundred thousands more of them (Collett,

2015).

With these predictions, it appears that astronomers will be faced with the problem of finding

hundred thousands of objects amongst the billions of sources that these surveys are going

to observe. Work in this direction has already started, and recent advances in the field of

machine learning have given promising results as recently showed in Metcalf et al. (2018) and

references therein.

The reason for finding strong gravitational lenses at galaxy scale stems from the amount of

information these objects encode. A review on the subject can be found in Treu (2010), of

which we give a brief account here. First and foremost, since the deflection in gravitational
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Figure 1.4 – Example of SLACS lenses. Credit: NASA, ESA, and the SLACS Survey team: A.
Bolton (Harvard/ Smithsonian), S. Burles (MIT), L. Koopmans (Kapteyn), T. Treu (UCSB), and
L. Moustakas (JPL/Caltech)

lensing depends on the mass of the lens galaxy (and on the relative positions of the lens and

source galaxies) galaxy-scale strong gravitational lensing provides a way of weighting galaxies,

and therefore learning about the structure of this objects beyond the information provided

by light. Due to its sensitivity to mass, strong gravitational lensing also allows to probe the

distribution of matter at small scales. Modelling the substructures in galaxy-scale lenses allows

to find dwarf galaxies and sub-halos predicted by simulations (Vegetti et al., 2010; Vegetti &

Vogelsberger, 2014). As stated earlier in the case of QSO0957, the monitoring of lensed quasars

allows to explore the geometry of our Universe and to impose constraint on the cosmological

constant H0. Finally, galaxy-scale lenses, just as cluster-scale lenses, act as natural telescopes.

1.2.5 Lensed supernova

With many observations of lensed quasars, galaxy clusters and galaxy scale lenses across the

years, the next significant first came recently with the detection of a multiply imaged supernova

in galaxy cluster MACS J1149 (Kelly et al., 2015). The explosion of a distant supernova at the

background of cluster MACS J1149 was observed in four images around one of the galaxy

cluster members as shown in figure 1.5a. By looking at the mass distribution estimates for the

cluster, an image of the supernova was expected to reappear in 2015 near the red star in the

middle right panel of figure 1.5a. The predictions made by lens modellers with regard to the

location, magnification and time of the reappearance provided an excellent test for our lens

modelling capabilities, as shown in figure 1.5b.
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(a) The lensed supernova "Refsdal" from Kelly et al.
(2015)

(b) Prediction for the lensed supernova reappearance from Kelly
et al. (2016)

Figure 1.5 – The multiply imaged lensed supernova and its predicted reappearance in cluster
MACS J1149.

The lensing of a supernova had been considered back in 1964 by Norwegian astrophysicist

Sjur Refsdal in Refsdal (1964), where he predicted that the time delay between the successive

appearances of the multiple images of a lensed supernova could be used to constrain the

cosmological constant H0. At the time this idea was dismissed by the community due to the

low chances of ever observing such event. This was without accounting for the progress in

the field of instrumentation, in particular with the development of coupled charged devices

(CCD). In the mean time, the discovery of lensed QSOs as variable sources of light allowed

to apply Refsdal’s idea to lensed quasars (Courbin et al., 2005; Eigenbrod et al., 2005; Bonvin

et al., 2017).

The supernova event observed in MACS J1149 is now known as the "Refsdal Supernova".

1.2.6 Lensed individual star

Another noticeable discovery in the field of strong gravitational lensing came, again, from

observations of cluster MACS J1149. Kelly et al. (2018) reported the discovery of a transient

object in a lensed arc belonging to a background spiral galaxy. With the event happening at the

crossing of a line of extreme magnification (critical line) in the lens models and the spectral

energy distribution (SED) of the object remaining unchanged throughout the event, it was

deduced that the transient object was in fact, an individual star at the background, that was

magnified by a factor 103 −104.

Not only magnification allowed to view the farthest individual star ever observed, but it also

gives us an opportunity to investigate in details the mass distribution in the cluster at very

small scales. As recently shown in Dai et al. (2018), the monitoring of the fluctuations in

position and magnitude of the lensed star could tell us about the distribution of massive

substructures in the lens cluster.
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1.3 Gravitational Lensing formalism

We previously described gravitational lensing as a deflection of light by a massive object and

gave the deflection angle of incoming light ray by a spherical mass. In this section, I give the

deflection angle of an incoming light ray cruising by a lens with a generic mass distribution.

The expression that relates this deflection angle to the observed and actual position of source

in the plane of the sky is called the lens equation. To explicit this equation, we need to give

a few definitions with regard to the geometry of the system and the lens mass distribution,

with the help of figure 1.6. Most of the material presented here is adapted from the text

books Schneider et al. (2006); Meneghetti (2006); Narayan & Bartelmann (1996); Bartelmann &

Schneider (2001).

1.3.1 The thin lens approximation

I am going to use the approximation of thin lenses, which assumes that the size of the deflector

is small compared to the distance between the source and the deflector and the distance

between the lens and the observer, such that the curvature of the light ray that we drew on

figure 1.1, can be approximated to a sharp deflection happening at the redshift of the lens. In

practice, this approximation is well verified, even in the case of galaxy clusters. We define an

arbitrary optical axis as the imaginary line that links the observer and the center of the lens,

and that serves the as a referential to measure angular positions.

Figure 1.6 – Deflection of light by a thin lens

With this approximation, we can define two planes:

• The source plane, that lies at a distance DS from the observer and that contains the

source. the two dimensional position of a light source is given by the coordinates ηηη. We
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write βββ the angular position of the source in the plane of the sky, relative to the optical

axis, such that, in the approximation of small angles:

ηηη= DSβββ (1.3)

• the lens plane, that lies at a distance DL from the observer. The lens and the source are

separated by a distance DLS . An object in the lens plane is identified by its coordinates ξξξ

and its angular position on the plane of the sky θθθ, such that:

ξ= DLθ (1.4)

We notice here that each of the parameters ηηη, βββ, ξξξ and θθθ are two dimensional vectors that

encode a coordinate in their respective plane (lens or source), or referential (spatial or angular).

We choose as a convention to write θx and θy the two components of a vector θθθ, such that

θθθ = (θx , θy ). The values DS , DL and DLS that we coined as distance are actually angular

diameter distances, that are defined by the ratio between the physical size of an object and its

angular size at the considered distance.

1.3.2 Surface mass density

With the thin lens approximation, we consider that all the mass attributed to the lens is

contained in the lens plane. As a result, we define the surface mass density of a lens as the

projection of the lens mass on the lens plane along the radial axis r , such that the surface mass

density at position ξξξ writes:

Σ(ξξξ) =
∫

ρ(ξξξ,r )dr, (1.5)

where ρ is the lens’ volume density.

For the purpose of simplifying the coming equations, we also define the dimensionless surface

mass density, or convergence, κ, as the ratio between the surface mass density and the critical

surface mass density Σc , such that:

κ(θθθ) = Σ(DLθθθ)

Σc
, and (1.6)

Σc = c2

4πG

DS

DLDLS
. (1.7)

As will be discussed later, if κ reaches values higher than 1 at some locations θθθ, the lens wil

produce multiple images. The critical mass is therefore an indicator of the creation of multiple

images.
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1.3.3 The lens equation

The lens equation we are going to establish here, links the angular position of the observed

image of a lensed object to its actual angular position in the sky. Of course, this relation

depends on the deflection angle α̂̂α̂α, which, in turn, depends on the mass distribution of the lens

and the impact parameter of the deflected photon as illustrated with equation 1.2. Therefore,

deflection angles are computed at a given angular location, such that a deflection angle

writes α̂̂α̂α(θθθ). We notice here that the information relative to the radial position of the source is

encoded in the expression of the convergence, through the ratio DS
DLS DL

. With this definition

it appears that the expression of the convergence depends on relative radial positions of the

source and the lens.

Although α̂̂α̂α(θθθ) is the deflection angle which was historically the value of interest in Soldner’s

and Einstein’s work, we choose to use the scaled deflection angle ααα(θθθ)2, which directly ex-

presses the difference between angular positions θθθ and βββ as shown in figure 1.6, and relates to

the deflection angle by:

ααα(θθθ) ≡ DLS

DS
α̂̂α̂α(θθθ) (1.8)

Using this angle, the lens equation is given by geometric construction as:

βββ=θθθ−ααα(θθθ). (1.9)

This equation tells us that a photon emitted from angular position βββ will be seen by the

observer at position θθθ provided that the scaled deflection angle at position θθθ verifies equation

1.9. It is possible that for a given βββ, ααα verifies equation 1.9 in several positions θθθ. In this case,

the lens equation admits several solutions, and a light source at position βββ will be multiply

imaged in the lens plane. With a generic lens mass distribution with a convergence κ(θθθ) at

position θθθ, the scaled deflection angle is given by:

ααα(θθθ) = 1

π

∫
θθθ∈R2

κ(θθθ′)
θθθ−θθθ′

|θθθ−θθθ′|2 dθθθ′, (1.10)

which can be seen as a convolution operation of the convergence by a kernel: θθθ 
→ θθθ
|θθθ|2 (see

Meneghetti, 2006, for the details on the derivation ofααα). By observing that∀x ∈R+, ∇l n(|x|) =
x

|x|2 , it is possible to link the deflection angle and the convergence to the deflection potential

Ψ defined as:

Ψ(θθθ) = 1

π

∫
θθθ∈R2

κ(θθθ′)ln(|θθθ−θθθ′|)dθθθ′, (1.11)

2We notice here that angles α̂̂α̂α(θθθ)and ααα(θθθ) are both two-dimensional vectors that account for an angular
separation.
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such that:

ααα =∇∇∇Ψ, and (1.12)

∇2Ψ = 2κ. (1.13)

Due to the thin lens approximation and the normalisation of the convergence, the deflection

potential can be seen as a rescaled projection of the gravitational potential Φ such that:

Ψ(θθθ) = DLS

DLDS

2

c2

∫
θθθ∈R2

Φ(θθθ,r )dr. (1.14)

Equations 1.11 and 1.10 tell us the deflection angle depends linearly on the convergence, which,

in turn, gives access to the deflection potential. The analysis of strong gravitational lenses,

through the modelling of the deflection angles therefore allows to derive the 2-dimensional

deflection potential, which tells us about the distribution of mass of a lens, on the plane of the

sky. In practice, the derivation of deflection angles in far from trivial. Indeed, when looking

at equations 1.9 and 1.10, it appears that the only known value in these equations is θ at the

position where a lensed image of a background source appears and that the relation between

βββ and θθθ is non linear.

Multiple images

A solution to this problem of convergence estimation, comes from the identification of two (or

more) multiple images of a same background source. By recording their positions θθθ1 and θθθ2, it

is possible to use the lens equation 1.9 on their position vectors to derive an equation that has

ααα as its only unknown:

θθθ1 −ααα(θθθ1) =θθθ2 −ααα(θθθ2). (1.15)

With θθθ1 and θθθ2 known, it becomes possible to solve equation 1.15 for κ as a linear inverse

problem. This method is widely used in the field of cluster-scale lens modelling where the

size and mass of galaxy clusters allow the formation of multiple images of several background

sources (Jauzac et al., 2015; Hoag et al., 2016; Diego et al., 2016; Massey et al., 2015; Merten

et al., 2011; Zitrin et al., 2013). In galaxy-scale strong lensing, the method is also used after

careful identification of the multiple imaging of specific features in the lensed source (Eichner

et al., 2012; Grillo et al., 2010; Suyu et al., 2012).

Extended sources

By extension, when the lensed source is an extended objects (e.g. a galaxy), it is possible to use

the information provided by the whole image of the lensed object to derive deflection angles.

To give an idea of how this works, let us consider the following example, where an extended
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source that presents one particularly identifiable clump of intense star formation, is lensed

and produces two images of the star forming clump. Because the rest of the galaxy does not

present any particular feature, it is only possible to write equation 1.15 at the location of the

clumps. However, the locations in the lens plane right next to the image of the clumps will

very likely belong to regions right next to the clump in the source plane. And by transposing

this idea to the neighbour of the neighbour and so on, we realise that the deflection angles

at each location along the image of the lensed source has to be such that the (de-)projected

image of the source back to source plane forms a coherent light profile that looks like a galaxy.

Using this concept, it is possible to design algorithms that account for the modelling of the full

light profile of the source in source plane by finding the deflection angle that will reconstruct

a source light profile consistent with a galaxy shape. Stating that a light profile has to be

consistent with a galaxy shape is deliberately vague. In practice, many strategies can be

devised that impose constraint on the source light profile’s shape that encode the galaxy

shape consistency. For instance, it is possible to impose that the source be made of smooth

component that emulate a galaxy’s radial profile (Kneib et al., 2011a; Bellagamba et al., 2017).

Many modelling techniques perform numerical reconstruction of source light profiles and

impose linear constraints that enforce the smoothness of the light profile (Vegetti et al., 2010;

Birrer et al., 2015; Dye & Warren, 2005; Suyu et al., 2006; Wayth & Webster, 2006; Warren & Dye,

2003; Coles et al., 2014; Nightingale et al., 2018; Nightingale & Dye, 2015). This topic will be

expanded on further in chapter 5.

Because the problem of finding κ at every location θθθ on the plane of the sky, knowing only

a small number of multiple image position, is highly ill-posed, most methods will rely on

analytical profiles that describe κ using a small number of parameters. For instance, a simple

lens mass model is the singular isothermal Sphere (SIS).

Singular Isothermal Sphere lens

The SIS mass model describes a system of self-gravitating particles with a given velocity

dispersion σv , such that the density of the system at a distance r of its center is given by:

ρ(r ) = σ2
v

2πGr 2 (1.16)

By integrating equation 1.16 along the line of sight, we obtain the surface mass density at

position θθθ on the plane of the sky, with the origin chosen to be at the center of the lens:

Σ(θθθ) = σ2
v

2GDLθθθ
. (1.17)
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With this simple expression for the surface mass density, it is possible to compute analytically

the convergence and deflection angle at location θθθ as:

κ(θθθ) = RE

2|θθθ| , and (1.18)

ααα(θθθ) = REθθθ

|θθθ| (1.19)

With

RE = 4π
σ2

v DLS

c2DS
(1.20)

This simple expression for the deflection angle only depends on three parameters: RE , the

Einstein radii, or the radii of the critical curve (see section 1.3.5), and the choice for the center

of the lens model θ0θ0θ0 that was hidden in the choice of the origin for the coordinates system.

Under the assumption that a gravitational lens’ mass density can be described by an SIS, it is

possible to optimise for parameters RE and θθθ0 such that the corresponding deflection angles

allow the reconstruction of the positions of a given lensed source image. More examples of

lens mass density profiles are given in chapter 5.

1.3.4 Distortions

Another important aspect of strong gravitational lensing we have not dealt with yet, is the

interpretation of the lens equation in terms of morphology of the lensed image. To do that, let

us take a look at how a small, local perturbation of a source position is seen in the lens plane,

by writing the Jacobian matrix, also called amplification matrix:

A (θθθ) = ∂βββ

∂θθθ
=

(
I2 + ∂2Ψ(θθθ)

∂θi∂θ j

)
(i , j )∈(x,y)2

=
(

1−κ−γ1 −γ2

−γ2 1−κ+γ1

)
, (1.21)

where γ1 and γ2 are the shear components:

γ1 = 1

2
(
∂2Ψ(θθθ)

∂θxθx
− ∂2Ψ(θθθ)

∂θyθy
), and (1.22)

γ2 = 1

2
(
∂2Ψ(θθθ)

∂θxθy
. (1.23)

Matrix A therefore gives us a locally linearised version of the mapping of coordinate θθθ into

βββ, to the first order. In order to get a better interpretation of the first order morphological

transformation of an object in source plane into an image in lens plane, we need to take a look
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at the inverse of the Jacobian, the magnification tensor M (θθθ), which is obtained by simple

matrix inversion and, if it exists, writes:

M (θθθ) = μ

(
1−κ+γ1 γ2

γ2 1−κ−γ1

)
(1.24)

= μ

((
1−κ 0

0 1−κ

)
+

(
γ1 γ2

γ2 γ1

))
. (1.25)

From equation 1.24, it is clear that the existence of the magnification tensor is conditioned by

the determinant of Jacobian matrix and requires det (A ) �= 0. We define μ as the determinant

of the magnification tensor and call it magnification for reasons that will soon become clear:

μ= det (M ) = det (A )−1 = 1

(1−κ)2 −γ2
1 −γ2

2

. (1.26)

The coordinate transform in equation 1.24 can be expanded as in equation 1.25. We see that

the transformation matrix is the sum of the identity matrix rescaled by a factor (1−κ)μ, which

corresponds to an isotropic stretch. The other component of equation 1.25 is a non diagonal

matrix that depends only on γ1 and γ2. To have a clearer interpretation of this transformation,

let us write the coordinates in lens plane (θx ,θy ) of a lensed source originally at position

(βx ,βy ) in source plane, and decompose this coordinate transform:

(
θx

θy

)
=μ

(
(1−κ)βx +γ2βy +γ1βx

(1−κ)βy +γ2βx −γ1βy

)
. (1.27)

In equation 1.27, I highlight the different contributions of the lensing transform using colour.

Now, let’s assume that the coordinates (βx ,βy ) belong to the unit circle, and discuss the

transformation of a circle in the source plane:

• The green component corresponds to an isotropic stretch of the coordinates, meaning

that a circle in source plane will see its radius rescaled by a factor 1−κ
μ in all directions in

lens plane.

• The red component of equation 1.27 shows an equal contribution of βx to θy and of βy

to θx , which corresponds to a stretch along the axis θx = θy .

• The blue component shows opposite contributions of βx and βy to θx and θy respec-

tively, which indicates a stretch along one of the axes θx = 0 or θy = 0 and a contraction

along the other. This axis along which the stretch will occur depends on the sign of γ1,

which, according to equation 1.22 depends on the slope of the gradient of the deflection

potential along the horizontal and vertical axes.

From this interpretation of the first order of lensing, we get a better understanding of the

naming of κ, γ1 and γ2. Indeed, the convergence κ, tends to make an image of a source bigger,
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Figure 1.7 – Illustration of the magnification and shear effects. The black circle is the unit
circle with coordinates (βx ,βy ) in the source plane. The coloured circles correspond to trans-
formation of the unit circle through the first order approximation of the lens equation with
different values of the shear and convergence components.

similarly to what a converging optical lens would do, while the γ1 and γ2 tend to shear a lensed

source along the vertical or horizontal axis, and along the axis θx = θy . The effect of these

transformations are illustrated on figure 1.7. By looking at the definitions for γ1 and γ2 in

equations 1.22 and 1.23, we get the understanding that the lensing transformation produces a

magnification combined with a shear in a direction orthogonal to the gradient of the deflection

potential.

1.3.5 Magnification

An important consequence of the lensing distortion, is the magnification of lensed source

due to the conservation of surface brightness. Surface brightness conservation is given by

Liouville’s theorem in the absence of absorption and emission of light, and tells us that the

same surface brightness crossing a solid angle dΩβ will cross its lensed counterpart dΩθ.

From the previous linear development of lensing, we can express the area of a the solid

angle in source plane, ||dβx ∧dβy ||2 as a function of the area of its counterpart in lens plane:

||dθx ∧dθy ||2. To do this, we use the definition of the amplification matrix to write:

dβx = (1−κ−γ1)dθxdθxdθx −γ2dθydθydθy (1.28)

dβy =−γ2dθxdθxdθx + (1−κ+γ1)dθydθydθy . (1.29)
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Thus, the expression for an elementary solid angle in source plane:

dΩβββ = ||dβxβxβx ∧dβyβyβy ||2 =
(

1−κ−γ1

−γ2

)
∧

(
−γ2

1−κ+γ1

)
||dθxθxθx ∧dθyθyθy ||2 (1.30)

= ((1−κ)2 −γ2
1 −γ2

2)||dθxθxθx ∧dθyθyθy ||2 (1.31)

= dΩθ

μ
. (1.32)

We find that the ratio between the flux from an element of a lensed source and its unlensed

counterpart, is equal to μ which we had thoughtfully called the magnification.

1.3.6 Consequences for lensed images

Image magnification

We have seen in the previous section that the light from a lensed source is magnified by a

factor μ, which is the inverse of the determinant of the amplification matrix. One aspect

of this that have kept hidden under the carpet, is the possibility for det(A (θθθ)) to be null.

Lenses admit a set of points θθθ where det(A (θθθ)) = 0, that form a smooth closed curve called

critical curve. The mapping of the critical curves to source plane forms caustic lines that are

not necessarily smooth 3. Formally, the magnification diverges to infinity and a background

source crossing a region where det (A (θθθ)) = 0 should be magnified infinitely. In practice, the

finite size of astronomical sources and the formal application of wave optics instead of its

geometrical approximation, show that the magnification remains finite, even along critical

curves (Ohanian, 1983). While this value remains finite, we have seen it to take extreme values

as recently shown in the case of the lensed individual star in cluster MACS J1149 (Section

1.2.6).

Creation of multiple images

To better understand the creation of multiple image, it is interesting to come back to the lens

equation and write using the deflection potential, such that:

θθθ−βββ−∇∇∇Ψ(θθθ) = 0 (1.33)

By noticing that

θθθ−βββ= 1

2
∇∇∇(θθθ−βββ)2, (1.34)

3This is due to the tangent to the critical curve being parallel to the eigen-vector of A which eigenvalue is 0,
which is always verified, given that the determinant of A is vanishing at any point of the critical curve. In this case,
the derivative of the parametrisation of the caustic line vanishes, which can produce discontinuities.
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we can rewrite the lens equation as:

∇∇∇(
1

2
(θθθ−βββ)2 −Ψ(θθθ)) =∇∇∇τ(βββ,θθθ) = 0, (1.35)

where we introduced the Fermat potential, defined as:

τ(βββ,θθθ) = 1

2
(θθθ−βββ)2 −Ψ(θθθ). (1.36)

The Fermat potential can be related to the difference in travel time delay between a photon

emitted by a source at position βββ and redshift zs , through a gravitational potential Ψ encoun-

tered at position θθθ and hypothetical photon emitted from the same position, but that remains

unperturbed by the gravitational potential. This time delay writes as:

t (βββ,θθθ) = 1

c

DLDS

DLS
(1+ zs)

( (θθθ−βββ)2

2
−Ψ(θθθ)

)
= 1

c

DLDS

DLS
(1+ zs)τ(βββ,θθθ), (1.37)

where the term in (θθθ−βββ)2 relates to the geometrical time delay between light ray paths, and the

term in Ψ(θθθ) is the so called Shapiro time delay introduced by the contraction of space-time

due to the lensing potential.

With this formulation, we notice that the solutions for the lens equation coincide with the

positions θθθ where, for a given source position βββ, the gradient of the time delay surface and

the Fermat potential vanishes. This last point expresses Fermat’s principle which states that

light travels along the shortest path, hence the name for the potential. This means that

images of lensed objects can only appear at minima, maxima or saddle points of the Fermat

potential/time delay surface. Because the amplification matrix is also the Hessian of the

Fermat potential, the curvature around a point of vanishing gradient of τ gives us the sign of

the eigen-values of A . Furthermore, the magnification is the determinant of the amplification

matrix which is also the product of the matrix’s eigen-values and the sum of A ’s eigen-values

is the trace of A , which is:

tr (A ) = 2(1−κ). (1.38)

As a result, the local curvature of the Fermat potential tells us about the local convergence and

the magnification of the observed images:

• At a minimum, both eigen-values of the Hessian are positive, hence the positivity of the

magnification and the trace, and a convergence κ< 1

• At a maximum, both eigen-values are negative, hence the positivity of the magnification.

In this case, the trace of A is negative, meaning that κ> 1.

• At a saddle point, eigen-values have opposite signs, hence the negativity of the magnifi-

cation. A negative magnification translates into a flipping of the source image. Nothing

can be said about the convergence from this simple interpretation.
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Looking at the time delay surface gives a slightly more intuitive idea about the production

of multiple images and their magnification in the case of real lenses. Illustration 1.8 shows,

in two dimensions instead of three, a background light source, which light we should, in the

absence of a lens, receive at the minimum of the time delay surface. In this case, it would

only be described by a geometrical component (Shapiro time delay is 0) and would admit

0 as its minimum. We find again Fermat’s principle. In the case where a lens with an SIS

mass distribution lies between the source and the observer aligned with the source, the time

delay surface is perturbed as illustrated schematically by the plain black line at the top, in

the case where lens and source are slightly misaligned. The dashed black line shows the

unperturbed time delay surface. The light crossing through the center of the lens is slowed

down by the intense metric distortion, thus forming a maximum in the time delay surface.

With this perturbation at the center, the continuity of the time delay surface imposes that two

minima exist on either side of the lens4. This first realisation gives us an intuition about the

odd number theorem (Dyer & Roeder, 1980; Burke, 1981), which states that any lens with a

smooth surface mass density decreasing faster than |θθθ|−1 (the SIS model), will create an odd

number of images. More precisely, the number extrema of the Fermat potential is equal to

the number of saddle points plus one, provided that the source is not on a caustic line, thus

enforcing oddness.

The odd number theorem and the characteristics of the extrema and saddle points as shown

above tell us that multiple images occur for lenses that admit at least one position θθθ, where

det(A (θθθ)) < 0. Similarly, if a lens forms an image at a position θθθ where κ(θθθ) > 1, this image

is either a saddle point, or a maximum, which imposes that other images exist. Another

interpretation of this sketch can be made in terms of magnification of lensed images. Let us

consider that the source is extended and fills the solid angle dΩβ. The representation of the

solid angles as red intervals tangent to the time delay surface is technically not true, since each

point of the extended source actually generates its own time delay surface. However, given

that time delay surface are smooth, we approximate the area of the extremum of the time delay

surfaces to the region around the extremum in the time delay surface of the central path of the

source, where the surface can be considered flat. Due to the density of the mass profile around

the center of the lensed, we see that the perturbed time delay surface produces an image in

the center that with a smaller solid angle, while the images on either side of the lens appear

with a larger solid angle. This means that the image seen through the center of the lens will

appear demagnified. In practice, this central image is rarely seen due to the demagnification

combined with the fact that the lens is usually a bright galaxy.

4In two dimensions, we would see that these two points are not strict maximum, given that their second
eigen-value is zero. In this specific case of perfect alignment, the images, would actually form as a ring along the
critical curve.
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Figure 1.8 – Distortion of a time delay arrival surface.

1.3.7 The different regimes of lensing

As we have seen, gravitational lensing occurs when a lens and a source are aligned with an

observer. In the case of a perfect alignment, an extended background source will be imaged as

a ring around the lens. But as we deviate from perfect alignment, lensing can enter a different

regime.

Strong gravitational lensing

Strong gravitational lensing is the regime where source and lens are sufficiently aligned so

that multiple images and high order distortions are formed. As stated earlier, the fact that a

surface mass density gets larger than the critical surface mass density leads to the possibility

of multiple images to form. In general, gravitational lenses are called strong when a source is

well aligned with a region where κ> 1, which tends to form multiple images and distortions.

All the previous examples of lenses given in section 1.2: Multiple images of point sources, arcs,

rings, and highly magnified point sources, are all strong gravitational lenses.

Weak gravitational lensing

Weak gravitational lensing occurs when the alignment between lens and source large enough

so that the main effect of lensing on an extended spherical source is the imprinting of an

ellipticity due to the shear. This effect is usually visible in the outer regions of massive galaxy

clusters. Due to background source galaxies having their own intrinsic ellipticity, it is, in
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practice, a challenging problem to decouple the weak lensing effect from intrinsic shapes and

alignments.

Mililensing

Mililensing can be seen as a perturbation of an otherwise smooth lens macro-model. While

so far we have only considered the formation of multiple and distorted images by a smooth,

mono-modal lens mass distribution, it is possible that galaxies present massive substructures.

These lenses of smaller angular size and mass will perturb the light profile of the lensed source

by introducing variations of magnification, image source position, or small distortions.

Microlensing

Microlensing can be seen as an occurrence of strong gravitational lensing where the extent of

the lens’s critical curves is too small to be resolved. Observing a source behind such lens would

only produce a higher magnification of the source. For instance, multiply imaged quasars

are subject to microlensing by stars inside the lens galaxy producing an artificial luminosity

variability in each of the quasar images.

In this thesis, we will only consider strong gravitational lenses. This type of lenses are, in

practice, very complex to model for several reasons:

• The ill-posedness of the problem. Modelling lenses from an image of a gravitational

lens requires to estimate both the surface mass density of the lens as well as the surface

brightness of source that went through extreme distortions and magnification,

• The blending from the lens light that contaminates the surface brightness of the source,

• The non-linearity of the problem with regard to the mass surface density.

• Other problems may arise from the intrinsic complexity of observational constraints

and of lens systems such as convolution by a telescope’s impulse response, multi-plane

lensing, contamination by other objects (e.g. stars in our galaxy)

1.4 Science with Strong Gravitational Lensing

Now that we have a clear overview of the type of lenses that we observed so far and that we

have a better understanding of how gravitational lenses are made, let us take a look at what

lenses tell us about our Universe.
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Figure 1.9 – Image of lens system RXJ1131.

1.4.1 Cosmic telescope

In gravitational lenses, magnification creates images of distant, background objects that

appear bigger and brighter than if they were directly observed, without lensing. Each gravita-

tional lens event therefore provides us with unique opportunities to probe the small scales

of distant galaxies (Marshall et al., 2007). This was recently illustrated in Adamo et al. (2013);

Johnson et al. (2017); Wuyts et al. (2014); Cava et al. (2018), where the authors used cluster

lensing to study structures at sub-kiloparsec scale in lensed arcs down to redshift 2.5 (Johnson

et al., 2017). Because lensing tends to enlarge images of background objects, it also makes

the study of galaxies hosting active galactic nuclei (AGN) possible. Active galactic nuclei are

supermassive blackholes at the center of a galaxy. In extreme cases, the inflow of matter in

the blackhole releases energy as light and therefore produce extremely luminous objects such

as QSOs. The properties of an AGN exhibit remarkably tight relations with the properties of

the host galaxy (Hopkins et al., 2009; Gültekin et al., 2009). In cases where the AGN forms a

QSO, the extreme brightness of the object combined with shape of the telescope’s impulse

response will see the luminosity of the host galaxy blend behind the diffraction figure of the

telescope. When strongly lensed, the angular size of a host galaxy is increased while the size of

the diffraction figure of the QSO remains the same and is only multiply imaged. This allows to

study the luminosity of the host galaxy in great details. An example of the magnification of

such object comes with lens system RXJ 1131-1231 (Sluse et al., 2003) shown in figure 1.9 5

and recently reconstructed in source plane in Birrer et al. (2016), and by extension, with all the

lenses from the COSMOGRAIL collaboration (Eigenbrod et al., 2005).

1.4.2 The mass content of galaxies

Since the ground breaking work of Vera Rubin on galaxy rotation curves (Rubin et al., 1978,

1980), we know that individual galaxies sit in a halo of matter that encompasses much more

5Image credit: X-ray: NASA, CXC, Univ of Michigan, R.C.Reis et al; Optical: NASA,STScI
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mass than what luminous matter lets us think. This corroborated the previous observations

made by Fritz Zwicky in Zwicky (1933) that the Coma cluster had a much higher gravitational

potential that what could be inferred from its luminous mass. These observations led as-

tronomers to form the hypothesis of large amounts of non luminous massive matter around

galaxies and cluster, that could only be detected through its gravitational manifestations. This

is what we now call dark matter (DM). In recent decades, the dark matter hypothesis found

even more supporting ground with the observation of the bullet cluster, where it was revealed

that the mass distribution of two merging clusters was not following the matter distribution

traced by X-ray gas. This difference in distribution hints towards a dark matter component that

does has low interactions with matter (at least X-ray gas), or with itself. Even more recently,

Harvey et al. (2015) mapped the dark matter distribution in 72 merging clusters using weak

gravitational lensing. They used the relative alignments with hot gas densities to impose an

upper limit on the dark matter self interaction cross-section.

For now, the nature of dark matter remains a mystery. The fact that dark matter seems to

manifest only through its gravitational interactions, makes gravitational lensing the perfect

tool to investigate its nature. Indeed, by observing how dark matter behaves and interacts, we

can access a better understanding of its composition as shown by Harvey et al. (2015).

1.4.3 The detection of Massive substructures

With advances in the field of numerical simulations, it is now possible to generate simulations

of a Universe realisation based on our current understanding of cosmology, and compare the

properties of the simulated Universe with our own (Somerville & Primack, 1999; Springel et al.,

2001; Springel & Hernquist, 2003; Klypin et al., 2011; Genel et al., 2014; Schaye et al., 2015; Revaz

& Jablonka, 2018). An interesting characteristic of these simulated Universes is the dark matter

mass function, given by the number of dark matter halos per mass interval. While cosmological

simulations predict a large abundance of small (dwarf galaxies with M� � 109M�) structures,

observations do not seem to agree and tend towards a lower abundance of substructures (as

illustrated in Bullock & Boylan-Kolchin, 2017, , figures 5 with the data from Sheth et al. (2001);

Wright et al. (2017); Bernardi et al. (2013)). This discrepancy can be explained in two ways,

which are best summed up by the names given to this problem: the excess subhalo problem

on one side, and the missing satellite problem on the other side. The excess subhalo refers to

the possibility that we should question our current understanding of cosmology and that the

model we built so far to describe our Universe does not correspond to the reality. The missing

satellite problem refers to a defect on the observational side. A likely possibility is that low

mass substructures do not form enough stars to be detected. In this case subhalos would exist

as dark, low mass substructures.

In the case that the latter be true, gravitational lensing would be, at the moment, the best

probe to detect such substructures. Since the shape of a lensed source is sensitive to mass

only, dark subhalos would imprint characteristic features in images of lensed galaxies. Such
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features can only be identified through the accurate modelling of both source light profiles

and lens mass distribution.

Strong gravitational lensing has already proven to be a promising way of detecting such

substructures as shown in Mao & Schneider (1998); Bradač et al. (2002); Dalal & Kochanek

(2002); Nierenberg et al. (2014); Gilman et al. (2017), where the authors of these studies showed

anomalies in the flux ratios between multiple images of lensed quasars that could be best

explained by massive substructures. In the works of Koopmans (2005); Vegetti et al. (2010,

2012), the authors successfully modelled anomalies in the lensed source surface brightness as

massive, dark substructures. A recent and elegant approach was proposed in Hezaveh et al.

(2016) and applied in Bayer et al. (2018) that, instead of modelling individual substructures,

proposes to extract the power spectrum of the perturbations of the surface brightness of

lensed galaxies.

1.4.4 Cosmography

Since the work of Lemaître (Lemaître, 1927), we know that galaxies in every directions are

moving away from us. Even more, they are moving away faster as they are farther and this

velocity distance relation scales linearly. This effect is known as the expansion of the Universe

and expresses the fact that all galaxies in our Universe are moving away from one another.

This expansion phenomenon can be seen as a conservation of the momentum given to all the

particles in the Universe at the time of inflation. The expansion rate, that was first highlighted

by Georges Lemaitre, was "naturally" called the Hubble constant, H0 after Edwin Hubble

who reached Lemaitre’s conclusions in Hubble (1929). Due to galaxies moving away from

us, the photons we receive from them are subject to a Doppler effect. The result is that the

wavelength of the observed photons is shifted to longer wavelength making distant galaxies

appear redder than they would in a Universe without expansion. Because galaxies move away

from us faster as they are farther, the wavelength shift towards the red, henceforth called

redshift and symbolised by the letter z, can be used as a proxy for their distance to us. In

practice, the redshift of a galaxy is computed by identifying spectral features, such as emission

or absorption lines and measuring by how much their measured frequency differs from their

expected frequency in rest frame.

Coming back to the lensing formalism we previously established, we forgot (on purpose) to

notice that the time delay written in equation 1.37 depends directly on the angular diameter

distances of the system. In an expanding Universe, these angular diameter distances are scaled

by the expansion rate. In other words, angular diameter distances are proportional to H−1
0 . In

a curved space with matter and dark energy, the angular diameter distances also depend on

the matter, dark energy and curvature densities but only to the power −1
2 . While time delays

themselves cannot be observed due to the fact that if the arrival time of a lensed photon is

known, we cannot know the reference arrival time of a non-deflected photon emitted at the

same time as the lensed photon, it is possible to access time delay differences through multiple
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imaging. As proposed by Refsdal (1964), and recently illustrated in (Kelly et al., 2015; Kelly et al.,

2016), the multiple imaging by a gravitational lens of a supernova exploding in a distant galaxy

at redshift zS would produce consecutive appearances of the supernova luminosity peak in

each of the multiple images. By recording the time interval Δt1,2 between the occurrence of

the peak in two of the multiple images at position θ1 and θ2, one can link the angular diameter

distances to an observational quantity:

Δt1,2 = (1+ zS)
DLDS

cDLS
(τ(βββ,θ1θ1θ1)−τ(βββ,θ1θ1θ1)). (1.39)

We note here that zS and βββ are common to both images of lensed supernova. With the

formulation of equation 1.39, we know have an observational quantity that is proportional to

H−1
0 . Before we can conclude that H0 is therefore easily measurable using multiple imaging,

there are a few aspects that need to be emphasised:

• First, only a few lensed supernovae have been observed to date, with little monitoring of

the multiple images light curves. However, Refsdal idea can easily be extended to general

variable sources. In practice, QSOs present characteristic variations over timescales of a

few days. However, since these variations are, in general, less peaked than supernovae

explosion light curves, and contaminated by microlensing from the lens galaxy stars,

it is necessary to build robust time delay measurement techniques. In the frame of

the COSMOGRAIL survey, Tewes et al. (2013); Bonvin et al. (2016) developed the pyCS

curve shifting package, which relies on simultaneous spline fitting, residual minimi-

sation of the residuals between individually interpolated light curves, and dispersion

minimisation between light curves.

• Second the time delay difference has a strong dependence on the Fermat potential

which depends on the deflection angle and the deflection potential. Both of these

values need to be carefully estimated before any computation of H0 can be made, which

requires accurate lens modelling. In the recent work of the H0LiCOW collaboration,

the lens modelling was performed using a code optimised for galaxy scale modelling

of lensed quasars, GLEE (Suyu et al., 2006; Halkola et al., 2008; Suyu & Halkola, 2010;

Suyu et al., 2012), that reconstructs lens mass profiles based on multiple image positions

and extended lensed source light profile reconstruction with an adaptive regularisation

parameter.

Applying these techniques to decade long monitoring of the light curves of three gravitationally

lensed quasars, Bonvin et al. (2017) achieved a competitive measurement of H0, down to a

3.8% accuracy. With more lens systems to exploit (Suyu et al., 2017) and upcoming data with

higher sampling, the future of time delay cosmography will be magnified.
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1.5 Outline

Gravitational lensing is a now well understood phenomenon that results from the rare com-

bination of factors. To be observable, a gravitational lens has to show a lensed image of the

source which brightness and separation form the lens galaxy light profile allows detection by

our Earthly telescopes. This does not only require that a light source be aligned on the plane

of the sky with a massive lens. The system formed by aligned objects also has to verify several

conditions with regard to the mass distribution of the lens, the relative redshifts of the lens

and source, angular position and brightness of the source relative to the lens, and luminosity

of the lens. Only under these very peculiar conditions can a lens be observed. Then, the fact

that a lens be observable does not necessarily mean that it will be observed. Indeed, the most

spectacular lensing regime: strong gravitational lensing, is found at galaxy scale, to produce

systems of a few arcseconds in angular size on the plane of the sky. Knowing that the full sky

covers 64800 square degrees and has billions of light sources, finding strong lens candidates is

not an easy task. The first problem, when working on gravitational lenses is to detect them.

In chapter 2, we are going to see how the community addresses the problem and how linear

decompositions of images can help in this regard. With lensing being a large toolbox on its

own, as shown in section 1.4, it is paramount that we develop robust tools to model them and

extract useful and accurate information from these objects. Due to lenses being formed of

aligned lens and source light profiles, the first challenge is to disentangle between both surface

brightnesses. In the case of early type, mono-modal galaxies acting as lenses, the problem

can be addressed by fitting parametric profiles to the lens luminosity, but for more complex

lens shape, and in the case complete blending between lens and source light profiles, the

separation requires higher orders of modelling.

The following chapters will contribute in large parts to solving this problem using different

techniques that each exploit a different property of lens systems. In chapter 3, I exploit the

fact that lensed objects have a widely different morphology from unlensed galaxies. This

allows, in large surveys, to learn the morphological features of galaxies that could potentially

be lens galaxies and decompose lens candidates on these features to separate lens form source

light profiles. In chapter 4 I use the fact that lensed sources are, by construction, galaxies at

higher redshift than lens galaxies which hints at source being more star forming and therefore

have a different colour from lens galaxies. This difference in colour is observed in practice

and allows to build separation techniques relying on the colour difference between the two.

In chapter 5, I present a technique for lensed source light profile reconstruction in source

at known surface mass density. Interestingly, the difference in morphology between lensed

galaxy and lens galaxy light profiles, allows to perform a joint reconstruction of the peculiar

features of each light profile in their respective referential and therefore, to solve the problem

of lens and source deblending as I reconstruct a source light profile.
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Chapter 2. Introduction to inverse problem solving

In this second Chapter, we introduce the mathematical tools that will be referred to all along

this dissertation. This introduction should not be seen as a toolbox, but instead, as an overview

of the field of linear optimisation, which is central to this work. One of the novelties of

the approach presented in this thesis lies in the effort made to express the many problems

encountered in strong gravitational lensing, in particular the problems relative to blending, as

linear inverse problems and solve them as such. The following sections detail the technical

aspects of the linear framework we chose for our analysis.

2.1 Linear Inverse Problems

Across most of this dissertation, we are going to formulate various problems of denoising,

reconstruction or deblending for astronomical images as, generally ill-posed, linear inverse

problems. Linear inverse problems consist in solving:

Y = AX (2.1)

in X , where Y is an Rn vector containing measurements of an experiment (images or cubes

of images), X is the Rm vector containing the unknown model to estimate and A is an Rn×m

matrix that links the model to the measurements. In practical image processing applications,

matrix A usually stands for a morphological transformation of a distribution on a 2D plane

such as lensing [see chapters 1 & 5], a blurring operator in the case of convolution by a smooth

kernel, or a masking operator that represents missing data. Equation 2.1 can be seen as a set

of n equations with m unknowns.

2.1.1 Ill-conditioning

Equations such as equation 2.1 admit a unique solution that can be derived analytically if

and only if the number of independent equations is equal to the number of unknowns, which

translates by r k(A|X ) = m. In cases where r k(A|X ) ≤ m, the solution is not unique and it is

only possible to derive subspaces of solutions which then have to be constrained using physical

assumptions on X in order to estimate a suitable solution for equation 2.1. If r k(A|X ) ≥ m the

equation is inconsistent and there is no solution that can satisfy all independent equations.

All cases where r k(A|X ) �= m are ill-posed problems in the sense of Hadamard, meaning that

either:

• The problem admits no solution,

• There is no unique solution to the problem

• Or, there is continuous solution over the input parameter space.
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2.1. Linear Inverse Problems

A very simple illustration to this comes when facing a problem of the form :

y = a1x1 +a2x2, (2.2)

where y , a1 and a2 are known real numbers, and x1 and x2 are unknown scalars. With one

equation and two unknowns, it is only possible to define an ensemble of solutions of the form:

x2 = y

a2
− a1

a2
x1. (2.3)

Equation 2.3 defines a line in the (x1, x2) plane along which every point satisfies Y − AX = 0.

Deriving a unique solution requires more constraints, either under the form of an other

equation, or as a physical assumption on the possible solution. We will now use this example

to illustrate a set of constraints that are commonly used in physics and that are essential to

the rest of this manuscript, the �p -norm constraint, with p ∈ {0,1,2,∞}. For a given vector

X = {x0, x1, ..., xm−1} in Rm with xi∈[[0,m−1]] ∈R, it �p -norms are defined as follows:

||X ||∞ = max(|xi |)
xi

(2.4)

||X ||2 =
√√√√i=m−1∑

i=0
x2

i (2.5)

||X ||1 =
i=m−1∑

i=0
|xi | (2.6)

||X ||0 = ∑
xi �=0

1 (2.7)

Strictly speaking, ||.||0 is not a norm as it does not follow the absolute homogeneity. Another

downside of this function, as will be illustrated in section 2.2 is the non convexity of this

application. Nonetheless, we find it very convenient constraint in practical applications.

The general idea of constraining a solution space with �p -norms is to favour the recovery

solutions with low intensity, or at least, concentrated in a small number of coefficients, which

is a common physical assumption. In order to apply these constraints we derive the solution

(x̃1, x̃2) that satisfies equation 2.3 while having the smallest �p -norm. For a more formal

mathematical development of this aspect, we refer to section 2.2, the aim here being to give

the reader a more empirical idea of how these constraints work. In figure 2.1 we show how

we can compute a unique solution for equation 2.2, by inflating the �p -sphere (in colour

in figure 2.1) until they intersect with the solution space. An �p -sphere is an ensemble of

vectors X that have the same �p -norm. On figure 2.1, we see that these spheres intersect

the solution space in a unique point, giving, for each of these constraints a unique solution

that holds different physical properties. By closely looking at the shape of the �0 sphere that

verifies ||X ||0 = 1, we notice that it intersects the line described by x2 = y/a2 −x1a1/a2 in two
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Chapter 2. Introduction to inverse problem solving

Figure 2.1 – The �p -norm constraints used to derive a unique solution for an ill-posed problem.
The black line represents the sub-space of solutions for equation 2.2. Coloured curves show
the �p spheres that intersect the solution space. Coloured stars show the solution derived with
each corresponding norm.

positions: one highlighted by the green star, the other one, outside of the frame of figure 2.1.

From this realisation, it is easy to understand that in higher dimensional and highly degenerate

problems, the non unicity of the �0 solution becomes a combinatorial problem. This is due

to the non-convexity of the �0 "norm", which we can understand graphically from figure 2.1,

where we see that the green lines do not delimit a closed, convex set, while other coloured

lines do.

2.1.2 Noise in linear inverse problems

In practice, experiment results are often contaminated by additive and/or multiplicative noise,

that are represented by vectors M and Z respectively, in Rn , such that equation 2.1 becomes:

Y = M � AX +Z . (2.8)

In the following astrophysical image processing applications, we will exclusively consider

additive noise, thus setting M to 1. Noise is usually a random degradation of the measurements

introduced by the instrument and for which we can only access its statistics at best. Gaussian

distribution, Poisson distribution or Gaussian and Poisson mixture are the most common
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2.1. Linear Inverse Problems

(a) Target measurement (b) Kernel (c) Convolved image

Figure 2.2 – Convolution of an image (left panel) by a kernel (middle panel) to obtain a blurred
image (right panel)

noise statistics in astronomical imaging. Without noise, it is very often possible to recover

the exact solution of equation 2.1 as seen in the previous section, but even at very high signal

to noise ratio, the presence of noise changes the nature of the problem as illustrated in the

following example.

Illustration on deconvolution

Deconvolution in Fourrier space Deconvolution is a very common problem encountered

in astrophysics and in image processing in general, where we aim at recovering a signal that

has been "blurred" by the response of the measurement instrument for instance. Blurring,

refers to the operation of convolution of the targeted measurement by a smooth kernel. In this

illustration, let us consider image X (fig. 2.2a) with Np samples (or pixels), and blur it using

convolution by a Gaussian kernel k (fig. 2.2b), with the same number of samples as in X , such

that the resulting image Y can be described by the relation:

Y [m,n] = k ∗X =∑
i , j

k[n − i ,m − j ]X [ j , i ]. (2.9)

The resulting image Y is showed in fig. 2.2c.

The problem of recovering image 2.2a from image 2.2c is a very common problem in astro-

physics and in image processing in general. In this particular case, a simple solution comes

from the formulation of the problem in Fourier space. When rewriting equation 2.9 with the

Fourier transform of its terms, the convolution product becomes a term by term multiplication

(see eq. 2.10).

Ŷ = k̂ � X̂ (2.10)

A very simple solution to recover X , provided that we know k is therefore to divide Ŷ by k̂ and
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(a) Target measurement (b) Convolved and noisy image (c) Reconstructed image

Figure 2.3 – Reconstruction of a blurred, noisy image from kernel division in the Fourrier
domain. From left to right: the target measurement, the blurred and noisy image, and the
reconstruction from Fourrier space division.

transform the result back into direct space. In this case, the result is an exact recovery of the

original image, expressed as X =I (Ŷ � k̂).

Deconvolution of noisy images As a more realistic study case, we will now perform the same

inversion on a noisy image, meaning that white Gaussian noise Z with standard deviation σ is

added on the right handside of equation 2.9. An illustration is given in fig. 2.3, where image

2.3a is the original image and image 2.3b is its convolved version with noise added. Dividing

Ŷ by the operator k̂, yields a very different result shown in figure 2.3c.

This result is easily explained by writing explicitly the solution we computed here as equation

2.11.

X =I (Ŷ � k̂ + Ẑ � k̂) (2.11)

In this expression, the term Ẑ � k̂ contains frequencies from the noise divided by those of the

convolution kernel. Since we used a Gaussian kernel, which is localised in frequency, while

the white Gaussian noise is not by definition, we end up enhancing some of these frequencies

compared to the frequencies in the signal. In figure 2.3c, we clearly see that high frequencies

contaminate our reconstruction.

From equation 2.9, we observe that the convolution product is a linear operation that can be

expressed as a matrix product:

Y = K X . (2.12)

In equation 2.12, matrix K is a matrix of size Np ×Np
1 that accounts for the linear operation

1We considered X and Y have the same size here, but in the general case, they might of different sizes. If so, the
size of matrix K is the product of the sizes of Y and X .
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of convolution. One might also notice that I dropped the underlining of the matrices Y and X .

This is to signify that X and Y are one dimensional vectors that are constructed by ordering

the consecutive lines of their underlined counterparts as a single line. From this we see that

the lines of the convolution operator K are circular variations of the transpose of k ordered

as a one dimensional column. From now on, this is the formalism we are going to refer to, to

describe the convolution operation, and, by extension, linear inverse problems in general.

Least squares Because uncertainties introduced by noise make it impossible to derive a

simple solution for X from the Fourier quotient, we need to invert the problem by accounting

for the noise. The first thing in attempting to find an estimate for X is to choose a criteria

that will help discriminate viable solutions. This is usually done by looking for solutions that

minimise the distance between the observations and the model, which boils down to solving

equation 2.13.

X̃ = ar g mi n
X∈Rm

1

2
||Y −K X ||22 (2.13)

Not only the function F : X 
→ 1
2 ||Y −K X ||22 is a direct measurement of how close a model is

from the observable, but it also holds two very useful properties, namely: differentiability and

convexity. Because of these properties, we know that F reaches a minimum where

∂F

∂X
(X̃ ) = 0 (2.14)

By computing the derivative of F and solving equation 2.14, we are able to derive a closed

form solution for equation 2.13 known as least squares:

X̃ = (K T K )−1K T Y (2.15)

Such solution exists if and only if the columns of K are linearly independent (condition of

existence for (K T K )−1). Since we cannot always assume that this condition is met in practical

applications, we cannot rely on such solution unless by using a regularisation to lift the

conditioning of (K T K ).

Gradient descent It is also possible to use the properties of differentiability and convexity of

F to approximate a solution for equation 2.13 in an iterative scheme. Since F is convex, it is

possible, from any point Xi , to find Xi+1 such that F (Xi ) > F (Xi+1), by following the direction

of negative gradients around Xi . In other words, repeating iteration 2.16 will see variable Xi

converge towards an estimate of X that minimises F . With this scheme, the gradient step μ

gives a measure of how much we are moving in the direction of decreasing gradients. Therefore,

if μ is too small, the algorithm will only converge after a very large number of iterations. If μ is

too large, the algorithm will never find the minimum and diverge. In practice, μ will depend

on the steepness of the gradient and must therefore satisfy 0 <μ< 2/||K T K ||S , where ||K T K ||S
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is the Lipschitz constant of the gradient.

Xi+1 = Xi −μ∇F (X ) = Xi +μK T (Y −K Xi ) (2.16)

While this is a perfectly acceptable solution, physicists in particular might need to impose

constraints that have different motivation such as the ones illustrated in figure 2.1. These

constraints are generally called regularisations. In the following section we are going to see how

regularisations in the form of convex functions may be applied to general ill-posed problems.

The result of applying the gradient descent strategy to solve equation 2.9 is shown in figure

2.4b.

2.2 Regularisation

Building upon the previous notions of differentiability and convexity of a function, it is impor-

tant to notice that a sum of convex functions over a given domain is a convex function on the

same domain. This property allows us to impose further constraints, or regularisations, on a

solution as long as this constraints can be expressed as convex functions. Regularisation is

particularly useful in problems that are highly ill-posed (r k(A|X ) � m) and therefore subject

to degeneracies.

In this section, we will consider regularisation from using convex constraints, for which solving

a regularised problem, comes down to minimising a sum of convex cost functions fk : Rm →R

(see equation 2.17) that each penalises solutions that are deemed physically implausible.

X̃ = ar g mi n
X∈Rm

∑
k

fk (2.17)

We have seen a very simple example of such minimisation problem in the previous section,

where the only function to minimise was F and had the convenient property of being differ-

entiable everywhere in Rm . In cases where all function fk are differentiable, the least square,

or the gradient descent strategies are appropriate as shown in the following case of the �2

constraint. A common physical assumption is that the signal we aim to recover be of low

amplitude. This is expressed, using the previous notations, in the following minimisation

problem:

X̃ = ar g mi n
X∈Rm

1

2
||Y −K X ||22 +λ||X ||22. (2.18)

In this case, the minimum of the convex function F2 : X 
→ 1
2 ||Y −K X ||22 +λ||X ||22 can be

computed by nullifying its derivative and solving in X , which gives the solution:

X̃ = (K T K +λI )−1K T Y (2.19)

This solution, called the ridge regression, has the advantage to lift the ill conditioning of matrix

38



2.2. Regularisation

K T K by λ, compared to the least square case and it is possible to find λ large enough such

that (K T K +λI ) exists.

In a more general framework, many useful constraints are not differentiable. In these cases,

we need to rely on proximal algorithms (Combettes & Pesquet, 2009).

2.2.1 Basics of proximal calculus

Notations and definitions

• Convex set: a non-empty set C is a convex set if:

∀(x, y) ∈C 2,∀λ ∈ [0,1],λx + (1−λy) ∈C (2.20)

• Convex function: a function f : C →R is convex if C is a non-empty, convex set and if:

∀(x, y) ∈C 2, ∀λ ∈ [0,1], f (λx + (1−λ)y) ≤λ f (x)+ (1−λ) f (y) (2.21)

• Lower semi-continuity: a function f : Rm →R is lower semi-continuous if ∀α ∈R, {x ∈
Rm , f (x) < α} is a closed set. In the following, we call Γ0, the class of lower semi-

continuous convex functions from Rm to R.

Proximal operators

Proximal calculus relies on a set of functions called proximal operators. The proximal operator

of a function f ∈ Γ0 is defined by:

pr ox f : Rm →Rm : x 
→ ar g mi n
y∈Rm

f (y)+ 1

2
||x − y ||2, (2.22)

and reaches an infimum at a unique point x f (Moreau, 1962, 1965). Proximal operators can

be seen as a local minimisation around a point x, of function f . This interpretation becomes

particularly clear and useful when faced with the problem of constraining a solution to a

convex set C . This constraint is expressed by the indicator function, iC : Rm →R, defined by:

iC (X ) =
⎧⎨
⎩0 ifX ∈C

+∞ otherwise
, (2.23)

and its proximal operator is simply the orthogonal projection of x onto C . This allows us to

design an intuitive algorithm for solving the simple problem:

X̃ = ar g mi n
X∈Rm

1

2
||Y −K X ||22 + g (X ), (2.24)
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with g ∈ Γ0. We have seen previously how gradient steps converge towards a minimum of

||Y −K X ||22. Because proximal operators are local minimisations of a function, we can devise

the strategy of alternating between a step of gradient descent (forward) and a step of projection

on g (.) (backward) in order to minimise g locally. This strategy is called forward-backward

algorithm which is formally introduced in (Combettes & Wajs, 2005) where the authors prove

that iteration:

Xi+1 = pr oxg (.)(Xi −μ∇F (Xi )) (2.25)

converges towards a unique solution.

We applied the forward-backward algorithm to problem 2.9 with a positivity constraint: g (·) =
iRm+ , which asserts that all pixels in the unknown image X are positive. Because Rm+ is a

convex subset of Rm , the proximity operator of iRm+ is simply the orthogonal projection on

Rm+, which consists in setting to zero all negative coefficients in X . The result is shown in

figure 2.4c. When comparing with the result of the gradient descent in figure 2.4b, we see

that the positivity constraint sharpens the contour of the recovered image and removes the

negative wriggles introduced by gradient descent. At this point it is important to notice that

the specific positivity constraint we applied here was motivated by the fact that we knew the

original image contained only positive pixels. In real applications, regularisations should

always be motivated by a physical assumption we have about the signal to recover.

In many cases, the proximal operator of a convex function can be computed analytically as we

have seen with the case of the positivity constraint and more generally, with projections onto

convex sets. The explicit proximal operators of various functions can be found in Combettes

& Pesquet (2009), (Table 10.2). When no closed form exists for the proximal operator of a

function, we need to solve numerically the minimisation problem in equation 2.22, which can

involve timely iterative steps, as we will se in section 2.2.3. Another approach consists in using

the properties of proximal operators (see Combettes & Pesquet, 2009, table 10.1) to build

algorithm that will efficiently compute the proximal operator of a function while solving the

global minimisation problem (Chambolle & Pock, 2011; Vũ, 2013). In the following sections we

will focus on a specific constraint coined as sparsity, which is well suited to many astrophysical

applications and that will be widely used in the rest of this dissertation.

2.2.2 Sparsity

The concept of sparsity in signal processing stems from the realisation that a signal can be

concentrated in a very small number of coefficients in an adequate transformed domain. A

simple example is given by periodic signals, which, in the time domain, takes many non-zero

values. In the Fourier domain, the signal is concentrated in as few coefficients as the number

of frequencies they contain, under Parseval’s theorem. The notion of sparsity in a transformed

domain has given rise to the field of compressed sensing (Donoho, 2006; Candes et al., 2006;

Candes & Tao, 2006), where it was shown that the knowledge of a sparse decomposition for a
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(a) Target measurement (b) Reconstruction from gradient
descent

(c) Regularised solution

Figure 2.4 – Illustration of the convolution of an image (left panel) by a kernel (middle panel)
to obtain a blurred image (right panel)

signal allowed for its recovery and reconstruction beyond Shanon’s sampling theory, in cases

where the acquisition matrix is a random matrix. Sparsity is now a widely used regularisation

for solving ill-posed linear inverse problems with strong applications in various fields of

astrophysics and cosmology (Starck et al., 2015; Lanusse et al., 2016; Farrens et al., 2017; Bobin

et al., 2015b; Birdi et al., 2018; Leonard et al., 2014; Bobin et al., 2013; Pratley et al., 2018; Wallis

et al., 2017).

Definition

A signal in Rm that can be fully represented by k non-zero coefficients in a given dictionary is

called k-sparse. The notion of dictionary here, includes, but is not restricted to, orthonormal

basis. A generative dictionary of Rm is a m × d matrix, where its d columns are vectors

representing elements of Rm , that we call atoms. Examples of atoms encompass sinusoids

(Fourier dictionary), Diracs (direct space), gaussians or wavelets. In the context of sparsity,

overcomplete (d > m) dictionaries spanning Rm allow for a larger degrees of freedom in

representing a signal, which may lead to sparser decompositions. In practice, we favour

overcomplete dictionaries that admit a fast transformation operator such as wavelets, in order

to avoid the high computation cost of carrying large matrix multiplications.

Since k-sparse vectors of Rm are the vectors that have k non-zero elements we can quantita-

tively measure the sparsity of a vector X ∈ Rm by computing its �0 norm (see equation 2.7).

From there, a sensible strategy to impose the k-sparsity of a vector is to set to zero all but k of

its coefficients to zero. As we have seen with the graphical example of figure 2.1 this strategy

leaves us with the problem of finding the combination of k non-zero coefficients that match

our observables best, for which their is no simple solution. Because one of the key assumption

of sparsity is that the energy of the signal is concentrated in a small number of coefficients, a

fair solution to this combinatorial problem is to choose a value for k and favour the k highest
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coefficients by setting the others to zero. This has the advantage of minimising the amount of

signal lost in the process. This operation is carried out by applying the hard-thresholding

operator (HTλ(.)) described by:

HTλ∈R+ : Rm →Rm : X 
→ HTλ(X ) =
⎧⎨
⎩xi if|xi | ≥λ

0 if|xi | <λ
. (2.26)

The scalar λ in equation 2.26 is a threshold below which coefficients in X are set to zero and

above which they are left untouched. In the case of a k-sparse vector, λ is set to the value of the

kt h coefficient when considering all coefficients xi ranked in order of decreasing magnitude.

In practical applications, and in astrophysics in particular, vectors are rarely strictly k-sparse,

and if they are, the number k, of non-zero coefficients is not known a priori. In this case, we

need to rely on weak sparsity, which assumes that the series formed by the coefficients of a

weakly sparse vector X , sorted by decreasing magnitudes {xd∈[0..m]}, decreases faster than a

power law, such that |xd | < Ad−α, with A ∈R+ and α> 2. With such signals, the error between

the full vector X and its truncation to the k highest coefficients Xk is majored by:

||x −xk ||22 ≤
i=m∑
i>k

Ai−α ≤ A

2α−1
k−2α+1, (2.27)

meaning that the approximation made in setting to zero the m−k smallest coefficient is small.

In most noise-dominated problems encountered in astrophysics, it is common to chose k such

that X is reconstructed down to noise levels, which is, provided that the sparsity assumption

is verified, much larger than the error from equation 2.27.

Sparsity in the frame of convex optimisation

In the context of linear inverse problem solving, imposing a constraint of sparsity as formulated

above, boils down to the following minimisation problem:

X̃ = ar g mi n
X∈Rm

1

2
||Y − AX ||22 +λ||X ||0, (2.28)

As we discussed before, the �0 "norm" is not a convex function, and solving such a minimisa-

tion problem is combinatorial. Instead, sparsity may be imposed as a convex constraint, using

the �1 norm:

X̃ = ar g mi n
X∈Rm

1

2
||Y − AX ||22 +λ||X ||1, (2.29)

Instead of penalising solutions with a large number of non-zero coefficients, the �1 norm

penalises those with a large sum of the coefficients’ magnitudes. It was shown in Donoho &

Huo (2001) that for highly sparse signals and without noise, the �1 minimisation problem leads

to the same solution as the �0 problem. This is illustrated graphically by the superimposition
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of the green and blue stars in our simplistic study case of figure 2.1.

Function g1 : Rm → R : X 
→ λ||X ||1 is convex and admits a closed form proximal operator

under the form of a projection of X onto the �1 ball of radius λ, coined as soft thresholding

(STλ(.)) operator:

pr oxg1 : Rm →Rm : X 
→ STλ(X ) =
⎧⎨
⎩si g n(xi )(|xi |−λ) if|xi | ≥λ

0 if|xi | <λ
. (2.30)

Choice of the regularisation parameter

The regularisation parameter λ, which sets the sparsity of the solution is of paramount impor-

tance in the development of efficient algorithms to solve problem 2.29. Several strategies exist

to choose this parameter wisely, which depend on the exact nature of the physical problem.

One strategy, as discussed earlier is to have a prior knowledge of the sparsity of the solution,

either in terms of number of non-zero coefficients, or in terms of power-law decrease of the

ordered coefficients. With this knowledge, it is simple to choose λ such that only k coeffi-

cients are non-zero, or such that the error on the model remains below an acceptable limit(
A

2α−1 k−2α+1
)
.

In noise dominated cases, it is wiser to choose a regularisation parameter based on noise levels

and ensure that enough coefficients are used to reconstruct the signal without over fitting

noise features. In Donoho & Johnstone (1994), the authors proposed a threshold for denoising

problems (A = Im and m = n, in equation 2.8), with signals affected by white Gaussian noise

with standard deviation σ and represented in an orthogonal basis, where λ is chosen as

λ = σ
√

2l og (m). A more general approach for noise-dominated linear inverse problems

consists in evaluating the noise standard deviation for each coefficient xi from the noise

covariance matrix. Assuming that the noise covariance in the observable, Σ, is known (in the

case of white Gaussian noise with standard deviation σ, Σ=σ2Im). It is possible to compute

the noise standard deviation for each coefficient xi of our model by computing the vector of

Rm made of the square root of the diagonal elements of matrix ΣX = K T ΣK . Therefore, the

corresponding noise standard deviation in the i -th coefficient of X is given by σxi =
√

K T ΣKi ,i .

The threshold of the soft thresholding operator is simply given λ= t ×�
D(ΣX ), where t is a

scalar, usually taken between 3 and 5 to ensure a good balance between completeness of the

reconstruction and robustness to overfitting. We recall that D(·) is the operator that returns

the diagonal elements of a square matrix as a vector.

2.2.3 Proximal operators of sparsity in a transformed domain

In practical astrophysical applications, the sparsity assumption is usually not verified in the

direct (pixel) domain. In particular galaxy, light profiles show extended features that use large
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numbers of pixels to be approximated properly. It is possible, however to go to a transformed

domain where galaxies are actually sparse. A very common class of functions to decompose

galaxies linearly, with a small number of coefficients are wavelets, which we will expand on

in the next section, 2.3. Because a galaxy light profile is not sparse in the pixel domain, but

is in the wavelet domain, we are now faced with the problem of reconstructing the wavelet

coefficients of a galaxy’s light profile rather than its pixel values.

Analysis versus synthesis formulation

Using the formalism of equation 2.8, let’s consider that vector X ∈Rm contains the coefficients

of our target measurement (for instance pixel values of a galaxy light profile reshaped as vector).

Φ ∈Rn×m is a dictionary of vectors that can be an orthonormal basis or a generative dictionary

of Rn over which X is known to be sparse, and αX is a vector of Rn such that αX =ΦX . Because

we chose Φ to provide sparse representation of X , αX is known to be a sparse vector. We can

now reformulate problem 2.29 in one of two ways:

Synthesis formulation: Considering the problem in αX , sparse, with X being our target

measurement, we can simply solve the problem:

X̃ = α̃X , s.t . α̃X = ar g mi n
αX ∈Rn

1

2
||Y −KΦT αX ||22 +λ||αX ||1. (2.31)

Equation 2.31 is formulated as a classical problem of minimisation of a sum of two convex,

proximable functions. Such problem admits a simple solution, derived form the forward-

backward algorithm of equation 2.25.

Analysis formulation Focusing on the recovery of the target measurement itself, rather than

on an abstract of the variable in a transformed domain, we can choose to solve equation 2.8,

assuming the sparsity of the transfom of X , by solving:

X̃ = ar g mi n
X∈Rm

1

2
||Y −K X ||22 +||ΦX ||1. (2.32)

With the formulation of equation 2.32, the emphasis is put on the recovery of X itself. Despite

these two formulations looking very similar, we will see in the following discussion that in

some cases they represent two different approaches, and that they may lead to different

solutions.

Analysis versus synthesis Despite analysis and synthesis formulations seeming equivalent

at first sight, their equivalence is actually conditional to ΦT Φ= Im . Meaning that in the cases
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where Φ is an orthogonal basis, analysis and synthesis are exactly equivalent through a simple

change of variable. In cases where Φ is an overcomplete dictionary, or where its rank is smaller

than m, the two formulations are fundamentally different. In analysis the aim is to find the

vector X that has a projection over Φ which is sparse, while in synthesis, we reconstruct the

sparsest vector in the transformed domain. Because ΦT Φ �= Im , these two solutions are not

equal. In particular, synthesis formulation will lead only to solutions that can be represented

by vectors in the transformed domain (which is limiting in the rank deficient case), while

analysis can potentially explore solutions for X in the direct domain, but will not necessarily

be able to reach some of the sparse representations αX in the transformed domain. In other

words, let Xa be the solution of the analysis problem 2.32 and αX ,s be the solution of the

synthesis problem 2.31, then ΦXa �=αX ,a and ΦT αX ,s �= Xa .

This has several implications when designing an algorithm for solving inverse problem under

a sparse assumption. First, we notice that in the overcomplete case (n > m), the synthesis

formulation contains more unknowns than the analysis formulation, making analysis prob-

lems simpler to solve. Another important feature to notice is the proximal operator of the

regularisation term. In the general synthesis case, where the regularisation term is a prox-

imable function g (.) that admits a closed form operator, we can directly apply this operator in a

forward-backward strategy for instance. In the analysis case, where the regularisation term in

g (Φ.) does not generally admit a closed form proximal operator, even if g does. In cases where

Φ is an orthonormal basis, the proximal operator g (Φ.) is known and writes as W T pr oxg (.).

In other cases, a closed form might not exist, and applying the forward-backward strategy,

would require to numerically estimate pr oxg (Φ·)(X ) at every iteration.

The properties of proximal operators combined with primal-dual splitting make it possible to

design efficient algorithms to solve analysis formulated problems without relying on subit-

erations. A few examples of such algorithms can be found in: Chambolle-Pock (Chambolle

& Pock, 2011), Condat-Vu for problems with a third function to minimise (Condat, 2013; Vũ,

2013) or Alternating Direction Method of Multipliers (Gabay & Mercier, 1976). In Combettes &

Pesquet (2009), the authors give a detailed overview of these algorithms.

2.3 Wavelet Transform

In the previous section, we have seen how the sparsity constraint could be imposed in trans-

formed domains. This suggests that for a given signal, one might be able to find a domain such

that the projection of the signal onto this domain be sparse. For instance, a sinusoid takes

non-zero values over the whole domain R, but in the Fourier domain, it is represented by only

one non-zero coefficient. In astronomy and cosmology, galaxy light profiles are generally not

sparse in the direct domain, and it takes many pixels to fully account for it surface brightness.

However, galaxies usually present smooth variation of their luminosity across an image. The

goal of this section is to detail a framework that allows sparse decomposition of piecewise

smooth signals: wavelets. As we will see, this framework allows to perform decompositions at
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various scales of a signal over a wide range of wavelet functions. The choice of the wavelet

function allows to favour sparse representation of a specific features, making it a powerful tool

for sparse optimisation.

Wavelet decomposition can be seen with many regards as an extension of Fourier analysis.

Where Fourier analysis provides a global decomposition of a signal into sinusoids at various

scales, the concept behind wavelets is to provide a local analysis of a signal at various scales

with functions that are not restricted to sinusoids. The goal of such approach is many folds.

In the analysis of time series, it allows to visualise the evolution of a signal’s frequency as

a function of time. This was recently illustrated with the first discovery of a gravitational

wave event (Abbott et al., 2016), where the authors used a multiscale analysis (Chatterji et al.,

2004) of the detected signal to characterise the event. In image analysis, wavelets provide

tunable analysis functions that efficiently represent piece-wise smooth signals, thus providing

adequate domains for sparse representation of images, as we will see across this dissertation,

with strong implications with regard to image compression, as illustrated by the JPEG2000

format, which relies on discrete bi-orthogonal wavelets. Now wavelets find application beyond

1 and 2-D signals and provide sparse representations of signals on the sphere (Starck et al.,

2006; McEwen et al., 2007; Chan et al., 2017) and in 3 dimensions (Starck & Murtagh, 2006;

Woiselle et al., 2010; Lanusse et al., 2012; Leonard et al., 2014).

The notion of local scale-dependent analysis can be traced back to the work of Gabor (1946).

The general idea of Gabor (1946) is to perform a Fourier analysis of a signal s(t ) at various loca-

tions τ of the time domain. This is done by performing the Fourier analysis of s(t ) multiplied

by a Gaussian window centred in τ, which formally writes:

Gs(τ,ν) =
∫+∞

−∞
s(t )e−π(t−τ)2

e− jνt d t , (2.33)

Where ν is the frequency. This corresponds to a decomposition of a signal into sinusoids at

frequency ν attenuated by a Gaussian function centred in τ. The elements of this decomposi-

tion are represented graphically in the real and imaginary domain at several frequencies in

figure 2.5.

From figure 2.5, we can see that the elementary function that is used to analyse a signal is

shaped as a "small wave". With the works of (Grossmann & Morlet, 1984), a formal framework

is introduced that defines generic transformations based on families of functions showing

"small wave" patterns, henceforth called wavelets (actually extrapolated from the french for

ondelettes). In Goupillaud et al. (1984), the authors even introduce a formal wavelet family

called Morlet’s wavelet, that builds upon Gabor’s analysis. In the following lines we will see the

formal definition of wavelets, and, in particular, the conditions under which a function can be

used as a wavelet, as well as the techniques to efficiently compute wavelet transforms.
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(a) Real part (b) Imaginary part

Figure 2.5 – Gabor elements in real (left) and imaginary (right) domains.

2.3.1 Continuous wavelet transform

Definition

Building upon the notions of Fourier and Gabor Analysis, the wavelet transform of a signal

in time domain s(t) can be seen as an inner product between s and an analysis function Ψ.

To begin with, we will consider s : R→R, a one-dimensional function of L2(R). The wavelet

transform of s at location τ ∈ R, and scale a ∈ R+ is given in Grossmann & Morlet (1984),

equations 1.6, and writes as:

Ws(a,τ) = 〈s|Ψa,τ〉 = 1�
a

∫+∞

−∞
s(t )Ψ∗

( t −τ

a

)
d t , (2.34)

and its inverse (Grossmann & Morlet, 1984, equation 1.9), provided that it exists, is defined as:

s(t ) = 1

CΨ

∫+∞

0

∫+∞

−∞
Ws(a,τ)Ψa,τ(t )

d a

a2 dτ. (2.35)

where CΨ is defined by:

CΨ =
∫+∞

0

|Ψ̂(ν)|2
ν

dν. (2.36)

From equation 2.34, we see that each wavelet coefficient Ws(a,τ) is computed from a shifted

and scaled version of the complex conjugate of Ψ. Function Ψ is called the mother wavelet

and each wavelet coefficient is the inner product between s and a daughter wavelet: Ψa,τ =
1�
a
Ψ

(
t−τ

a

)
. As pointed out in Grossmann & Morlet (1984), the existence of the inverse of a

wavelet transform is conditional to the admissibility condition of function Ψ, which imposes:

CΨ <+∞. (2.37)
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Figure 2.6 – Profile of mother wavelets. From left to right: Haar’s, Morlet’s (real part only) and
the Mexican hat.

A necessary condition for equation 2.37 to be verified is that |Ψ̂(0)| = 0, which means that

wavelet functions must have a zero mean. Another observation we make from equation 2.34 is

that at a given scale a ∈R+, the operation:

R→R : τ 
→ 1�
a

∫+∞

−∞
s(t )Ψ∗

( t −τ

a

)
d t (2.38)

defines a convolution product. This means that all the wavelet coefficients at a given scale a

can be computed from the convolution of s by a function Ψ̄a defined as:

∀a ∈R,Ψ̄a : R→R : t 
→ 1�
a
Ψ∗

(−t

a

)
. (2.39)

This formulation provides an efficient way of computing wavelet transforms, by noticing that

convolution is a product in the Fourier domain. The goal of wavelets being to represent signals

with adequate analysis function, mainly for compression and sparse application purposes,

many functions have been developed across the past century that emphasize various aspects

of natural signals. For that reason, it is paramount that the wavelet we chose to analyse a

given signal be well suited to extract the desired features of the signal. To give the reader a

better feeling of what wavelets look like and of what features they can represent, we give, in

the following paragraphs a few examples of common wavelet functions.

Examples of wavelet functions

In the following paragraphs, we show the explicit mother wavelet of three historical wavelet

decompositions and illustrate their characteristic with the decomposition of a piece-wise

smooth function in figures 2.7 and 2.8. The profile of their mother wavelets are shown in figure

2.6.

Haar wavelet The first historical example of a wavelet function dates back from the early

twentieth century with the work of Haar (1910), where the author describes an orthonormal
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basis of L2(R) based on the function:

Ψh : R→R : t 
→

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if 0 ≤ t < 0.5

−1 if 0.5 ≤ t < 1

0 otherwise

. (2.40)

By noticing that the set of discrete scaled and translated versions of Ψh were orthogonal from

one-another, Haar constructed a basis of L2(R) that would later become the first example of

a wavelet function. Because the Haar’s wavelets is a combination of step functions, it is well

suited to representing sharp edges and piece-wise constant signals, but is not adapted to the

decomposition of smoothly varying signals.

Morlet wavelet As stated earlier, the Morlet wavelet (Goupillaud et al., 1984) is inspired by

the Gabor function, and the wavelet transform with Morlet’s mother wavelet only differs from

the Gabor transform by the scaling factor, such that the wavelet coefficients of the Morlet

transform of a signal s(t ) are given by:

Wa,τ = 1�
2πa

∫+∞

−∞
s(t )e−

(t−τ)2

2a2 +2 jπ (t−τ)
a d t . (2.41)

Unlike Haar’s transform that has a compact support, Morlet’s transform relies on integrating

a function that has non-zero values over R. In practice, for t sufficiently large, the mother

wavelet reaches negligible values, making it possible to approximate the mother wavelet by

its truncated version. Given the oscillatory nature of the mother wavelet, Morlet’s transform

performs very well at discriminating locally between modes of periodic signals.

Mexican hat wavelet The Mexican hat wavelet was introduced in Murenzi (1989) and uses,

as a mother wavelet, the second derivative of a gaussian, up to a minus sign:

Ψ(t ) = (1− t 2)e−
t2

2 (2.42)

This wavelet family is best suited to represent blobs. Mexican hat is somewhat in between the

previous wavelet families in the sense that they able to represent smooth signals well and do

not require too many coefficients to represent discontinuities, as illustrated with the top panel

of figure 2.8.

Figure 2.7 shows the scalograms of each wavelet decomposition of a signal shown in the top

panel. Each line of the scalogram shows a different scale of the associated wavelet decomposi-

tion. The grayscale indicates the magnitude of the wavelet coefficient at the corresponding

scale. The scalograms were generated using the previously discussed strategy of multiplying

the signal by the rescaled mother wavelet in the Fourier domain and reverting the result back

to direct domain. Figure 2.8 shows the magnitudes of specific scales (lines in the scalogram).
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Figure 2.7 – Scalograms of a piecewise smooth signal (top panel) with, from top to bottom,
Haar, Morlet and Mexican hat wavelets.

The magnitudes of the wavelet coefficients are normalised to the maximum over a given scale

for better graphical representation.

From the scalograms, we see that Morlet’s transform allows to discriminate between various

modes of a locally periodic signal, but creates oscillation, around the discontinuities that are

of the same nature as oscillations one would observe when reconstructing a step function

with sinusoids. This is emphasised when looking at the specific scales we chose to represent

in figure 2.8. Haar’s wavelet, on the contrary, uses only one coefficient at a given scale to
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represent discontinuities. The Mexican hat wavelet show a concentration of coefficient around

the Gaussian feature on the left hand side of the signal’s panel, illustrating its efficiency at

representing blobs. We also see on the bottom panel of figure 2.8 that Mexican hat wavelets

captures the large scale variations of the signal.

Figure 2.8 – Wavelet decomposition of a signal (in black) at various scales using Haar’s (in red),
Morlet’s (in blue) and Mexican hat (in green) wavelets.
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2.3.2 Discrete wavelet transform

Multiresolution analysis

In practical signal processing applications, signals are rarely continuous, but instead, are

sampled on a grid. The definition of the wavelet transform as convolution product remains

valid for discrete signals and, under careful considerations with regard to the sampling of the

signal and the wavelet function, it is possible to apply a discretised version of equation 2.34.

However, large datasets and higher [than one] dimensional signals require fast and invertible

computation algorithms. To this end, S. Mallat developed the multiresolution analysis frame-

work (Mallat, 1989), that allows to see wavelets as the difference between approximations of a

function at two consecutive resolutions. The aim of the following paragraphs is to clarify and

formalise this previous sentence.

Let f be a function of L2(R). Then, f (2t) is an approximation of f (t) at scale 2, f (4t) is an

approximation of f (t )at scale 4 and we see that the values taken by f (4t ) are included among

the values taken by f (2t ), which are included among the values taken by f (t ). Generalising

this to all scales, we find that , ∀ j ∈Z, approximation at scale 2 j+1 of a function is included

in its approximation at scale 2 j , thus defining a series of subsets, Vj , of L2(R) such that Vj

contains the approximation of all functions of L2(R) at scale 2 j , i.e. f (2 j ) ∈ Vj , and verifies:

∀ j ∈Z, {0} ⊂Vj+1 ⊂Vj ⊂ L2(R).

The set of {Vj } j∈Z is a multiresolution approximation of L2(R). Each element v j ∈ Vj is a

subsampled version of a function in L2(R) at resolution 2 j . Each function of L2(R) can be

approximated as closely as desired by increasing the resolution infinitely, i.e.

lim
j→−∞

Vj = ∪
j∈Z

Vj = L2(R). (2.43)

Because of the inclusion of Vj+1 in Vj , it is possible, for all j , to find the orthogonal complement

Wj+1 to Vj+1 that verifies Vj+1 ⊕Wj+1 =Vj . Therefore, for a given approximation of f at scale

2 j+1, it is possible to find w j+1 ∈Wj+1, orthogonal to f (2 j+1) such that f (2 j+1)+w j+1 = f (2 j ).

The complement w j+1 to f (2 j+1) contains the details of f at scale 2 j .

An important result relative to subspaces Vj j∈Z and Wj j∈Z from Mallat (1989), theorems 1 and

3, is that there exists two functions, Φ,Ψ ∈ L2(R)2, such that:

∀ j ∈Z,

{
Φ j ,n = 1�

2 j
Φ

( t −2 j n

2 j

)}
n∈Z

(2.44)

is a basis of Vj and

∀ j ∈Z,

{
Ψ j ,n = 1�

2 j
Ψ

( t −2 j n

2 j

)}
n∈Z

(2.45)

52



2.3. Wavelet Transform

is a basis of Wj . Following Mallat (1989)’s nomenclature, function Φ is called the scaling

function of the multiresolution approximation and Ψ is an orthogonal wavelet function.

Because of equation 2.43, we know that ∪
j∈Z

Vj = L2(R). As {Φ j ,n}n∈Z is an orthogonal basis of

Vj , it follows that the family {Φ j ,n}n, j∈Z2 is a orthogonal basis of L2(R). By noticing that

Vj−1 =Vj ⊕Wj =Vj+1 ⊕
i∈N∗ Wj+i , (2.46)

and by going to the limit j →∞, it follows that the set {Wj } j∈Z is dense in L2(R). As a result,

{Ψ j ,n}n, j∈Z2 is also an orthogonal basis of L2(R).

Fast computation of orthogonal wavelets

Now that the multiresolution analysis framework has been introduced, we are going to see

how it allows us to perform fast, invertible computations of wavelet transforms. From the

previous realisation that {Φ j ,n}n∈Z and {Ψ j ,n}n∈Z are respectively orthogonal basis of Vj and

Wj , it follows that the approximation f j ∈Vj of a function f ∈ L2(R) can be decomposed over

these two basis as:

f j =
∑

n∈Z
c j [n]Φ j ,n (2.47)

and

f j =
∑

n∈Z
d j [n]Ψ j ,n , (2.48)

where c j [n] and d j [n] are respectively the inner products of f with vectors Φ j ,n and Ψ j ,n . by

definition, since Vj ⊕Wj =Vj−1, both Vj and Wj are in Vj −1, and therefore every element of

their bases are in Vj−1, resulting in:

∀( j ,n) ∈Z2, (Ψ j ,n ,Φ j ,n) ∈Vj−1. (2.49)

As such, elements of basis of Vj and Wj can be decomposed on Vj+1, using equation 2.47,

which raises equations:

Φ j ,n = ∑
m∈Z

h j [m]Φ j−1,m and (2.50)

Ψ j ,n = ∑
m∈Z

g j [m]Φ j−1,m , (2.51)

where:

h j [n] = 〈Φ j ,n |Φ j−1,n〉 = h1[ j −2n] and (2.52)

g j [n] = 〈Ψ j ,n |Φ j−1,n〉 = g1[ j −2n]. (2.53)
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In these decompositions, h1 and g1 can be seen as discrete filters, that are fully determined by

Φ and Ψ.

By applying the inner product by f to both sides of equations 2.50 and 2.51, respectively, we

have:

〈 f |Φ j ,n〉 = ∑
m∈Z

h1[m −2n]〈 f |Φ j−1,m〉, (2.54)

〈 f |Ψ j ,n〉 = ∑
m∈Z

g1[m −2n]〈 f |Φ j−1,m〉. (2.55)

Finally, by using notations from equations 2.47 and 2.48 in equations 2.54 and 2.55, we have:

c j [n] = ∑
m∈Z

h1[m −2n]c j−1[m], and (2.56)

d j [n] = ∑
m∈Z

g1[m −2n]c j−1[m]. (2.57)

These two relations tell us that wavelet coefficients can be computed by applying a discrete

filter to approximation coefficients c j−1, which can, in turn be derived by applying another

discrete filter to approximation coefficients c j−2. We see by recursion, that wavelet coefficients

can in fine be computed simply from any approximation coefficient ci and from filters h1 and

g1, which only depend on the scaling and wavelet function. The right hand side of equations

2.56 and 2.57 can be seen as a discrete convolution product by a version of h1 down-sampled

by a factor 2. Therefore, equations 2.56 and 2.57 can be rewritten as:

c j [n] = [h̄1 ∗ c j−1] ↓2, and (2.58)

d j [n] = [h̄1 ∗ c j−1] ↓2 . (2.59)

In signal processing application, signals are measured by taking regular samples of a continu-

ous natural signal such as electromagnetic wave or acoustic wave. Such sampling constitutes

in itself an approximation of a continuous function at a given scale, given by the sampling rate.

As a result, we can choose j = 0 to be the sampling of the signal’s measurement and therefore,

the measured signal becomes c0 in equation 2.56. Following equations 2.56 and 2.57, we can

construct a diagram that shows the derivation of wavelet coefficients as shown in figure 2.9.

Figure 2.9 also serves as an elementary block that can be chained up in order to compute

wavelet coefficients to any scale j . This strategy describes the fast pyramidal algorithm (see

Starck et al., 2015). Because physical, measured signal are limited in bandwidth, the number

of wavelet scales that can possibly be computed is limited. This is easily illustrated by the fact

that the scaling coefficients are down-sampled by a factor 2 at each application of the block

from figure 2.9. Therefore, the number of scales becomes large enough so that the scale of the
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scaling function 2 j becomes larger than the number of samples in c0, which puts an upper

limit on j . In order for the wavelet representation to give a complete description of c0, we must

therefore include the complementary to all detail coefficients, i.e. the scale approximation

coefficient at scale J = l og2(n), with n, the number of samples in c0.
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Figure 2.9 – Schematic view of a fast orthogonal wavelet transform.

The wavelet transform of a signal c0 is therefore the set {d0,d1, · · · ,dlog2(n),cJ } of all detail

coefficients along with the approximation coefficients, which we call, the coarse scale. We

have shown that fast computation of the discrete wavelet transform could be achieved by

building a filter bank, from the scaling and wavelet functions, and by iteratively filtering and

downsampling the approximation coefficients. This strategy presents the advantage to avoid

computing inner products of a signal by every single translated and rescaled version of the

mother wavelet.

Exact inverse transform

In the orthogonal case, approximation coefficients at scale 2 j can be reconstructed from detail

and approximation coefficients at scale 2 j+1 from:

c j [n] = ∑
m∈Z

h[m +2n]c j+1[m]+ g [m +2n]d j+1[m] (2.60)

= [c j+1]↑2 ∗h[n]+ [d j+1]↑2 ∗ g [n] (2.61)

It was shown in Vetterli (1986) that an exact recovery could also be achieved in the case of

bi-orthogonal decompositions that admit a filter bank (h1, g1, h̃1, g̃1) that verifies the following
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conditions in the Fourier domain:

ĥ1
∗(
ν+ 1

2

)
ˆ̃h1(ν)+ ĝ1

∗
(
ν+ 1

2

)
ˆ̃g1(ν) = 0 (2.62)

and

ĥ1
∗

(ν) ˆ̃h1(ν)+ ĝ1
∗(ν) ˆ̃g1(ν) = 1, (2.63)

where h̃1 and g̃1 are dual to h1 and g1. In this case, for bi-orthogonal wavelet bases, the exact

recovery of the approximation of a function at scale j from wavelet coefficients w j+1 and

approximation c j+1 is given by:

c j [n] = [c j+1]↑2 ∗ h̃[n]+ [d j+1]↑2 ∗ g̃ [n]. (2.64)

Cascading equation 2.64 across all scales allows to reconstruct c0 from the set

{d0,d1, · · · ,dlog2(n),cJ }.

A word on orthogonal wavelets

From the previous definition of orthogonal wavelets, it should appear that each detail level w j

belongs to the subset Vj−1. As such, each wavelet level d j contains 2 j times less coefficients

than c0 and the large scale approximation level cJ contains n/2J coefficients. It follows that

the total number of samples in the set {d0,d1, · · · ,dJ ,cJ } is equal to n, the number of samples

in c0. Such a decomposition is called a decimated wavelet decomposition. Decimation causes

wavelet decompositions to only represent a signal ’s contribution at scale 2 j in n/2 j points,

while one might be interested in extracting large scale information at each location. This lack

of translation invariance also causes artefacts to appear when reconstructing a signal after

modifying its wavelet coefficients.

To overcome this issue, the continuous wavelet transform in its discretised version provides a

viable but time consuming alternative, due to the lack of a fast transform algorithm. In the

following section, we will describe a class of redundant wavelet transform that admits fast

computation algorithms along with inverse transforms.

On an additional note, it is possible to extend the multiresolution framework to higher di-

mensions by using the separability of wavelet functions across directions. The wavelet de-

composition in higher dimension will therefore be performed by successively applying filter

banks to each dimension. To illustrate this, we show the haar 2-D decomposition of comet

67-P/Churyumov-Gerasimenko taken by the ROSETTA mission2 in figure 2.10. It is important

to notice that the wavelet decomposition has as many coefficients as there are pixels (sam-

ples) in the original image c0 of figure 2.10a. The top left corner of image 2.10b shows the

2(image credit: Comet 67P on 19 September 2014 NavCam mosaic" by ESA,Rosetta,NAVCAM, CC BY-SA IGO 3.0.
Licensed under CC BY-SA 3.0-igo via Wikimedia Commons)
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(a) Chury comet (b) Haar wavelet decomposition of Chury

Figure 2.10 – Image of comet 67-P (left) and its decomposition with 2 dimensional Haar’s
wavelet (right).

last computed 2-D approximation level. The bottom right panel shows the first detail level,

obtained by applying filter h1 to c0 in both directions. The bottom left and top right panels

show respectively the detail-approximation and the approximation-detail coefficients as they

are obtained by applying to c0 respectively h1 in the horizontal direction and g1 in the vertical

direction; and g1 in the horizontal direction and h1 in the vertical direction. Furthermore, on

image 2.10b, we see that most of the textures that form image 2.10a are retained in the small

number of coefficients constituted by the approximation scale and the details are contained

in the detail coefficients.

Given that we already gave a detailed explanation of orthogonal wavelets in 1 dimension, we

chose to leave it to the reader to read about their extension to higher dimensions (see Mallat,

1989; Starck et al., 2015, for more on the subject), and will address the case of 2-D transforms

through the following study of isotropic redundant wavelet transform.

2.3.3 Undecimated wavelet transform

Undecimated wavelet transform (UWT) serves the purpose of representing a signal at each

scale {2 j } j∈[[1,J ]], and at each location, by opposition to decimated wavelet transforms that

represent scale 2 j in n/2 j locations. This results in redundant wavelet representations that

contain as many as n × J coefficients in the 1-D case.

Getting rid of the decimation when computing wavelet decompositions, imposes that we

need to be able to apply filters at a given scale at every single location of the sampling. This

is performed by applying a "stretched" version of the filters, such that the detail coefficients
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at scale 2 j are obtained by convolving the approximation coefficients at scale 2 j−1 by a filter

h j
1, generated from filter h1, where 2 j − 1 coefficients set to 0 are inserted between each

coefficient of h1. This process, dubbed the "a trous" (french for "with holes") algorithm is

described in details in Holschneider et al. (1989); Shensa (1992). In (Shensa, 1992), the author

showed that the coefficients from the discrete wavelet transform could be recovered from the

UWT’s coefficients at location {2 j k}k∈[[0,n/2 j ]] of the corresponding scale. The decomposition

equations and inverse transform for the UWT case, thus simply become:

c j [n] = h̄ j
1 ∗ c j−1, (2.65)

d j [n] = h̄ j
1 ∗ c j−1, (2.66)

c j [n] = [c j+1]↑2 ∗ h̃ j [n]+ [w j+1]↑2 ∗ g̃ j [n] (2.67)

Another advantage of the UWT, is that because of the loss of the decimation, the de-aliasing

condition from equation 2.62 does not need to be met. Instead, the only requirement put

on the filter bank is the exact recovery condition from equation 2.63. The relaxation of the

de-aliasing condition allows more flexibility when designing filter banks for UWT as we will

see with the Starlet transform.

The Starlet transform

The Starlet transform is an undecimated isotropic wavelet transform that was developed to

provide adequate decomposition for astronomical data in particular (Starck & Murtagh, 2006).

A key concept to this representation is the isotropy of the decomposition. As the Universe

does not have a preferred direction "a priori", it is important that decompositions of images

of the Universe be carried out on analysis functions that do not have a preferred direction.

For that reason, the filters must be symmetric (h = h̄ and g = ḡ ) and the wavelet and scaling

functions need to be isotropic in dimensions higher than one.

The choice of the scaling function for Starlets was motivated by the need to have a function

that would represent well the isotropy and the smoothness of astronomical objects and was

designed to be a B-Spline of third order, defined as:

Φ(x) = 1

12
(|x −2|3 −4|x −1|3 +6|x|3 −4|x +1|3 +|x +2|3). (2.68)

Because the motivation for the development of Starlets stems from astronomical imaging,

the scaling function has to be defined in two dimensions. In the following, we will write x

and y , the arguments of two-dimensional functions respectively in the horizontal and vertical

directions. The scaling function is designed to provide separable filters. Although this is not a
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necessary condition, the separability allows to apply 1 dimensional filters to each direction

rather than multi dimensional filters, which a time costly option for large dataset. The 2

dimensional scaling function for the Starlet transform is therefore defined as:

Φ2D (x, y) =Φ(x)Φ(y), (2.69)

with this scaling function, the one dimensional discrete filter h1 writes as:

h0
1 =

1

16
[1,4,6,4,1]. (2.70)

Therefore, in 2 dimensions the filter is:

h0
2D = h0

1
T

h0
1 =

1

256

⎛
⎜⎜⎜⎜⎜⎜⎝

1 4 6 4 1

4 16 24 16 4

6 24 36 24 6

4 16 24 16 4

1 4 6 4 1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (2.71)

For the definition of the wavelet to be complete, Starlets need a wavelet function with its

associated filter g1. In Starck et al. (2007) the authors showed that exact reconstructions could

be achieved for any pair of even-symmetric filters (h, g ) such that g = δ−h, where:

δ=

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (2.72)

Such filter g corresponds to a wavelet function defined as the difference between two scaling

functions at consecutive resolutions. Therefore, the wavelet function of the Starlet decomposi-

tion is the function Ψ2D that verifies:

∀(x, y) ∈R2,
1

4
Ψ2D

( x

2
,

y

2

)
=Φ2D (x, y)− 1

4
Φ2D

( x

2
,

y

2

)
. (2.73)

The 1-D profile of both the scaling and starlet function are shown in figure 2.11.

With this simple and elegant definition, it comes that wavelet coefficients can be computed by

performing the difference between two sets of approximation coefficients, such that:

w j = c j−1 −c j . (2.74)

It follows that the reconstruction of a signal is simply the summation of all wavelet coefficients
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(a) Scaling function, Φ (b) Starlet function, Ψ

Figure 2.11 – Profile of the Starlet scaling and wavelet function.

with the last approximation scale:

c0 = cJ +
J∑

j=1
w j , (2.75)

Leading to reconstruction filters h̃1 = g̃1 = δ.

The result of the Starlet transform of an two dimensional signal (e.g. an image) c0 with np ×Mp

samples (pixels) is a set of wavelet coefficient {w j } j∈[[1,J ]] along with the last approximation

scale, also called the coarse scale, cJ . Each element w j and cJ is a set of np ×Mp coefficients

that stand for the variations of c0 at each location at the corresponding scales. We show in

figure 2.12 the Starlet decomposition of a spiral galaxy from the Hubble Frontier Fields survey.

Observations were conducted in several bands. We present here the composite RGB image

made from filters f435W, f606W and f814W of the ACS instrument on board HST. The Starlet

decomposition is performed independently in each band and for each scale, we show the

composite image made from the Starlet decomposition of each filter at the same scale. More

on the subject of colour images in chapter 4.

Second generation Starlet transform

With the relaxation of the de-aliasing condition in redundant transforms, the design of a filter

bank only has to satisfy the exact reconstruction equation (2.63). With this convenient rule

in mind, one might be tempted to design filter banks that are more adapted to specific data

representation. In astronomy, for instance, where most of the signals we measure consist in

counting photons, we expect only positive features. For that reason, it is important to have re-

constructions that favour positive reconstructions. In the case of Starlets, the wavelet function

has negative features (which are required by the zero average condition on wavelet functions)

and the reconstruction operator consists in summing wavelet coefficients with coarse scale
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(a) Original image

(b) Scale 1 (c) Scale 2 (d) Scale 3

(e) Scale 4 (f) Scale 5 (g) Coarse scale

Figure 2.12 – Starlet decomposition of a spiral galaxy.
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coefficients, which might result in the wavelet’s negative features to show on the reconstructed

image, causing negative rings around positive features. In order to avoid this effect, Starck et al.

(2007) proposed a Starlet decomposition that admits a positive reconstruction filter under the

form h̃2D = h2D , with h2D = h0
2D from equation 2.71. With this reconstruction filter, the filter

bank that verifies the exact reconstruction criteria, write as:

g2D = δ−h2D ∗h2D , (2.76)

h̃2D = h2D , (2.77)

g̃2D = δ. (2.78)

We notice that the shape of the starlet functions in 1-D (see figure 2.11) is very similar to the

shape of emission lines recovered by spectrographs. With this simple realisation in mind,

we illustrated how starlets could be used to analyse sprectra of galaxies, as recovered from

the MUSE (Multi Unit Spectroscopic Explorer) integral-field spectrograph, by filtering noisy

spectra, thus enabling easy identification of spectral features for spectral redshift estimation.

The description of this application is detailed in appendix A.

2.4 Component separation

A common problem in signal processing consists in separating components that have been

mixed to form a single observation. Such problem can be illustrated by the example of the

"cocktail party". Let us picture a cocktail party with a large attendance. Several microphones

are distributed across the room that all retransmit through the same speaker. When several

microphone holders decide to deliver a speech at the same time through their respective

microphones, how does one disentangle their voices and separate each of their discourses?

In astronomy, deep observations result in images that see overlapping objects of different

nature:

• Stars of our own galaxy occult the light from background galaxies,

• Diffuse emissions from our galaxy shielding background diffuse emission,

• Close by galaxies hiding images of galaxies at higher redshift,

• Different stellar populations emitting at common wavelength,

• Compact objects embedded in the glare of larger object, at the same or at different

redshifts,
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to state only a few. In the rest of this dissertation, we will use the term blending to refer to

images of overlapping objects with different nature.

Since precision measurements can usually only be achieved by isolating the objects of interest,

we are very often constrained to either throw away data that show blending, or deal with the

problem of component separation, which is, in general, not trivial. In this section, we will

outline a few of the strategies that have been used across this thesis work to solve a wide range

deblending problems.

2.4.1 Definition

Component separation problems are also called de-mixing problems, and, more specifically

in astronomy, deblending problems. They consist in assuming that a matrix Y containing ns

observations (columns) of size no (number lines) each, can be written as a sum of nc matrices

{X1, X2, · · · , X nc } of the same size no ×ns such that:

Y = ∑
k≤nc

X k . (2.79)

In deblending problems in astronomy, it is very common that the terms sources and com-

ponents be confused. At this point, we would like to make it clear that each matrix X k will

be called a component in the rest of this dissertation. The term source will refer to compact

astrophysical objects that form a single surface brightness. As such, a component may contain

several sources (e.g., several galaxies with the same colour, see chapter 4) and a source might be

decomposed into several components (e.g., a galaxy with several stellar populations/colours

across its surface brightness, see figure 2.12 and chapter 4). We extend the term component

to the linear transformations, Sk , of components such that X k = ASk , where A is a (known)

matrix of coefficients.

The goal of solving a deblending problem is to reconstruct components {X i }i≤nc such that

Y −∑
i≤nc

X k = 0. In practice, and in all the component separation problems we will consider,

the observations are contaminated by additive noise Z . As a result, the goal becomes to

reconstruct the components X k such that:

{X̃ k }i≤nc = ar g mi n
X 1,X 2,··· ,X nc

1

2
||Y − ∑

k≤nc

X k ||22. (2.80)

Unfortunately, due to the large number of degrees of freedom in the reconstruction of the

components, equation 2.80 admits an infinity of solutions. Most of the work in component

separation, therefore consists in understanding the properties of the components that allow

to discriminate between them and to provide a separation criteria.
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2.4.2 Principal and independent component analysis

Principal component analysis

A first (in the historical sense) solution to equation 2.80, comes in the form of a decomposition

into independent orthogonal components, which is provided by the principal component

analysis (PCA F.R.S., 1901; Jolliffe, 2011). Let us assume that our observables Y are made of a

series of ny vectors ,{yi }i∈[[1,ny ]] such that each vector yi can be seen as a linear combination

of orthogonal, independent vectors {v j } j∈[[1,nv ]], such that:

∀i ∈ [[1,ny ]], yi =
∑

j
ai , j v j , (2.81)

where coefficient ai , j is a real number that gives the contribution of component v j to vector

yi . In matrix form, equation 2.81 becomes:

Y = AV , (2.82)

where the i -th column of matrix Y contains vector yi , the j -th column of matrix V contains

vector v j and the element of the i -th line and j -th column of matrix A is the coefficient ai , j
3 .

This factorisation of the component separation problem is called a blind source separation

(BSS) problem. Most of the problems of source separation encountered in astrophysics can be

expressed as a BSS, in particular, when dealing with multi-channel data (Y is a collection of

images).

Such decomposition can be done by taking the singular value decomposition (SVD) of Y ,

which consist in factorising Y such that:

Y =UΩW T , (2.83)

where U and W T are orthonormal matrices and Ω is a diagonal matrix with positive co-

efficients sorted in decreasing order along the diagonal. The ordering of the coefficients

comes from the fact that the SVD of a matrix is linked to the eigenvalue decomposition of the

covariance of Y :

T Y Y =W ΣW T , wi th (2.84)

Σ =ΩT Ω, (2.85)

meaning that the diagonal elements of Ω correspond to the square root of the eigenvalues of

Y T Y and W is the matrix formed by its eigenvectors.

3We notice that, with this formulation, the element at position [i , j ] of component X k from equation 2.79, now

writes X k
[i , j ] =

{
ai , j Vj ,m if m = k

0 otherwise
.
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With this formulation, we can write the factorisation Y = AV in terms of:

A =UΩ, (2.86)

V =W T , (2.87)

Which provides a natural decomposition in to orthogonal components for Y .

In practice, because the diagonal values of Ω are sorted in decreasing order, it is very common

to truncate the decomposition at a certain number of eigenvalues without a significant loss

of information. This will be expanded on further in chapter 3 where we use PCA to separate

images foreground smooth galaxies from compact textured background images.

Independent component analysis

It is easy to notice that from this decomposition, many other decompositions (A′,V ′) can be

found that verify Y = A′V ′. Explicitly, for any invertible matrix I , the decomposition (A′ =
AP,V ′ = P−1V ) is a decomposition of Y . While not all transformation matrices P might provide

a valuable decomposition in terms of component separation (e.g, scaling and permutations),

they provide a tool to investigate more general decompositions than the ones restricted to

orthonormal decompositions such as PCA.

This non-orthogonal generalisation of PCA, called independent component analysis (ICA)

relies on the separability of components (PV ) based on their statistical independence (Jutten

& Herault, 1991; Comon, 1994). Meaning that ICA aims at finding invertible matrices P that

maximises the independence of the vector of PV based on a given criterion.

A number of algorithms have been proposed in the literature that provide ICA for various

independence criteria: Hyvarinen (1999); Cardoso (1999); Bell & Sejnowski (1995) .

2.4.3 Morphological component analysis

With their pioneering work, Zibulevsky & Pearlmutter (2001) paved the way for a new sepa-

ration criteria beyond independence: sparsity. They show that multiple mixtures (lines in Y

in equation 2.82) of the same components (lines in V in equation 2.82) can allow the recon-

struction of the components based on their sparsity in a dictionary Φ. This can be viewed as

solving a linear inverse problem with an assumption of sparsity, but where the linear operator

(here, the mixing matrix A) is not known and needs to be estimated.

Morphological diversity

Separability based on sparsity was then extended to give birth to the concept of morphological

diversity (Starck et al., 2004, 2005a). Morphological diversity recognises that several compo-
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nents of a same mixture might not be sparse in the same dictionary. This powerful notion

allowed the authors to formulate the morphological component analysis (MCA) framework.

MCA allows to recover mixed components from only one mixture, provided that each com-

ponent can be sparsely decomposed in one dictionary, but not in the dictionaries of other

components. This implies that each components has to present morphological characteristics

that allow to discriminate between them provided that we can express a basis that represent

these morphologies.

Formally, in MCA, the mixture is a one-dimensional vector Y that can be decomposed as

Y =
∑

i≤nc

xi (2.88)

= ∑
i≤nc

Φiαi , (2.89)

where {xi }i≤nc are the components we aim to reconstruct, {Φi }i≤nc are the dictionaries in

which the components {xi }i≤nc are sparsely represented and {αi }i≤nc are the coefficients of

the decompositions of vectors {xi }i≤nc in their respective dictionaries. Because of the sparsity

assumption, the solutions for equation 2.89 are obtained by solving the constrained problem:

{α̃i }i≤nc = ar g mi n
{αi }i≤nc

1

2
||Y − ∑

i≤nc

Φiαi ||22 +
∑

i≤nc

λi ||αi ||1. (2.90)

Problem 2.90 is very similar to the synthesis formulation of linear inverse problems 2.31,

but has the particularity of requiring optimisation over several variables that each require

different thresholds λi . A baseline algorithm for solving problem 2.90 consists in alternating

optimisation steps over each componentαi as shown in algorithm 1, where ni ter is the number

of alternating steps (iterations). In this algorithm, the threshold that accounts for the sparsity

of the solution is updated at every iteration. The threshold λ0 is set to start high such that the

most salient features of each component are reconstructed in their respective dictionaries.

The threshold is then decreased to account for the full reconstruction of each coefficient.

Several decrease strategies can be devised for the threshold. The starting threshold is often

set to be high enough such that only the highest coefficient in the sparse domain, across

all components. It is possible to design a decrease such that the threshold value decreases

following a decreasing analytical function (usually, linear or exponential decrease), but data

driven strategies have also been devised that allow to accelerate the convergence of the

algorithm, in particular, in cases where the contrast between components is high. Such data

driven strategies consist in considering contamination between components as a noise and

to keep the threshold right above this noise level (Donoho et al., 2012), or to decrease the

threshold right above the value of the component that has the second highest coefficient across

all components4 (Bobin et al., 2007a). In my experience, I found useful to combine these two

4This strategy ensures that, at every iteration, only the component that contributes the most to the residuals
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Algorithm 1 MCA algorithm

1: procedure MCA(Y ,ni ter ,Φi }i≤nc )
2: Initialisation of x0

i ,λ0∀i
3: for k = 1 to ni ter do
4: R ← Y −∑

i≤nc
Φiα

k
i

5: for i ← 1 to nc do
6: xk

i = xk−1
i +R

7: αk
i ← ST λk−1 (ΦT

i xi )

8: xk
i ←Φiα

k
i

9: end for
10: Update λk , ∀i
11: end for
12: return {xk

i }i≤nc

13: end procedure

approaches by setting a analytic linear decrease but allowing the coefficient to decrease faster

in cases of high contrasts. This strategy has the advantage of avoiding unnecessary iterations

at high contrast and spending more iterations on the careful reconstruction of features at low

contrast. In some cases, it is even possible to keep the threshold at the minimum value in

cases of high sparsity of the component in their respective dictionaries.

A very schematic, but nonetheless intuitive way of interpreting this algorithm can be drawn by

considering the very simple problem of separating spheres and tiles mixed in a bag. Let us

consider a large number of identical tiles and spheres mixed in a bag as represented in figure

2.13. With the radius of the spheres is contained between the smallest and largest dimen-

sions of the tiles, how can I separate the spheres from the tiles? Knowing the morphological

properties of the objects, a simple solution consists in throwing the content of the bag on a

sieve of circular apertures with the same radius as the spheres. When enough spheres have

been through the sieve and the number of tiles is much larger than the number of spheres

left, we take the rest to a sieve of rectangular apertures with the same dimensions as the tiles.

By alternating between the circular and rectangular sieve, we should end up with a perfect

separation between spheres and tiles.

We illustrate this by performing a decomposition between low and high frequency features,

in the Starlet domain, in images of galaxies for the purpose of measuring surface brightness

fluctuations (SBF Jensen et al., 2015; Cantiello et al., 2018), in the frame of the Next Generation

Virgo cluster Survey (NGVS; PI Laura Ferrarese). Results can be found in appendix B.

We developed a modified version of the MCA interlaced with a linear inverse problem to model

lens systems, which we present in chapter 5.

are reconstructed. Compared to analytical strategies, in case of high contrast between components, this has the
advantage of skipping many iterations that would otherwise have been spent reconstructing the same component.
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Figure 2.13 – Schematic interpretation of morphological component analysis.

Generalised morphological component analysis and beyond

With the works of Bobin et al. (2006); Bobin et al. (2007b); Bobin et al. (2008), the MCA

framework was extended to multi-frame data to produce the generalised morphological

component analysis (GMCA). GMCA addresses the same problem as equation 2.82, where the

aim is to recover a set of components (lines in X ) that are mixed in different unknown linear

combinations represented by the elements of the mixing matrix A in a set of multi-frame

observations (lines of Y ). As in MCA, each component in X is sparse in a given dictionary.

With this formulation, A are X solution of the constrained optimisation problem:

Ã, X̃ = ar g mi n
A,S

1

2
||Y − AX ||22 +λ

∑
i<nc

||Φi Xi ||1, (2.91)

Where Xi is the i -th line of matrix X and Φi is the dictionary where Xi is sparse. With GMCA,

the component separation benefits from the separation criteria provided by the multiframe

observations (Zibulevsky & Pearlmutter, 2001) combined with the separation from morpho-

logical diversity. In essence, MCA can be seen as special cases of GMCA, which corresponds to

the case where Y is a one dimensional vector (single frame observation).

Solving a GMCA problem also includes solving the problem in A. As a result, GMCA algorithms

alternate between minimisations over X at fixed A and minimisations over A at fixed X , as

shown in algorithm 2

In the last decade, several similar techniques have emerged that are more adapted to solve

other specific source separation problems:
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Algorithm 2 MCA algorithm

1: procedure GMCA(Y ,ni ter ,Φi }i≤nc )
2: Initialisation of A, X , λ0∀i
3: for k = 1 to ni ter do
4: X ← ar g mi n

X

1
2 ||Y − AX ||22 +λ

∑
i<nc

||Φi Xi ||1
5: A ← ar g mi n

X

1
2 ||Y − AX ||22

6: end for
7: Update λ

8: return {xk
i }i≤nc

9: end procedure

• Local-GMCA (L-GMCA Bobin et al., 2013; Bobin et al., 2011) uses the principles of

GMCA on adaptive patches of the sky and locally estimates the mixing matrix, it was

successfully applied to CMB the reconstruction problem in Bobin et al. (2014);

• non-negative GMCA (nGMCA Rapin et al., 2013, 2014) accounts for the positivity of the

observables in direct space (Paatero & Tapper, 1994; Donoho & Stodden, 2004) along

with the sparsity of the sources in transformed space to perform blind source separation;

• Adaptive MCA (AMCA Bobin et al., 2015a) aims at solving source separation problems

for partially correlated components;

• Deconvolution in GMCA (DecGMCA Jiang et al., 2017) for separation problems mixed

with ill-posed deconvolution problems.

• robust GMCA (rGMCA Chenot et al., 2015), a separation algorithm robust to outliers.

Taking inspiration from these algorithms, techniques were recently developed in Moolekamp

& Melchior (2017); Melchior et al. (2018) that rely on other linear constraints, thus extend-

ing component separation to an even more general framework. Using alternative direction

method of multipliers (ADMM) , the authors showed that one can combine any number of

linear constraints of any nature (sparsity, positivity, symmetry, monotonicity · · · ) to provide

adequate separation criteria.

2.5 Outline

In this chapter, we have introduced the tools that form the basis for understanding most of

the work done in this thesis with regard to linear optimisation. The key concepts that are

extensively referred to in this work are those of sparse optimisation in the wavelet domain

and component separation. I provided the theoretical framework that allows to build efficient

algorithms of minimisation in this context by introducing proximal calculus and by giving an

overview of the concept of wavelet decomposition. Morphological component analysis is the
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starting ground of most of the applications we will present here. Even if the algorithms devel-

oped to solve specific problems related to strong gravitational lensing, show mild deviation

from the baseline algorithms, they all rely on the basic ideas formulated in algorithms 1 and 2.

In chapter 3, we will see how principal component analysis allowed us to facilitate automated

detection of gravitational arcs and rings and laid the grown for future development of more

advanced machine learning-based methods. Chapter 4 uses a simplified version of GMCA to

separate blended images of astronomical objects with different colours in the optical domain.

In chapter 5, we show how MCA can be used in single band images to separate lensed from

non-lensed objects by solving a linear inverse problem of lens inversion. With MCA being a

particular case of GMCA, we will see that it is possible to mix both approaches of colour and

lensing component separation.
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While strong gravitational lenses at galaxy scale have the potential to bring a multitude of

information about distant objects and about cosmology alike, it remains a rare event. With

most galaxy-scale lens systems being only a few arseconds in size on the plane of the sky and

the sky counting 64800 square degrees with billions of light sources, finding them constitutes

a challenging problem. In this chapter, I review the different approaches to finding galaxy-

scale strong lenses and show the result of the application of a method I designed prior to the

beginning (see section 3.3) of this thesis to the CFHTL Survey in section 3.3.

The method we proposed and that we present in this chapter relies on the use of principal

component analysis to learn the shape of lens galaxies, remove them and search lensed
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features in the residual image. While PCA can be considered as the level zero of machine

learning, we only used it as a preprocessing tool to facilitate our lens search, but not as a

selection criteria for lens system candidates, due to its limited capacities. With the revolution

of deep learning algorithms (LeCun et al., 2015) and convolutional neural networks (CNN

Lecun et al., 1998; Fukushima, 1980), machine learning became robust enough to produce a

robust selection criteria, and the idea was applied in a multitude of lens finding algorithms as

illustrated in Metcalf et al. (2018) and references therein.

3.1 The Problem of Finding Lenses

Strong gravitational lenses come in a wide variety of configurations and observational charac-

teristics that each hold different information. As we have seen in chapter 1, lensed sources with

QSOs allow us to probe the cosmological parameter space, and each extended lensed source

allows us to probe the distribution of dark matter from substructure scale to galaxy-scale.

3.1.1 Lens diversity

Lensed quasars can assume various configurations: the multiplicity of observable quasar

images usually ranges from 2 to 4. The configuration of a quadruply imaged quasars comes in

cusp, cross or fold as illustrated in figure 3.1 by lens systems RXJ1131, HE0435 and WFI2033

respectively. In some systems, the host galaxy contributes significantly to the system’s surface

brightness (lenses B1608 and RXJ1131). In the case of extended background sources, images

may form as rings or arcs. The morphology of the lens galaxy is also a factor to take into

account when searching for lens systems. With lenses being slightly more likely to form

around massive early type galaxies, a few examples of gravitational lenses have been found in

spiral galaxies (Treu et al., 2011; Huchra et al., 1985), where the lensed images tend to form

inside the bulge of the lens.

Of course, each of these configurations come with a variety of image separations and luminosi-

ties. As a result of this variety of morphologies, most lens search algorithms are specialised

into finding a specific type of lenses. One major difficulty faced when searching for strong

gravitational lenses, arises from the difficulty to identify lensed features in the glare of lens

galaxies. For that reason, many of the techniques we are going to review in the next section

rely on the careful subtraction of the lens light.

3.1.2 Expectations

The coming years should see the coming on line of several large optical surveys such as DES,

LSST or Euclid, that will map large portions of our sky. In Collett (2015), the author predicts

the number of lens system that should be observed based on simulations of realistic lenses

and compares his prediction of about existing survey, CFHTLS with the results of Gavazzi et al.
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Figure 3.1 – Five lens systems from the H0LICOW configuration (Suyu et al., 2017)

(2014) and Sonnenfeld et al. (2013). We summarise in table 3.1 the number of expected lenses

in each survey (Npr edi cted ) along with the sky coverage of the survey (Ω). It is important to

notice that Euclid is expected to find more than twice as many lens systems as LSST, which

has a larger sky coverage. This is due to Euclid being a spaceborne probe, which resolution

should allow to detect lenses systems with smaller separation and Einstein radii.

Survey Ω (deg 2) Npr edi cted

CFHTLS 150 250
DES 5000 2300
LSST 20000 120000

Euclid 15000 280000

Table 3.1 – Prediction for lens discoveries in upcoming optical surveys from Collett (2015).

With so many gravitational lenses to be found among several orders of magnitude more light

sources, we need to devise strategies to search for gravitational lenses in a reasonable time.

3.2 State of the Art in Lens Finding

Efforts towards the development of large scale search for strong lenses started in the early

2000’s and are now booming with the rise of machine learning and the urge of upcoming

surveys.

3.2.1 Visual inspection

The first natural method for finding strong gravitational lenses naturally comes from visual

inspection of preselected sources. In Browne et al. (2003), the authors searched for gravita-

tional lenses through the ∼ 16000 radio sources of the VLA cosmic lens all-sky survey. After

pre-selection based on spectral features, ∼ 8000 sources were inspected among which 149

lens candidates were selected. In the optical, Faure et al. (2008) searched for lenses among

the ∼ 280000 source of the COSMOS survey. Similarly to what was done in the radio domain,

they performed a pre-selection of ∼ 10000 candidates based on their luminosity, photometric
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redshift and SED. In a following paper, Jackson (2008) realised the daunting effort of manually

inspecting each of the 285423 sources of the COSMOS survey. The author reports an average

8000 to 10000 objects inspected per hour, which amounts to 28 hours of inspection for the full

survey to be covered. Given that the COSMOS survey is 1.64 square degrees and assuming a

Euclid-like survey of 15000 square degrees with similar properties as the COSMOS survey in

terms of depth and resolution, it would take 256097 hours, or 29 years of continuous inspection

to go through the whole survey. To overcome this major issue, a multiprocessing approach

of visual inspection was proposed by way of the Space Warps project (Marshall et al., 2016;

More et al., 2016) where the authors relied on citizen science to process the 430000 tiles of the

CFHTLS survey.

3.2.2 Automation of imaging searches

Due to the increasing size and number of large surveys, the past decade has seen the multipli-

cation of efforts to produce automated or semi automated methods to find strong gravitational

lenses. While it has proven so far, challenging to produce fully automated methods, most tech-

niques focus on reducing the number of potential candidates that require visual inspection to

a few thousand images.

Feature extraction

Because strong gravitational lensing produces characteristic elongated and distorted fea-

tures, several algorithms have focused on the detection and extraction of such features. The

arcfinder algorithm (Alard, 2006; Seidel & Bartelmann, 2007; More et al., 2012) identifies

arc-like, elongated features in images of lens candidates. In Gavazzi et al. (2014); Joseph et al.

(2014); Paraficz et al. (2016), the authors focus on the identification of rings around elliptical

galaxies that are subtracted prior to the ring identification.

lens modelling search

Another approach consists in assessing whether a lens candidate system can be explained

by a lens model. This is the approach chosen by Marshall et al. (2009), where each early type

galaxy is considered as a potential lens system. Then the surface brightness of the candidate

is fitted with a gravitational lens model. The adequacy of the fit gives an indication of how

likely a system is to be a lens based on the quality os the fit of actual known lens systems.

The CHITAH algorithm (Chan et al., 2015) searches multiply imaged QSOs as multiple point

sources around elliptical galaxies that are previously subtracted based on colour difference

imaging. The identification of multiple point sources as a lens system is then performed by

assessing whether the position of the lensed quasars could be explained using a lens model. In

Sonnenfeld et al. (2018), the authors combine the arc and ring identification feature to the lens

modelling search techniques to give a better identification criteria of lensed arcs and rings.
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3.2.3 spectroscopic search

Other than imaging, several methods rely instead on the identification of features in spectro-

scopic data. Due to the small angular separation between a lens light profile and its potential

lensed source, it is possible to identify spectral lines that are not coherent with the spectra of

single objects, but instead, can be explained by the superimposition of two objects at different

redshifts (Bolton et al., 2006; Willis et al., 2006; Brownstein et al., 2012).

A particularly interesting application of such technique was implemented to specifically target

systems where QSOs act as lenses. In Courbin et al. (2010, 2012); Meyer et al. (2017) the

authors identify spectral emission lines in the spectra of pre-selected QSOs that could only be

explained by a higher redshift source.

3.2.4 The dawn of machine learning

With the rapid development of algorithms and techniques for machine learning, this field

has revolutionised the search for strong gravitational lenses. In the recent strong lens finding

challenge (Metcalf et al., 2018), out of the 24 submissions 19 can be coined as machine learning-

based techniques. While most of them (15 submissions) rely on convolutional neural networks

(Jacobs et al., 2017; Petrillo et al., 2017; Lanusse et al., 2018; Schaefer et al., 2018) to account

for the information of all pixels in the image set. Other techniques focus on learning features

that are specific to gravitational lenses using Gaussian mixture models (Ostrovski et al., 2017),

support vector machine (SVM, Hartley et al., 2017) or neural networks on pre-selected arc or

ring-like features (Bom et al., 2017).

3.2.5 Results of the lens finding challenge

With the large number of CNN-based submission and the growing interest for this approach,

it is no surprise that the methods described in Lanusse et al. (2018) and Schaefer et al. (2018)

be amongst the top ranking techniques in terms of compromise between completeness and

purity of the selection. The SVM technique of Hartley et al. (2017) and the CNN of Lanusse et al.

(2018) ranked the highest in terms of true positive ratio, meaning that these methods provide

the highest completeness in their selection. It is interesting to notice that human inspection

was also used in this challenge, where two human classifiers managed the inspection of the the

100000 images in under 48 hours. Interestingly, most machine learning methods performed

better than human inspection due to these techniques providing better levels of confidence

on images where humans would be hesitant. This is due to the adequacy between the training

set and the test set. However, the "human classifier" was the only one to correctly identify

an exotic lens system with two lensed sources, which morphology was not included in the

training set.
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3.3 A PCA-based Deblender for Lens Finding

3.3.1 Lens light subtraction

An important issue faced when searching for galaxy-scale strong lens systems is the sometimes

small angular separation between the lens and the lensed source, which results in the blending

of the light profiles. In many approaches, the authors chose to remove the foreground galaxies

in a survey before searching for lensed features in the residuals. This assumes a pre-selection

of potential lens galaxies, which is usually done based on criteria of size, luminosity and

colour.

Several approaches have been used to subtract the light profile of a lens candidate. The most

common one comes from colour difference imaging. Given that source galaxies at higher

redshift tend to be star forming galaxies, while foreground lenses are often early galaxies,

source galaxies are expected to be bluer than red lens galaxies. Using this principle, Gavazzi

et al. (2014) performs lens search on the subtraction of bands g − i in the CFHTL Survey while

Chan et al. (2015) performs the same operation with the subtraction of bands g − z.

As we will see in chapter 4, stating that a source is bluer than an other one does not necessarily

defines an exclusive relation with regard to light contribution to imaging filters. This means

that a blue source might contribute to the surface brightness of the system in a red filter. As

a result, the band subtraction approach can reduce the signal of an object in the detection

image, which can reduce the detection power especially at low signal to noise ratio.

In Brault & Gavazzi (2015) the authors propose to select early type galaxies that usually present

smooth, elliptical surface brightness profiles. The smoothness and ellipticity assumption

allows the authors to remove the foreground lens light profile by fitting an elliptical light profile

using the galfit software (Peng et al., 2002, 2010). While the procedure of fitting elliptical

profiles to each galaxy in a survey can be time consuming, it has the advantage of allowing

lens light subtraction in single-band imaging, where band subtraction techniques require

multi-band observations.

3.3.2 Learning light profiles from PCA

In an attempt to provide an efficient method for galaxy-scale strong lensing detection, I

developed a lens finding algorithm that relies on the subtraction of the lens light profile in

single band imaging surveys.

The method performs principal component of a preselected cube of galaxy images with

consistent sizes and ellipticities. The PCA is used to build a basis of morphological features,

for which the first few components will represent the most common features in the data. As

a result, the reconstruction of an image projected on the first few vectors of this basis will

build a simple profile made of the most common preselected features in the survey: smooth

elliptical galaxies. The residuals between the reconstruction and the original image shows
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objects hidden in the glare or in the vicinity of elliptical galaxies. The details of the method are

given in the preprint of a paper published in Astronomy & Astrophysics (Joseph et al., 2014).

In this paper, we also describe two methods for strong lens features identification in the

PCA subtracted image. In the first technique, that I developed, performs a polar coordinate

transform of the PCA-subtracted images. In this the polar system, a ring-like feature would be

seen as a line, which is detected by identifying peaks in the projection of the polar transformed

image along the angular axis.

The second method developed by co-authors Philippa Hartley and Neal Jackson identifies

objects in the PCA-subtracted images using the Sextractor (Bertin & Arnouts, 1996) software.

The characteristics of the extracted features are then scanned to look for radial alignments and

extreme elongations. In this paper, we present of a comparison of both methods on simulated

data provided by the Bologna Lens Factory project1.

1https://bolognalensfactory.wordpress.com
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ABSTRACT

We present an algorithm using Principal Component Analysis (PCA) to subtract galaxies from imaging data, and also two algorithms
to find strong, galaxy-scale gravitational lenses in the resulting residual image. The combined method is optimized to find full or partial
Einstein rings. Starting from a pre-selection of potential massive galaxies, we first perform a PCA to build a set of basis vectors. The
galaxy images are reconstructed using the PCA basis and subtracted from the data. We then filter the residual image with two different
methods. The first uses a curvelet (curved wavelets) filter of the residual images to enhance any curved/ring feature. The resulting
image is transformed in polar coordinates, centered on the lens galaxy center. In these coordinates, a ring is turned into a line, allowing
us to detect very faint rings by taking advantage of the integrated signal-to-noise in the ring (a line in polar coordinates). The second
way of analysing the PCA-subtracted images identifies structures in the residual images and assesses whether they are lensed images
according to their orientation, multiplicity and elongation. We apply the two methods to a sample of simulated Einstein rings, as they
would be observed with the ESA Euclid satellite in the VIS band. The polar coordinates transform allows us to reach a completeness
of 90% and a purity of 86%, as soon as the signal-to-noise integrated in the ring is higher than 30, and almost independent of the size
of the Einstein ring. Finally, we show with real data that our PCA-based galaxy subtraction scheme performs better than traditional
subtraction based on model fitting to the data. Our algorithm can be developed and improved further using machine learning and
dictionary learning methods, which would extend the capabilities of the method to more complex and diverse galaxy shapes.

Key words. Methods: data analysis – Gravitational lensing: strong – Galaxies: surveys

1. Introduction

With the many ongoing or planned sky surveys taking place in
the optical and near-IR, gravitational lensing has become a major
scientific tool to study the properties of massive structures at all
spatial scales. On the largest scales, in the weak regime, grav-
itational lensing constitutes a crucial cosmological probe (e.g.
Heymans et al. 2013; Frieman et al. 2008). On smaller scales,
weak galaxy-galaxy lensing allows us to study the extended halo
of individual galaxies or of groups of galaxies (e.g. Simon et al.
2012) and to constrain cosmology (e.g. Mandelbaum et al. 2013;
Parker et al. 2007).

In the strong regime, when multiple images of a lensed
source are seen, gravitational lensing offers an accurate way to
weigh galaxy clusters (Bartelmann et al. 2013; Hoekstra et al.
2013; Meneghetti et al. 2013; Kneib & Natarajan 2011, for re-
views), galaxy groups (e.g. Foëx et al. 2013; Limousin et al.
2009) and individual galaxies (e.g. Brownstein et al. 2012; Treu
et al. 2011; Bolton et al. 2006). However, all strongly lensed sys-
tems known today, combined together, represent only hundreds

of objects. Wide field surveys have the potential to produce sam-
ples three orders of magnitude larger, allowing us to study sta-
tistically dark matter and its evolution in galaxies as a function,
e.g. of morphological type, mass, stellar and gas contents (see
Gavazzi et al. 2012; Ruff et al. 2011; Sonnenfeld et al. 2013b,a).
For example, Pawase et al. (2012) predicts that a survey like
Euclid will find at least 60000 galaxy-scale strong lenses. To find
and to use them efficiently, it is vital to devise automated finders
that can produce samples of lenses with high completeness and
purity and with a well defined selection function. Note that the
lenses of Pawase et al. (2012) are source selected. There is no
volume-limited sample of lens-selected systems, so the number
60000 systems is given here only to give an order of magnitude
of the number of objects that future wide-field surveys will have
to deal with.

Several automated robots exist to find strong lenses. Among
the best ones are Arcfinder (Seidel & Bartelmann 2007),
which was primarily developed to find large arcs behind clus-
ters and groups, and the algorithm by Alard (2006) used by
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Fig. 1. Examples of PCA components obtained using 1000 simulated galaxies from the Bologna Lens Factory (see Sect. 4).

Cabanac et al. (2007) and More et al. (2012), to look for arcs
produced by individual galaxies and groups in the CFHT Strong
Lensing Legacy Survey. Other automated robots consider any
galaxy as a potential lens and predict where lensed images of a
background source should be before trying to identify them on
the real data (Marshall et al. 2009). In order to detect lenses with
small Einstein radii or with faint rings, most of these algorithms
rely on foreground lens subtraction (e.g. Gavazzi et al. 2012). So
far, this subtraction has been performed through model fitting.
An example of a ring detector is given in Sygnet et al. (2010)
which selects objects with possible lensing configuration accord-
ing to their lensing convergence, estimated from the Tully-Fisher
relation. This algorithm relies on photometric information but
requires a visual check of a large number of candidates.

In the present paper, we propose a ”lens finder” which uses
single-band images to find full and partial Einstein rings based
on purely morphological criteria. The algorithm uses as input
a pre-selection of potential lens galaxies, hence producing so-
called ”lens-selected” samples. The present work sets the basis
of an algorithm using machine learning techniques. Although fo-
cused on finding Einstein rings, it can be adapted to other types
of lenses, such as those consisting of multiple, relatively point-
like, components.

This paper is organised as follows. In Sections 2 and 3 we
outline our algorithm and introduce the principles behind each
step of the process. In section 4 we show the performance of
our algorithm using a set of simulations designed to reproduce
Euclid images in the optical. We discuss the completeness and
purity of our algorithm as a function of signal-to-noise (SNR)
and caustic radius of the lensing systems. Section 5 shows re-
sults of our galaxy subtraction algorithm compared to those of
galfit software (Peng et al. 2011) on images from the CFHT
optical imaging of SDSS stripe 82 and Section 6 summarizes our
main results.

2. A new automated lens finder

2.1. Principle of the algorithm

By construction, lens-selected samples display bright fore-
ground lenses and faint background sources, otherwise the pre-
selection of the lenses based on morphological type, luminos-
ity and color would not be possible. As a consequence, faint
Einstein rings are hidden in the glare of the foreground lenses,
which must be properly removed before any search for lensed
rings can be undertaken. An efficient ”lens finder” therefore in-
volves two main steps: 1- removal of the lens galaxy, 2- identifi-
cation of rings in the lens-subtracted image.

A traditional way of subtracting galaxies is to fit a two di-
mensional elliptical profile to the data, e.g. as done with the

galfit software (Peng et al. 2011). While this is sufficient to
characterize the main morphological properties of galaxies, it
turns out to be insufficient to detect faint arcs seen superposed
on bright galaxies with a significant level of resolved structures.

One way to circumvent the problem is to build an empirical
light model from the sample of galaxies itself, i.e. to use ma-
chine learning techniques such as Principal Component Analysis
(PCA; Jolliffe 1986). The sparsity and the diversity in terms of
shape of the lensed objects (rings, arcs, multiple images) pre-
vents them from being well enough represented in the basis,
hence allowing for an accurate separation of lenses and sources.
This has already been used to find lensed sources from PCA de-
composition of quasar spectra (e.g. Courbin et al. 2012; Boroson
& Lauer 2010). We adopt now a similar strategy to analyse im-
ages.

Once the foreground lenses have been properly removed, we
analyse the residual rings using methods described in Section 3.
The main steps of the algorithm can be summarized as follows:

1. Pre-selection of the galaxies with a predefined range of shape
parameters (size, ellipticities, magnitudes, colors, etc.)

2. Building the PCA basis either from the selected sample of
galaxies or from an adapted training set.

3. Reconstruction of the central galaxies and subtraction from
the original images.

4. Detection of lensed objects, either using island finding
(groups of adjacent pixels) or a polar transform or the resi-
dual image.

2.2. Selection of galaxies

The first step of this method is to build stamp images of galaxies
in which to look for lensed objects. This step strongly depends
on the specific sample considered and may take advantage of
algorithms such as SExtractor (Bertin & Arnouts 1996).

For the PCA decomposition to work well, a compromise has
to be found between the number of objects used to build the
PCA basis, the size of the objects in pixels, and the range in
shape parameters. The more complex the galaxies are, the more
galaxies should be included in the training set, i.e. the sparsity
of the problem has to be evaluated carefully.

For relatively simple galaxy shapes, like elliptical galaxies,
the pre-selection may focus on galaxies with similar sizes and el-
lipticities, which ensures better morphological similarities. This
usually results in a satisfactory subtraction of the lens galaxy
with only few PCA components. However, the window in which
the sizes and ellipticities are chosen has to be wide enough to al-
low a full representation of any shapes of galaxies in this range.

2
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Fig. 2. Illustration of the ring finding process for two simulated Einstein rings from the Bologna Lens Factory (Sect. 4). For each
row, from left to right are shown 1- an example of simulated Einstein ring (64×64 pixels), along with its lens galaxy, 2- the lensed
ring after PCA subtraction of the foreground galaxy, 3- the result of curvelet denoising, 4- the polar transform of the ring revealing
a well visible horizontal line which position along the y-axis gives a measurement of the radius of the Einstein ring.

Radius (in pixels)

Fig. 3. Median pixel values along the pixel rows of the curvelet-
filtered images shown in the third column of Fig. 2. The black
line corresponds to the top row of Fig. 2 and the red line corre-
sponds to the bottom row. A simple thresholding scheme allows
us to detect the spike and to measure directly the size of the
Einstein ring (see text).

The choice of this selection window is discussed later when ap-
plying the method to specific data.

Computational time is an important parameter to consider as
well. Building the PCA basis involves finding the eigenvectors
and the eigenvalues of a n2 × Ngal matrix, where n is the number
of pixels per stamp and where Ngal is the number of stamps in
the training set.

2.3. Building the PCA basis

Before computing the PCA basis, we rotate all the galaxies in the
training set so that their major axes are all aligned and we cen-

ter the galaxies in each stamp image. The rotation is performed
using a polynomial transformation and a bilinear interpolation.
This restricts further the parameter space to be explored and is
fully justified given that position angle of galaxies on the sky
distribute in a random way: the position angle cannot be a prin-
cipal component. Note that we do not apply any other re-scaling,
e.g. of parameters such as ellipticity, which do not distribute in
a random way.

Any companions to the galaxies used to build the PCA ba-
sis are a possible source of artefacts. Companion galaxies are
frequent enough to have an important weight in the final basis.
This can result in removing part of the lensed object at the end
of the process or, conversely, to create fake lensed objects.

In order to avoid this effect, we select only galaxies with no
bright companions or with companions far away from the cen-
ter of light. This method results of course in reducing the size
of the PCA basis. To include more ”companion-free” galaxies,
one often has to widen the original selection function, at least in
surveys of limited volume, and this may results in a PCA basis
less representative of the considered sample. The selection also
involves reducing the efficiency of the removal of galaxies with
companions. In order to search for strong lensing around that pe-
culiar kind of morphologies, one can devise a masking strategy,
but this has not been considered in the present study.

The PCA analysis is computed by building a matrix Xb in
which each of the n columns is an image from the basis set,
reshaped as a vector of size n2. A singular value decomposition
is performed on the covariance matrix of the elements of the
basis, Xb, which boils down to find V , and W verifying

XT
b Xb = VWVT, (1)

where W is a diagonal matrix. The singular value decompo-
sition of Xb is written

Xb = UΩVT, (2)

with Ω2 = W, and U the matrix of the eigenvectors for the
decomposition of Xb. Therefore, the eigenvectors Ei can be re-
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covered from the singular value decomposition of the covariance
matrix

Ei = XbVtW−1/2. (3)

The decomposition of an n × n image of galaxy reshaped as
a column vector, Xset (not necessarily in the basis) can now be
decomposed as

αset = EiTXset, (4)

where αset is a Ngal-sized vector of PCA coefficients that rep-
resents the image Xset.

A partial reconstruction of the image is done by using only
the k-first coefficients of the PCA, i.e. the k most significant co-
efficients. The estimated reshaped image is

X̃set = Ei[0..n2,0..k]αset[0..k]. (5)

As the basis does not represent anything but the variations in
shapes of the central parts of the galaxies, they will be the only
reconstructed objects. The remaining companions are much less
represented in the PCA basis. Rare structures such as Einstein
rings or multiply imaged objects are very little represented in the
PCA basis. Using a limited number of PCA coefficients during
the reconstruction will therefore create images of lens galaxies
without any significant lensed structure potentially present in the
original data. The reconstructed PCA images can therefore be
subtracted from the original data in order to unveil the lensing
structures, when present. Fig. 1 displays examples of the first
PCA coefficients for the simulated Einstein rings described in
Section 4.

In order to evaluate the quality of reconstruction in an ob-
jective way, we compute the reduced χ2 (per pixel) of the recon-
struction in some circular area S containing NS pixels:

q =
1

NS

N∑

i=1

[di − mi

σ2
i

]2
(6)

where di are the pixels in the original image along with their
photometric error σi, and where mi are pixel values as predicted
by the PCA model/reconstruction. The radius of the circular area
S can be chosen to match the mean size of the galaxies in the
sample.

A critical step in the PCA reconstruction is the choice of the
number of PCA coefficients. If all of the coefficients are used, the
reconstruction will include elements of the basis that represent
the noise, hence resulting in an overfitting of the data and to an
apparent smoothing of the residual image obtained after subtrac-
tion of the galaxy. This can be damaging when trying to detect
faints rings and arcs. Conversely, if the number of coefficients
is insufficient the central galaxy will be only partially removed
leaving significant and undesired structures in the residual im-
age.

In Section 4, we describe a way to choose the number of
PCA coefficients in an objective way, using the reduced χ2 and
we illustrate the effect of this choice using a set of simulated
Einstein rings, as they would be seen with the ESA Euclid satel-
lite (Laureijs et al. 2011).

3. Finding the lensed images, arcs and rings

Once a galaxy is removed from the image, the second step is
to search for any residual lensed signal. In this paper, we focus
on partial or full Einstein rings. We investigate two different ap-
proaches. The first one uses a curvelet filter (Starck et al. 2002),

Fig. 4. Left panels: schematic view of rings (dashed line) and
multiple images (blue dots along the ring tracks). Right panels:
their corresponding transform in polar coordinates.

optimized to enhance any arc-like structure, on images reshaped
in a polar grid. The second method uses SExtractor (Bertin
& Arnouts 1996) to identify remaining sources in the residuals
and to assess whether they are lensed images according to their
orientation and elongation.

3.1. Polar transform

A simple way to detect full or partial rings can be devised by
turning the Cartesian coordinate system of the data into the po-
lar one. The polar coordinates (ρ, θ) are chosen so that the origin
is the center of the galaxy that has been removed using the PCA
decomposition. The polar-transformed image is built by creating
a new grid of pixels and by asking, for each pair of (ρ, θ) coordi-
nates, the value of the pixels in the original (x, y) Cartesian grid.
This involves an interpolation process giving the pixel intensi-
ties Ipol(ρ, θ) as a function of the pixel intensities in the origi-
nal image I(x, y), with the standard relations x = ρ cos(θ) and
y = ρ sin(θ).

By construction, the polar transform centered on the lens
galaxy barycenter, turns a circle into a line, as illustrated in Fig.
2. The problem of ring detection is then reduced to a problem of
line detection. The polar image’s columns are collapsed into a
vector containing the median value of each column. If the origi-
nal image contains a ring, this vector will present a spike, whose
position directly gives the radius of the ring, as illustrated in
Fig. 3. In practice, we define a threshold that determines if the
maximum of the vector stands for a ring or not. Figs. 2 & 3 show
the different steps of the ring detection.
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As the rings are not always perfectly circular but elliptical,
their shape in polar coordinates can deviate significantly from a
straight line, as is the case in Fig. 2. In most cases, looking for
straight lines in polar coordinates is sufficient to detect rings, at
least for moderate ellipticities. However, it is possible to refine
the detection criterion by fitting an ellipse in polar coordinates,

ρ(θ) =
ab√

(b cos θ)2 + (a sin θ)2
, (7)

where a and b are the semi-major and semi-minor axes of
the ellipse and where the origin of the system is centered on
the lensing galaxy. In order to find point-source components su-
perposed to the rings (or simply lensed point sources), one can
add simple Gaussian profiles to the fit or the actual instrumen-
tal/atmospheric PSF. Alternatively, one can implement the detec-
tion scheme of Meneghetti et al. (2008) to find brightness fluc-
tuations along the arcs. Different typical lensing configurations
are shown to illustrate this in Fig. 4.

3.2. Island finding: the use of SExtractor parameters

An alternative method for assessing the presence of lensed struc-
ture in fields is to characterise all sources in the field, and
use the measured parameters of these sources in order to iden-
tify patterns among them. This process begins with the use of
SExtractor to identify sources in the field above a signal-to-
noise threshold. The flux, ellipticity, tangentiality (closeness of
the position angle to 90◦ to a vector from the field centre to the
object), and distance from the field centre are measured. In addi-
tion, flux islands (which may contain one or more SExtractor
components) are identified and the third moments of the flux
distribution are measured. Third moments are sensitive to bent
or arc-like structures, which are hard to detect from single com-
ponents alone. For the current purpose, we define a combination
of third moments ζ as:

ζ =
1

2
log10

[
(μ30 + μ12)2 + (μ21 + μ03)2

]
, (8)

where

μmn =
∑

n,m

d(x, y)xmyn (9)

where d(x, y) is the data value in terms of offsets x and y from
the brightest pixel in the island. This statistics, as a combination
of third moments is sensitive to bending and is also invariant
under scaling and rotation.

A Point score is then assigned to each component accord-
ing to the elongation of the component and its tangential orien-
tation with respect to the field centre. In addition, components
with similar radii are weighted upwards in the point score allo-
cation, and components which are part of an island with signif-
icant third moment are also weighted up. Specifically, the point
score is given by the following procedure, using free parameters
pi where necessary:

– Each component, unless it has a flux less than a threshold p0,
is assigned a point score of 10ε2exp(−t2/p2

1), where ε ≡ a/b
is its elongation and t is the difference between its tangential-
ity and the angle tangential to the radius vector to the point.
In general, we use Gaussian penalty functions where we wish
to select for a value close to one which would be expected
for lensing, and power laws for quantities which we wish to
maximise. The ε2 dependence results from a limited amount

of experimentation by hand, although such dependencies can
ideally be optimized on a larger sample.

– The point score of any component within a factor of p2 in
radius from its neighbour is multiplied by (1.0 + N/p3) ∗
exp[−(r−1)2/p2

4], where N is the number of points assigned
to the neighbour, and r is the ratio of their distances from
the centre of the field. This selection favours multiple lensed
images at the same radius, although the selection will have
more effect if the individual images are themselves elongated
and tangential.

– If a component is part of an island with third moment ζ > p5,
its point score is multiplied by [1 + (ζ − p5)]2.

The six parameters pi are then optimized on a small train-
ing set of lenses before being applied to the dataset. A variable
point-score threshold can be used for lens detection, complete-
ness generally being achieved at the expense of purity of the
resulting sample.

4. Application to Euclid-like simulated images

The ”lens finder” described in Sect. 2 is designed to process large
imaging data sets. Although the pre-selection of the galaxies to
be searched for lensing may require color information, the new
algorithm proposed in this paper can be applied to single-band
data to perform a purely morphological search. In the follow-
ing, we evaluate the performances of the method using simu-
lated images of Einstein rings, as they would be seen with the
ESA Euclid satellite (Laureijs et al. 2011).

The image simulations are provided through the Bologna
Lens Factory (BLF) project1. This is a project dedicated to per-
forming lensing simulations and providing realistic mock data
for a large variety of lensing studies from large scale weak lens-
ing, to galaxy cluster lensing and strongly lensed quasars. For
the purposes of this work, images were created to specifically
mimic the expected Euclid images in the visible instrument, as
described in Laureijs et al. (2011). The pixel size is 0.1′′ and the
PSF is Gaussian with a Full-Width-Half-Maximum (FWHM) of
0.18′′. The surface brightness is translated into photon counts
taking into account the expected instrumental throughput in the
VIS band. Background counts from zodiacal light are added, as-
suming a brightness equal to 22.8 mag/arcsec2. Noise is then
calculated taking care of Poisson statistics, flat-field error and
read-out (Meneghetti et al. 2008). The lensing and image con-
struction is done with the GLAMER lensing code (Metcalf &
Petkova 2013; Petkova et al. 2013). The pre-lensed galaxy sur-
face brightness models and mass distribution are provided by the
Millennium Run Observatory (MRObs; Overzier et al. 2013).
Each galaxy is represented by a bulge and a disk component
whose properties are predicted by a semi-analytic galaxy evolu-
tion model. The mass distribution consists of halos identified in
the Millennium Nbody simulation.

The lensing simulations were done as follows. The halos in
the catalog are represented by NFW halos (Navarro et al. 1997)
with Singular Isothermal Ellipsoids (SIEs) in their centers to rep-
resent the baryonic galaxy. This model has been shown to fit
observed Einstein rings well (Gavazzi et al. 2007). The NFW
profile is fit to the mass and peak circular velocity of the halo
found in the Millennium simulation. The mass and velocity dis-
persion of the SIE component is set by the stellar mass to halo
mass relation of Moster et al. (2010) and the Faber-Jackson rela-
tion (Faber & Jackson 1976). The lensed image of every source

1 www.bolognalensfactory.wordpress.com
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Fig. 5. Result of the galaxy removal on four of our simulated Einstein rings. The left hand side panel displays the four original
images. From left to right, the other panels display galaxy removals when 10, 50 and 200 PCA coefficients are used. The reduced
χ2 are respectively q = 1.74, q = 1.00 (i.e. optimal number of coefficients), and q = 0.9.

Fig. 6. Results of the island-finding algorithm. Each panel shows the residual image after the PCA galaxy subtraction, with the point
score of each component given separately, and the total point score at the top (see text). The top row shows systems which have
lenses, and is ordered so that the highest point-score is on the left and the lowest on the right. Objects with high ellipticity and high
curvature, tangential to the radius vector from the centre of the image, are highly preferred; lens systems without such objects are
hard to recognise by eye and also tend to attract a lower point score. The bottom row shows a sample of non-lenses, again ordered
by point score. High point-score objects are generally those in which chance coincidences produce configurations which mimic the
presence of lensing.

within a 0.1 deg2 light cone down to 28th magnitude in I band
is constructed and put into a master image. This image contains
only a few strongly lensed objects because the source density
is small enough that it is rare to have a visible object within a
caustic. To boost the number of strong galaxy-galaxy lenses, all
the critical curves and their associated caustics in the field are
found for a source redshift of zs = 2.5 and a source galaxy is
moved to be near the caustic. The sources are taken randomly
from galaxies within the light cone at a similar redshift. Then
the lensed image of this source is constructed and added to a
200 × 200 pixel cutout stamp from the master image. Images
with and without the added source are provided and an image
with only the added, lensed source are provided. All images are

provided with and without the noise and PSF effects. A catalog
of all the critical curves and caustics is also provided with their
locations and properties such as average radius and area.

Since we are not concerned with predicting the statistical
properties of the lenses in this paper, many of the precise details
of these simulations are not important (for example the distri-
bution of source and lens redshifts, morphologies, luminosities,
etc.). The performance of the PCA lens finder will be stated in
terms of the signal-to-noise ratio of the Einstein ring so the sim-
ulations are only required to represent the variety of expected
lenses and not their precise distribution.

The set of Euclid simulation images consists of 3000 galax-
ies with a full or partial background Einstein ring and of a train-
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ing set of 1250 galaxies with no lensing. Adding more galaxies
to the training set does not change significantly the PCA basis.
Among the 1250 non-lensing galaxies of the training set, 1000
are used to build the PCA basis in order to search for lensing in
the 3250 images, 3000 of which containing Einstein rings. Note
that with real data, the training set can be the whole data set it-
self, as galaxies with lensing features are rare.

Building the PCA basis for the 1000 Euclid galaxies, which
are 128 pixels on-a-side, takes about 40 minutes on a single pro-
cessor. Using this PCA basis, doing the galaxy reconstruction
and subtraction takes less than a minute more for the whole data
set, i.e. 3250 images. In terms of cpu, the PCA method is there-
fore well tractable and applicable to large data sets.

4.1. Quality of the central galaxy reconstruction

The quality of the PCA reconstruction depends on 3 main fac-
tors: 1- the range in galaxy sizes, 2- the presence of companions
near the galaxies used to build the PCA basis, 3- the number of
PCA coefficients to be used.

In order to minimize the parameter space to explore, all
galaxies are first centred on the central pixel of the FITS stamp
and rotated so that their long-axis aligns with the image rows. If
necessary, the resulting images are zero-padded and trimmed to
a common size. In the present case we use 128 × 128 pixels.

In order to minimize the contamination of the PCA basis by
companions to the galaxies in our sample, we only select the
stamps that have no companion brighter than 50% of the max-
imum brightness of the main galaxy in a range of less than 10
pixels to the patch’s center, i.e. 1′′ given the Euclid pixel size of
0.1′′.

To estimate the number of PCA components, we carry out
different reconstructions with an increasing number of PCA co-
efficients. We stop adding coefficients when reaching an accept-
able quality, i.e. when there is no residual above the noise level.
A good reduced χ2 is when q, (Eq. 6) remains between 1 and
1.5, i.e. when the mean χ2 per pixel is on average close to 1σ.
Indeed, if the pixels in the residuals are highly correlated due to
a reconstruction that includes coefficients representative of the
noise, the reduced χ2 becomes smaller than 1. Conversely, when
the residuals contain important patterns due to an insufficient re-
construction, q is significantly larger than 1. This is illustrated
in Figs. 7 & 8 for the specific case of our Euclid simulation,
where a good reconstruction is achieved for a number of PCA
coefficients of about 50, i.e. the minimum number of coefficients
required to reach q ∼ 1.

4.2. The effect of galaxy sizes

Even for relatively smooth light distributions, like early type
galaxies, a careful balance must be found between the number
of galaxies in the training set and the range in galaxy sizes. We
investigate in the following the influence of the distribution of
the galaxies in sizes for the specific case of our Euclid simula-
tions.

To do so, we bin the sample in galaxy sizes, keeping 100
galaxies per bin and we build the PCA basis for each bin of size,
i.e. like in Fig. 7. Note that rescaling the galaxies in Re f f is also
an alternative, but we try as much as we can to avoid alter the
data before building the PCA basis. Rescaling in Re f f may be
considered for small samples of galaxies that cannot be binned
in galaxy size. The images are then reconstructed using different
number of coefficients. The quality of reconstruction, estimated

R
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2
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q
)

number of coefficients

Fig. 7. Reduced χ2, as a function of the number of coefficients
used in the reconstruction. Only 50-70 coefficients are needed to
reach a reduced χ2 of q ∼ 1 in the case of our Euclid simulations.

using the median q factor over all images of the sub-sample,
is then evaluated. Fig. 7 suggests that 50-70 coefficients is an
optimal number to reach a reduced χ2 close to 1.

Fig. 8 shows how q rises when galaxies are getting bigger
than a semi-major axis bigger than 3 pixels. As big galaxies are
less represented in the PCA basis, because of their scarcity, their
reconstruction is less accurate, hence leading to a larger χ2.

It is therefore very important to carefully select the range
of size that we want to investigate when building the PCA basis
and to ensure that a sufficient number of galaxies are available to
represent the full variety of structures in the sample/bin. Indeed,
for bigger galaxies, where Einstein rings are more likely to be
found, the number of objects contributing to the basis is reduced,
simply because big galaxies are rare.

4.3. Completeness and purity

In order to evaluate the efficiency of the algorithm, we perform
tests of detection on simulated images for which the signal-to-
noise ratio and the caustic radius of the lensing galaxies are
known. For this study we use a set of 3000 simulated full rings
from the BLF. With these realistic Euclid-like ring images and
the associated noise images we can compute the SNR for each
Einstein ring:

S NR =
S
σ
√

Ni
, (10)

where Ni is the number of non-zero pixels in the noise free
ring image, σ is the rms noise per pixel and S is the total flux in
the ring. The analysis of the simulated images is done by build-
ing a PCA basis using 1000 galaxies from a set of non lens-
ing galaxies. The detection algorithms, described in Section 3
are then applied to the 3000 images with lensing and to the 250
images without lensing . The island finding algorithm has been
trained on a set of 167 images of lensed rings provided by the
BLF, together with another set of 200 images which did not con-
tain lenses. The parameters were optimized here, and then re-
optimized on the dataset itself. The output of the process is com-
pared with the known answer from the simulations to evaluate
the completeness and the purity of the derived lens catalogues.
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Fig. 9. Completeness as a function of purity for different thresholds of Einstein radii (expressed in terms of critical curve here) and
signal-to-noise ratio with the two methods described in Sect. 3: polar transform (in red) and island finding (in blue). The minimal
radius in the sample is r = 0.02′′, which means that the top left panel shows the results over the whole sample.
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Fig. 8. Quality of the reconstruction of the simulated Euclid
lenses as a function of the average size of the galaxies in pix-
els, as measured with SExtractor. The pixel size of the images
matches that of Euclid, i.e. 0.1′′. As big galaxies are rare, they
are less well represented in the PCA basis and they are therefore
less well modeled.

As the fraction of non-lens images in the sample is small
compared to reality, we rather define the purity as the fraction
of non-lens images that have not been detected instead of the

fraction of true positive among all the detected lensed images:

Purity = 1 − Nfalse positive

Nfalse positive + Ntrue negative

. (11)

The completeness is expressed as the fraction of actual lens
images that have been detected over the whole sample of lenses:

Compl. =
Ntrue positive

Ntrue positive + Nfalse positive

. (12)

Fig. 9 shows the purity as a function of completeness for
both methods. Different thresholds in signal-to-noise ratio and
critical curve for the lensing have been considered. Although
both methods are comparable at low completeness, at high com-
pleteness levels the SExtractor algorithm generally leads to
lower purity, corresponding to more false positives. This prob-
lem appears worse at high signal-to-noise levels, because the
number of false positive detections in the non-lens sample re-
mains constant while the number of true positives declines. This
is likely to be due to the attempt to preserve at least some sen-
sitivity to only marginally extended components, corresponding
for example to quadruply imaged sources of modest extent. The
algorithm is therefore more vulnerable to chance alignments be-
tween external components; work is under way to alleviate this
problem, and particularly to use colour information to distin-
guish between genuine and chance alignments. In the context
of the present work, we stick to single-band detections. The re-
sults tend to show that we can detect rings almost independently
on the radius. For instance, with the polar transform method and
a signal-to-noise ratio higher than 30, one can reach a complete-
ness of 90% for a purity of 86%.
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Fig. 10. Comparison of different galaxy-removal schemes ap-
plied to deep CFHT images. The first columns shows the orig-
inal image. The second shows the residual image after subtrac-
tion of a PCA reconstruction of the galaxy. The third and fourth
columns show the subtraction of a single and double elliptical
sersic profile respectively, using GALFIT3. Note that the PCA-
subtracted images are rotated by construction of the PCA basis
but the GALFIT-subtracted images are not, in order to avoid in-
terpolation when not mandatory.

5. Application to real data

In the above, we test our lens finder on simulated images that
mimic Euclid images in the VIS band. An obvious question is
whether the algorithm performs in a satisfactory way on real
data. While carrying out a ring search on a large data set is out-
side the scope of this paper, we can nevertheless test how our
PCA decomposition of galaxies compares with other more tra-
ditional ways of removing lensing galaxies.

In order to do that, we use the deep and sharp optical images
taken with MEGACAM at the CFHT to map SDSS stripe 82.
Following the same procedure as with the Euclid simulations,
we set the optimal number of PCA coefficients by checking that
we can actually reach reduced χ2 1 < q < 1.2 depending on
the seeing and on the physical size of the galaxies we want to
subtract.

In Fig. 10, we compare our galaxy subtraction with that done
in other lens searches using single or double Sersic profiles (e.g.
Vegetti et al. 2012; Lagattuta et al. 2010). Not surprisingly, the
subtraction with Sersic profiles performs rather well with low
SNR galaxies or with small galaxies, but leaves significant resid-
uals for large galaxy sizes. As these residuals often take the
shape of a ring, they may lead to large numbers of false posi-
tives in a ring search.

The experiment we carry out here with real data uses only 1
single field of the CFHT data of stripe 82, i.e. 1 square degree
out of the 180 available. This means that the PCA decomposition
uses only a limited number of large galaxies. As a consequence,
using the whole 180 fields has the potential to improve further
the galaxy subtraction, while profile fitting will always be lim-
ited to the information in one single galaxy and does not bene-
fit from the global information on the shape of galaxies from a
whole data set. In other words, increasing the survey size, not
only increases the number of potential lenses, but also increases
the density of galaxies per bin of size, hence improving the qual-
ity of the PCA basis.

6. Conclusion

The two lens finder algorithms developed here all rely on a good
subtraction of lensing galaxies with machine learning methods;
different ideas for ring detection then allow objects with different
properties to be detected on the residual images:

– The polar transform method enhances the signal in the resid-
ual image by applying curvelet denoising and uses a polar
transform of the images to turn the problem of a circle detec-
tion to a line detection. It is designed to detect full or partial
rings with or without ellipticity.

– The ”Island finding algorithm” uses SExtractor to detect
structures in the PCA-subtracted images and to determine
whether they correspond to lensed sources according to their
elongation, orientation and bending. This algorithm is ex-
pected to be more efficient in finding partial arcs and multi-
ple images.

The method is successfully applied to Euclid-like simula-
tions. With the polar transform method, a completeness of 90%
is reached for data where the signal-to-noise in the Einstein ring
is at least 30. The same simulations show that the purity of the
derived ring sample reaches 86% of the non lensed galaxies de-
tected as false positives.

The galaxy subtraction algorithm occurs to be efficient when
applied to real data as well: our tests with CFHT images of SDSS
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Stripe 82 surpasses in quality the subtraction obtained with di-
rect model fitting.

In future work, ways to increase the purity of the algorithms
will be investigated by using adapted dictionary learning (e.g.
Beckouche et al. 2013) for galaxy subtraction. The strength of
those machine learning methods should allow us to build bases
adapted to more complicated problems, such as the subtraction
of galaxies in clusters to detect rings produced by multiple galax-
ies. Better morphological selection based on PCA ”clustering”
or beamlet analysis (e.g. Donoho & Huo 2002) can be used to
discriminate ring-like shapes, to classify rings and arcs and to
carry out galaxy classification in general, as has been done in
the past with quasar spectra (Boroson & Lauer 2010) and, more
recently, with galaxy multi-band photometry (Wild et al. 2014).
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Foëx, G., Motta, V., Limousin, M., et al. 2013, arXiv1308.4674
Frieman, J. A., Turner, M. S., & Huterer, D. 2008, ARA&A, 46, 385
Gavazzi, R., Treu, T., Marshall, P. J., Brault, F., & Ruff, A. 2012, ApJ, 761, 170
Gavazzi, R., Treu, T., Rhodes, J. D., et al. 2007, ApJ, 667, 176
Heymans, C., Grocutt, E., Heavens, A., et al. 2013, MNRAS, 432, 2433
Hoekstra, H., Bartelmann, M., Dahle, H., et al. 2013, Space Sci. Rev., 177, 75
Jolliffe, I. T. 1986, Principal Component Analysis (Berlin; New York: Springer-

Verlag)
Kneib, J.-P. & Natarajan, P. 2011, A&A Rev., 19, 47
Lagattuta, D. J., Auger, M. W., & Fassnacht, C. D. 2010, ApJ, 716, L185
Laureijs, R., Amiaux, J., Arduini, S., et al. 2011, ArXiv1110.3193
Limousin, M., Cabanac, R., Gavazzi, R., et al. 2009, A&A, 502, 445
Mandelbaum, R., Slosar, A., Baldauf, T., et al. 2013, MNRAS, 432, 1544
Marshall, P. J., Hogg, D. W., Moustakas, L. A., et al. 2009, ApJ, 694, 924
Meneghetti, M., Bartelmann, M., Dahle, H., & Limousin, M. 2013,

Space Sci. Rev., 177, 31
Meneghetti, M., Melchior, P., Grazian, A., et al. 2008, A&A, 482, 403
Metcalf, R. & Petkova, M. 2013, submitted, arXiv:1312.1128
More, A., Cabanac, R., More, S., et al. 2012, ApJ, 749, 38
Moster, B. P., Somerville, R. S., Maulbetsch, C., et al. 2010, ApJ, 710, 903
Navarro, J. F., Frenk, C. S., & White, S. D. M. 1997, ApJ, 490, 493
Overzier, R., Lemson, G., Angulo, R. E., et al. 2013, MNRAS, 428, 778
Parker, L. C., Hoekstra, H., Hudson, M. J., van Waerbeke, L., & Mellier, Y. 2007,

ApJ, 669, 21
Pawase, R. S., Faure, C., Courbin, F., Kokotanekova, R., & Meylan, G. 2012,

arXiv1206.3412
Peng, C. Y., Ho, L. C., Impey, C. D., & Rix, H.-W. 2011, GALFIT: Detailed

Structural Decomposition of Galaxy Images, ascl1104.010
Petkova, M., Metcalf, R., & Giocoli, C. 2013, submitted, arXiv:1312.1536
Ruff, A. J., Gavazzi, R., Marshall, P. J., et al. 2011, ApJ, 727, 96

Seidel, G. & Bartelmann, M. 2007, A&A, 472, 341
Simon, P., Schneider, P., & Kübler, D. 2012, A&A, 548, A102
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3.4 Application to the CFHTL Survey

In a subsequent paper, of which a pre-print is reproduced in the following pages, we improved

the PCA deblending technique by applying a masking strategy to bright companions. In

our previous paper (Joseph et al., 2014), we described how galaxies with companions had

to be avoided when building the PCA basis set. In this new iteration of the method, bright

companions are masked when selecting galaxies to build the basis set, which allows for more

galaxies to be selected in the building of the basis without losing in terms quality of the

reconstruction. Bright companions are also masked in test set images before applying the

PCA reconstruction. This strategy was proven very efficient at removing central artefacts in

the PCA-subtracted images.

The new version of the lens finding algorithm, developed by co-authors Andrea Tramacere and

Danuta Paraficz is a hybrid of the previously developed techniques. First a DBSCAN procedure

(Easter et al., 1996; Tramacere & Vecchio, 2013) is ran on the PCA-subtracted images that

identifies clusters of connected bright pixels. This allows to make a selection of ring apertures

that contain lensed source candidates and, instead of searching for a line in the polar domain,

fit a circle to the source image candidates.

This improved algorithm was then applied to the CFHTLS data. The algorithm produced

a sample of 1098 lenses that we visually inspected to converge to a sample 109 new lens

candidates along with 86 known lens systems discovered in previous lens searches.
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ABSTRACT

We present the results of a new search for galaxy-scale strong lensing systems in CFHTLS Wide. Our lens-finding technique involves a
preselection of potential lens galaxies, applying simple cuts in size and magnitude. We then perform a Principal Component Analysis
of the galaxy images, ensuring a clean removal of the light profile. Lensed features are searched for in the residual images using the
clustering topometric algorithm DBSCAN. We find 1098 lens candidates that we inspect visually, leading to a cleaned sample of 109
new lens candidates. Using realistic image simulations we estimate the completeness of our sample and show that it is independent
of source surface brightness, Einstein ring size (image separation) or lens redshift. We compare the properties of our sample to
previous lens searches in CFHTLS. Including the present search, the total number of lenses found in CFHTLS amounts to 678, which
corresponds to ∼4 lenses per square degree down to i(AB) = 24.8. This is equivalent to ∼ 60.000 lenses in total in a survey as wide as
Euclid, but at the CFHTLS resolution and depth.

Key words. gravitational lensing, galaxies, surveys

1. Introduction

Strong gravitational lensing occurs when light rays emitted by
a distant source are deflected by the potential well of a fore-
ground mass (Einstein 1916). If the latter is compact enough i.e.
above the lensing critical surface mass density, multiple images
of the background source are formed. Because strong lensing
has only simple dependence on its geometry and fundamental
physics (general relativity), thus its applications in cosmology
and in the study of galaxy formation and evolution are straight-
forward and becoming more and more numerous.

Strong gravitational systems have been used in recent years
to address key scientific questions. In particular, strong lensing
consists of a powerful tool to map the total mass (dark and lumi-
nous) in galaxies, independently of their dynamical state or star
formation history (e.g. Treu et al. 2002; Rusin et al. 2003; Treu
& Koopmans 2004; Rusin & Kochanek 2005; Sonnenfeld et al.
2012; Bolton et al. 2012). Also, thanks to strong lensing, small
and dark satellite galaxies have even been found and weighted
(e.g. Metcalf & Madau 2001; Dalal & Kochanek 2002; Treu
& Koopmans 2004; Koopmans et al. 2006; Jiang & Kochanek
2007; Gavazzi et al. 2007; Treu et al. 2010; Auger et al. 2010;
Bolton et al. 2012; Sonnenfeld et al. 2012; Vegetti et al. 2012;
Oguri et al. 2014). Applications in cosmology using the time
delay method (e.g. Refsdal 1964) between the multiply-lensed
images of distant quasars are also becoming of increasing in-
terest thanks to intensive photometric monitoring programs like
COSMOGRAIL (e.g. Vuissoz et al. 2008; Courbin et al. 2011;
Rathna Kumar et al. 2013; Tewes et al. 2013). In combination
with state-of-the-art modelling tools, these time delays can be
used to constrain the cosmological parameters both with pre-
cision and accuracy (e.g. Suyu 2012; Suyu et al. 2010, 2013,
2014). Even without time delay measurements, large samples of
galaxy-scale strong lenses can help to constrain cosmology, as

Cao et al. (2015) did, using 118 systems to constrain the dark
energy equation of state parameter, w.

The above applications of strong lensing are possible be-
cause: 1. significantly large samples of strong lensing systems
are now available, 2. some of the discovered systems have spe-
cific, rare properties making them particularly effective in de-
livering astrophysical or cosmological constraints. The ongoing
(DES, KIDS) and planned wide field surveys of the next decade
(Euclid, LSST, WFIRST) will continue to revolutionise the field,
by making available hundreds of thousands of new strong lenses
(e.g. Pawase et al. 2014; Collett 2015), i.e. ∼3 orders of magni-
tude larger than the current sample sizes.

Early systematic searches for strong lenses took advantage
of the so-called lensing magnification bias, i.e. the fact that a
lensed source is seen brighter because it is lensed. These source-
selected lensing system samples were built by looking for mul-
tiple images among samples of optically bright quasars (e.g.
Surdej et al. 1987; Magain et al. 1988). This was followed up in
a more systematic way with a search in the Hamburg-ESO bright
quasar catalogue (Wisotzki et al. 1993, 1996, 1999, 2002, 2004;
Blackburne et al. 2008), in the SDSS with the Sloan Quasar
Lens Survey (SQLS; Inada et al. 2003, 2012; Oguri et al. 2006,
2008; Inada et al. 2007) as well as in other wide-field optical
observations (e.g. Winn et al. 2000, 2001, 2002b,a). Similarly,
strong lens searches were also carried out in the radio in the
FIRST survey (Gregg et al. 2000) and in the CLASS survey
(Myers et al. 2003; Browne et al. 2003). More recently, the same
strategy was adopted at millimeter wavelengths with the South
Pole Telescope (SPT Hezaveh et al. 2013), and at sub-millimeter
wavelengths with the Herschel satellite like H-ATLAS (Negrello
et al. 2010; González-Nuevo et al. 2012; Bussmann et al. 2013)
and HerMES (Conley et al. 2011; Gavazzi et al. 2011; Wardlow
et al. 2013).
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Source-selected samples of lensing systems are mostly com-
posed of lensed quasars. Searches for non-quasar lensed galax-
ies are generally carried out by preselecting a sample of poten-
tial lensing galaxies and by looking for lensed images or spec-
tra in their background (Ratnatunga et al. 1999; Fassnacht et al.
2004; Moustakas et al. 2007; Cabanac et al. 2007; Belokurov
et al. 2007; Faure et al. 2008; Marshall et al. 2009; Pawase et al.
2014; More et al. 2016). These lens-selected samples are best
constructed using spectra where sets of emission lines at two
(or more) distinct redshifts are looked for. The method was pi-
oneered by (Willis et al. 2005, 2006) with their Optimal Line-
of-Sight Survey, soon followed by the SloanLens ACS Survey
(SLACS, e.g., Bolton et al. 2006; Treu et al. 2006; Koopmans
et al. 2006; Gavazzi et al. 2007, 2008; Bolton et al. 2008;
Auger et al. 2009) and by the BOSS Emission-Line Lens Survey
(BELLS; Brownstein et al. 2012). The SLACS sample on its own
has about 100 confirmed gravitational lenses in the redshift range
0.1 < z < 0.4 with HST imaging (e.g. Bolton et al. 2006; Auger
et al. 2009). The main advantage of the spectroscopic approach
is that the redshifts of the lens and of the source are readily ob-
tained, along with the stellar velocity dispersion in the lens (e.g.
Treu & Koopmans 2004; Koopmans et al. 2006; Auger et al.
2010). Moreover, if the source has strong emission lines, then
the light from the lens and the source can easily be separated.

In the imaging, on the other hand, the source is often hid-
den in the lens glare, thus it cannot be detected so easily. For
this reason carrying out an imaging lens search requires careful
image processing to efficiently remove the lens light and unveil
any faint background lensed galaxy. Such techniques start to be
implemented, and will become increasingly important with the
development of large sky surveys like DES, KIDS, Euclid, the
LSST and WFIRST.

Based on two-band imaging, Gavazzi et al. (2014) have de-
vised a method to detect faint blue arcs behind foreground red-
der galaxies. They extend their technique to multi-band lens
modelling (Brault & Gavazzi 2015) and they apply them to
the CFHTLS (Canada-France-Hawaii Telescope Legacy Survey)
data (Cuillandre et al. 2012). A second method was introduced
by Joseph et al. (2014) that can work both in single-band and
multi-band. It is based on a principal component analysis (PCA;
Jolliffe 1986) of the full imaging dataset to subtract the image of
galaxies, even in the presence of complex structures. The resid-
ual image can then be used to search for lensed sources. In this
paper, we use the method of Joseph et al. (2014) to extend the
sample of known galaxy-scale strong lenses in CFHTLS.

The paper is organized as follows. In Sect. 2, we provide a
brief description of the observational material and of the sample
selection technique from the object catalogues for the CFHTLS.
In Sect. 3, we describe the lens-finding algorithm based on PCA
and its improvements. In Sect. 4, we present the list of our new
lens candidates and compare it to previous results from other
lens searches in the same area of sky, i.e., the CFHTLS fields.
In Sect. 5, we discuss the completeness of the sample based on
lens simulation. Finally, in Sect. 6, we provide a summary of the
main conclusions from this work and provide a short outlook for
future progress.

Throughout this work, we assume Ω0 = 0.3, ΩΛ = 0.7, and
H0 = 70 kms−1Mpc−1. All magnitudes are in the AB system
(Oke & Gunn 1983).

2. Observational material and sample selection

Our main goal in this work is to complement and extend current
samples of galaxy-scale strong lens candidates, starting with the

Fig. 1. Distribution of the semi-major axes and of their ratio,
for our preselections of galaxies in the full CFHTLS sample
(Cuillandre et al. 2012). The vertical lines mark our size cut-off
of galaxies. The pixel size is 0.′′187.

public imaging data from the CFHTLS. To do so, we use the new
technique proposed by Joseph et al. (2014).

2.1. CFHTLS data

The Canada-France-Hawaii-Telescope Legacy Survey is a large
program consisting of 500 observing nights between January
2003 and early 2009, divided into two parts. The Deep sur-
vey has 4 ultra-deep pointings and the Wide survey has 171
intermediate-depth pointings. Because strong lensing systems
are rare, we need to use the widest possible survey area, i.e. the
Wide part of CFHTLS.

The Wide CFHTLS (Cuillandre et al. 2012) covers 155 deg2

divided into four independent fields observed in five bands. The
limiting point-source AB magnitude (80% completeness) for
each band is u = 25.2, g = 25.5, r = 25.0, i = 24.8, z = 23.9.
For each band the mean seeing is FWHM= 0.′′85, 0.′′79, 0.′′71,
0.′′64, and 0.′′68, respectively. The pixel size of the CFHTLS data
is 0.′′187.

In this paper, we use the T00071 final release of the CFHTLS
with improved flat-fielding and photometric calibration tech-
niques developed by the Supernova Legacy Survey (SNLS) team
in collaboration with the CFHT. This release benefits from two
types of photometric catalogues: 1. source catalogues for indi-
vidual images (i.e. the .ldac files in the T0007 package) that
we use to build our samples of lens galaxies in each filter sepa-
rately, 2. merged source catalogues produced from the g, r, and i
images that we use to infer the colour information of our lenses.
The full description of the CFHTLS-T0007 release can be found
in Cuillandre et al. (2012).

1 See details at http://www.cfht.hawaii.edu/Science/
CFHLS/
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Fig. 2. Illustration of the PCA reconstruction of a galaxy image. The first two panels show the original image (colour and single-
band). Each of the other panels shows the residual image between the data and the reconstructed galaxy using respectively 1, 5, 10,
15 and 25 principal components (PCs). The value of the corresponding reduced χ2 is given in the lower right corner.

2.2. Sample selection

We preselect galaxies among the full CFHTLS source catalogues
for individual images produced by Terapix using SExtractor
(Bertin & Arnouts 1996). PCA requires uniform in size, mor-
phology and brightness sample of elliptical galaxies, and since
size and morphology of a galaxy changes between different
bands, thus we create five catalogues, one for each of the five
CFHTLS filters, independently. A given galaxy can therefore ap-
pear in several of the catalogues. Before using the PCA subtrac-
tion technique of Joseph et al. (2014), we apply the following
selection criteria to each of the five catalogues:

– We use only the objects classified as non-stellar by
SExtractor (CLASS STAR > 0.98) and we apply a de-
tection threshold of 10σ for each band, that is u = 23.9,
g = 24.3, r = 23.5, i = 23.5, z = 22.4. Fainter objects would
make difficult targets for future spectroscopic follow-up.

– We apply a cut on the semi-axis ratio, a/b < 3, which in-
cludes most of the early-type galaxies (Park et al. 2007), but
rejects most of the spurious objects like those “created” by
diffraction patterns of bright stars.

– We apply an (angular) size cut-off. Small galaxies, with a
semi-major axis a < 4 pixels are excluded. Any arc in their
vicinity can be detected without subtracting the light of the
foreground galaxy. We also remove galaxies with a > 9 pix-
els. These galaxies are rare and therefore poorly modeled
with the PCA technique (Joseph et al. 2014). Since we want
to ensure uniformity of galaxy shapes in a group, galaxy
sizes are computed separately in each band. Our final selec-
tion therefore spans sizes in the range 4 < a < 9 pixels.
Figure 1 displays the distribution in semi-major axis for the
full sample in all the CFHTLS bands.

This leaves us with a pre-selection of early-type and late-
type galaxies. However, spiral arms can be mistakenly taken
for lensed arcs, resulting in false positives. To avoid this, we
further restrict the sample to only elliptical galaxies. This can
be achieved by either using a galaxy classifier based in mor-
phological features in images (e.g. the ASTErIsM software by
A. Tramancere, et al., 2015 submitted) or by applying a colour
selection. We adopt the latter strategy, selecting galaxies with
(g − i) > 1.0 within a 3′′ aperture, following Gavazzi et al.
(2010). Obviously, some of the potential lenses are missed by
this selection, but this is the price to pay to remove spiral galax-
ies efficiently.

For each selected object, we create an image stamp centred
on the galaxy. Since rotation is not a principal component, we
also apply a rotation to each stamp to align the major axes of all
galaxies. In doing so, we use a polynomial transformation and
a bilinear interpolation. We note that we do not apply any other
re-scaling. Instead, to ensure final uniformity of the PCA basis,
we take advantage of the very large sample and we split it in five

Fig. 3. Illustration of our masking strategy. From left to right:
a) image of a galaxy from our sample, b) subtraction without
using a mask during the reconstruction process, leaving ring-like
artefacts, c) masked image used for the reconstruction process,
d) resulting residual image, without any artefact.

bins of galaxies sizes. The five groups are defined by the galaxies
semi-major axis as follows: (1): a = [4 − 5], (2): a = [5 − 6],
(3): a = [6 − 7], (4): a = [7 − 8], and (5): a = [8 − 9] pixels.

3. Lens-finding algorithm and improvements

Our algorithm by nature finds bright lensing galaxies. In such
samples the lensed source is often hidden in the glare of the
foreground galaxy, which must be properly removed before any
search for lensed structures can be carried out. Our PCA-based
lens-finder therefore includes two steps: 1. subtraction of the
central galaxy from the original images/stamps, using PCA im-
age reconstruction and 2. detection of lensed extended objects
(arcs, rings) in the residual images.

3.1. Removal of the lensing galaxy: the PCA approach

Traditional ways of subtracting galaxies in imaging data are ei-
ther to fit a elliptical profile to the data with, for example, the
galfit software (Peng et al. 2010; Cabanac et al. 2008) or to
subtract aperture-scaled images in two different bands (Gavazzi
et al. 2014). As galaxies are not perfect elliptical profiles, these
approaches often leads to significant flux residuals that prevents
the detection of faint background lensed objects and they pro-
duce large amounts of false positives.

Our solution to this problem is presented in Joseph et al.
(2014) 2, where we build an empirical galaxy light model from
the sample of galaxies itself using a principal component analy-
sis. PCA decomposition of a dataset allows one to recognise any
similarity among its elements: the elements in the dataset are
converted into another set of variables called principal compo-
nents (PC), which are orthogonal and ordered so that the first PC
has the largest possible variance, the second PC has the second
largest variance, and so on. The details of our PCA technique are
provided in Joseph et al. (2014).

2 PCA script available at https://github.com/herjy/PiCARD
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Fig. 4. Analysis of the PCA-subtracted images. Arc detection stage. Top panel: DBSCAN detection of the sources. Bottom panel:
radial distribution of the detected sources. The green solid line represents the pixel flux radial distribution, while the blue line
represents the radial distribution of the number of pixels in the sources. Analysis stage. Top panel: All sources smaller than a
critical angular size (e.g. the PSF size) are removed, the remaining sources are merged together in the final ring (indicated with
white line). Bottom panel The red solid line represents the pixel flux radial distribution, while the green line represents the radial
distribution of the number of pixels in the sources. Right panel: Residual image, where the green solid line shows the best circle fit
to the final ring. The yellow lines show the contour of the components of the final ring.

A critical step in the PCA reconstruction is the choice of the
number of PC coefficients. If all coefficients are used, the recon-
structed image is identical to the original image. This clearly
leads to overfitting of the data and noise and will simply re-
move all structures of interest, like faint lensed rings and arcs.
To circumvent this problem, the galaxy image needs to recon-
structed using only a limited number of coefficients. Obviously,
there might be an optimal number of coefficients to be used to
avoid over-fitting or under-fitting of the data. This optimal num-
ber of PC depends on the diversity in shape among the galaxies
in the sample, i.e. the range in galaxy sizes, the presence of com-
panions near the galaxies used to build the PCA basis, and it also
depends on the number of objects used to build the PCA basis.
Fig. 2 gives an illustration of a galaxy image reconstructed from
a different number of PCs. To evaluate the overall quality of re-
construction of a galaxy image in an objective way, we compute
the reduced χ2 in the image after subtraction of the galaxy (Eq. 6
in Joseph et al. 2014). An ideal reconstruction gives a reduced χ2

close to one. Of course lensed features in the image do produce
signal in the residual image, a cut-off in χ2 has to be defined that
ensures an adequate tradeoff between clean removal of the fore-
ground galaxy and non-removal of any potential lensed feature.
Finding this cut-off is a subjective part of our procedure and fi-
nal result for false to true positives ratio will strongly depend on
the adopted value. In the present case we choose χ2 ∼ 1.4 for
the CFHTLS data (see Fig. 2) and for the simulations used to
evaluate completeness of the procedure (see Section 5).

The PCA technique described in Joseph et al. (2014) works
well for isolated galaxies. In practice, however, galaxies often

have companions, either physical or the result of line-of-sight
effects. Companions affect the results both when building the
PCA basis from the galaxy sample and when reconstructing the
image of a given galaxy. The first problem (as described already
in Joseph et al. 2014) is easily avoided by computing the PCA
basis on a subset of galaxies with no bright companions. The
large size of our galaxy sample allows us to do that in practice.
However, companions are present in the images of the galaxy
we want to reconstruct and subtract. In the case of reconstruc-
tion of an image of a galaxy with bright companions, residuals
might feature artifacts that mimic a ring (Fig. 3). To avoid this
problem we simply mask bright companion before the recon-
struction process. Images reconstructed in this manner are then
subtracted from original, non-masked images creating residuals
that are now free of the false rings. Figure 3 illustrates the im-
provement over a non-masked image.

To apply the masking to all the companion sources in the
image stamps, we use the DBSCAN algorithm implemented in the
ASTErIsM software (Tramacere et al 2015 submitted). We iden-
tify the object at the centre of the stamp, as our source of in-
terest that will be not masked. We iterate among all the remain-
ing sources, and we mask all the sources with an integrated flux
larger than the half of the central galaxy’s integrated flux and
all the sources with a distance from the central galaxy smaller
than the half of the central galaxy’s radius. The masked pixel
fluxes are replaced with flux values randomly sampled from the
background pixels flux distribution.
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3.2. Looking for lensed features in the residual image

Once the galaxies have been properly removed from all pres-
elected image stamps, we can now search for lensing features
in these residual images. To avoid too many false positives we
choose to search for only arc-like features. This was done us-
ing the cluster/island detection algorithm described in detail and
tested in Tramacere et al (2015, in prep). Below, we provide
a short overview of the procedure. This method is based on
the application of the DBSCAN clustering topometric algorithm 3

(Easter et al. 1996; Tramacere & Vecchio 2013), which extracts
sources in image stamps by defining density-based clusters of
connected pixels. The method consists in the following two steps
(see Fig. 4).

1. Arcs and rings detection stage
– An initial list of sources is extracted using the DBSCAN

algorithm (Top-left panel of Fig. 4);
– The shape of each source is determined and each

source is flagged to be: arc-like, ring-like, ellipse-like,
circular/point-like;

– All point-like sources are removed, leaving us with a list
of candidate lensed sources;

– For each stamp in the candidate list, we compute the ra-
dial distribution of the sources, and we determine the
minima and the maxima in this radial distribution. This
is presented on the bottom-left panel of Fig. 4, where
the green filled circles represent the local minima, and
the red filled circles represent the local maxima. The first
minima in the innermost ring sets the radius for the inter-
nal disk, indicated as a red circle in the top-left panel of
Fig. 4. These allow us to partition the stamps in circular
areas.

– All the sources within the internal disk (red circle in
the left-top panel of Fig. 4) are masked, i.e. all the cor-
responding pixels are set to the background flux level
(central-top panel of Fig. 4);

– All the sources in the candidate list are assigned to a sin-
gle circular area for each sources, enabling us to eas-
ily measure the angular size and the orientation of the
sources, αr, with regard to the radial direction;

– All sources smaller than a critical angular size (e.g. the
PSF size) are removed; only rings with at least one
source meeting criteria are kept;

– The sources are then merged together in the final ring to
preform the analysis (see central panel in Fig. 4)

2. Analysis stage
– Once we have a final ring, we fit a circle to the distri-

bution of pixels in the recovered ring and we measure a
centroid position, barycentre and radius, R (green circle
in the left panel of Fig. 4).

– We also fit a circle to each of the ring components that
have an arc-like shape (blue dashed line in the right panel
of Fig. 4), and we check that the circle is contained
within the final ring best-fit circle.

– We assign a quality factor to the ring, which is deter-
mined by the total angular coverage of the ring θtot, and
the displacement d, between the ring circle best fit cen-
troid, and the ring barycentre

q f =
θtot

2π

1

exp( d−R
R/ f ) + 1

(1)

3 DBSCAN algorithm available at a (Easter et al. 1996; Tramacere &
Vecchio 2013)

where the larger the value of f , the more conservative the
quality factor is. In this work we adopt minimum q f =
0.1 to flag an object that are a possible lens.

We apply this automated procedure to the five bands of
CFHTLS imaging data after PCA subtraction of the foreground
object, leading to 1 098 lens candidates passing all above crite-
ria.

4. CFHTLS results

In the following, we describe our main results using the PCA-
finder. This includes a visualisation step by five of the authors,
allowing us to define three subsamples of lens candidates de-
pending on how likely the candidates are to be real lenses. The
characteristics of our new sample are compared with previous
lens searches in the CFHTLS.

4.1. Visual inspection

The automatically selected 1 098 candidates were visually ins-
pected to identify obvious spurious objects and to refine our lens-
ing classification. We rank each object in one of the following
categories:

– A: an almost definite lens with a striking image configuration
that is typical for lensing;

– B: probable lens, but the candidate would need follow-up
with spectroscopy or more imaging;

– C: possible lens, but with low probability of being con-
firmed, either because of low signal-to-noise (S/N) or be-
cause the potential lensed images are single or consist of
short arcs that could still be compatible with edge-on galax-
ies or chain galaxies;

– 0: not a lens, spurious detection or spiral galaxy mimicking
an arc or an Einstein ring. Objects in this category are false-
positives.

The visual classification is a time-consuming process. However,
the workload remains reasonable in the case of the CFHTLS,
which requires a few hours of human time to inspect the 1 098
candidates. The classification is performed both on the true-
colour images using the g, r, and i bands and on the residual
images. This is done using the FITS images, enabling us to eas-
ily and quickly explore the full dynamical range of the data. This
classification is made independently by five of the authors: D.P.,
J.-P.K., R.J., F.C., P.D. Out of all the systems, we select those ob-
jects that are classified as definite lenses by at least one individ-
ual initial judgment. All authors then needed to agree on a final
classification. Figures A.1-A.5 in the Appendix and Tables 1-2
present all the lens candidates that we rank with the grade A and
grade B.

Our visual inspection shows that the most frequent conta-
minants are face-on spiral galaxies, ring galaxies and polar ring
galaxies. Face-on spirals mistakenly taken by the PCA-finder as
lens candidates are easily identified by eye because their spiral
arms point towards the bulge, while lensed arcs are tangentially
aligned with respect to their lens galaxy.

More problematic are ring-like galaxies in general and polar
ring galaxies in particular. These rare composite galaxies con-
sist of a gas-poor, early-type galaxy (typically S0 galaxies) sur-
rounded by a blue gaseous ring with ongoing star formation (see
Fig. 5). The most widely accepted explanation for the forma-
tion of polar ring galaxies is that accreted gas settles onto orbits
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ID RA DEC z Reff g r i RE Quality
pix mag mag mag pix

1 30.2905 -6.3474 0.548+0.587
−0.507

4.53 21.28 ± 0.02 20.21 ± 0.01 19.61 ± 0.01 18.3 B
2 30.3615 -10.7597 0.563+0.607

−0.521
4.17 23.37 ± 0.07 21.96 ± 0.05 21.17 ± 0.02 15.9 A

3 30.4522 -7.5357 0.393+0.437
−0.335

4.51 22.38 ± 0.04 21.47 ± 0.03 21.02 ± 0.02 33.7 B
4 30.7655 -4.4937 0.387+0.423

−0.353
3.90 21.56 ± 0.02 20.31 ± 0.01 19.73 ± 0.01 12.1 B

5 30.9987 -8.3652 0.495+0.529
−0.459

4.48 21.48 ± 0.02 20.30 ± 0.01 19.76 ± 0.01 9.3 B
6 31.0361 -9.6104 0.409+0.463

−0.363
3.83 22.00 ± 0.02 20.70 ± 0.01 20.03 ± 0.01 16.9 A

7 31.2852 -3.9099 0.252+0.294
−0.227

5.22 20.56 ± 0.01 19.76 ± 0.01 19.31 ± 0.01 7.06 A
8 31.4770 -6.4598 0.442+0.473

−0.411
5.32 20.98 ± 0.02 19.69 ± 0.01 19.17 ± 0.01 7.8 B

9 31.9736 -8.8432 0.289+0.359
−0.243

5.30 20.55 ± 0.01 19.83 ± 0.01 19.47 ± 0.01 11.6 B
10 32.2221 -6.9186 0.902+0.939

−0.866
6.40 22.28 ± 0.04 21.82 ± 0.05 20.91 ± 0.03 13.5 A

11 32.3970 -8.3013 0.611+0.641
−0.580

4.23 21.85 ± 0.03 20.63 ± 0.01 19.81 ± 0.01 8.6 A
12 32.4703 -6.5295 0.389+0.414

−0.351
3.90 20.00 ± 0.01 19.12 ± 0.00 18.65 ± 0.00 9.03 A

13 32.5096 -3.7956 0.556+0.595
−0.515

7.29 21.60 ± 0.03 20.48 ± 0.02 19.86 ± 0.01 9.4 A
14 32.6591 -7.4773 0.478+0.504

−0.453
3.05 22.93 ± 0.05 21.44 ± 0.02 20.64 ± 0.01 30.0 A

15 32.8441 -4.3681 0.731+0.759
−0.703

4.36 23.13 ± 0.08 21.81 ± 0.03 20.49 ± 0.02 17.4 A
16 32.9734 -5.9950 0.139+0.190

−0.050
5.98 19.29 ± 0.00 18.69 ± 0.00 18.31 ± 0.00 6.6 B

17 33.0833 -7.9352 0.451+0.477
−0.428

7.58 21.06 ± 0.01 20.26 ± 0.01 19.64 ± 0.01 6.7 A
18 33.1342 -6.6479 0.450+0.481

−0.421
6.13 20.94 ± 0.01 20.01 ± 0.01 19.63 ± 0.01 9.2 A

19 33.1958 -5.8338 0.809+0.853
−0.768

5.96 21.76 ± 0.02 21.16 ± 0.03 20.36 ± 0.02 6.3 B
20 33.6128 -9.0673 0.698+0.724

−0.670
4.08 22.44 ± 0.04 21.25 ± 0.02 20.17 ± 0.01 8.3 A

21 33.6250 -9.1754 0.398+0.433
−0.366

5.64 21.16 ± 0.01 20.01 ± 0.01 19.59 ± 0.01 10.1 A
22 33.8107 -4.7156 0.346+0.378

−0.313
5.55 20.40 ± 0.01 19.32 ± 0.01 18.83 ± 0.01 10.3 A

23 33.9600 -4.4247 0.388+0.417
−0.359

5.23 20.32 ± 0.01 19.31 ± 0.01 18.88 ± 0.01 9.4 B
24 34.9904 -6.5704 0.486+0.510

−0.464
3.54 22.72 ± 0.04 21.26 ± 0.02 20.43 ± 0.01 13.8 A

25 35.0485 -6.8143 0.489+0.525
−0.454

5.72 20.85 ± 0.01 19.90 ± 0.01 19.45 ± 0.01 6.5 A
26 35.0763 -5.6397 0.709+0.749

−0.676
5.34 22.29 ± 0.03 21.66 ± 0.04 21.09 ± 0.03 6.2 B

27 35.1759 -8.1834 0.361+0.384
−0.337

4.90 20.51 ± 0.01 19.53 ± 0.01 19.18 ± 0.01 7.2 A
28 35.3647 -9.9535 0.772+0.815

−0.732
4.32 23.06 ± 0.06 22.19 ± 0.05 21.13 ± 0.03 21.9 A

29 35.5374 -5.6453 0.457+0.496
−0.420

6.31 21.06 ± 0.01 20.21 ± 0.01 19.93 ± 0.01 7.5 A
30 37.0163 -5.8651 0.400+0.448

−0.356
2.66 22.78 ± 0.03 21.68 ± 0.03 21.27 ± 0.02 7.6 B

31 37.1982 -3.9803 0.680+0.711
−0.651

9.24 21.66 ± 0.04 20.70 ± 0.03 19.93 ± 0.02 9.8 B
32 37.5014 -7.8604 0.591+0.630

−0.549
3.85 22.96 ± 0.05 21.79 ± 0.03 21.01 ± 0.02 12.7 B

33 37.5045 -5.7003 0.559+0.594
−0.525

4.96 21.31 ± 0.02 20.16 ± 0.01 19.54 ± 0.01 7.6 A
34 38.0929 -3.7355 0.798+0.848

−0.762
9.60 22.03 ± 0.05 21.38 ± 0.05 20.41 ± 0.03 10.5 B

35 38.2284 -5.3160 0.710+0.760
−0.665

4.57 23.10 ± 0.05 22.36 ± 0.06 21.73 ± 0.05 10.7 A
36 132.1016 -5.1126 0.412+0.439

−0.388
7.33 21.02 ± 0.01 19.99 ± 0.01 19.50 ± 0.01 7.1 A

37 132.1377 -4.8329 0.774+0.804
−0.745

2.18 22.99 ± 0.04 21.86 ± 0.03 20.65 ± 0.01 13.3 A
38 132.5373 -4.2216 0.222+0.257

−0.186
4.96 19.66 ± 0.00 18.70 ± 0.00 18.25 ± 0.00 9.8 A

39 133.2203 -3.9328 0.430+0.458
−0.401

8.14 20.49 ± 0.01 19.49 ± 0.01 19.12 ± 0.01 10.6 A
40 133.5310 -4.1230 0.670+0.698

−0.641
8.29 22.18 ± 0.04 21.22 ± 0.04 20.44 ± 0.02 14.5 A

41 133.7787 -3.8646 0.715+0.745
−0.687

8.10 21.60 ± 0.02 20.67 ± 0.03 19.85 ± 0.01 10.4 A
42 134.4040 -2.8884 0.687+0.726

−0.660
5.44 22.05 ± 0.03 21.37 ± 0.02 20.76 ± 0.02 7.2 B

43 135.0560 -3.0676 0.608+0.648
−0.566

5.33 22.53 ± 0.05 21.33 ± 0.04 20.54 ± 0.02 9.1 A
44 135.2780 -1.8642 0.353+0.385

−0.322
6.13 20.47 ± 0.01 19.51 ± 0.01 19.11 ± 0.01 11.2 A

45 135.4850 -2.5134 0.689+0.716
−0.663

5.91 22.16 ± 0.04 21.22 ± 0.02 20.49 ± 0.02 6.7 A
46 208.9030 57.0818 0.392+0.420

−0.366
5.15 21.42 ± 0.02 20.26 ± 0.01 19.74 ± 0.01 6.4 A

47 208.9420 57.1261 0.406+0.434
−0.383

6.76 20.32 ± 0.01 19.33 ± 0.01 18.92 ± 0.01 11.0 A
48 209.2140 54.2889 0.574+0.616

−0.515
5.09 21.45 ± 0.02 20.64 ± 0.01 20.18 ± 0.01 5.4 A

49 209.3525 55.6741 0.398+0.429
−0.374

7.07 20.29 ± 0.01 19.31 ± 0.01 18.93 ± 0.01 14.2 B
50 209.3780 53.4301 0.370+0.399

−0.329
4.96 20.44 ± 0.01 19.53 ± 0.01 19.08 ± 0.01 8.2 A

51 209.6380 55.8449 0.376+0.399
−0.352

4.92 20.02 ± 0.00 18.99 ± 0.00 18.55 ± 0.00 9.8 A
52 209.7398 57.0189 0.303+0.343

−0.256
6.29 20.66 ± 0.01 19.44 ± 0.01 18.93 ± 0.01 14.1 B

53 209.7620 53.3673 0.331+0.374
−0.277

4.86 21.10 ± 0.02 19.77 ± 0.01 19.21 ± 0.01 12.2 A
54 209.8280 57.4606 0.396+0.432

−0.363
5.92 21.60 ± 0.02 20.38 ± 0.01 19.87 ± 0.01 11.7 A

55 209.8940 54.8880 0.456+0.487
−0.424

4.40 20.61 ± 0.01 19.81 ± 0.01 19.45 ± 0.01 7.1 B
56 209.8970 56.7132 0.307+0.339

−0.274
5.00 20.28 ± 0.01 19.31 ± 0.00 18.85 ± 0.01 7.6 B

57 209.9210 56.1383 0.370+0.400
−0.340

8.58 20.52 ± 0.01 19.41 ± 0.01 18.92 ± 0.01 11.2 A
58 210.0069 56.9977 0.377+0.398

−0.352
7.27 20.52 ± 0.01 19.58 ± 0.01 19.19 ± 0.01 9.7 B

Table 1. List of grade-A and grade-B new lens candidates in CFHTLS. The photometric redshifts z, the effective radius Reff and the
magnitudes are the ones provided by Coupon et al. (2009).

that are more frequently contained either within the equatorial
or polar planes. Since the polar rings are blue and nearly perpen-

dicular to the semi-major axis of their central hosts, they closely
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ID RA DEC z Reff g r i RE Quality
pix mag mag mag pix

59 210.3022 56.2394 0.412+0.446
−0.382

4.81 20.93 ± 0.01 19.58 ± 0.01 18.99 ± 0.01 14.7 B
60 210.3220 57.3084 0.382+0.412

−0.348
7.61 20.08 ± 0.01 19.47 ± 0.01 19.17 ± 0.01 9.1 A

61 210.3420 57.0673 0.810+0.905
−0.757

2.73 22.92 ± 0.06 22.52 ± 0.05 21.98 ± 0.05 7.9 B
62 210.5270 53.4316 0.564+0.601

−0.529
7.80 21.29 ± 0.03 20.06 ± 0.01 19.36 ± 0.01 8.9 A

63 210.5496 57.5600 0.759+0.792
−0.727

9.35 21.89 ± 0.05 20.97 ± 0.03 20.11 ± 0.02 14.8 A
64 210.5840 51.7352 0.214+0.250

−0.175
4.40 19.79 ± 0.00 18.92 ± 0.00 18.47 ± 0.00 9.4 A

65 211.4080 57.6165 0.306+0.340
−0.271

6.51 20.33 ± 0.01 19.43 ± 0.01 19.03 ± 0.01 8.9 A
66 211.8142 57.1322 0.322+0.353

−0.289
6.09 20.02 ± 0.01 18.94 ± 0.00 18.50 ± 0.00 11.6 A

67 211.8690 52.6938 0.485+0.516
−0.448

6.44 21.18 ± 0.02 20.03 ± 0.01 19.56 ± 0.01 7.1 A
68 211.9780 56.2218 0.387+0.412

−0.364
7.21 21.08 ± 0.01 19.99 ± 0.01 19.56 ± 0.01 8.9 A

69 212.0175 56.2446 0.370+0.400
−0.339

5.01 21.05 ± 0.01 19.88 ± 0.01 19.36 ± 0.01 10.1 A
70 212.1570 52.3579 0.855+0.899

−0.819
6.39 21.78 ± 0.03 21.05 ± 0.03 20.16 ± 0.02 7.7 A

71 212.2455 51.8158 0.343+0.373
−0.315

7.97 21.02 ± 0.02 20.55 ± 0.02 20.50 ± 0.02 11.2 A
72 212.3657 53.5918 0.421+0.453

−0.389
5.84 20.84 ± 0.01 19.66 ± 0.01 19.16 ± 0.01 13.1 B

73 212.6040 54.0908 0.420+0.457
−0.383

5.63 20.84 ± 0.01 19.68 ± 0.01 19.25 ± 0.01 12.4 A
74 212.7290 54.9406 0.469+0.510

−0.429
4.91 21.75 ± 0.02 20.53 ± 0.01 19.89 ± 0.01 9.7 B

75 212.8450 51.6687 0.499+0.536
−0.455

4.70 21.66 ± 0.02 20.41 ± 0.01 19.80 ± 0.01 6.5 A
76 213.0320 52.9143 0.507+0.560

−0.463
6.89 21.07 ± 0.02 20.28 ± 0.01 19.86 ± 0.02 8.9 A

77 213.1650 53.9570 0.436+0.469
−0.403

7.82 20.64 ± 0.01 19.53 ± 0.01 19.05 ± 0.01 8.2 A
78 213.4510 51.7295 0.350+0.384

−0.311
7.57 19.92 ± 0.01 19.01 ± 0.01 18.58 ± 0.01 13.6 A

79 213.5430 52.8470 0.393+0.424
−0.366

6.62 20.86 ± 0.01 19.83 ± 0.01 19.40 ± 0.01 7.3 A
80 213.6000 57.6236 0.529+0.559

−0.496
5.81 21.84 ± 0.03 20.69 ± 0.02 20.19 ± 0.01 6.4 A

81 213.9140 54.8451 0.232+0.266
−0.202

6.64 18.79 ± 0.00 18.05 ± 0.00 17.65 ± 0.00 11.9 A
82 214.4110 56.3307 0.590+0.619

−0.553
5.54 21.76 ± 0.02 20.76 ± 0.02 20.04 ± 0.01 8.3 B

83 214.5100 57.3730 0.570+0.609
−0.535

6.41 21.15 ± 0.02 20.19 ± 0.01 19.74 ± 0.01 7.7 A
84 214.5255 54.2536 0.738+0.775

−0.707
4.95 22.23 ± 0.03 21.22 ± 0.03 20.21 ± 0.01 18.3 A

85 214.9620 51.8585 0.682+0.709
−0.658

3.83 22.01 ± 0.02 21.16 ± 0.02 20.45 ± 0.02 8.9 B
86 215.3410 56.2251 0.546+0.583

−0.508
5.86 21.08 ± 0.01 20.23 ± 0.01 19.78 ± 0.01 7.4 A

87 215.6690 57.0355 0.433+0.467
−0.401

4.90 20.54 ± 0.01 19.41 ± 0.01 18.91 ± 0.01 9.2 A
88 216.3770 56.4335 0.508+0.538

−0.475
7.41 20.86 ± 0.01 19.62 ± 0.01 19.01 ± 0.01 11.1 A

89 216.5700 55.1213 0.629+0.655
−0.602

5.90 21.73 ± 0.02 20.66 ± 0.02 19.80 ± 0.01 9.2 A
90 216.7250 56.1682 0.240+0.268

−0.210
6.96 19.97 ± 0.01 19.27 ± 0.01 18.90 ± 0.01 13.7 B

91 217.0550 54.8198 0.855+0.894
−0.814

4.50 23.40 ± 0.08 22.12 ± 0.04 20.97 ± 0.02 18.4 B
92 217.1570 55.4547 0.651+0.679

−0.622
6.09 22.16 ± 0.03 21.09 ± 0.02 20.21 ± 0.02 8.4 B

93 217.4450 54.6213 0.639+0.667
−0.609

6.02 21.55 ± 0.02 20.84 ± 0.02 20.28 ± 0.01 6.5 B
94 217.9957 55.7248 0.465+0.507

−0.427
8.14 19.95 ± 0.01 19.04 ± 0.00 18.69 ± 0.01 9.9 A

95 218.4500 57.6522 0.307+0.339
−0.274

6.68 19.74 ± 0.01 18.70 ± 0.00 18.26 ± 0.00 11.8 A
96 218.9394 55.9681 0.734+0.758

−0.711
7.15 21.03 ± 0.01 20.25 ± 0.01 19.78 ± 0.01 11.4 B

97 218.9660 57.6901 0.616+0.656
−0.563

6.94 21.96 ± 0.05 20.99 ± 0.03 20.26 ± 0.02 12.4 B
98 330.2529 2.2095 0.250+0.285

−0.218
5.42 19.84 ± 0.01 18.94 ± 0.01 18.48 ± 0.01 11.3 A

99 330.6014 3.9024 0.316+0.347
−0.284

5.65 20.17 ± 0.01 19.03 ± 0.01 18.56 ± 0.00 11.8 A
100 330.6080 2.1078 1.008+1.062

−0.951
6.13 21.79 ± 0.03 21.39 ± 0.04 20.57 ± 0.03 7.2 B

101 331.3547 0.9742 0.621+0.650
−0.588

5.34 22.00 ± 0.03 20.95 ± 0.02 20.26 ± 0.01 8.3 B
102 331.6466 2.2712 0.334+0.375

−0.297
3.88 21.51 ± 0.02 20.06 ± 0.01 19.49 ± 0.01 21.1 B

103 331.8250 3.5431 0.411+0.450
−0.380

6.03 21.45 ± 0.02 20.40 ± 0.02 20.00 ± 0.01 7.9 B
104 331.8586 1.4529 0.373+0.396

−0.347
7.66 20.39 ± 0.01 19.48 ± 0.01 19.14 ± 0.01 7.7 A

105 332.0030 2.6561 0.466+0.502
−0.426

4.09 21.76 ± 0.02 20.64 ± 0.02 20.15 ± 0.01 10.7 B
106 332.3005 3.7471 0.270+0.298

−0.239
4.36 21.95 ± 0.02 21.19 ± 0.02 20.77 ± 0.02 14.8 A

107 332.3815 -0.2096 0.472+0.509
−0.429

8.11 20.38 ± 0.01 19.40 ± 0.01 19.09 ± 0.01 8.4 B
108 334.0200 1.8810 0.764+0.794

−0.735
7.28 21.75 ± 0.03 20.98 ± 0.03 20.14 ± 0.02 11.2 A

109 335.5896 -0.2775 0.291+0.324
−0.257

5.69 20.14 ± 0.01 19.12 ± 0.01 18.62 ± 0.00 13.3 B

Table 2. List of grade-A and grade-B new lens candidates in CFHTLS. The photometric redshifts z, the effective radius Reff and the
magnitudes are the ones provided by Coupon et al. (2009).

resemble Einstein rings that are produced by gravitational lens-
ing.

In our visual procedure, we attempt to classify an object as
a ring galaxy if i) the ring structure has an ellipticity ε > 0.2,
or ii) the ring shows a surface brightness close to constant. Our
criterion on the ellipticity comes from the fact that only very ex-
treme, rare, and rather unphysical lens galaxies or systems with
extreme external shear can create a strongly elongated Einstein
ring. Very elliptical Einstein rings are therefore not expected.

In fact, none are known in the current literature. On the con-
trary, gaseous rings around polar ring galaxies can be strongly
elliptical, simply due to orientation effects. The second condi-
tion, i.e. constant surface brightness, comes from the fact that
Einstein rings are never fully symmetric and that lensed sources
have structures, i.e. a bulge, spiral arms, etc. Ring galaxies have
more uniform light distributions across the gaseous ring.

Using the above criteria, the PCA-finder provides a list of 1
098 lens candidates that split, after visual classification, into:
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Fig. 5. Examples of objects producing false positives in our lens
search and that we classify as ring-like galaxies or polar ring
galaxies (see text). Among 1 098 lens candidates, we identify
274 of these ring-like galaxies.

– 70 grade-A candidates (Tables 1 & 2),
– 39 grade-B candidates (Tables 1 & 2),
– 183 grade-C candidates (Table A.2 of the Appendix),
– 274 ring-galaxies or polar-ring galaxies (Table A.1 of the

Appendix).

All our newly discovered grade-A and grade-B lens candi-
dates are shown in Figs. A.1- A.5 of the Appendix 4. Despite
the visual classification, all above candidates would need spec-
troscopic and/or high-resolution photometric follow-up, which
is beyond the scope of this paper. In the following we compare
the properties of our sample of 109 (new) grade-A and grade-B
lenses with other lens samples found in the CFHTLS data.

4.2. Comparison with previous searches

The CFHTLS data comprise all desirable survey properties for
a lens search. They have been extensively explored in the past
with a range of automated lens-finders, leading to very different
lens samples. This clearly illustrates that no single technique can
detect all the types of lenses at once and that current lens-finders
are complementary. Some favour specific types of lensing object,
such as spiral or elliptical galaxies, and others may select only
massive lenses, e.g. by pre-selecting lenses as galaxy groups or
clusters. Other favour a given source geometry, e.g. point sources
(AGNs, quasars) or extended arcs and rings. Here, we give a
brief summary of previously published CFHTLS lens samples
and we attempt to understand why the PCA-finder method finds
some but not all lenses from the published samples.

A lens sample that is significantly different from the one in
the present paper is provided by Elyiv et al. (2013) and Sygnet
et al. (2010). On the one hand Elyiv et al. (2013) searched for
gravitational lens candidates among the optical counterparts of
X-ray-selected QSOs/AGNs. The authors visually inspect a sam-
ple of 5 500 optical counterparts of X-ray point-like sources
identified in the XMM-LSS imaging of the CFHTLS W1 field.

4 FITS images of our lens candidates are also available at https:
//github.com/herjy/PiCARD

ArcFinder by More et al. (2016)

ID RA DEC i zphot

1 30.6619 -6.5823 19.54 0.37
2 30.8351 -7.5808 19.45 0.59
3 33.8459 -7.6065 20.89 1.05
4 35.2351 -7.7199 20.51 0.71
5 35.8142 -6.4851 19.21 0.55
6 36.5298 -4.4573 17.97 0.17
7 132.0986 -4.1209 18.85 0.51
8 134.4546 -1.2169 18.26 0.29
9 210.4371 53.0360 19.61 0.56

10 214.8007 53.4365 19.11 0.69
11 214.8219 51.2913 18.72 0.47
12 217.9695 57.4769 20.19 0.83
13 217.1451 52.2185 19.94 0.52
14 217.5027 55.7799 19.12 0.55
15 330.8709 2.0886 19.37 0.38
16 331.2788 1.7844 19.15 0.46
17 333.2789 -0.5103 18.81 0.69
18 333.5784 1.1761 18.84 0.74

ArcFinder by Maturi et al. (2014)

1 33.5688 -5.0548 21.00 0.37
2 34.9856 -6.0341 20.50 0.42
3 36.4030 -4.2549 22.10 0.56
4 37.2865 -5.3320 22.40 0.37
5 209.2597 52.5104 23.00 0.38
6 209.6937 52.3495 23.40 0.35
7 210.0883 52.2626 21.20 0.76
8 335.5734 0.2007 21.70 0.51

Table 3. Strong lenses found using the two different ArcFinders
(see text), and that we also find in the present work with the
PCA-finder.

They find three good gravitational lens candidates. Sygnet et al.
(2010), on other hand, look for lensing events produced only
by massive edge-on disk galaxies. In their search, they prese-
lect only highly elongated objects with 0.7 > ε > 0.9. Their
final sample, which also involves a visual inspection, has 16 lens
candidates. The PCA-finder neither looks for point-like multi-
ple images nor for elongated lenses, thus we do not expect our
search to recover any of those published lenses.

To the best of our knowledge, there are four lens searches
similar to ours in CFHTLS (Gavazzi et al. 2014; More et al.
2012; Maturi et al. 2014; More et al. 2016). More et al. (2012)
built a sample of lenses using ArcFinder with a setting such that
only systems with arc radii larger than 2′′ are kept in the sample.
Their lens sample with large Einstein radii therefore predomi-
nantly selects group and cluster-scale lenses. ArcFinder mea-
sures the second order moments of the flux distribution in pixels
within small regions of the sky to estimate the direction and ex-
tent of local elongation of features. Then, a set of thresholds on
feature properties such as the area, length, width, curvature and
surface brightness were used to select arc-like candidates. The
search was carried out in the g band which is the most efficient
wavelength to find typical lensed features. The ArcFinder fi-
nal sample consists of 55 promising lenses out of a total of 127
lens candidates, which are selected from both CFHTLS Wide
and Deep fields. The PCA-finder recovers 16 out of these 127
candidates. This low fraction of recovered systems is somewhat
expected since the majority of the systems found by ArcFinder
consist of multiple lensing galaxies, which are not recoverable
by our method. PCA-finder detects arcs and rings that are cen-
tred on single lensing galaxies, any of the lensing features around
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RingFinder by Gavazzi et al. (2014)

ID RA DEC i zphot

1 31.0368 -6.2019 19.92 0.440
2 31.3527 -9.5065 19.46 0.697
3 32.7569 -8.9320 20.67 0.562
4 33.2527 -8.7196 19.26 0.471
5 33.9505 -3.7979 19.7 0.577
6 34.6119 -7.2910 20.02 0.474
7 35.2352 -7.7199 20.48 0.688
8 35.6735 -5.6477 19.50 0.502
9 36.4030 -4.2549 19.60 0.631

10 36.5152 -9.7643 18.30 0.229
11 36.6384 -3.8179 20.08 0.652
12 36.7455 -8.0105 19.06 0.450
13 37.1431 -8.7207 19.08 0.493
14 37.9618 -4.2917 19.69 0.838
15 38.6843 -6.8091 20.32 0.728
16 133.3229 -2.0543 20.51 0.706
17 133.7865 -3.1020 20.64 0.613
18 134.3794 -1.0678 18.72 0.660
19 136.5196 -3.9364 19.51 0.776
20 210.0897 51.5229 19.82 0.523
21 210.0947 54.9680 20.01 0.703
22 210.1774 56.0118 19.26 0.568
23 210.6061 56.6629 20.32 0.662
24 210.9173 56.7688 19.54 0.689
25 211.0588 51.7374 19.69 0.645
26 211.1062 52.0850 18.82 0.522
27 211.3248 54.5971 20.48 0.726
28 211.8857 54.5689 19.03 0.411
29 212.2298 52.7479 19.98 0.492
30 213.9302 52.4597 19.17 0.445
31 214.8219 51.2913 18.72 0.468
32 215.0140 52.5271 20.99 0.510
33 215.1154 54.1452 18.54 0.421
34 215.1325 52.9728 18.87 0.461
35 215.1830 54.8169 19.97 0.727
36 215.8413 57.3786 19.11 0.611
37 216.0988 52.5648 18.31 0.277
38 216.1354 55.0055 19.39 0.451
39 217.8799 57.1606 18.71 0.454
40 218.5875 54.6375 20.29 0.728
41 219.1557 54.9436 19.05 0.360
42 219.7768 54.6502 19.33 0.378
43 330.8709 2.0886 19.37 0.380
44 331.2789 1.7845 19.15 0.460
45 332.1596 3.0189 18.51 0.302
46 333.3725 0.4932 18.91 0.483
47 333.4006 0.1964 20.34 0.623
48 333.4959 0.9046 18.27 0.370
49 335.4535 1.2618 18.35 0.346
50 335.5735 0.2008 19.13 0.421

Table 4. Strong lenses discovered with the RingFinder and also
found by the PCA-finder.

groups or cluster of galaxies are lost. Table 3 lists the lenses
found both by the PCA-finder and with ArcFinder.

Maturi et al. (2014) devised an automated lens-finder based
on the colour statistics of arcs using a model for the spectral
energy distribution (SED) of high redshift galaxies, the lens-
ing optical depth, and the data depth. They therefore find lensed
sources not only based on their morphology, but also from their
colour, selecting the colours corresponding to sources providing
the largest possible lensing cross-section. Using this procedure,
which combines the ArcFinder created by Seidel & Bartelmann
(2007), with a fine-tuned colour selection, they significantly in-

SpaceWarps by More et al. (2016)

ID RA DEC i zphot

1 31.6759 -9.8669 20.8 0.2
2 32.1339 -4.5542 21.0 1.0
3 33.1051 -8.8697 19.5 0.8
4 135.5794 -5.6566 0.0 0.0
5 211.5958 52.1617 20.3 0.7
6 216.5869 56.2323 19.5 0.5
7 216.7205 56.0016 0.0 0.0
8 217.3907 56.4277 19.0 0.5
9 217.7351 57.4084 19.3 0.7

10 219.2150 53.1183 19.2 0.6

Table 5. Galaxy-scale lensed systems found in the context of the
SpaceWarps project that are also detected by our PCA-finder.

creased the CFHTLS sample of gravitational lenses. They apply
their method to the CFHTLS Archive Research Survey (CARS;
Erben et al. 2009) data, which covers 37 square degrees, to ver-
ify its efficiency and to detect new gravitational arcs. Table 3
lists the lenses found both by the PCA-finder and by Maturi et al.
(2014).

Gavazzi et al. (2014) use their RingFinder tool to search
for galaxies lensed by massive foreground early-type galaxies.
The principle of RingFinder is similar to ours: they select all
early-type galaxies from CFHTLS and then subtract them from
the images to find lensing features. There are two main differ-
ences between our work and Gavazzi et al. (2014): the way the
lenses are subtracted from the images and the way the resid-
ual images are analysed. To remove the central galaxy, Gavazzi
et al. (2014) subtracts the PSF-matched i-band images from the
g-band images. On the residual image, they looked for excess
flux in the g-band to search for compact lensing signal, i.e.
multiply-imaged point sources, rings and arcs. In total 2 524 ob-
jects passed their automatic selection procedure. These are visu-
ally inspected, leading to a total of 330 lens candidates, out of
which 42 were ranked as good quality lenses and 288 were in
their medium-quality category. In addition to the main sample
of Gavazzi et al. (2014), another 71 candidates were reported to
have been detected by earlier versions of the RingFinder. From
the main sample of RingFinder, during their follow-up cam-
paign, they confirmed 33 lenses. Out of the 330 medium and high
quality candidates found with RingFinder, 50 are also found by
our PCA-finder (Table 4).

Finally, the most recent CFHTLS lens search is known as
Space Warps by More et al. (2016) and is fully based on a vi-
sual detection and classification of lensing systems by humans,
namely “citizen” that volunteer to inspect the CFHTLS colour
images. They report the discovery of 29 promising new lens
candidates out of a total 59 candidates, based on about 11 mil-
lion classifications performed by motivated citizen scientists.
The goal of the blind lens search was to identify lens candi-
dates missed by automated searches. This type of massive visual
search enables us to catch a larger diversity in lens and source
properties than automated searches (see also Pawase et al. 2014,
for an example of a visual search in the HST database). Our
PCA-finder recovers ten out of the 29 best candidates found in
SpaceWarps. These are listed in Table 5.

Our PCA-finder cannot be expected to recover all the
RingFinder and SpaceWarps lenses, owing to the different levels
of incompleteness of the different searches but also because of
the pre-selection of galaxies in the PCA-finder search. We target
early-type galaxies as potential lenses and we apply a cut in size
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for the lens galaxy (4-9 pixels). At least part of the lens candi-
dates from the previous searches do not meet this size cut. We
also note that the PCA-finder is not optimized to find multiply-
imaged point sources, which are very well spotted visually in
SpaceWarps and with RingFinder.

Finding gravitational lenses is a complex task, thus no sin-
gle lens finding method is perfect, each method has advantages
over the other. It may be the case that a single method may never
be the best method for optimising completeness and purity. As a
consequence, it is not surprising that in spite of the many previ-
ous extensive lens searches in CFHTLS, we still manage to find
new, interesting candidates. The PCA-finder, despite being very
close conceptually to the RingFinder, has two major advantages.
First, it is applied efficiently on single-band data. We therefore
apply it independently to all the bands. In this way the search is
not restricted to a limited range of source colours. Second, the
resulting lens subtraction leaves very few artefacts, hence allow-
ing us to spot fainter lensed features closer to the lens centre.

We note that the 109 good lens candidates listed in Tables 1
& 2 are completely new. We also list 183 new objects in
Table A.2 of the Appendix that we rank as possible lenses, but
that certainly require follow-up with either deeper imaging or
spectroscopy or both.

4.3. Sample properties

We now compare various properties of our lens candidates with
previous samples from CFHTLS. We emphasise that these com-
parisons use lens candidates that are not yet confirmed and that
our results are therefore only indicative.

We use the CFHTLS photometric catalogues from Coupon
et al. (2009) and generated with the Le Phare software (Ilbert
et al. 2006). The accuracy of the photometric redshifts of galax-
ies for the Wide survey with magnitudes i < 21.5 is σ(Δz/(1 +
z)) = 0.032. Figure 6 shows the distributions in apparent mag-
nitude, Einstein radii and redshift for our PCA-finder sample
of 70 grade-A plus 39 grade-B new gravitational lens candi-
dates. These are shown together with the same distributions for
SpaceWarps (More et al. 2016), for the ArcFinder (More et al.
2012), and for the RingFinder (Gavazzi et al. 2014). We find
that the median of the lens redshift distribution for the PCA
sample is zPCA = 0.48 ± 0.17 and it is lower than redshift for
all the other known lenses, which is zarcs = 0.52 ± 0.20 (in-
cluding giant arcs which systematically have larger redshifts).
The median of i-band magnitude of our sample is mi = 19.63,
which turns into a median absolute magnitude of our sample
Mg = −21.90 ± 0.745. These magnitudes are K-corrected fol-
lowing Coupon et al. (2009).

The Einstein radii displayed in Fig. 6 are estimated from
the position of the multiply-lensed images. RE is taken to be
half the averaged values of the angular separation between im-
ages. The distribution of image separations can be used to probe
the average density profile of the lens population (Oguri et al.
2006; More et al. 2012). We find that the average Einstein ra-
dius for our new lenses is RE = 1.9 ± 0.8′′ which is, as ex-
pected, smaller than for the ArcFinder candidates, which have
RE = 4.0′′. This is also lower than for SpaceWraps which have
RE = 1.9′′. For comparison the SLACS lenses have RE = 2.2′′
and the RingFinder lenses is RE = 1.4′′ (see Sonnenfeld et al.
2013).

Fig. 6. i-band magnitude, Einstein radius, and redshift distribu-
tions of our lens candidates with A and B grades (black line).
These are compared with the same distributions for other lens
samples found in CFHTLS Wide: the one from the SpaceWarps
program (red line; More et al. 2016), from the ArcFinder (green
line; More et al. 2012) and from the RingFinder (blue line;
Gavazzi et al. 2014). When applicable, we also show the dis-
tribution for the parent sample, i.e. our preselection of potential
lens galaxies.

5. Simulations and completeness

An evaluation of the completeness of our sample can be done in
two ways, using realistic image simulations or using a sample of
already known lenses. The latter approach has been attempted
in the previous section, but has a clear limitation: the reference
sample of known lenses has its own completeness and purity.
Moreover, different lens-finders are not necessarily optimised to
find the same lens types and the parent samples (i.e. after the
pre-selection) are not the same. As was shown in the previous
section, one lens-finder can be very efficient at finding objects
with low lens/source luminosity contrast, another one may be
specialised in finding large arc-like structures and others may
find better lensed point sources. For all these reasons, we choose
to use simulated images for our completeness estimation.

In this section we evaluate the performances of our method
using simulated images of Einstein rings, as they would be seen
with the CFHT. We have made an attempt to generate lenses
that are as realistic as possible within the requirements of the
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Fig. 7. Properties of the lensed systems for the simulated sample. Each plot in the lower panels shows the distributions of selected
parameters of the full sample of simulated systems and for the simulated objects we identify as lenses (true positives). The top
panels give the ratio of the two, i.e. the completeness per bin of the selected parameter. The red line is a linear regression to guide
the eye.

PCA lens-finder. In the following, we also describe some of the
properties of our simulated sample.

5.1. The lens and source simulation

The image simulations are provided by the Bologna Lens
Factory (BLF). The BLF setup was chosen to match the proper-

ties of gravitational lenses expected in the CFHTLS wide fields
by adding fake lensed objects to real images.

The lensing simulations were done as follows. A dark matter
halo catalogue within a light cone extending out to z = 4 is taken
from the Millennium Run Observatory (Overzier et al. 2013).
This contains all the halos found within the Millennium cosmo-
logical simulation that were more massive than 1010 M	, which
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should include the hosts of all the observable strong lenses. The
light cone covers 1.6 square degrees of sky. Each halo is rep-
resented within the lensing code by a Navarro, Frenk & White
(NFW) halo plus a singular isothermal ellipsoid (SIE) in its cen-
tre to represent the baryonic component. The mass of the bary-
onic component is determined using the halo mass vs. stellar
mass relation of Moster et al. (2010) and the velocity disper-
sion is set by the Tully-Fisher relation (Bell & de Jong 2001).
Once the light cone is assembled, all the caustics in this light
cone with Einstein radii RE > 0.′′05 are located, for a series
of six source planes running from z = 1 to z = 3.5, using the
GLAMER lensing code (Metcalf & Petkova 2014; Petkova et al.
2014). GLAMER shoots rays through the light cone and iden-
tifies regions of the source plane that will be strongly lensed.
The code then adaptively shoots rays in these areas at higher and
higher resolution to resolve the critical curves and caustic curves
of each prospective lens.

The simulated image of a lensed source is then added to a
real image of a galaxy that is randomly taken from the pres-
elected CFTHLS data. This step was unavoidable, bearing in
mind that the PCA lens extraction is solely based on the self-
similarity of the foreground galaxies. Since the simulations need
to be as close to real CFHTLS data as possible, we thus draw
galaxies from the preselected targets in size, magnitude, colour,
etc (see Sect. 2.2). Galaxies selected for the simulations in such
manner, contain all the relevant limits that we face in real data.
This gives us several advantages: 1. the simulation naturally in-
cludes the noise properties of the original data, 2. the level of
complexity in galaxy shapes is well representative of the real
data, far beyond the reach of analytical galaxies models, 3. the
simulation includes blending effects with companion galaxies.
Even though this approach gives us a reliable way to estimate
the completeness of our sample, it does not allow us to evaluate
its purity. This requires a priori knowledge of which galaxies are
and which are not acting as lenses. Since the galaxies are drawn
randomly from the real data, they can potentially contain lensed
features that would affect the results. While a visual inspection
would probably solve this problem, it could however bias the
completeness.

We note that the distribution of lens properties should be gen-
erally reproduced in the simulations, but that it is not necessary
to reproduce the statistics of the lenses to high precision for our
purposes. In the next section, we characterise the lens-detection
efficiency in terms of various parameters such as S/N, Einstein
radius, etc. It is necessary that the simulations fully cover the
range of these parameters, but not that they reproduce the pre-
dicted distribution of parameters precisely. These simulations
meet this requirement.

5.2. Completeness of the new lens sample

Our simulations include 600 systems, which match well the
properties of the galaxies we preselected in CFHTLS (Sect. 2.2),
as well as the noise properties of the images. We run the PCA
lens-finder in the exact same way as we do on the real data,
excluding the last step of a visual inspection. Our results are
summarised in Fig. 7, where we compare the distribution of
some of the most important observational parameters for the
full population of the simulated lenses and for the population of
simulated systems, actually identified as such by the PCA lens-
finder. The ratio between the two histograms in Fig. 7 gives the
completeness.

In our analysis, we estimate the completeness as a function
of the total S/N in the (lensed) source, the number of pixels of the

source above the noise level (5σ), the source surface brightness,
RE (taken as half the averaged values of the angular separation
between images) and the source redshift. We note that the cal-
culation of the source S/N includes a noise contribution from
the lensing galaxy, which can significantly impact the detection
when the source and the lens overlap. Using our lens simulations
we find that:

– Not surprisingly the completeness of the sample improves
with increasing S/N, reaching at least 80% as soon as S/N >
50. Even for the lowest source S/N in the sample, the com-
pleteness is still above 50% and this number increases to
70% when S/N > 20. Of course, within a given S/N bin
the sample spans a large range of Einstein ring size and
source/lens luminosity contrast, but overall the completeness
achieved by the PCA lens-finder is very high.

– The completeness depends strongly on the number of pixels
above a given luminosity threshold of the lensed source. This
affects the angular size of the lensed image and therefore also
our ability to determine its shape (ring, full, or partial arc).
Of course the more spatial resolution elements in a lensed
source, the better it can be classified.

– The completeness has slightly weaker dependence on source
surface brightness than on S/N of the lensed source. This
shows that we fail to detect some lenses with arcs and rings
that fall into the glare of the lensing galaxy. This also shows
that central lensing galaxy removal with PCA method is not
perfect and has an impact on the lens search.

– Importantly, there is little or no dependence of the complete-
ness with respect to RE or to the source redshift. This sug-
gests that the PCA lens-finder is capable of providing unbi-
ased samples of systems spanning a broad range of masses
and redshifts, which is desirable for galaxy formation and
evolution studies based on strong gravitational lensing.

6. Summary and conclusions

We have implemented a novel method, PCA-finder, for the auto-
mated detection of galaxy-scale strong gravitational lensing to a
heavily explored survey, namely, the 155 square degree of imag-
ing data of the CFHTLS Wide. With the PCA lens-finder we dis-
cover 109 (70 grade A and 39 grade B) brand new gravitational
lens candidates. The discovery of such a large number of new
lens candidates missed by other searches proves PCA-finder to
be a powerful tool in discovering lenses.

The search was carried out in four steps. In Step 1, we create
a uniform data cube consisting of small image stamps centred
on preselected early-type galaxies. In Step 2, we subtract central
galaxies from the image stamps. In Step 3, we analyse residual
images created in Step 2 to look for lensing features with the
DBSCAN method. In Step 4, a sample of 1 098 candidates are se-
lected from this automated procedure. Finally, Step 5 is a visual
inspection of the lens candidates by five authors of this paper
(D.P., J-P.K., R.J., F.C., P.D.). Following this last step, all candi-
dates are allocated A, B, or C grades.

In this paper, we present the new PCA-finder lenses and
compare it with the previously known samples from the
CFHTLS, namely, Space Wraps, RingFinder and ArcFinder.
Our main results can be summarised as follows:

– PCA-finder works well as a discovery engine for gravita-
tional lenses.

– We present a sample of 70 grade-A and 39 grade-B new grav-
itational lens candidates, and additional 183 grade-C worth
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noticing, but with no strong evidence for lensing. We redis-
cover 86 lens candidates from various samples published in
the literature.

– The PCA-finder selects lens systems whose statistical
properties are well comparable with the RingFinder and
ArcFinder samples, including the range of lens redshifts,
magnitudes, and image separation.

– We also find 274 potential ring galaxies or polar ring galax-
ies.

– We use a sample of simulated lenses tailored to the CFHTLS
Wide data to verify the completeness of our automated
method.

The discovery of many new lens candidates through the first
PCA-finder lens search illustrates the strength of the method,
since we find lens candidates that other algorithms missed.
Upcoming and planned wide field imaging surveys such as the
DES, HSC, KIDS, Euclid and the LSST will produce a great
amount of data. Reliable automated algorithms together with cit-
izen blind search will be necessary to find lenses in these very
large surveys. As shown in this paper, one approach for find-
ing lenses from the entire survey data may not be sufficiently
complete and pure. Thus, combining robotic methods for pre-
selection with the citizen science approach for visual screening
might be a good strategy for finding lenses in these large imag-
ing surveys. For samples that are sufficiently cleaned by the au-
tomated part of the pipeline, the human time spent on the final
classification remains acceptable.
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Appendix A: Observational data
In the following we provide colour stamps for our 109 lens candidates classified
as grade-A or grade-B (Figs. A.1-A.5). We also provide a list of the objects
we classify as ring-like galaxies (Table A.1) or as a grade-C lens candidates
(Table A.2).
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ID RA DEC ID RA DEC ID RA DEC ID RA DEC

1 30.7113 -4.1200 70 208.8451 56.5793 139 212.0681 51.7086 207 216.0082 55.7079
2 32.0140 -7.3349 71 208.8577 55.2961 140 212.0702 54.6277 208 216.1492 53.3707
3 32.7019 -11.091 72 208.8897 56.7042 141 212.0781 53.1058 209 216.1771 56.1187
4 32.9684 -10.640 73 208.9984 57.6036 142 212.1310 56.5988 210 216.2110 53.6238
5 33.3126 -4.5772 74 209.1030 54.2619 143 212.1942 52.2143 211 216.3065 57.5956
6 34.0313 -6.8846 75 209.1158 53.3728 144 212.2530 53.6661 212 216.3152 54.6290
7 34.6449 -6.2790 76 209.1330 57.7878 145 212.3300 52.7731 213 216.4620 56.7888
8 35.3084 -9.6229 77 209.1440 53.1748 146 212.3553 55.9526 214 216.6035 54.0957
9 36.2642 -6.6648 78 209.1640 57.7423 147 212.4420 52.1788 215 216.6826 52.8987

10 37.7604 -5.9290 79 209.1907 56.3655 148 212.4687 51.9757 216 216.9283 57.2185
11 132.1819 -2.5873 80 209.2600 57.224 149 212.4777 56.5225 217 217.1591 55.7337
12 132.2712 -2.7720 81 209.2658 53.3428 150 212.6073 56.4597 218 217.2200 55.6851
13 132.5795 -3.1395 82 209.3485 54.5476 151 212.6626 57.4131 219 217.2537 55.4910
14 132.5827 -2.1625 83 209.3499 54.3683 152 212.6708 52.8456 220 217.3800 55.4627
15 132.5857 -4.6938 84 209.4350 56.9008 153 212.8555 55.0499 221 217.4268 53.9160
16 132.6970 -3.9655 85 209.4560 56.9913 154 212.9167 54.0741 222 217.4859 51.7736
17 132.7400 -1.0218 86 209.5048 57.6376 155 212.9404 57.5752 223 217.5249 52.7104
18 132.7620 -4.4793 87 209.6050 56.5502 156 212.9745 55.3304 224 217.5592 56.9327
19 132.9841 -1.9516 88 209.6506 56.1549 157 213.0125 51.3368 225 217.6319 57.7677
20 133.0210 -4.6829 89 209.7750 53.7688 158 213.1040 53.7781 226 217.7050 55.9099
21 133.1227 -1.7640 90 209.8462 56.0677 159 213.1345 52.4077 227 217.8106 57.2403
22 133.1827 -1.0132 91 209.8569 53.1140 160 213.1900 53.6537 228 217.9196 54.5902
23 133.2438 -3.7043 92 210.0242 53.2755 161 213.2580 53.1980 229 218.0436 54.5195
24 133.5939 -4.9943 93 210.0400 54.7716 162 213.2939 57.2640 230 218.0770 54.9706
25 133.6931 -2.7340 94 210.0919 52.5197 163 213.3095 52.4831 231 218.3619 55.3975
26 133.7100 -5.0446 95 210.1264 54.9506 164 213.5020 56.2184 232 218.5645 52.6184
27 133.7260 -3.9403 96 210.2546 52.4485 165 213.5440 57.3132 233 218.6160 57.6086
28 133.7880 -1.4389 97 210.2719 57.5983 166 213.5494 52.3798 234 218.6570 57.5602
29 133.9045 -4.3638 98 210.3997 57.7682 167 213.7320 52.3263 235 218.8210 55.4744
30 133.9124 -2.3331 99 210.4121 53.2592 168 213.7877 53.2259 236 218.8813 54.4891
31 133.9648 -4.7568 100 210.4300 51.2151 169 213.8380 57.1487 237 218.9065 51.3609
32 134.1370 -3.0186 101 210.4339 55.3332 170 213.9270 56.0135 238 219.3108 54.4433
33 134.1507 -1.3852 102 210.4797 51.2445 171 213.9639 51.3241 239 219.4381 56.3716
34 134.2170 -3.9283 103 210.4847 57.6922 172 213.9691 51.9893 240 219.5293 53.7316
35 134.2991 -4.3455 104 210.4876 53.2545 173 213.9950 51.5452 241 219.6096 52.1294
36 134.4163 -2.7038 105 210.4968 55.0219 174 214.0239 57.0921 242 219.6133 52.4955
37 134.4683 -3.6448 106 210.5020 53.1556 175 214.1700 54.0163 243 220.2990 57.7254
38 134.5020 -3.2156 107 210.5154 52.3060 176 214.2040 55.4237 244 330.1120 1.5701
39 134.5101 -3.6909 108 210.6305 51.6363 177 214.4082 57.2170 245 330.2540 3.6684
40 134.5972 -2.1057 109 210.7200 52.8003 178 214.4454 55.4881 246 330.2720 1.8044
41 134.7143 -3.3857 110 210.7309 52.3358 179 214.5368 53.1975 247 330.4520 3.6380
42 134.8220 -4.1856 111 210.7704 53.7681 180 214.6275 56.8027 248 330.5939 1.2562
43 134.9660 -4.5596 112 210.8229 51.8781 181 214.6400 55.6239 249 330.8630 4.4709
44 135.0381 -3.3306 113 210.8282 56.4585 182 214.6506 54.2784 250 330.8980 2.2835
45 135.1403 -3.8596 114 210.9047 53.0148 183 214.6966 56.8438 251 331.3460 1.3502
46 135.3235 -5.5642 115 210.9170 53.8914 184 214.7002 53.3850 252 331.6890 1.0121
47 135.3369 -1.1031 116 211.0441 52.8848 185 214.7420 56.4807 253 331.8380 2.8518
48 135.3720 -1.5786 117 211.0709 57.2175 186 214.8210 56.2483 254 331.9330 2.3048
49 135.5498 -1.4060 118 211.1030 52.1859 187 215.0682 56.3292 255 332.0440 3.5210
50 135.5651 -2.0581 119 211.1110 57.0090 188 215.0730 56.531 256 332.1489 1.9636
51 135.5864 -2.2146 120 211.1478 52.4499 189 215.0828 54.9762 257 332.2340 3.9315
52 135.8341 -1.1346 121 211.2522 52.0962 190 215.2030 56.333 258 332.3800 0.5319
53 135.9001 -2.1360 122 211.2820 56.6721 191 215.2367 52.8727 259 332.6879 1.7517
54 135.9940 -3.2371 123 211.2950 53.9345 192 215.2490 51.4651 260 333.1200 0.8459
55 136.0742 -4.1396 124 211.4487 57.3926 193 215.3003 57.7346 261 333.1270 2.4188
56 136.1734 -2.0613 125 211.5459 56.7882 194 215.3255 57.5031 262 333.1709 0.3183
57 136.2500 -4.7148 126 211.5520 56.0455 195 215.3361 55.3473 263 333.2590 -0.8181
58 136.2506 -2.2494 127 211.6047 51.6347 196 215.3542 57.4317 264 333.4410 0.4691
59 136.3568 -2.6909 128 211.6335 52.0406 197 215.4756 56.7486 265 333.9400 1.5399
60 136.5063 -5.1453 129 211.7230 54.7437 198 215.5070 56.9580 266 334.1099 1.0777
61 136.5580 -1.1363 130 211.7706 54.6133 199 215.6347 54.5268 267 334.3880 1.2319
62 136.5629 -4.7081 131 211.7880 53.3319 200 215.6390 51.7208 268 334.4719 1.3240
63 136.5651 -2.1079 132 211.8378 52.5960 201 215.7157 55.2452 269 334.4760 2.7216
64 136.6360 -4.9990 133 211.8520 54.4707 202 215.8014 57.2830 270 334.6690 -0.4942
65 136.6770 -1.4028 134 211.8555 53.8529 203 215.9419 51.6791 271 335.2009 1.1618
66 136.7488 -1.6531 135 211.8660 54.7334 204 215.9590 51.6543 272 335.2869 0.1860
67 136.7710 -1.2799 136 211.8971 54.1434 205 215.9689 57.2974 273 335.3330 1.0047
68 208.6711 57.7116 137 211.9844 54.6894 206 216.0003 54.6786 274 335.5480 0.5849
69 208.7878 56.4358 138 212.0647 52.3376

Table A.1. List of ring-like galaxies.
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ID RA DEC ID RA DEC ID RA DEC ID RA DEC
1 30.7690 -4.3707 47 37.9131 -8.4071 93 210.3239 57.0069 139 213.6360 53.4336
2 31.1471 -6.8370 48 132.6063 -1.6624 94 210.3239 57.0069 140 213.8290 51.5396
3 31.1845 -9.2302 49 132.8670 -1.7824 95 210.3830 52.9747 141 213.8425 54.5827
4 31.1953 -7.4963 50 133.0932 -5.5540 96 210.4185 51.9295 142 213.8930 55.9188
5 31.3286 -9.4541 51 133.1093 -2.1114 97 210.4440 56.0728 143 214.0553 56.3335
6 31.4334 -5.5922 52 133.6085 -3.3218 98 210.4970 55.0210 144 214.1416 54.2238
7 31.4347 -8.9391 53 133.8673 -4.4843 99 210.5960 56.7669 145 214.1440 52.1982
8 31.7222 -6.9676 54 134.1219 -2.8850 100 210.8169 56.3686 146 214.2251 53.2605
9 32.0885 -10.1001 55 134.3641 -3.8366 101 210.8650 54.0454 147 214.4718 56.4726

10 32.1265 -8.6989 56 134.4226 -5.5544 102 210.9850 53.6275 148 214.6783 52.0068
11 32.1489 -10.6963 57 134.9147 -1.7250 103 210.9875 52.7897 149 214.8440 52.0608
12 32.3864 -8.6895 58 135.0480 -4.2772 104 211.0765 56.2987 150 214.8870 55.7473
13 32.5458 -6.9613 59 135.3490 -2.7373 105 211.0960 52.7181 151 214.9260 56.2809
14 32.6089 -4.2655 60 135.3985 -4.6624 106 211.1021 56.0841 152 215.2367 52.8727
15 32.6312 -5.3873 61 135.4108 -4.9603 107 211.2520 52.0962 153 215.5535 52.0773
16 32.7019 -11.0916 62 135.5910 -2.0328 108 211.2966 53.9393 154 215.5858 52.3223
17 32.7654 -10.1586 63 135.7976 -3.1933 109 211.2975 52.6984 155 215.5870 52.5406
18 32.7713 -4.3339 64 135.8190 -1.4759 110 211.4610 56.5435 156 215.9215 53.1101
19 32.7958 -9.1606 65 135.8390 -4.7139 111 211.5791 51.5461 157 216.0830 56.5382
20 32.8151 -4.6442 66 135.8770 -3.3166 112 211.6760 56.8844 158 216.1280 53.7346
21 32.8263 -5.9572 67 135.8916 -4.7350 113 211.7245 54.9516 159 217.1294 53.2367
22 33.1106 -9.1819 68 136.1790 -2.0222 114 211.7933 57.7058 160 217.2020 57.1215
23 33.1371 -8.2071 69 136.3051 -1.7993 115 211.8378 52.5960 161 217.3254 51.2955
24 33.4489 -5.0069 70 136.4287 -4.3918 116 211.8980 54.3523 162 217.3837 57.0770
25 33.7189 -10.2549 71 136.6511 -4.1206 117 211.9132 56.5606 163 217.4874 53.4669
26 33.8125 -7.6329 72 136.6759 -3.4018 118 212.0111 54.5693 164 217.5479 53.9042
27 33.8846 -7.3768 73 136.7700 -3.6983 119 212.3363 53.7088 165 218.5887 53.5343
28 34.0291 -10.4792 74 208.5923 56.9917 120 212.5192 52.8386 166 218.9180 51.5978
29 34.0313 -6.8846 75 209.0410 55.1548 121 212.5344 53.5059 167 218.9306 51.6789
30 34.0420 -4.9278 76 209.0520 55.3643 122 212.5578 57.1932 168 218.9306 51.6789
31 34.2354 -7.3950 77 209.0883 54.6384 123 212.6180 54.6689 169 219.2150 53.1183
32 34.4127 -5.6183 78 209.1308 56.8001 124 212.7260 56.5193 170 219.2270 54.7119
33 34.7033 -6.3146 79 209.3442 56.0257 125 212.7260 54.2777 171 219.2620 53.0397
34 34.7611 -5.6861 80 209.4020 56.8134 126 212.7260 56.5193 172 219.4122 56.8565
35 34.7705 -8.1057 81 209.6070 52.7409 127 212.7370 53.3133 173 219.5995 53.3351
36 35.1727 -10.8737 82 209.6217 52.6670 128 212.8499 56.3970 174 219.6419 54.4867
37 35.4835 -10.6293 83 209.6358 56.3116 129 212.8877 56.1517 175 219.6730 56.9740
38 35.4901 -6.8625 84 209.8516 54.3894 130 212.9065 53.8578 176 331.1035 1.3934
39 35.5342 -8.2175 85 209.9950 56.2114 131 212.9810 52.5545 177 331.8447 4.2985
40 36.0965 -3.9120 86 210.0480 53.4897 132 213.1729 54.4224 178 331.9094 1.6015
41 37.1595 -8.0260 87 210.1192 56.0877 133 213.1870 55.2213 179 332.0385 1.5294
42 37.3517 -11.1634 88 210.1260 54.9506 134 213.3750 53.4311 180 332.0615 2.6110
43 37.3725 -9.9510 89 210.1920 55.5750 135 213.4316 53.0792 181 332.1574 3.3451
44 37.7770 -10.0155 90 210.2130 52.9077 136 213.5034 55.1556 182 332.7543 0.0248
45 37.8688 -9.2495 91 210.2437 56.8107 137 213.5379 52.4758 183 333.8364 0.9369
46 37.9131 -8.4071 92 210.3010 57.0831 138 213.5680 54.4716

Table A.2. List of our grade-C candidates in CFHTLS.
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Fig. A.1. Our new lenses found with the PCA-finder, with grades A and B (see text). The stamps are 18.7′′on-a-side.
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Fig. A.2. Our new lenses found with the PCA-finder, with grades A and B (see text). The stamps are 18.7′′on-a-side.
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Fig. A.3. Our new lenses found with the PCA-finder, with grades A and B (see text). The stamps are 18.7′′on-a-side.
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Fig. A.4. Our new lenses found with the PCA-finder, with grades A and B (see text). The stamps are 18.7′′on-a-side.
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Fig. A.5. Our new lenses found with the PCA-finder, with grades A and B (see text). The stamps are 18.7′′on-a-side.
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3.5 Outline

In this chapter, I detailed a technique for semi-automated lens search that relies on the

subtraction of light profile of potential lens candidates to search for lensed structures in the

glare of elliptical galaxies. We successfully applied our method to the CFHTL Survey, where

we found 109 new lens systems that were not found in previous searches. The reason for

the finding of new systems is imputed to the properties of the lens finding algorithm. This

suggests that a thorough search for lenses should include several lens finding algorithms,

which properties in terms of characteristics of expected lenses are well understood.

With the rapid growth of machine learning-based techniques, the feature extraction strategy

that we developed to discriminate between lenses and non-lenses became quickly outdated.

Indeed, most ML-based methods are fully automated and provide reliable lens candidate

sets, while our feature extraction techniques required the visual inspection of a sample of

lenses ten times bigger as our final selection. Such small purity of the selection makes the

method intractable in the frame of large surveys where hundreds of thousands of lens systems

are expected to be found. This realisation illustrate how important it is that we develop lens

finding techniques that have high purity in order to avoid the visual inspection of large samples

of candidates. Due to the large number of expected lenses in future surveys we could imagine

enforcing purity while sacrificing to the completeness.

Nonetheless, the PCA subtraction method provides a reliable technique to model lens light

distribution, which is necessary to the study of the lensed sources. While PCA constitutes a

naive implementation of ML techniques, it paves the way for the potential development of the

modelling of galaxies based on more sophisticated and robust ML strategies as shown by the

works if Ravanbakhsh et al. (2016).

This first technique for strong gravitational lens deblending relies on the modelling of lens

galaxies by use of the similarities between images of galaxies in a large survey. In essence, this

approach makes little use of the properties of gravitational lenses, for the reason that it was

developed to find them. As a result, this technique is able to remove the light profile of any

galaxy on the plane of sky. In the following chapter, we will specify our deblending techniques

to the address the specific problems posed by gravitational lens imaging by making use of the

differences between lensed and lens galaxy light profiles.
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As we have seen, strong gravitational lenses form by the alignment of galaxies at different

redshift. Because observing distant objects is also observing these objects as they were a long

time ago, the farther an object, the younger it is. As a result, the background of a gravitational

lens is always a galaxy at a younger stage of its evolution resulting in blue stellar population.

Galaxies at a later stage of their evolution will naturally be composed of older stars that emit

with a redder spectra. In addition to this, gravitational lenses are often around early type

galaxies (e.g. the SLACS sample Bolton et al., 2006), which are galaxies that stopped forming

stars early on in their evolution. These galaxies are often found in massive galaxy clusters and

are, on average heavier than spiral galaxies, hence the higher likelihood for gravitational lens

systems formation. The result of this is that in most cases gravitational lenses are composed
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of a red elliptical foreground lens and a blue background spiral or irregular lensed source, as

illustrated by the spectacular system in figure 4.1 1.

Figure 4.1 – The "cosmic horseshoe" lens system.

In this image in particular, the separation between lens and source and source galaxy light

profiles is clear due to the angular separation between the lens and the images of the source,

but also due to the difference in colour between the objects. This latter observation was the

starting point of a reflection on how to make our algorithms see in colours. Indeed, if our

eye is able to make the difference between these objects due to their difference in colour, it

should be possible to separate these light components based on their relative contributions to

different colour filter imaging. This idea is not dissimilar to the idea presented in Gavazzi et al.

(2014) and Chan et al. (2015), where tha authors subtracted together bands where the lens

light profile dominates from bands where lens and source light profiles are mixed. While this

is a perfectly acceptable strategy in the case of the search for lens galaxies, the approximation

that one of the light sources emits specifically in one band while the other contributes to both

might lead to the subtraction of part of the signal from the lensed source.

One of the motivations for the development of such method comes from the limitations

met by other techniques. A very widespread approach consists in fitting elliptical profiles of

surface brightness to the lens galaxy light profile. In most recent lens modelling applications,

this fitting procedure is adequately performed while modelling the other components of the

lens, namely, the mass distribution and the source light profile. In cases such as gravitational

lensing by galaxy clusters however, it is impossible to implement such strategy due to the

size and the complexity of the systems to model. It is therefore common to proceed to the

subtraction of the light from the foreground galaxies prior to any analysis. This strategy has the

1Image credit: ESA/Hubble & NASA
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drawback to neglect the light contribution from background source, which might result in an

overestimation of the luminosity in the outer regions of the galaxy cluster members. Another

limitation of this method comes from the number of components used in fitting the lens light

profile. This requires an a exact knowledge of the number of light sources and components per

source, and may lead to a large number of parameters to represent the total luminosity profile

of the lens galaxies. In the case of the PCA approach, a key requirement to the application of

the method is that the morphology of the galaxy to subtract be well represented in the survey

where the image of interest originates from. In the case of very large surveys, this is usually

not a problem due to the shear number and variety of the sources in the sky. However, when

dealing with high resolution data with a limited field of view, the repetition of specific features

of interest is not granted. In particular, in the case of galaxy clusters, the occurrence of large

isolated cluster members in a survey is usually, thus limiting the number of galaxies the PCA

can use to learn galactic features and shapes.

Another reason to take interest in the separation of galaxies based on their colours is that

this criteria can be expressed in terms of a linear problem as we will demonstrate in the next

sections. Due to the linearity of the problem, it is possible to find numerical solutions that do

not depend on a predefined model for the light sources.

In this chapter, we will see how to express the difference in colours as a linear problem and use

the results presented in section 2 to derive solutions. The method, called MuSCADeT, and the

code we designed for this task are described in a published work, reproduced a s a pre-print in

section 4.2. The method was applied to several data sets. One of these applications was used

to contribute to the constraint of the mass model of cluster Abell 3827 which was published in

the monthly notices of the royal astronomical society and is reproduced here as a pre-print in

section 4.3.1. In section 4.3.2 we show the result of the application of MuSCADeT to the whole

Hubble Frontier Fields (HFF, Lotz et al., 2017). The results of the colour separated components

are then used to measure the luminosity of lensed background sources and give estimates of

magnification ratios across the cluster.

4.1 Multi-Band Observations

In this section, I would like to give a justification for the linear model we build to represent

colour data. While the method paper presented in the next section shows how we model

mathematically multi-band data to extract colour information, I use the current section to

give a better justification to the linear model by looking at how multi-band data are acquired

in the dataset that we treated using MuSCADeT: the Hubble frontier fields.

4.1.1 The Hubble Frontier Fields

Initially designed for multi-purpose multi-band applications, we developed and testedMuSCADeT

on the the Hubble frontier fields survey (Lotz et al., 2017) acquired with the Hubble space
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Cluster z Mvi r (M�) Lensing probability

Abell 2744 0.308 1.8×1015 0.69±0.07
MACS J0717 0.545 2 − 3×1015 0.84±0.05
MACS j1149 0.543 2.5×1015 0.60±0.10
MACS J0416 0.396 1.2×1015 0.63±0.12

Abell 370 0.375 ∼ 1×1015 0.90±0.08
Abell S1063 0.348 1.4×1015 0.69±0.08

Table 4.1 – Mass, redshift and lensing probability of the Hubble frontier fields clusters.

telescope. The goal of this survey was to provide deep observations, down to AB magnitudes

< 29.1, of 6 galaxy clusters, massive enough to produce high magnification images of distant

background galaxies. The characteristics in terms of redshifts, and Virial mass estimated from

lens modelling are given in table 4.1 (Lotz et al., 2017). In this table,the lensing probability

is the the likelihood that a source at redshift z = 9.6 be magnified to AB magnitude < 27 in

the F160W filter, which corresponds to a condition of observability of the source due to the

targeted highest magnitude in filter F160W being 28.7. The lensing probability can be seen as

a measure of strength of the lensing by the corresponding cluster.

The six galaxy clusters were observed in three optical bands: F435w, F606w and F814w with

the HST/ACS camera and in four near infrared (NIR) bands: F105w, F125w, F140w and F160w

of HST/WFC3/IR instrument. While one of the instruments (ACS or WFC3/IR) was pointing

the cluster centre, the other instrument was left to point a parallel field of view in the outskirts

of the cluster. In the rest of this chapter we will differentiate these fields of view by naming

cluster fields the field of view centred on the cluster core, and parallel field the one centred on

the outskirts region. In our analysis of the frontier fields, we focused on the optical images

only, acquired with the ACS instrument, in order to avoid the difference in resolution between

the two cameras.

4.1.2 Acquisition of filter images

The ACS instrument is equiped with three colour filters in the optical. The colour filters are

band-pass filters which response is given in figure 4.22 where the cyan green and magenta

curves give the dimensionless throughput of the F435w, F606w and F814 colour filters respec-

tively as a function of wavelength. The ACS camera, when pointing towards a target, therefore

captures the light received at the corresponding wavelength of the filters in proportion to the

respective throughput at a given wavelength. Figure 4.2 also contains the spectra of three

galaxies redshifted to the lens and source redshifts of the horseshoe lens. In blue are shown

the templates of two spiral galaxies seen at redshift z = 2.381. The red curve shows a template

of an elliptical galaxy seen at redshift z = 0.44. The spectral templates are credited to Gwyn

2Data for the figure were collected from http://www.stsci.edu/hst/acs/analysis/throughputs
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Figure 4.2 – HST/ACS filters and three galactic spectral templates at the redshifts of the
horsehoe light sources.

(2012); Coleman et al. (1980)3. They are normalised such that the maximum of the curve is set

to one for the sake of the representation.

This figure serves the purpose of showing that in a typical case of lensing by a red early type

galaxy of a blue background source, each galaxy contributes to each of the three ACS optical

bands. Observing a source through these three filters results in the acquisition of a cube of

three images where each image corresponds to the intensity of an object red, green and blue

colours. A colour image can then be formed by the superimposition of the three images seen

in the corresponding colour as illustrated in figure 4.3. In figure 4.3 the top panels show the

surface brightness of the horseshoe lens system in three different HST/ACS filters (F814w,

F606w and F475w) seen in their respective corresponding colours. The bottom panel shows

the combination of three colour images with the same colour-scale. With this, we see that the

contribution of a galaxy’s light profile to a given band is the weighting of its surface brightness

by the integral of its spectra, weighted by the response of the corresponding filter. For a given

light source, the weights of its surface brightness contribution to each band form the spectral

energy distribution (SED) of the source.

3and recovered at http://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/community/CFHTLS-SG/docs/extra/spec.
html
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4.2 Multi-Band Spectral Component Analysis Deblending Tool: MuSCADeT

In this section we reproduce the pre-print of the publication Joseph et al. (2016) that gives

the details of the algorithm we developed to separate sources with different colours. The

modelling of colours in multi-band images is explained in section 2. The algorithm was tested

on simulated data as well as on a few postage stamps taken from the HFF. These tests revealed

our method well suited for the separation of background lensed galaxies from foreground

the light intra-cluster light (ICL ) of early type, cluster member galaxies. In addition to this,

the colour separation was applied to a cluster member spiral galaxy that presents a red bulge

with extended blue spiral arms. We show that the spiral arms can be separated from the

red component and reconstructed even at locations were the components are completely

overlapping.
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ABSTRACT

We introduce a new algorithm for colour separation and deblending of multi-band astronomical images called MuSCADeT which is
based on Morpho-spectral Component Analysis of multi-band images. The MuSCADeT algorithm takes advantage of the sparsity of
astronomical objects in morphological dictionaries such as wavelets and their differences in spectral energy distribution (SED) across
multi-band observations. This allows us to devise a model independent and automated approach to separate objects with different
colours. We show with simulations that we are able to separate highly blended objects and that our algorithm is robust against SED
variations of objects across the field of view. To confront our algorithm with real data, we use HST images of the strong lensing galaxy
cluster MACS J1149+2223 and we show that MuSCADeT performs better than traditional profile-fitting techniques in deblending the
foreground lensing galaxies from background lensed galaxies. Although the main driver for our work is the deblending of strong
gravitational lenses, our method is fit to be used for any purpose related to deblending of objects in astronomical images. An example
of such an application is the separation of the red and blue stellar populations of a spiral galaxy in the galaxy cluster Abell 2744.
We provide a python package along with all simulations and routines used in this paper to contribute to reproducible research efforts.
Codes can be found at http://lastro.epfl.ch/page-126973.html.

Key words. Methods: data analysis – Gravitational lensing: strong – Galaxies: surveys – stellar populations

1. Introduction

Astronomical objects are often seen merged or blended on the
plane of the sky. This blending can be apparent, because objects
at different distances are seen in projection on the plane of the
sky or, real, because different objects at the same distance are
physically overlapping.

Whatever the reason for the blending, reliable deblending
techniques are mandatory for astrophysical projects to meet their
scientific objectives. Among the many possible examples, blends
of galaxies of different colours can impact performances of pho-
tometric redshift algorithms (e.g. Pérez-González et al. 2010;
Bellagamba et al. 2012; Parker et al. 2012; Hsu et al. 2014) and
conclusions of stellar populations studies (e.g. Yan et al. 2014).
Obviously, blending also affects the determination of morpho-
logical properties of astronomical objects, for example the shape
measurement of faint galaxies in weak lensing cosmological sur-
veys (e.g. Chang et al. 2013; Arneson 2013). In strong gravita-
tional lensing, deblending of the foreground lensing object from
the background lensed sources is essential, for example as shown
at galaxy scale by Gavazzi et al. (2007) and at cluster-scale by
Massey et al. (2015). This is true for at least two reasons. First,
one needs to map the visible mass in the lensing object precisely,
either to use it as a prior to guide the lens modelling or to infer
the mass-to-light ratio in the lens. Second, the image of lensed
source must be isolated in the best possible way. Any faint ex-
tended arc-like structure, clump, or star-forming region must be
seen precisely with minimum light contamination from the lens-
ing object. Our ability to constrain the mass model is completely

driven by the amount of details seen in the lensed source, which
represent as many observational constraints.

Many of the current techniques to deblend astronomical ob-
jects are limited to analytical modelling of their light distribution
either in single band (e.g. PSFex, Bertin 2011) or multi bands,
sometimes including a simultaneous fit of many overlapping ob-
jects (Megamorph; Vika et al. 2013, 2015). Alternatively, some
methods make use of high resolution images to flag blended ob-
jects and then measure them at different wavelengths using im-
ages of lower spatial resolution (e.g. Laidler et al. 2007). Popular
softwares like Sextractor (Bertin & Arnouts 1996) use image
segmentation to separate blends, which is a technique that was
further improved by Zheng et al. (2015). Other techniques in-
clude machine learning, recently used in the area of strong grav-
itational lensing to subtract the light of bright galaxies and to
unveil possible lensed background objects without invoking any
analytical representation of the galaxies to subtract. This tech-
nique is based on a principal component decomposition of the
galaxy images using large samples of single-band imaging data
(Joseph et al. 2014). A step forwards is to use multi-band im-
ages to separate the objects in the lens plane and source plane,
also using the colour information. Recent methods have started
to make use of multi-band information and combine source po-
sition from high resolution images with profile fitting to deblend
lower resolution bands (Merlin et al. 2015). Another example is
given in Hocking et al. (2015) where neural networks are used
to identify objects with different colours in multi-band images.

With the current burst of wide-field sky surveys (DES, KIDS,
HSC, Euclid, LSST and WFIRST), data in many optical and
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near-IR bands will become available. The present paper de-
scribes a technique taking advantage of these multi-band data to
address the deblending problem using both colour information
and a spatial prior, but not involving any analytical modelling
of the light distribution of the lensed and lensing objects. Our
work is based on a multi-channel extension of the morphological
component analysis (MCA) presented in Starck et al. (2004). We
illustrate the performances of the algorithm with numerical ex-
periments and with real HST data of strong gravitational lenses.

This paper is organised as follows: In section 2, we intro-
duce the mathematical model we use to understand and sep-
arate objects with different colours. In section 3, we describe
the mathematical technique used to solve the problem of colour
separation in our approach, that is to say morphological com-
ponent analysis. In section 4, we detail our implementation of
the MuSCADeT algorithm. Section 5 shows the performance of
our algorithm on simulations that test realistic problems encoun-
tered in deblending. We apply our method to real astronomical
images from the Hubble Space Telescope in section 6 with the
galaxy clusters MACS J1149+2223 and Abell 2744. We com-
pare our results with current model fitting methods. Section A
provides useful information to reproduce our results from the
code we made freely available.

2. Deblending and strong lensing

2.1. The source separation problem

We assume the observed data {yi}i=1,..,Nb in the band i can be rep-
resented as

yi[k] =

No∑

j=1

si, jo j[k] + zi[k], (1)

where o j are the different observed sources, si, j is the contri-
bution of the j-th source in the observation yi, No the number
of sources, Nb the number of bands, zi is an additive Gaussian
noise, k is the pixel index (k = 1...Np), and Np is the number of
pixels.

The parameter s∗, j corresponds to the spectral energy distri-
bution (SED) of the source o j. The deblending problem consists
in finding the different objects o j, which is somewhat compli-
cated since their SED are not known and even the number of
objects is not known.

However, several galaxies may have similar colour proper-
ties and, therefore, share the same SED, so we can simplify Eq. 1
by considering the data containing only Ns groups of sources,
such as, for instance early- and late-type galaxies, and we can
restrict the deblending problem to only extract these two groups.
We note x j ( j = 1..Ns) the image which contains the sum of all

objects belonging to the group j, i.e. x j[k] =
∑N( j)

o
l=1

ol[k], where

N( j)
o is the number of sources in the group j. We can write

yi[k] =

Ns∑

j=1

ai, j x j[k] + zi[k]. (2)

Even if this equation looks very similar to Eq. 1, it is in fact sim-
pler since Ns is smaller than No. As a given component x j con-
tains several astrophysical sources, it also gives us more statistics
to derive its SED. This linear mixture model can be recast in the
following matrix form

Y = AX + Z, (3)

Fig. 1. Illustration of the blind source separation in the case of
two sources. To make the figure simple, the images in each band
are represented as lines in the Y matrix. Sources are lines in the
X matrix. On the sketch we figure a red object in the first source
and two blue objects in the second source. Matrix A contains the
mixing coefficients that allow various combinations of elements
of X to produce Y .

where Y is a Nb ×Np matrix, A is the SED mixing matrix, and X
is the Ns × Np matrix, which contains the components x j.

To sum up, we consider that each band is a weighted mix of
ns colour components. In the statistical literature, each compo-
nent is called a source (and it should not be mixed with an astro-
physical source). This general problem is called a blind source
separation problem (BSS), i.e. estimating both A and X knowing
only Y . The weight for a given source is the value of the associ-
ated SED at the corresponding wavelength. Figure 1 illustrates
the BSS in the case of two sources relative to two populations of
galaxies (red and blue galaxies in the figure).

2.2. Determination of the mixing matrix A

The A matrix is central to modelling of multi-band data as it de-
scribes the contribution of the different sources to the images
taken at different wavelengths. In practice, the elements of A
are the SEDs of the objects in the sources X. They can be as-
sumed, for example as template spectra for objects of a given
type, or they can be measured because spectroscopic data are
available for at least some of the objects in the field of view. In
most cases, however, the matrix A needs to be estimated solely
from the multi-band imaging data, Y . In order to do this, we use
a method based on a principal component analysis (PCA; Jolliffe
1986) of the data.

We consider the multi-band data as an ensemble of vec-
tors {yi=1..Nb [k]}, where the pixel values in band i at the spa-
tial location k are stored in yi[k], as previously. In other words,
{yi=1..Nb [k]} is the measured SED at location k.

Following our definition of a source, two pixels belonging to
a given source x have proportional SEDs. To build the mixing
matrix A, one solution is to preselect obvious objects belong-
ing to a same source and to average their SEDs, thus approxi-
mating the mixing coefficients corresponding to their source. A
more subtle way to do this is to perform a principal component
analysis of all SEDs belonging to bright objects and to look for
proportional vectors. The details of this procedure can be sum-
marised as follows:

– We select the brightest objects in all bands and perform the
PCA of the SEDs at pixel locations with high signal to noise.
In practice, this is done by applying a wavelet filtering of all
bands. Also, to save computation time, we rebin images to
64 × 64 pixels in size.

– We perform a clustering analysis of the first two PCA com-
ponents: the linearity and orthogonality of the PCA decom-
position implies that proportional vectors see their respec-
tive PCA coefficients distributed along the same hyperplane

2
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in the PCA space. In other words, vectors with proportional
SEDs have their first two components, PC1 and PC2, dis-
tributed along lines in the PC1-PC2 space, as illustrated in
Fig. 2,

– We identify the SEDs that have proportional PC1 and PC2
coefficients and average them. Coefficients that are judged
too faint or too ambiguous (i.e. they could be a mix of both
sources) are rejected,

– We store the resulting mean SEDs as a column in the A ma-
trix.

This algorithm shows good results in identifying objects with
different dominant colours (Fig. 2), but its capabilities in terms
of deblending are rather limited when distinct sources spatially
overlap. The above PCA analysis is only a spectral analysis. The
MCA method proposed in this paper combines the strengths of
the morphological analysis and spectral analysis to design a re-
liable deblending algorithm.

3. Morphological component analysis

The morphological component analysis (MCA) method (Starck
et al. 2004; Starck et al. 2010) allows us to separate several com-
ponents in a given image based on their morphological diversity.
Indeed, it was shown that it is possible to disentangle two (or
more) signals mixed into one observable, this is only based on
the fact that each of those signals can be sparsely represented
in their respective data representation domains, called dictionar-
ies, but not in the other’s. For instance, one could separate a
periodic signal from a Gaussian profile in an image based on
Fourier transform (associated with the periodic signal) and the
wavelet transform (for the Gaussian profile). The projection of
the mixing over the Fourier dictionary shows enhanced contribu-
tion from the periodic component whereas wavelet space shows
higher coefficients for the Gaussian component.

3.1. Separation using a sparsity prior

MCA is based on the concept of sparse signal representation.
A signal is sparse in a dictionary Φ when it can be well repre-
sented, such that x = Φα =

∑
i φiαi and only few coefficients

α are different from zero. Some dictionaries, such as Fourier
or wavelets, have implicit fast transformation and reconstruction
operators that allows us to derive the coefficients α from x (and
also to derive x from α) efficiently without having the elements
of matrix Φ in memory. In inverse problems, a sparse solution
is imposed by adding an �0-norm penalisation term to the data
fidelity attachment term. MCA is an iterative algorithm, which
separates a single image Y into J components x j, by solving

min
x1,...,xJ

J∑

j=1

‖ Φ∗x j ‖0 s.t. ‖ Y −
J∑

j=1

x j ‖2≤ σ, (4)

whereΦ∗x = α andσ is the noise standard deviation of the noise.
Full details can be found in Starck et al. (2010). This method has
been used to extract filamentary clouds in Herschel data (André
et al. 2010) or, more recently, to improve SNIa detection in the
SuperNova Legacy Survey data set (Möller et al. 2015).

3.2. Multi-band dictionaries

As we have multi-band data, we need to use morpho-spectral
diversity. The dictionary Φi related to a given component xi is

therefore a tensorial product of a spectral dictionary S j with the
spatial dictionary Ψ j, i.e. Φ j = S jΨ j

3.2.1. Spatial dictionary

In the case of strong lensing, the diversity between the com-
ponents is mainly related to a different spectral morphology.
Therefore we can reasonably use the same spatial dictionary,
and in this strong lensing application we use the starlet dictio-
nary (Starck et al. 2007). Starlet transform is an isotropic, un-
decimated wavelet transform that is computed using consecutive
convolutions by a B−spline profile as a scaling function (Starck
& Murtagh 2007). The resulting starlet representation is an over-
complete set of coefficients that represent variations in an image
at different scales, and is particularly suited to represent astro-
nomical images (Starck & Murtagh 2006).

3.2.2. Morpho-spectral dictionary

We note Ψ the starlet dictionary, we have x j = Ψα j where α j
are the starlet coefficients of the jth source. A good choice for
the morpho-spectral dictionary is to take Φ j = a jΨ, where a j
is the jth column of the matrix A. The data attachment term for
multichannel data can be written as

L = ‖ Y −
J∑

j=1

Φ jα j ‖2=‖ Y −
J∑

j=1

a jΨα j ‖2

= ‖ Y −
J∑

j=1

a jx j ‖2=‖ Y − AX ‖2 . (5)

The multichannel MCA hence consists in changing the data at-
tachment term only, and we need to solve

min
X

J∑

j=1

‖ Ψ∗x j ‖0 s.t. ‖ Y − AX ‖2≤ σ. (6)

3.2.3. Lagrangian form and positivity

The sparse recovery problem can be formulated under an aug-
mented Lagrangian form

min
X
‖ Y − AX ‖2 +

J∑

j=1

λ j ‖ Ψ∗x j ‖0 (7)

and we can add a positivity constraint to the solution, so we need
to solve

min
X
‖ Y − AX ‖2 +

J∑

j=1

λ j ‖ Ψ∗x j ‖0 s.t. ∀ j, x j ≥ 0, (8)

where λ j accounts for the sparsity of each component x j in
its own morpho-spectral dictionary. The next section describes
how this equation can be solved.

4. MuSCADeT algorithm

The strong lens sparse deblending iterative algorithm
(MuSCADeT) is an extension of the MCA algorithm, con-
sisting in applying at each iteration three main steps:

1. Perform a gradient step: U = X(n) + μAt(Y − AX(n)).

3
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Fig. 2. Illustration of the PCA colour selection. Left: HST image of the ”Refsdal lens” in the galaxy cluster MACS J1149.6+2223.
Middle: distribution of the first two PCA coefficients. The red and green dots correspond to the coefficients attributed to the first and
second sources by MuSCADeT, respectively. Blue dots are rejected coefficients. Right: corresponding spatial distribution of colours
as detected via PCA.

2. Solve for each j: minx(n+1)
j
‖ u j − x(n+1)

j || + λ j ‖ Ψ∗x(n+1)
j ‖0,

and set to zero negative entries in x(n+1)
j .

3. Decrease λ j.

In this algorithm μ is the gradient step, derived from the 2-
norm of matrix A (Higham 1992) such that μ = 2/||A||2.

This algorithm is also directly related to the proximal
forward-backward algorithm (Combettes & Wajs 2005). A very
nice aspect of this algorithm is that the minimisation involved
in the second step do not require any iteration, and is obtained

by x(n+1)
j = ΔΨ,λ j (u j), where ΔΨ,λ j is the operator which per-

forms the starlet transform, hard thresholds the starlet coeffi-
cients, and reconstructs an image from the thresholded coeffi-
cients. Here, λ j is the threshold that allows us to select only
coefficients that are significant enough to represent the signal.
Thresholds are updated at each iteration as described in the fol-
lowing paragraphs. Full details can be found in Starck et al.
(2010). Pseudo-algorithm 1 shows the principle of this itera-
tive scheme. MuSCADeT is an iterative process that alternates
between a gradient step (line 6) and a filtering of the components
in transformed space through iterative hard thresholding (line 9)
.

Algorithm 1 MuSCADeT algorithm

1: procedure MuSCADeT(Y,K, A, J,Niter)
2: X̃ ← 0
3: for 0 < i ≤ Niter do
4: R = μ(AT (Y − AX̃))
5: Update λ
6: X̃ ← X̃ + R
7: λ← mi( λ−K

Niter−i−6
,MOM(X))

8: for 0 < j ≤ J do
9: x̃ j ← ΔΨλ j (x̃ j)

10: end for
11: end for
12: return X̃
13: end procedure

4.1. Thresholding strategy

Thresholding aims at selecting the coefficients in transformed
space that allow us to reconstruct the desired signal only. In this

case, this means that for a given component, we want to select
coefficients above noise level that accounts for this component
and not for the others. It is therefore crucial to devise an adequate
method to adapt thresholds at each iteration of algorithm 1.

Since each iteration moves our solution for components
closer to a good separation, the thresholds have to be decreased
to capture fainter and fainter structures. A classical way is to
operate a linear decrease for instance, where values for λ j are
linearly sampled between an initial threshold chosen high above
noise levels and a sensitivity value K. In general, K is chosen
between three and five. The sensitivity value three allows for
good completeness of detected coefficients and five ensures a
selection that is free from noise-related coefficients. Noise lev-
els are computed using median absolute deviation (Donoho &
Johnstone 1994). Although linear or exponential laws are well
suited to such problems (Starck et al. 2004), we choose here to
rely on a more adaptive strategy based on minimum of maxi-
mums (MOM, see Bobin et al. 2007):

At each iteration, we simply estimate the maximum coeffi-
cient of each component in its own morpho-spectral dictionary
and choose the smallest maxima plus a margin as a threshold. If
the result is smaller than the threshold given by a linear decrease,
the threshold is updated with the value estimated from MOM as
illustrated in line 7 of the MuSCADeT algorithm (1). Full details
on this thresholding scheme can be found in Starck et al. (2010).

5. Tests on simulations

In this section, we present several tests conducted on simulated
multi-band images that emulate realistic problems. We show
that MuSCADeT is able to separate highly blended sources and
is robust to the approximation made that several astronomical
sources (e.g. galaxies in a cluster) with similar but, not identical,
SEDs can be considered a single source.

5.1. Simulations

In all following simulations we generate objects with Gaussian
profiles and realistic SEDs. For the first two simulations, all
SEDs were extracted from real HST observations of the galaxy
cluster MACS J1149+2223 cluster (Kelly et al. 2015) using the
PCA method described in Sect. 2.2. Each simulation comprises
seven bands. We also add a white Gaussian noise with standard

4
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Fig. 3. Source separation with MuSCADeT in the case of a simple colour separation with SEDs estimated from PCA. From left to
right: original simulated image of colour sources, first and second components (elements of X in eq. 3) as extracted by MuSCADeT,
and the residual image after subtracting both components from the original image.

Fig. 4. Separation of blended sources with SEDs estimated from PCA (as in Fig. 3).

Fig. 5. Left: part of an HST image of the galaxy cluster MACS J1149+2223, where the four objects used to extract SEDs are
indicated with red contours. Middle: extracted SEDs. Each curve corresponds to the SEDs of the galaxies circled in red in the
first panel. Right: simulated SEDs. The seven red SEDs are used to produce the upper row of galaxies in Fig. 6. The blue SEDs
correspond to the lower row of galaxies (see text).

deviation σ = 0.01. An example of the impact of higher noise
levels on our image separation is given in appendix B.

We first apply MuSCADeT to data with four red objects with
exactly the same SED and four blue objects with exactly the
same SED. All objects have elliptical Gaussian profiles. Three
of the simulated bands are used to produce the colour image in
Fig. 3. Results of the separation after 100 iterations of MuSCADeT
are shown in the other panels of fig 3. We observe no contam-
ination between sources since no structure contaminates either
component. Since the residuals present no structure, we also
conclude that each component has been fully reconstructed.

The second simulation tests the deblending capacities of our
algorithm in the ideal case where there is no SED variation be-

tween objects of a same component. We generate an extended el-
liptical Gaussian profile at the centre of the image affected with
a red SED. Thirteen blue profiles are evenly spread between the
centre and edges of the image such that profiles at the centre are
completely blended. Results of the separation are shown in Fig. 4
along with a colour image of our simulated objects. No con-
tamination between sources is visible either and residuals show
no structure. We see in particular no difference between blue
sources at the centre of the image (the most blended ones) and
blue sources on the edges (less blended), meaning that the de-
blending of each profile is successful whether a profile is highly
blended or not. We used 200 iterations of MuSCADeT to produce
this result.
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Fig. 6. Results of a separation of sources with poorly known SEDs (as in Fig. 3).

The last simulation tests the robustness of our algorithm to
SED variation across objects from a same component. To ac-
count for realistic SED variation, we extracted the SEDs from
four red galaxies in the MACS J1149+2223 cluster (see 5),
which appear to have the same colour by integrating the flux in
each galaxy profile. The resulting SEDs can be seen in the mid-
dle panel of fig 5. We recorded the slopes of the SEDs and gener-
ated a set of eight slopes linearly spread between the maximum
and minimum slope estimated. These slopes are then applied to
SEDs extracted from cluster MACS J1149+2223 via PCA (see
Fig. 5). This way, we have two sets of SEDs that account for
red and blue sources and that mimic a range of variations as ob-
served in real images. Sixteen Gaussian profiles (eight red, eight
blue) are then generated and each of them is associated with one
of the previously generated SEDs. The left panel of Fig. 6 shows
three bands of the simulated images as RGB images. Figure 6
shows a colour image of our simulated images and the result of
a separation by MuSCADeT. We see again that no structure ap-
pears in the residuals and no contamination is found between
components. However, the great similarity between SEDs from
different components forced us to increase the number of itera-
tions of MuSCADeT to 5000 in order to obtain such results, thus
increasing computation time. In each, we used the full algorithm
described in this paper including an automated estimation of
SEDs through PCA.

6. Application to real data

6.1. Lens-source separation on MACS J1149+2223

We now apply MuSCADeT to real multi-band data and we com-
pare the performances to traditional model fitting.

We use the deep HST data set of the galaxy cluster
MACS J1149+2223 (”Refsdal SN”; Kelly et al. 2015) to carry
out this experiment, we show bright cluster members producing
strongly lensed images of a distant spiral galaxies with clumpy
structures. Our goal is to separate the data into two sources con-
taining the foreground lens galaxies and background lensed ob-
ject(s). As the cluster contains many member galaxies and as the
background galaxy has complex structure, the deblending task is
challenging, making this data set a good test for our method.

MACS J1149+2223 has been observed with the ACS in
seven bands: F435W, F475W, F555W, F606W, F625W, F775W
and F814W (proposal ID: 12068, principal investigator: M.
Postman), providing a good spectral coverage for MuSCADeT to
work. The data are publicly available from the STScI website1

1 https://archive.stsci.edu/

and drizzled so that the combined frames in each band have the
same orientation and pixel scale.

We estimate both SEDs in the mixing matrix using our PCA
technique. The result after 2000 iterations of MuSCADeT is shown
in Fig. 7, where the two separated sources are shown in the mid-
dle panels. In the two lower panels of the figure, we also show
the result of the subtraction of source 1 and source 2 from the
original data. The colour scale in these images is the same as
in the original data. The overall residual image, i.e. with both
sources subtracted from the data, is shown with ±5σ cut levels.

The source separation works very well, with the exception
of a few objects with ”green” SEDs. One such object is visi-
ble in the centre of the image, resulting in a signal in both red
and blue sources. This is an intrinsic limitation to our algorithm
that separates objects using a limited number of sources, each
one with its own SED. Although the SEDs do not need to be
known perfectly (as shown in our tests with simulated images),
objects with SEDs falling ”in between” the SEDs allocated to
each source, may lead to inaccurate separation. A possible miti-
gation strategy is to add extra sources to the decomposition with
for example a blue, a green, and a red SED. Deciding whether to
do this or not depends on the exact scientific application.

In our example, we do not take the PSF convolution into ac-
count. A variation of the PSF with wavelength can introduce
artefacts in the separation, especially for objects whose angu-
lar size is comparable with the size of the PSF. The central parts
of galaxies show such structures and, indeed, in the present data
small structures are seen in the residual image at the location of
the foreground galaxies. Introducing the PSF convolution can be
done in principle, and it might be needed at least for some ap-
plications, but at a cost of increased computation time and com-
plexity in the minimisation process.

6.1.1. Comparison with profile fitting

A popular way to carry out source separation in galaxy clusters is
to fit two-dimensional profiles to the cluster members and to sub-
tract from the data. We apply such a procedure to the HST data of
the MACS J1149+2223 cluster and compare with MuSCADeT. In
this exercise, we identified nine red objects with elliptical pro-
files that we fit using the galfit (Peng et al. 2002) software.
Each red object is fitted with either one or two Sersic profiles
depending on its morphology. Fitting is performed in each of
the three bands used to build the colour image (F475W, F606W,
and F814W) using the same initial conditions. Since no PSF was
used in applying MuSCADeT to this cluster, we used a Dirac func-
tion as an input PSF for galfit. The result is presented in the
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Fig. 7. Application of MuSCADeT to the MACSJ1149+2223 cluster. Top left: colour image generated using the F475W, F606W, and
F814W bands. Our goal is to separate the foreground cluster galaxies (red) from the background lensed galaxy (blue). Middle: the
two sources extracted with 2000 iterations of MuSCADeT. Bottom left: original image minus the blue source found by MuSCADeT.
Bottom right: same as the bottom left, with the red source subtracted. Top right: residual image obtained after subtraction of the two
estimated sources from the original data.
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Fig. 8. Comparison between the MuSCADeT and that galfit separations. The original colour image of MACS J1149+2223 is shown
on the left, followed by the galfit subtraction of the galaxy members and the subtraction using MuSCADeT. The colour cuts are
exactly the same in all three images. The red ellipse in the middle panel indicates an area where the galfit fit leads to under-
subtraction of a galaxy halo.

middle panel of Fig. 8 along with the MuSCADeT result. We note
that:

– Profile fitting leaves significant artefacts in the central parts
of the fitted galaxies even when a double Sersic model is
used.

– Profile fitting does not model the extended halos of galaxies
well, as shown in the circled region in middle panel of Fig. 8.
This is both because extended halos are not simple analytical
profiles and because the many background lensed structures
influence the fit. In principle, these structures can be masked
but 1- designing the mask can be difficult and is time con-
suming, 2- in some parts of the image there is no clean area
with no contamination by the background object. The mask
would take the majority of the data.

– The top left lensed image appears to be more blue af-
ter galfit’s run than with MuSCADeT. This could mean
that MuSCADeT performs badly at extracting extended halo.
However, it would imply that too much signal from the red
source has been attributed to the blue source. Therefore,
when subtracting the blue source from the original images
one would see holes in the extended profiles of the red galax-
ies that are not observed here (see lower left panel of Fig. 7).
This implies that galfit is overfitting the extend halo to
compensate for blue structures, as pointed out in the previ-
ous note, thus removing part of the flux from blue sources.

– The human time involved in profile fitting can be a limiting
factor for large data sets. The user has to decide where to put
a galaxy and to find a strategy to estimate the initial guesses
for the many parameters involved in the fit. MuSCADeT is
fully automated procedure with only one parameter to be
chosen, i.e. the sensitivity value K involved in the threshod-
ing scheme.

6.2. Bulge-disk separation on spiral galaxy in Abell 2744

Another possible application of our algorithm is the separa-
tion of coloured disk and bulge components in a spiral galaxy.
To illustrate this, we use a spiral galaxy in the galaxy cluster
Abell 2744, which was imaged with the HST as part of the
Hubble Frontier Fields programme.

Abell 2744 was observed with the ACS in three bands:
F435W, F606W, and F814W, resulting in the colour image in
Fig. 9(Proposal ID: 11689, principal investigator: R. Dupke).
The data are publicly available from the STScI website2 and
drizzled so that the combined frames in each band have the same
orientation and pixel scale.

Spiral galaxies represent an obvious test bench for our algo-
rithm as they are composed of a red bulge of older stars and of a
blue disk dominated by young stars. The ability to separate both
colour components in an unbiased way allows us to trace stel-
lar populations in galaxies and/or highlight morphological rela-
tions between bulge and disk shapes. Numerous examples can be
found in the literature of studies where bulge and disk compo-
nents are separated morphologically, using profile-fitting tech-
niques featuring Sersic, exponential, or DeVaucouleurs func-
tions in either single or multiple bands (e.g. Vika et al. 2014;
Maltby et al. 2012; Pastrav et al. 2013; Kendall et al. 2011).

With MusCADeT, we are able to capture the morphology of
the young and old stellar populations of the spiral galaxy in
Abell 2744 under the single assumption that they do not dis-
play the same colour. Our decomposition in Fig. 9 shows an
elliptical red bulge with extended and smooth features along
the spiral arms, which elliptical profile-fitting methods would
fail to model. The separation of the blended blue and red com-
ponents in Fig. 9 is overall excellent except for slight cross-
contamination of the two colour channels due to features smaller
than the PSF size. Adding the PSF in our separation technique is
under development. However, even without this refinement, the
decomposition presented in our example would be impossible to
achieve with profile-fitting techniques given the morphological
complexity of the galaxy.

7. Conclusion

We have developed a new model-independent tool to deblend the
images of astronomical objects based on their colour contrast.
This is made possible via modern techniques for image analysis
based on sparsity of objects in an appropriate dictionary.

More specifically, we created a morpho-spectral dictionary
combining Starlets and SEDs to separate images of galaxies with

2 https://archive.stsci.edu/pub/hlsp/frontier/
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Fig. 9. Separation of the red and blue stellar populations in a spiral galaxy. From left to right we show the original HST colour
image of a spiral galaxy in the galaxy cluster Abell 2744, the same colour image after subtraction of the blue component estimated
with MuSCADeT, the colour image after subtraction of the red component estimated with MuSCADeT, and the residual image after
subtraction of both components. The three first images have the same colour cuts. The residuals are shown with cut levels set to five
times the noise level in each colour channel.

different colours. We show from simulated data that our algo-
rithm is robust against very strong blending as well as against
SED variations among objects belonging to the same colour
component (source) of our model. SED variations across the
field result in an increase of the computing time by one order
of magnitude with respect to the ideal case where all objects in a
given source have the same SED. This does not hamper a reliable
source separation, however.

The method is successfully applied to the deep HST images
of the galaxy cluster MACS J1149+2223, in which we sepa-
rate the foreground red galaxies from background blue clumpy
lensed galaxies, and to Abell 2744, where we separate the red
and blue stellar populations of a spiral galaxy. This is done in an
automated way and with better efficiency that with standard pro-
file fitting. All codes used to produce the results presented here
are made freely available for the sake of reproducible research
and to make our tool usable for the community.

Future developments of our method include accounting for
the PSF in each band and including explicit SED variations
across the field of view. These SED variations multiply the com-
plexity of the problem by Np × Ns × Nb, but the effect of the
increased complexity can likely be minimised by using sparse
priors and physical constrains on the SED profiles. Also, the in-
creased computation time resulting from the extra complexity
should be partially compensated by a reduced number of itera-
tions.

The deblending method described here was devised speci-
fically to address the problem of object deblending in the case
of strong lensing systems. Deblending is essential in this case
to see small and faint details in the lensed structures, which are
free of contamination by the bright foreground. The range of ap-
plications of the method is nevertheless much broader. Among
the numerous possible applications are the identification of star-
forming regions in galaxies, model-independent bulge-disk de-
compositions of galaxies, or even the improvement of photomet-
ric redshift in large sky surveys where blending can be a serious
issue given the depth of the data.
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Appendix A: Reproducible research

In the spirit of carrying out reproducible research, we make
pubic all codes and resulting products describes in this paper.
Table A.1 lists all products that will be made available along
with this paper. The MuSCADeT itself is made available as well
as input files and routines needed for all benchmark tests and for
the application to real data. The routines provide simple exam-
ples of how to execute the MuSCADeT algorithm. We encourage
potential users to modify them as they wish for their own scien-
tific applications.

Appendix B: Deblending noisy data with known
SED

We show here that the MuSCADeT algorithm is capable of sepa-
rating blended sources even in the case of high noise levels. We
generate simulations of blended objects as in Fig. 4, but with a
noise level ten times larger. The high noise levels along with the
strong blending make it hard for the PCA estimator to estimate
a good SED for the separation.

Although the PCA technique fails in such conditions, the
main feature of our algorithm, which is the morphological com-
ponent analysis-based inversion, still manages to estimate good
sources. The price to pay in this case is that the SEDs must be
known. Figure B.1 shows the result of a separation performed by
MuSCADeT on very noisy data using known SEDs, showing that
our algorithm is still able to separate sources. Our PCA SED
estimator might replaced in the near future to cope with noisy
data. For the present example, we decided to show the residu-
als after separation of both colour components (middle panels of
Fig. B.1) to show that we estimate the sources down to the noise
level.
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Product name Type Description
Software products:
MuSCADeT python package includes MuSCADeT implementation and visualisation tools
Routines:
Example simple.py code (python) routines to reproduce Fig. 3.
Example big.py code (python) routines to reproduce Fig. 4.
Example real.py code (python) routines to reproduce Fig. 6.
Example refsdal.py code (python) routines to reproduce Fig. 7.
Example 2744.py code (python) routines to reproduce Fig. 9.
Example SNR.py code (python) routines to reproduce Fig. B.1.
Example nottoosimple.py code (python) An other example of a MuSCADeT run on simulations.
Simulations:
Cube.fits fits data cube cube with all simulated images for each benchmark
Simu A.fits fits table table with the simulated spectra used in our simulations

Table A.1. List of products made available in this paper in the spirit of reproducible research. All above material is available here:
http://lastro.epfl.ch/page-126973.html.

Fig. B.1. Separation of blended sources at low S/N. From left to right are shown the original simulated images, the original image
after subtraction of the blue component as estimated from MuSCADeT, the original image after subtraction of the red component and
the residual image after subtraction of both components.
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Figure 4.3 – The generation of a colour image from the superimposition of three colour filter
images.

We attract the reader’s attention on the fact that this publication and the baseline MuSCADeT

algorithm neglects the convolution of the images by the PSF of the telescope. Because the

size of the telescope’s diffraction figure depends on the frequency we should correct for the

PSF variation across bands. In our applications to HST the small size of the PSF in the optical

domain lead us to make the approximation that the PSF was constant in order to decrease the

computation time and to avoid the steps of estimating the PSF for each HST band.

4.3 Application to Cluster Lensing

In cluster lensing large fields of views are occupied by bright red cluster-member galaxies

that act as lenses for background, predominantly blue sources. Some of these background

sources end up to extremely high redshift galaxies that are magnified by the cluster and that

would otherwise not be observable (Oesch et al., 2016). In order to understand how these

background sources are magnified, it is paramount that we be able to build accurate models

of the mass distribution in these clusters. The mass distribution of clusters is also a excellent

probe for the nature of dark matter. As we have seen in chapter 1, merging clusters allow

us to put constraints on the dark matter cross section (Harvey et al., 2015). Some extremely

massive clusters can help us challenge or confirm our current models for dark matter by

showing possible discrepancies between the number of structures found in simulations and

observational data.

In order to establish these lens models, it is necessary to identified multiply imaged lensed
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sources that will inform us about the deflection angles met by these images. While multiply

imaged sources are confirmed by spectral identification of common features, the first method

for the selection of background sources is the visual inspection and pre-selection of lensed

objects. Efforts are currently being made to create automated methods for multiply-imaged

source identification (Mahler et al., 2015), that rely on the matching of the SEDs of image pairs.

Nevertheless, these two approaches rely on the careful subtraction of the foreground ICL. In

visual inspection, the subtraction of the foreground red objects helps identifying potentially

lensed sources hidden in the glare of the bright cluster member. For the SED matching

technique, the ICL constitutes a major source of pollution for the SEDs of background objects.

So far, several techniques exist to remove the foreground component. A common approach

consists in fitting smooth elliptical profiles to the galaxy cluster members surface brightnesses

as recently done in Merlin et al. (2016). In Mahler et al. (2018), the authors remove the median

value in running windows of 1.3" on-a-side. This is the method used in the automated SED

matching technique. Livermore et al. (2017) identifies cluster members and subtract their

profile at different frequencies in the starlet domain. This approach actually supports ours in

the sense that the authors of Livermore et al. (2017) use the fact that background sources and

ICL are at different frequencies, at different positions. In MuSCADeT this property of the signals

complements the criteria provided by colour to separate objects.

In the following sections, we show several applications of MuSCAeT to various HST datasets.

4.3.1 Revealing hidden lensed sources

In this first application, we used MuSCADeT in a study of the dark matter distribution of cluster

Abell 3827. In a previous publication (Taylor et al., 2017), for which the pre-print is reproduced

in appendix C, we used MuSCADeT to remove the ICL of cluster Abell 3827 and identify potential

lensed sources at the background. This cluster is composed of four massive, bright elliptical

galaxies and a background extended blue source appears imaged four times around the

cluster. The subtraction revealed two low SNR objects behind the center of the cluster and

identified as part of demagnified counter-images of the lensed source. The detection of these

objects was supporting two observations made with the multi-unit spectroscopic explorer

(MUSE) instrument at the VLT. In a previous publication (Massey et al., 2015, see figure 3), the

subtraction of the ICL by way of an elliptical light profile fitting had revealed no demagnified

central image of the source, leading to the central image detected as a low SNR source by a first

MUSE observation, to be discarded. With MUSE and the ICL subtraction on HST data agreeing

to the presence of the central image, this detection was included in the lens modelling of the

cluster, thus improving the constraints.

In the previous publications Massey et al. (2015) and Taylor et al. (2017) had concluded to

an offset between the centres of the dark matter halos and the center of the light profile of

their corresponding galaxies as well as a low significance skewness of the dark matter profiles,

which would have been indicative of self-interacting dark matter. In the latter publication
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presented here, where ALMA (Atacama large millimeter/submilimeter array ) data helped

identifying multiple images, we found no evidence of such offset and skewness.

In these two publications (Taylor et al., 2017; Massey et al., 2018), my contribution was re-

stricted to the application of MuSCADeT to the HST images. In Taylor et al. (2017), MuSCADeT

was applied on the postage stamp containing the cluster, and the SEDs were taken from the

stamp directly. Due to the brightness of the cluster member galaxies and to two Milky-way

stars being in the field of view, the performance of MuSCADeT was not optimal and part of the

light from the ICL remained as a contaminant in the resulting image (Taylor et al., 2017, figure

1). In the second publication (Massey et al., 2018), the SEDs were optimised to represent the

red component by running the PCA estimator of the SED on regions presenting isolated red

and blue components. While the first publication is somewhat more relevant to my work, due

to this being the first published application of MuSCADeT, I incorporate the second publication

to the core of the thesis due to this being a non-detection paper. While the non detection of a

feature (in this case, offset and skewness), has a lesser and less spectacular impact, in the sense

that it did not challenge our current cosmological models, it is nonetheless worth reporting.

This constitutes a way of encouraging and supporting the reporting of non-detections, that

still contribute to our state of knowledge and report the production of relevant experiments.
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ABSTRACT

We present integral field spectroscopy of galaxy cluster Abell 3827, using ALMA
and VLT/MUSE. It reveals an unusual configuration of strong gravitational lensing
in the cluster core, with at least seven lensed images of a single background spiral
galaxy. Lens modelling based on HST imaging had suggested that the dark matter
associated with one of the cluster’s central galaxies may be offset. The new spectro-
scopic data enable better subtraction of foreground light, and better identification of
multiple background images. The inferred distribution of dark matter is consistent
with being centered on the galaxies, as expected by ΛCDM. Each galaxy’s dark mat-
ter also appears to be symmetric. Whilst we do not find an offset between mass and
light (suggestive of self-interacting dark matter) as previously reported, the numeri-
cal simulations that have been performed to calibrate Abell 3827 indicate that offsets
and asymmetry are still worth looking for in collisions with particular geometries.
Meanwhile, ALMA proves exceptionally useful for strong lens image identifications.

Key words: dark matter — astroparticle physics — galaxies: clusters: individual:
Abell 3827 — gravitational lensing: strong
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1 INTRODUCTION

Determining the properties of dark matter has become a pri-
ority of astrophysics and particle physics. In the standard
ΛCDM cosmological model, dark matter has significant in-
teractions with standard model particles through only the
gravitational force (e.g. Massey, Kitching & Richard 2010;
Kneib & Natarajan 2011). It therefore neither emits nor
absorbs light, and appears invisible. Nonetheless, over the
course of cosmic history, dark matter’s gravitational attrac-
tion assembled the Universe’s large-scale structure, and gov-
erned the evolution of galaxies. Dark matter has pulled to-
gether both ordinary and dark material into a series of col-
lisions – then eventual mergers – between ever-larger struc-
tures (Vogelsberger et al. 2014; Schaye et al. 2015).

Several particle physics theories of dark matter predict
additional forces between dark matter particles, hidden en-
tirely within the dark sector (Peter et al. 2012; Cyr-Racine
& Sigurdson 2013). The most direct way to measure these
hypothesised forces is to observe the trajectory of dark mat-
ter during collisions with other dark matter. In effect, astro-
physical mergers can be treated as enormous particle collid-
ers (Clowe et al. 2004, 2006; Bradač et al. 2008; Merten et
al. 2011; Clowe et al. 2012; Dawson et al. 2012; Gastaldello
et al. 2014; Chon & Böhringer 2015; Ng et al. 2015; Harvey
et al. 2015; Jee et al. 2016; Golovich et al. 2016, 2017; Kim,
Peter & Wittman 2017; Monteiro-Oliveira et al. 2017). In
simulated mergers assuming ΛCDM, the (non-interacting)
dark matter remains tightly bound near stars (Schaller et al.
2015). If dark-sector forces exist, simulations of mergers pre-
dict dark matter to temporarily lag behind stars, which serve
as collisionless test particles (Randall et al. 2008; Massey,
Kitching & Nagai 2011; Dawson et al. 2013; Harvey et al.
2014; Kahlhoefer et al. 2014; Robertson et al. 2017a,b). In
some simulations, the distribution of dark matter is also
stretched into asymmetric tails (Kahlhoefer et al. 2014).

Two properties of galaxy cluster Abell 3827
(RA=22h 01′ 49.′′1, Dec=−59◦ 57′ 15′′, z=0.099, De Plaa
et al. 2007; Carrasco et al. 2010; Williams & Saha 2011),
make it uniquely interesting for studies of dark matter
dynamics. First, the cluster core contains four similarly-
bright galaxies. They must be undergoing a simultaneous,
high speed merger, because this amount of substructure is
unique: most clusters have reached a steady state with only
a single Brightest Central Galaxy. Second, directly behind
the cluster core lies a spiral galaxy (z = 1.24145 ± 0.00002;
Massey et al. 2015) that is rich in morphological structure.
The background spiral galaxy has been gravitationally
lensed by the cluster, and its multiple images wrap around
all four of the central galaxies. These images can be used to
infer the spatial distribution of (dark plus stellar) mass in
the cluster and its galaxies.

One of Abell 3827’s central galaxies lies very close to a
set of gravitationally lensed images, so the distribution of its
mass is particularly well constrained. Analysis of the gravita-
tional lensing in optical imaging suggested that this galaxy’s
dark matter is offset by 1.62+0.47

−0.49 kpc from its stars (Massey
et al. 2015), and possibly asymmetric (Taylor et al. 2017).
This could have been caused by a dark sector force with in-
teraction cross-section σ/m >∼ 1cm2/g, where m is the (un-
known) mass of the dark matter particle (Kahlhoefer et al.
2015). The most difficult part of this analysis was the iden-

tification of features in the faint, background spiral, right
next to a very bright foreground galaxy (see Appendix B in
Massey et al. 2015).

In this paper, we present new Integral Field Unit (i.e.
2D) spectroscopy of Abell 3827 at near-IR and millime-
tre wavelengths: where the foreground cluster is faint, but
the background spiral galaxy remains bright. We describe
the new data in section 2. We describe our analysis tech-
niques in section 3, and reconstruct the spatial distribu-
tion of dark matter in section 4. We discuss the conse-
quences of our results in section 5. Throughout this paper,
we adopt a cosmological model with ΩM = 0.3, ΩΛ = 0.7 and
H0 = 70 km/s/Mpc, in which 1′′ corresponds to 1.828 kpc
at the redshift of the cluster. Adjusting this cosmological
model perturbs the inferred physical distances, and the ab-
solute normalisation of inferred masses.

2 DATA

2.1 Pre-existing imaging

Broad-band imaging of Abell 3827 has been obtained by
the Gemini telescope at optical wavelengths (Carrasco et al.
2010) and by the Hubble Space Telescope (HST; programme
GO-12817) in the F336W (UV), F606W and F814W (opti-
cal) and F160W (IR) bands (Massey et al. 2015).

This revealed four similarly-bright elliptical galaxies
(N1–N4) within 10 kpc radius, and a background lensed spi-
ral galaxy (with a red bulge and blue spiral arms), whose
multiple images are threaded throughout the cluster core.
In this paper, we exclusively use the HST imaging. As de-
scribed in Taylor et al. (2017), we reveal the background
lensed galaxy by fitting and subtracting foreground emis-
sion from the five brightest cluster galaxies and two Milky
Way stars using the MuSCADeT method (Joseph, Courbin
& Starck 2016) (figure 1).

2.2 ALMA integral field spectroscopy

In October 2016, we obtained a 5.2 hour observation
of Abell 3827 with the Atacama Large Millimetre Ar-
ray (ALMA; programme 2016.1.01201.S). The band 3 data
sample frequencies 89.9-93.8 GHz and 101.8-105.6 GHz with
spectral resolution 15.6 MHz (47.8 km/s). Observations were
conducted with 44 12 m antennae in the C40-6 configu-
ration. Flux and bandpass calibration were obtained from
J2056−4714, and the phase calibrator was J2208−6325.

Data were reduced using casa software v4.7.2 (Mc-
Mullin et al. 2007). Spectral data cubes were created us-
ing the clean algorithm, with channel averaging and nat-
ural weighting to maximise sensitivity. This yielded a syn-
thesised beam of ∼0.48′′ × 0.39′′, and a 1σ noise level of
0.08 mJy/beam for each 31.3 MHz channel. In addition, to
minimise potential extended flux being resolved out, we cre-
ated a second spectral cube with a (u, v) taper applied that
yielded a synthesised beam of ∼ 0.87′′× 0.82′′ and 1σ noise
level of 0.15 mJy/beam.

The background z = 1.24 galaxy is visible in emis-
sion from the 230.5 GHz CO(2-1) transition, redshifted to
102.8 GHz (figure 2). However, the emission is fainter than
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Figure 1. Hubble Space Telescope image of the core of Abell 3827 in F814W (red), F606W (green) and F336W (blue) bands. Light from
two foreground stars and five foreground galaxies (labelled in yellow) has been subtracted to reveal the background lens system. The
colour scale is linear. Multiply-imaged components of the background spiral galaxy, identified either in this image or in ALMA/MUSE
data are labelled in white. In our cosmological model, 3′′ = 5.5 kpc at the redshift of the cluster.

expected from an extrapolation of near-IR emission (a some-
what indirect chain using [Oii] emission to estimate star
formation rate and hence far-infrared luminosity, then us-
ing the Solomon & Vanden Bout 2005 relation to predict
CO luminosity). Our exposure time was therefore only just
sufficient to detect spatial structure in the line emission; no
continuum emission is detected beneath the foregrounds.

2.3 VLT/MUSE integral field spectroscopy

In June 2016, we obtained a 4 hour integration of Abell 3827
using the Multi-Unit Spectroscopic Explorer (MUSE) Inte-
gral Field Unit (IFU) spectrograph (Bacon et al. 2010) on
the European Southern Observatory (ESO) Very Large Tele-
scope (VLT). We combined these data (programme 295.A-
5018) with a pre-existing 1 hour exposure from programme
294.A-5014. All the observations were obtained in dark time,
with V -band seeing better than 0.7′′and good atmospheric
transparency. The data sample wavelengths 475.0-935.1 nm
with 0.125 nm binning and spectral resolution R=4000 at
the red end.

Data were reduced using v1.0 of the esorex pipeline,
which extracts the spectra, applies wavelength and flat-field
calibration, then forms the data cube. Each hour on sky
included 3× 20 minute exposures, dithered by ∼10′′. We
aligned the individual exposures by registering the images
of stars, then removed cosmic rays and pixel defects, and
stacked the exposures using the exp combine routine. Flux
calibration was achieved using ESO standard stars which
were reduced in an identical manner.

The background galaxy is visible in emission from the
[Oii]λ3726.8, 3729.2 line doublet, redshifted to 835.5 nm. In
each spatial pixel, we model the spectrum of foreground con-
tinuum emission as a low-order polynomial either side of
835.5 nm. We subtract this foreground emission, then inte-
grate the remaining line flux as an [Oii] narrow-band image
(figure 3). We also use a two-Gaussian model to fit the [Oii]
doublet line ratio (3728.9/3726.2), line-of-sight velocity, and
line width. Both components of the line are assumed to have
the same width, and the measurement of spectral line width
is corrected for instrumental broadening.
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Figure 2. ALMA detection of CO(2-1) emission in the lensed spiral, as contours overlaid on the HST image from figure 1, before
foreground subtraction. Left: CO(2-1) emission collapsed over ±100 km/s from the systemic redshift and (u, v) tapered to a 0.8′′beam, to
show the full emission. The 1σ noise level is 0.15mJy/beam, and contours show 3, 4, 5, 6σ. Right: CO(2-1) emission from a single, central
ALMA channel, at natural 0.47′′resolution, to identify multiple images of the source’s bulge. The 1σ noise level is 0.08mJy/beam, and
contours show 4, 5, 6, 7σ. The inset spectra have a linear scale and include a dotted line at zero flux.

Figure 3. MUSE data compressed into a 2D narrow-band image of [Oii] doublet line emission from the lensed spiral galaxy, after
subtraction of the foreground continuum emission (top left). To cross-identify regions of the galaxy in a way that is independent of the
spatially varying lensing flux magnification, the other panels show parameters of a model fitted to the line doublet’s spectral energy
distribution in each spatial pixel where line emission is detected with S/N>3. The parameters are the line’s local line-of-sight velocity
(top right), the flux ratio between the doublet’s two components (bottom left) and the spectral line width (bottom right).
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3 ANALYSIS

3.1 Strong lens image identifications

The multiply-imaged background source is a spiral galaxy
consisting of a red bulge ‘Ao’ inside a blue ring of star for-
mation knots ‘Aa’–‘Ah’. Its rotational support is apparent
from the ∼ 200 km/s velocity gradient apparent across the
galaxy in the MUSE data (and present at low S/N in ALMA
data, but not shown in figure 2).

Features in the observed image have been variously
identified as multiple versions of the background galaxy’s
bulge or star forming regions (Williams & Saha 2011; Massey
et al. 2015; Taylor et al. 2017). Many of these features are
deeply embedded within the light from foreground galax-
ies. After foreground subtraction using galfit (Peng et al.
2010), and based on its apparent colour and morphology,
Massey et al. (2015) identified a point-like source immedi-
ately south of galaxy N1 as the fifth (sorted by arrival time
in the best-fit mass model) multiple image of knot Aa.

Our new data indicate that this identification was in-
correct. Our ALMA data show that the feature south of N1
is at the same systemic velocity and similar CO(2-1) flux as
the source’s central bulge. The feature’s line-of-sight veloc-
ity is also inconsistent with that of star formation knot Aa.
Our MUSE data also support a new interpretation that the
feature is an additional image of the bulge, which we now
call Ao5. This identification of the source’s central bulge im-
plies that images of knots Aa and Ac must be further south-
east. The ALMA data is too low S/N to detect them, and
the MUSE data have only barely sufficient angular resolu-
tion, but candidate features can be seen in HST imaging af-
ter our improved foreground subtraction using MuSCADeT

(Joseph, Courbin & Starck 2016). These features were hid-
den behind the foreground emission from N1, and are fainter
than the foreground cluster’s many globular clusters. Indeed,
the chain of three or four sources between Ao4 and Ao5 ap-
pears to be an unfortunate alignment of foreground globular
clusters, confusingly unrelated to the background source.

Building upon this new hypothesis, and incorporat-
ing additional features resolved by ALMA and ordered by
MUSE, a new set of multiple-image identifications Ao and
Aa–h become clear (Table 1). This configuration of multiple
image identifications was not amongst those considered in
Appendix B of Massey et al. (2015). We shall now demon-
strate that this new configuration yields a model of the lens’s
mass distribution with higher Bayesian evidence and better
consistency with observed lensed image positions.

3.2 Mass model

To ensure that we can draw robust conclusions, we use two
independent algorithms to infer the mass distribution in the
lens. Both have been tested in a blind analysis of strong
lensing data for which the true mass distribution is known
(Meneghetti et al. 2017). First, we use lenstool v6.8.1
(Jullo et al. 2007). Its parametric mass models may not cap-
ture all the complexity of a real mass distribution, but it al-
lows quantities of scientific interest (such as the position of
dark matter) to be parameterised explicitly and to be fitted
directly from data. Second, we use grale (Liesenborgs, De
Rijcke & Dejonghe 2006). This ‘freeform’ method possesses

Table 1. Locations of multiply-imaged components of the back-
ground spiral galaxy. Images Aon are the bulge, and images A[a–
h]n are knots of star formation in the spiral arms.

Name RA Dec

Ao1 330.47479 −59.94358
Ao2 330.46649 −59.94665
Ao3 330.46828 −59.94411
Ao4 330.47407 −59.94623
Ao5 330.47529 −59.94634
Ao6 330.47044 −59.94614
Ao7 330.47054 −59.94514
Aa1 330.47559 −59.94400
Aa2 330.46725 −59.94732
Aa3 330.46871 −59.94421
Aa4 330.47443 −59.94605
Aa5 330.47546 −59.94652
Ab1 330.47571 −59.94395
Ab2 330.46741 −59.94726
Ab3 330.46852 −59.94428
Ab5 330.47515 −59.94658
Ac1 330.47487 −59.94394
Ac2 330.46669 −59.94726
Ac3 330.46920 −59.94396
Ac4 330.47424 −59.94596
Ac5 330.47571 −59.94634
Ad1 330.47537 −59.94359
Ad2 330.46685 −59.94656
Ad3 330.46784 −59.94446
Ad4 330.47327 −59.94701
Ae1 330.47420 −59.94327
Ae2 330.46627 −59.94589
Ae3 330.46745 −59.94428
Ae4 330.47315 −59.94644
Af2 330.46589 −59.94610
Af3 330.46826 −59.94381
Af4 330.47348 −59.94620
Ag1 330.47471 −59.94327
Ag2 330.46661 −59.94550
Ag3 330.46694 −59.94488
Ag4 330.47276 −59.94681
Ah1 330.47305 −59.94340
Ah2 330.46583 −59.94667
Ah3 330.46922 −59.94364
Ah4 330.47372 −59.94599

more flexibility to represent a real mass distribution and, by
inferring unphysical distributions, to highlight errors in e.g.
source image identification. However, interpretation is later
required to extract quantities of scientific interest.

3.2.1 LENSTOOL

Our lenstool mass model consists of dark matter in one
cluster-scale Pseudo-Isothermal Elliptical Mass Distribution
(PIEMD; Limousin et al. 2005; Eĺıasdóttir et al. 2007), plus
the four bright galaxies’ stellar and dark matter with respec-
tively Hernquist and Pseudo-Isothermal Skewed Potential
(PISP; Taylor et al. 2017) distributions. A PISP distribu-
tion reduces to a PIEMD if its skewness s = 0. We also
fit a PISP component to the dark matter associated with
faint member galaxy N6, but assume it has negligible stel-
lar mass and skewness to reduce parameter space. Including
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mass associated with galaxies farther from the cluster core
yields indistinguishable results but slows the analysis dra-
matically, so we omit them. Finally, we allow an external
shear (e.g. Hogg & Blandford 1994).

Parameters of the dark matter components are adjusted
to reduce the rms of distances between the source galaxy’s
predicted and observed positions in the image plane, 〈rms〉i.
The parameters’ posterior probability distribution function
(PDF) is explored by a Markov Chain Monte Carlo (MCMC)
iteration, with a constant proposal distribution after a burn-
in phase (lenstool’s runmode=3) and priors identical to
those in Taylor et al. (2017). For example, the location and
amount of each galaxy’s dark matter is given a flat prior 2′′

either side of its stars. Taylor et al. (2017) reported failed
convergence of skewness parameters; this has been solved by
a much longer Markov Chain that samples the PDF 100,000
times, and by ensuring that the skewness angle φs wraps
far from any peak in the PDF. We assume statistical un-
certainty of 0.5′′ on the location of Ao6 and Ao7, which
are detected only in ground-based data, and 0.15′′ on the
location of every other image.

Parameters of the stellar mass components are derived
from Galfit fits to flux in the F606W band, with the flux
converted into mass via Bruzual & Charlot (2003) mod-
els, assuming a Chabrier (2003) initial mass function, solar
metallicity, and a single burst of star formation at redshift
zf =3. These parameters are fixed during the optimisation.

3.2.2 GRALE

Our grale mass model incorporates a grid of approximately
1300 Plummer spheres (Plummer 1911) in a 50′′×50′′ region
centered on (RA: 330.47043, Dec: −59.945804). An iterative
procedure adaptively refines the grid in dense regions, and
uses a genetic algorithm to adjust the mass in each Plummer
sphere. The genetic algorithm optimises the product of (a)
the fractional degree of overlap between multiple images of
the same source in the source plane and (b) a fitness measure
penalising the presence of false counter-images in regions
where they are not observed.

We run twenty mass reconstructions with different ran-
dom seeds. n total, this produces 26786 optimised Plummer
spheres. We average the inferred mass distributions; their
rms provides an estimate of statistical error.

4 RESULTS

Inferred mass maps are presented in figure 4. Results from
lenstool and grale are now more consistent with each
other. They also provide a better fit to the data than they
were when assuming the source identifications of Massey
et al. (2015) (whose lenstool model had 〈rms〉i=0.26′′).
The new parameters of lenstool’s best-fit model are pre-
sented in Table 2. This model achieves 〈rms〉i=0.13′′, or
χ2=31.7 with 29 degrees of freedom, likelihood log(L)=59.9,
and Bayesian evidence log(B)=−11.5.

Central images Ao6 and Ao7 have split grale’s pre-
vious reconstruction of a bimodal cluster (consisting of N1
plus everything else) into four distinct mass concentrations
around each galaxy. There is no reason for the genetic algo-
rithm to prefer either, yet the new model is more physical.

N1

N4

N3
N2

N6

Figure 4. Top: Map of total mass in the cluster core, recon-
structed using lenstool, and averaging over the posterior PDF.
Green contours show the projected mass density, spaced loga-
rithmically by a factor 1.15; the thick contour shows convergence
κ = 1 for zc� = 0.099 and zA = 1.24 (Σcrit = 1.03 g/cm2). Blue
circles show the lensed images. Black dots show cluster ellipticals
N1–N4. Bottom: Total mass, as in the top panel but reconstructed
via grale. Red dots show local maxima in individual realisations
of the mass map.

Adding the central images also creates a prediction (from
both lenstool and grale) for a diffuse trail of source emis-
sion southwest of Ag4, including counter-images of Ab, Ad,
and Ag. These are possibly demagnified and observed, but
the whole area is unclear in HST imaging because of the
bright foreground star and confusion with globular clusters.
Both models predict demagnified images of the star forma-
tion knots tightly packed around Ao6, and loosely packed
around Ao7, as are visible in MUSE data but with insuffi-
cient confidence to be used as input constraints.

Our lenstool analysis suggests a ∼ 2σ statistical sig-
nificance for the offset of N1. However, the absolute value
of the offset is far smaller than in Massey et al. (2015),
and its significance disappears entirely when combining with
our grale analysis and allowing for systematic, model-
induced biases of up to ∼0.21′′ for this configuration of lenses
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Table 2. Parameters of lenstool’s best-fit mass model. Quantities in square brackets were fixed during optimisation. Errors on other
quantities show 68% statistical confidence limits, marginalising over uncertainty in all other parameters. Stellar mass components are
modelled as Hernquist profiles, with their mass, scale radius and ellipticity calculated from F606W broad-band emission. Dark matter
components are modelled as PIEMDs with a 1D velocity dispersion, core and cut radii, and ellipticity; or PISPs with an additional
skewness. Positions are given in arcseconds relative to (R.A.: 330.47518, Dec.: −59.945985), except galaxies’ dark matter components,
which are relative to the position of their stars. Angles are anticlockwise from West. The external shear is (1.47+0.97

−0.01)%, at angle (92+24
−94)

◦.

x [′′] y [′′] Mass [M�] rsc [′′]
ε φε [◦] s φs [◦]Δx [′′] Δy [′′] σv [km/s] rcore [′′] rcut [′′]

N1 stars [0.00] [0.00] [1.00× 1011] [0.53] [0.12] [61]

dark matter 0.09+0.10
−0.09 −0.28+0.13

−0.12 166+9
−11 [0.10] [40] 0.12+0.25

+0.00 56+52
−18 0.14+0.08

−0.28 102+12
−106

N2 stars [5.13] [2.00] [2.47× 1011] [0.79] [0.17] [39]

dark matter −0.81+0.19
−0.20 −0.59+0.33

−0.29 170+13
−18 [0.10] [40] 0.38+0.01

−0.25 129+16
−22 0.10+0.09

−0.15 41+94
−23

N3 stars [9.75] [3.93] [2.76× 1011] [0.33] [0.05] [31]

dark matter −0.57+0.14
−0.14 0.08+0.24

−0.16 214+6
−14 [0.10] [40] 0.14+0.07

−0.08 14+18
−8 −0.09+0.09

−0.07 41+67
−27

N4 stars [9.32] [−1.12] [2.06× 1011] [1.37] [0.39] [127]

dark matter −0.54+0.34
−0.11 0.40+0.09

−0.20 206+7
−15 [0.10] [40] 0.32+0.33

+0.00 144+12
−65 0.12+0.11

−0.12 104+53
−58

N6 stars [18.60] [2.43] [0]

dark matter [0.00] [0.00] 61+13
−27 [0.10] [40] [0.00] [0] [0] [0]

Cluster dm 8.61+0.89
−0.90 −0.28+1.04

−0.79 842+77
−89 30+5

−7 [1000] 0.50+0.07
−0.15 62+2

−2 [0] [0]

(Massey et al. 2015). The mass peak reconstructed by grale

outside the cluster core imposes an external shear near N1
consistent with that fitted by lenstool.

Statistical errors on the position of dark matter associ-
ated with N2, N3 and N4 are tightened by our new detection
of central images Ao6 and Ao7. They would be dramatically
improved if more of the source galaxy’s structure could be
seen in the central images (e.g. with deeper ALMA data).
However, the position of N2’s dark matter shows a large
scatter in our current grale analysis, and can change in
a lenstool analysis if the prior is adjusted on the posi-
tion of the cluster-scale halo. In the MCMC chain of our
lenstool analysis, the positions of N3 and N4 are degener-
ate with each other. Furthermore, we have an a priori expec-
tation that only N1 is sufficiently close to space-resolution
lensed images to be constrained with kiloparsec accuracy
(even when the lens identifications are unambiguous Har-
vey, Kneib & Jauzac 2016, and they may still not all be
correct here).

The inferred location of the dark matter associated with
each galaxy N1–N4 appears consistent with the location of
its stars. Deeper ALMA or HST observations would clarify
the status of N2, N3 and N4. However, given various param-
eter degeneracies in our current analysis, and the potential
for systematic errors at a level comparable to their offsets,
we cannot here conclude that any offset is physically signif-
icant.

The total mass of the dark matter components of galax-
ies N1–N4 is formally 1.47+0.16

−0.19, 1.54+0.24
−0.31, 2.44+0.14

−0.31 and
2.26+0.16

−0.32 × 1012 M�, and that of the cluster-scale halo is
2.79+0.53

−0.56×1014 M� (see equation 10 of Limousin et al. 2005).
However, these calculations depend approximately linearly
on our unconstrained choice of rcut.

De-lensed images of the background galaxy, assuming
the best-fit lenstool model, are presented in figure 5; re-
sults from grale are similar. It is a ring galaxy reminiscent

of the z = 1.67 lensed source in Zwicky cluster Cl0024+1654
(Colley, Tyson & Turner 1996; Jones et al. 2010). Its central
component is by far the brightest in CO(2-1) emission. A
large reservoir of dusty, molecular gas in a galaxy’s bulge
would be unusual at z = 0, but not at z = 1.24, when
bulges are still forming stars. Assuming lenstool’s best-
fit mass model, the luminosity-weighted amplification of its
[Oii] emission is μ = 144, summing over all the images. Tak-
ing into account this amplification, its apparent [Oii] lumi-
nosity implies an total star-formation rate of ∼ 1M�/yr, us-
ing the Kennicut (1998) calibration and a Chabrier (2003)
initial mass function. Canonical dust extinction of about
AV ∼1 magnitude could raise this by a factor 2–3. Other
than its role in gravitational lensing due to its location be-
hind a cluster, it is not an intrinsically unusual galaxy.

5 CONCLUSIONS

Previous studies of galaxy cluster Abell 3827 (Williams &
Saha 2011; Massey et al. 2015) imaging suggested that the
dark matter associated with at least one of its galaxies is
offset from its stars. This is predicted by simulations of self-
interacting dark matter in which the exchange particle is
light (Harvey et al. 2014; Kahlhoefer et al. 2014; Robertson
et al. 2017b). Prompted by this potentially exciting result,
further simulations (Kahlhoefer et al. 2015) suggested that
the offset could be observable in (rare) systems where a mas-
sive galaxy intersects a cluster’s Einstein radius, and its 3D
motion happens to be near the plane of the sky. A strongly
lensing merger between two field galaxies has shown a sim-
ilar offset (Shu et al. 2016).

In this paper, ALMA has proved an exceptional tool to
identify background lensed images, with high spatial reso-
lution at wavelengths where foreground galaxy clusters are
virtually transparent. Whilst there is no guarantee that we
have perfected the source identifications in Abell 3827, it is
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now possible to construct lens models with residuals that
are consistent with noise, and robust between very different
modelling approaches. The consistency between paramet-
ric and non-parametric lens models lends confidence to the
conclusions. Indeed, both ALMA data and deviations from
physically expected mass distributions in a free-form mass
reconstruction could be a powerful discriminator between
future source identifications.

Our new analysis shows that there is no statistically
significant offset between galaxies and their dark matter in
Abell 3827, projected onto the plane of the sky. Galaxy
N1 is best constrained. Assuming statistical errors only,
its offset in our lenstool model is 0.29+0.12

−0.13 arcseconds or
0.54+0.22

−0.23 kpc. Following Kahlhoefer et al. (2015)’s reason-
ing that any offset requires dark matter self-interactions to
balance a gravitational restoring force that can be calcu-
lated, this measurement implies an interaction cross-section
(σ/m) cos (i) = 0.68+0.28

−0.29 cm2/g, where i is the inclination
of the galaxy’s 3D motion with respect to the plane of the
sky. That this angle is unknown makes it difficult to infer
an upper limit on σ/m from this system without further
information.

Nonetheless, the unusual configuration of Abell 3827,
with four bright central galaxies and a background spiral
galaxy with complex morphology is multiply-imaged be-
tween them, makes it still interesting for studies of dark
matter dynamics. Regardless of possible particle interac-
tions, as a galaxy enters a cluster, its dark matter halo
is gradually stripped via tidal gravitational forces. Simu-
lations disagree about the timescale and the orbits on which
dark matter stripping occurs in the inner tens of kilopar-
secs (Diemand, Kuhlen & Madau 2007; Peñarrubia, Mc-
Connachie & Navarro 2008; Wetzel, Cohn & White 2009;
Bahé et al. 2012), but this dissipation is a key ingredient
in semi-analytic models of galaxy formation (e.g. Dariush et
al. 2010). Observations of dark matter mass loss in galax-
ies entering a galaxy cluster from the field (Mandelbaum
et al. 2006; Limousin et al. 2007, 2012; Parker et al. 2007;
Natarajan et al. 2009; Gillis et al. 2013; Niemiec et al. 2017)
have never been followed inside ∼1 Mpc, and measurements
of strong lensing clusters with multiple central galaxies, like
those in table 2, could constrain this for the first time.
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Figure 5. Top: De-lensed images of the z = 1.24 source
galaxy, after foreground subtraction as in figure 1 and assum-
ing the best-fit lens model produced by lenstool in table 2.
Each panel is 1.5′′ × 1.5′′, and centered on (RA=22h 01′ 53.′′0,
Dec=−59◦ 56′ 44′′). Results from grale are similar. Bottom: Re-
lensed version of the above realisation of source A3, the centre of
the triple. The predicted brightness of the central images Ao6 and
Ao7 changes sightly if other versions of the source are re-lensed.
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4.3. Application to Cluster Lensing

Filter MACS J0416 MACS J0717 MACS J1149 Abell 2744 Abell 370 Abell S1063
Red Blue Red Blue Red Blue Red Blue Red Blue Red Blue

F814w 0.599 0.342 0.666 0.399 0.655 0.393 0.594 0.415 0.571 0.331 0.598 0.348
F606w 0.373 0.473 0.311 0.463 0.324 0.495 0.373 0.496 0.394 0.482 0.371 0.463
F435w 0.027 0.183 0.022 0.137 0.020 0.110 0.032 0.087 0.034 0.186 0.029 0.187

Table 4.2 – SEDs used in the colour subtraction of the Hubble frontier fields.

4.3.2 A Colourful View of the Hubble Frontier Fields

In this section we present our colour separation performed with MuSCADeT on all the HFF

cluster fields and the parallel fields for the MACS clusters. Due to the large size of the fields of

view (∼ 7000 pixels on-a-side per band), the images were separated in overlapping patches

1024 pixels on-a-side, and MuSCADeT was ran on each patch independently. The SED is

estimated once for each cluster using a pre-selected patch with identifiably red and blue

separate components. The same SEDs were used for each patch of a same FoV (field of view)

and for each field of a target (cluster and parallel FoV). in the following pages, we show, in

figure 4.4 - 4.30 the original images, Y , of the FoV in the three HST bands of interest here:

F814w (red), F606w (green), F435w (blue) , along with the subtractions, Rb and Rr , of the blue

and red components respectively. Using the notations from section 4.2, the subtraction form

the red component corresponds to the cube described by

Rr = Y − A[:,0]S[0, :] (4.1)

Rb = Y − A[:,1]S[1, :], (4.2)

where A[i , :] is the i -th column of the mixing matrix A, i.e. the SED of the corresponding

component, and S[i , :] is the i -th line in S, i.e. the surface brightness of the i -th component.

The original image and the colour component residuals Rb and Rr are display with the same

colour scales. The normalised SEDs of each FoV are given in table 4.2. We show the residuals

Y − AS in appendix D. The legwork of applying MuSCADeT to the HFF has to be credited to , at

the time, grad. student Martin Millon.

Due to the limit size imposed by the format of the document, the images might apper in a

lower resolution. High resolution images of the deblended Hubble frontier fields may be found

at colour-deblending-of-the-hubble-frontier-fields.
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MACS J0416 cluster

Figure 4.4 – Composite RGB image of cluster field MACS J0416.
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Figure 4.5 – Composite RGB image of the subtraction of the blue component from cluster field
MACS J0416.
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Figure 4.6 – Composite RGB image of the subtraction of the red component from cluster field
MACS J0416.
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MACS J0416 parallel

Figure 4.7 – Composite RGB image of parallel field MACS J0416.
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Figure 4.8 – Composite RGB image of the subtraction of the blue component from parallel
field MACS J0416.
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Figure 4.9 – Composite RGB image of the subtraction of the red component from parallel field
MACS J0416.
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MACS J0717 cluster

Figure 4.10 – Composite RGB image of cluster field MACS J0717.
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Figure 4.11 – Composite RGB image of the subtraction of the blue component from cluster
field MACS J0717.
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Figure 4.12 – Composite RGB image of the subtraction of the red component from cluster field
MACS J0717.
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MACS J0717 parallel

Figure 4.13 – Composite RGB image of parallel field MACS J0717.
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Figure 4.14 – Composite RGB image of the subtraction of the blue component from parallel
field MACS J0717.
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Figure 4.15 – Composite RGB image of the subtraction of the red component from parallel
field MACS J0717.
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MACS J1149 cluster

Figure 4.16 – Composite RGB image of cluster field MACS J1149.
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Figure 4.17 – Composite RGB image of the subtraction of the blue component from cluster
field MACS J1149.

155



Chapter 4. Colour Deblending for Strong Gravitational Lensing

Figure 4.18 – Composite RGB image of the subtraction of the red component from cluster field
MACS J1149.
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MACS J1149 parallel

Figure 4.19 – Composite RGB image of parallel field MACS J1149.
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Figure 4.20 – Composite RGB image of the subtraction of the blue component from parallel
field MACS J1149.
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Figure 4.21 – Composite RGB image of the subtraction of the red component from parallel
field MACS J1149.

159



Chapter 4. Colour Deblending for Strong Gravitational Lensing

Abell 2744 cluster

Figure 4.22 – Composite RGB image of cluster field Abell 2744.
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Figure 4.23 – Composite RGB image of the subtraction of the blue component from cluster
field Abell 2744.
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Figure 4.24 – Composite RGB image of the subtraction of the red component from cluster field
Abell 2744.
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Abell 370 cluster

Figure 4.25 – Composite RGB image of cluster field Abell 370.
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Figure 4.26 – Composite RGB image of the subtraction of the blue component from cluster
field Abell 370.
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Figure 4.27 – Composite RGB image of the subtraction of the red component from cluster field
Abell 370.
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Abell S1063 cluster

Figure 4.28 – Composite RGB image of cluster field Abell S1063.
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Figure 4.29 – Composite RGB image of the subtraction of the blue component from cluster
field Abell S1063.
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Figure 4.30 – Composite RGB image of the subtraction of the red component from cluster field
Abell S1063.
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4.4 Magnification in the HFF

With the ICL removed from the HFF, we see the background blue source in Rb appear with little

to no contamination from the cluster light. In this section, I investigate how these subtractions

can be used to measure the flux in images of multiply imaged objects. An accurate measure

of the flux of lensed objects could potentially give access to the magnification ratio between

images, which could, in turn, be used to constrain cluster mass models.

4.4.1 Magnification ratios

As we have seen in chapter 1, magnification is a direct consequence of lensing and depends

on the deflection potential. At each location on the plane of the sky, except from critical lines,

it is possible to compute the magnification:

μ(θθθ) = 1

(1−κ(θθθ))2 −γ1(θθθ)2 −γ2(θθθ)2 (4.3)

where κ, γ1 and γ2 can be expressed as derivatives of the gravitational potential. In a first

order approximation, we can consider that a lensed source imaged at position θθθ sees its flux

multiplied by a factor μ(θθθ). As a consequence, magnification is not an observable quantity as

the observed flux form a lensed source FL is the product:

FL(θθθ) =μ(θθθ)F0, (4.4)

where F0 is the intrinsic flux of the background source. An alternative to measuring the

magnification is to measure the magnification ratio between two images of the same source at

positions θθθ1 and θθθ2. In this case, the magnification ratio rμ is simply the ratio of the fluxes of

two multiple images of a same source:

rμ = FL(θθθ1)

FL(θθθ2)
= μ(θθθ1)F0

μ(θθθ2)F0
= μ(θθθ1)

μ(θθθ2)
(4.5)

4.4.2 The Ares simulated cluster

To perform this study, I used the artificial images of the Ares galaxy cluster. Ares is a simulated

galaxy cluster created for the purpose of the lens modelling challenge (Meneghetti et al., 2017).

In this paper the authors simulated two clusters, Ares and Hera. Given that Ares has a higher

convergence and was generated to form 242 images of 85 sources, while Hera only contains 65

images of 19 sources, I chose to focus on the study of the Ares cluster. The goal of this study is

to see how well one can recover the magnification ratios between multiple images of a cluster

and to see if measuring fluxes from MuSCADeT’s Rb image could bring better estimates of the

flux ratios. The simulations are emulations of the HFF survey. As a result, we could conduct

the same separation on Ares as what we did with all the HFF images. We used the simulated

images for bands F814w, F606w and F435w to separate between red and blue components of
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Ares. The results are shown in appendix E.

Using a simulated cluster allows to compare the computed magnification ratios to the actual

ratios, and to compare the result of the subtraction of the foreground ICL to the lensed images

without ICL as they are generated in the simulation. To compute the magnification ratios,

we extract postage stamps of 40 pixels on-a-side of the lensed sources based on the catalogs

provided by Meneghetti et al. (2017). For each multiply-imaged source, three postage stamps

are extracted and we compute the flux for each postage stamp as the sum of the pixel intensities

over all the pixels in the stamp. The three stamps of interest are as follows:

• P0 is the postage stamp of an image taken in the raw image in 3 bands (Y ),

• Pbl ue is the postage stamp of the raw image in three bands after subtraction of the red

components (Rb),

• Psl is the postage stamp provided by the simulation team of the lensed images of the

multiply imaged objects seen in three bands (these include noise). These postage stamps

are the groundtruth for the surface brightness of the lensed images.

Each postage stamp is taken in the three HST bands in order to maximise the signal to noise

of the flux measurement. We recently noticed that the F606w band for stamps Psl was in

fact exactly the same as the F435w band that we were provided with, which should, strictly

speaking, not be the same. As a result, in the rest of this analysis, we discard completely band

F606w and will perform the analysis again with the three bands once we receive the corrected

F606w image.

4.4.3 Comparing magnification ratios

Sanity check on the flux errors

Before computing the magnification ratios, I verify that the result of MuSCADeT’s subtraction

allows a better estimate of the flux of the lensed sources. For each stamp, I compute the

relative flux errors:

er rPR = |( f (PR )− f (Psl )|
f Psl

(4.6)

er rPbl ue = |( f (Pbl ue )− f (Psl )|
f Psl

, (4.7)

where f (P ) is the flux in a postage stamp P . The mean error for stamps PR is mR = 0.439 with

a standard deviation σR = 28.9, while for the MuSCADeT subtracted stamps, the mean error

is mbl ue =−0.583 and the standard deviation of the error is σblue = 8.58. While both mean

errors are similar, the standard deviation of the error is much larger that in the case of the
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original image than in the image where the ICL has been subtracted, which tends to show that

MuSCADeT successfully reduced the contamination by the flux by foreground galaxies. I bring

to the reader’s attention that here, the fluxes were computed from the noisy stamps provided

by the simulation, even for Psl . This can explain the somewhat large dispersion of the error

on the fluxes even for the MuSCADeT subtracted images. In the next section, we compare our

measured magnification ratios to the actual magnification ratio provided by the simulation.

Measures of flux ratio

Due to the simulated cluster Ares having been generated for a lens modelling challenge, all the

lensing properties were known by the simulation team. As a result, thanks to the authors of

Meneghetti et al. (2017), I was able to use the position and the matching (knowledge of the

source from which each image formed) of multiply imaged sources as well as the magnification

map of the cluster.

I computed the actual magnification of each image of the lensed sources by recording the value

of the magnification at the location given by the multiple images catalogue in the cluster’s

magnification map. For each background source, the first lensed image in the catalogue

was used as a reference image from which the magnification ratios were computed. For

instance, for source i with 4 multiple images, {Ii .1, Ii .2, Ii .3, Ii .4} with respective magnifications

{μi .1,μi .2,μi .3,μi .4}, the magnification ratios are computed as:

rμ2 = μi .2

μi .1
(4.8)

rμ3 = μi .3

μi .1
(4.9)

rμ4 = μi .4

μi .1
(4.10)

Empirical magnification ratios were also computed from the flux ratios of multiply imaged

sources by taking the same reference image for each source. Three empirical magnification

ratios are computed here:

• the "raw magnification ratio" rμR computed directly from the non-processed stamps

PR ,

• the "blue magnification ratio" rμB computed from the stamps where the red component

was removed by way of MuSCADeT Pblue

• the "simulated magnification ratio" rμS computed from the simulated images of the

lensed sources only.

The ground-truth magnification ratios computed from the magnification map are noted

rμ0 . In figure 4.31, we show the results of this study in terms of magnification error. The
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absolute difference between true and empirical magnification ratios is shown against the true

magnification of the non-reference image used in the ratio. Each point shows the averaged

error and dispersion over a bin of 2 in magnification. It appears that at large magnifications,

μ > 30, the magnification ratio error increases. This is due to the difference between the

ways empirical and true magnification ratios are computed. The true magnification ratio

is computed by taking the value of the magnification at the center of the magnified image,

while empirical magnification ratios are computed by taking the flux ratios of two images,

which assumes that a magnification is constant over the whole surface of the image surface

brightness. Around critical lines, the magnification profile can take a high slope, making the

assumption of constant magnification unrealistic. In these cases, the averaged magnification

can be smaller than the actual magnification, resulting in errors in the magnification ratio. We

also notice that their are no error-bars for several points at large magnification. This is due to

the rarity of sources at large magnifications, where, in most cases, only one source is found

per bin of two magnifications. The lower panel of figure 4.31 focuses on the low magnification

region of the plot.

Another observation from the error bars of figure 4.31 is that, as expected, the magnification

ratio errors seem to be much smaller for the deblended images than for the original ones.

However, we also notice that, in some cases, the error bars are smaller for the deblended

images than for the simulated images of lensed sources only. This should not be the case

due to the simulated images of lensed sources being the closest observations from the truth.

Also, errors should be larger in MuSCADeT due to the possibility of background sources to

be red 4 and therefore be removed by MuSCADeT, and to the possibility for blue components

from cluster member galaxies to pollute the deblended images of background galaxies. This

will have to be investigated further before any publication of the results. Among the few

possibilities that I have considered so far are the discarding of band F606w, small number

statistics, error on the measurement of the flux due to very low SNR and elongated sources,

errors on the computation of fluxes from deblended images due to stretched lensed images

being poorly represented by MuSCADeT. At this point I do not see how any of these effects could

explain the systematically smaller errorbars the deblended images, but the careful inspection

of the multiply imaged systems with these sources of error in mind might help finding an

explanation.

A summary of the distribution of magnification errors is given in figure 4.32. Each histogram

shows the number of multiple images systems per bin of magnification ratio error. The

distribution was truncated at small magnification ratio errors (|rμ0 − rμ| < 10) for the sake

of representation. The distributions in these histograms are as expected: the distributions

of errors in the deblended and the simulated lensed images are similarly peaked around

0. This observations hints at the possibility that the previous discrepancy be explained by

small number statistics. The distribution of errors on magnification from the raw image is

flatter than the other distributions and shifted towards positive ratio errors. The flattening

4While background lensed galaxies are expected to be mostly blue, very high redshift galaxies and dust-obscured
galaxies can be a source of red background galaxies
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Figure 4.31 – Binned error on magnification ratios as a function of magnification.

illustrates the lesser accuracy of the measurement due to the ICL. The shift towards positive

errors can be explained by the fact that the light from foreground galaxies takes precedence

in the contribution to the measured flux, thus smoothing the magnification ratios towards

smaller values.
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Figure 4.32 – Histograms of the magnification error distributions for the three empirical
magnification ratio measurements.

Application to real data

With the help of my grad. student, we applied our method to galaxy cluster MACS J0416, for

which the deblending is shown in figure4.6 and 4.5, and compared our measured magnifica-

tions to the predictions made be different lens modelling teams. The details of the various

models can be found in Priewe et al. (2017) and references therein. We used the positions

of multiple images identified in Jauzac et al. (2014) to compute our empirical magnification

ratios from MuSCADeT’s deblended images. The authors of Jauzac et al. (2014) report 69 lensed

sources forming a total of 194 lensed images, out of which 26 have a spectroscopic redshift.

When available, the spectroscopic redshifts were used, but in other cases, we relied on the

redshifts predicted by Jauzac et al. (2014), for consistency, to compute the magnifications

predicted by other models. Magnification maps by modellers were computed using the online

tool https://archive.stsci.edu/prepds/frontier/lensmodels/5.

The empirical magnification ratios from MuSCADeT were compared with those obtained by the

various modellers by computing the correlation coefficients between them. The correlation

coefficient between vector rμB containing the magnification ratios from the deblended images

5This work utilises gravitational lensing models produced by PIs Bradac, Natarajan & Kneib (CATS), Merten &
Zitrin, Sharon, Williams, Keeton, Bernstein and Diego, and the GLAFIC group. This lens modeling was partially
funded by the HST Frontier Fields program conducted by STScI. STScI is operated by the Association of Universities
for Research in Astronomy, Inc. under NASA contract NAS 5-26555. The lens models were obtained from the
Mikulski Archive for Space Telescopes (MAST).
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Figure 4.33 – Correlation coefficient between various predictions for magnification ratios in
MACS J0416 and empirical values derived from MuSCADeT.

and vector rμM containing the magnification ratios derived for a given model M is given by:

CB M = cov(rμB ,rμM )√
cov(rμM ,rμM )cov(rμB ,rμB )

, (4.11)

where cov is the covariance operator.

In figure 4.33 we show the correlation coefficient between our empirical measurement and

the prediction of the different teams considered here. We find that the team that performed

well with this correlation coefficient criteria are also the teams that performed well on the

magnification recovery in the lens modelling challenge (See Meneghetti et al., 2017, figures 20

and 25 for comparison).

Conclusion on magnification ratios

This method for measuring magnification ratios based on the subtraction of the ICL from

MuSCADeT seems to raise more accurate measurements of the flux of background lensed

sources. Several aspects of the method need to be improved and better understood before

claiming a robust method for magnification ratio determination. Computation of the flux

from postage stamp summation should be replaced by more robust methods for photometric

extraction such as sextractor (Bertin & Arnouts, 1996). Tests need to be conducted that

include all the bands used in the extraction, photometry of the deblended images should be

175



Chapter 4. Colour Deblending for Strong Gravitational Lensing

compared with noiseless photometry of the original lensed sources and finally we need to

quantify how magnification ratios could be used to constrain lens mass models.

Nevertheless, our preliminary results on simulations and real data show are encouraging us to

investigate whether magnification ratio measurements could be used to, at least, assess the

performance of a mass and at best, contribute imposing constraints on mass models.

4.5 Outline

In this chapter, I presented a method for the separation of colour components in astronomical

multi-band images, based on their difference in SEDs and on the sparse representation of

each component in the starlet domain. Our technique is very similar to the AMCA method

that has the advantage of optimising for the mixing matrix. Due to the correlation between

the SEDs of astronomical sources in the visible domain, we found that the pre-selection of

the mixing matrix by way of a principal component analysis of the SEDs in each pixel of a

multi-band image, allowed the algorithm to converge to a solution for the colour separation.

First designed for the purpose of galaxy-scale strong lenses deblending, the method has proven

very efficient at removing intra-cluster light in HST imaging of massive galaxy clusters.

After the successful application of the method to the Hubble frontier fields, I showed that this

method could contribute to strong gravitational lens modelling in at least two ways:

• First, by removing the ICL, MuSCADeT reveals hidden objects behind galaxy clusters that

would otherwise not be visible. This was shown in published work (Taylor et al., 2017;

Massey et al., 2018), and I leave it to the reader to find new background lensed sources in

HFF from the images provided in this manuscript. Colour images as well as the source

fits files used to create these images will be made publicly available online in the near

future.

• Second, by allowing better photometry for background lensed sources after deblending.

I showed how the improved photometric measurements could be used to assess the ac-

curacy of magnification maps prediction with the potential to help imposing constraints

on cluster mass models.

Another result of the application of MuSCADeT to the Hubble frontier is the possibility for the

deblending of different stellar components inside single galaxies. While this is out of the scope

of this thesis work, I show some preliminary results on the subject in appendix F.

With the growth in number and size of upcoming large surveys, the need for automated meth-

ods for deblending is dire, and we see more examples of colour-based deblending technique

appear. Recently, Jiang et al. (2017) proposed a method for joint deconvolution and separation

of hyper-spectral data based on sparse decomposition of the components, and Moolekamp &

Melchior (2017) and Melchior et al. (2018) proposed a generalisation of the GMCA approach
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that includes convex constraints other than positivity and sparsity.
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5 Joined Lensed Source Reconstruction
and Deblending

Contrary to popular belief, the modelling of gravitational lenses to determine the mass

distribution of a lens is not a "black art".

— Christopher Kochanek
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With my short-term goal being to develop an automated method for strong gravitational

lens inversion based on linear optimisation, I decided to break down the whole problem of

lens modelling. In this chapter I will tackle what I consider to be the first step in modelling

galaxy-galaxy strong gravitational lenses: the reconstruction of the lensed source light profile

in source plane. Across this chapter, I will mostly refer to notions of strong gravitational lensing

that were introduced in chapter 1. I recommend a careful reading of section 1.3 in particular

for a better understanding of the base concepts behind the building of the linear problem I

present in section 5.1.

Some of the modelling techniques currently in use consider a full analytical lens mass and

light distribution (Kneib et al., 2011b; Bellagamba et al., 2017; Oguri, 2010). Others use a

semi-analytic approach, where the source is pixelated and regularized but where the lens has

179



Chapter 5. Joined Lensed Source Reconstruction and Deblending

an analytical representation (Dye & Warren, 2005; Warren & Dye, 2003; Suyu et al., 2006; Vegetti

& Koopmans, 2009), or where the lens is represented on a pixelated grid with regularisation or

assumptions on its symmetry (e.g. Coles et al., 2014; Nightingale et al., 2018). Further work in

this direction involves adaptive pixel grids to represent the source (Nightingale et al., 2018;

Nightingale & Dye, 2015; Vegetti & Koopmans, 2009) or an analytical decomposition of the

source on a predefined dictionary as was done in Birrer et al. (2015), where the authors used

shapelets (Refregier, 2003).

In this chapter, I address the problems of source reconstruction and deblending as a single

linear inverse problem. By using Starlets , I am able to use sparse regularisation over the lens

and source light profiles in their respective planes. Sparsity with starlets has the advantage of

performing model-independent reconstructions of smooth profiles and allows for determinis-

tic expression of the regularisation parameter. Because the lensed source can be represented

using only a limited number of starlet coefficients, the pixel grid can be almost as thin as

desired and the reconstructed source is denoised and deconvolved from the instrumental

Point Spread Function (PSF). In chapter 4, we have seen how deblending could be achieved

from discriminating between colours in multi-band images. In many cases, multiple bands

might not be available. This new approach has the advantage to allow for the deblending of

strong gravitational lenses in single-band images.

This chapter is an adaptation of a paper submitted for publication to Astronomy & Astrophysics,

which is intended as a proof of concept to show how convex optimisation under a sparsity

prior on the source light profile can be used as an adequate minimisation technique for lens

modelling. The scope of this chapter remains limited to the modelling of light distribution

alone and to the potential of using morphological component analysis to provide a new

framework for lens modelling.

5.1 Source reconstruction given a known lens mass

In this section, I recall the basics of gravitational lensing formalism I will use to express the

back-projection of lensed images to source plane and write the linear equations that form the

basis of the minimisation problem I solve in the next section.

I note θθθ the angular position on the sky of an object seen through a gravitational lens (image

plane coordinates), with intrinsic angular position βββ (source plane coordinates). I recall here

that the mapping from source to image plane is described by the lens equation:

βββ=θθθ−ααα(θθθ), (5.1)

The problem of inverting Eq. 5.1 from photometric observations only (meaning only θθθ is

known) is a non-linear and highly under-constrained problem with two unknowns: The
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source’s position, βββ, and the convergence map of the lens. In the case of extended sources,

the goal of lens inversion is to recover the light profile of a lensed galaxy as seen in the source

plane, which implies being able to calculate the flux at each position βββ knowing the flux at

position θθθ.

In practise, current techniques for lens inversion rely on an iterative process that consists

in successively reconstructing the source profile brightness and the κ map. In an effort of

developing an automated, model independent method for lens inversion, I choose to decom-

pose the problem. In this chapter, I address the problem of source light profile reconstruction

given a known mass, in which case, the problem is linear. In Warren & Dye (2003), the authors

express the mapping between source and image surface brightness using an operator Fκ, such

that the observed surface brightness of a lensed galaxy can be written:

Y = FκS +Z , (5.2)

where Y is the observed surface brightness, flattened as a vector with length Npi x . Vector S

is the unknown source surface brightness vector in the source plane with length Nps . Fκ is a

Nps ×Npi x matrix where, following Warren & Dye (2003)’s formalism, element fi , j is the j th

pixel in image plane of the mapping of a source that has only its i th pixel set to one. In other

words, Fκ indicates which pixels from the source plane have to be combined to predict the

value of a pixel in the image plane. The elements of Fκ are entirely determined by the mass

density distribution κ. Vector Z is an additive noise map. I consider Z as a white Gaussian

noise with standard deviation σ, but the method can easily be extended to Poisson statistics,

or more generally to noise with known root mean square.

5.1.1 Pixel-to-pixel mapping

As illustrated in Fig 1 of Wayth & Webster (2006), a square pixel in the image plane is a diamond

shaped pixel in source plane, with a total area depending on the magnification at the pixel

location. Although this phenomenon should strictly be accounted for, I choose to make the

approximation that each photon hitting a pixel whether in source or image plane hits at the

centre of the pixel. This way, part of the information provided by the continuous distribution

of photons over the whole surface of a pixel is lost, but this approximation has the advantage

of avoiding correlating the noise when back projecting from the image plane to the source

plane. Furthermore, using a small pixel size limits this imperfect modelling and allows to

compensate for the variation in light profile. This inverse problem being ill-posed, it admits

no unique and stable solution, hence calling for a regularisation to solve it. Increasing the

pixel size, and therefore losing resolution can be seen as a naive regularisation. I will show

how advanced regularisation techniques can be used efficiently to address this problem.
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5.1.2 Projection and back-projection between source and lens planes

To compute the elements of Fκ for each of the Nps pixels in the source plane, I associate a

pixel in the image plane by shooting a photon from the centre, βββ of a source plane pixel and

recording the position(s) θθθ, given by Eq. 5.1, of the pixel(s) in the image plane where the

deflected photon will hit. This boils down to recording the positions θθθ where βββ+ααα(θθθ)−θθθ = 0.

The element of Fκ at position(s) (β,θ) is(-are in the case of a multiply imaged pixel) set to one

to indicate the mapping. Since Fκ is a sparse matrix with only very few non-zero coefficients, I

choose to only store the positions (β,θ) that map into one another in order to save memory

and hence, computation time in the following steps.

The projection of a source profile into a lensed profile in the image plane is then performed by

allocating to each image pixel the sum of the intensities of the corresponding source pixels

according to Fκ. Conversely, back-projection is performed by allocating to each source pixel

the average value of all its lensed counterparts according to Fκ. This ensure conservation of

surface brightness between the source and lens planes.

5.2 Linear development of strong gravitational lens imaging

In real imaging data of strong gravitational lenses, the problem of finding the delensed light

profile of a lensed galaxy is harder than solving Eq. 5.2, which is already non-trivial. First, one

has to include the impulse response of the instrument that acquired the image. This effect

corresponds to a convolution of the images described by FκS, by the point spread function

(PSF). Let the linear operator H account for the convolution by a known PSF, Eq. 5.2 becomes:

Y = HFκS +Z , (5.3)

which is the problem one has to solve when dealing only with the lensed light profile of a

source, assuming that the light profile from the foreground lens galaxy has been perfectly

removed prior to the analysis.

In practise, images of strongly lensed galaxies are contaminated by light from a foreground

lens galaxy, G . Taking this into account, Eq. 5.3 then writes:

Y = H(FκS +G)+Z . (5.4)
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When Z is a white gaussian noise, solving Eq. 5.4 reduces to finding S and G such that:

||Y −H(FκS +G)||22 < ε (5.5)

Where ε accounts for the precision of the reconstruction and depends on the noise level. Given

that an image has Npi x pixels and that I aim at finding an Npi x -sized galaxy profile and an

Nps-sized source profile, further constraints are required on the light profiles. Classically,

the light distribution of the lens is approximated by an analytic profile such as a Sersic or

deVaucouleur profile.

Reconstructing the source light profile being an ill-posed problem , where unknowns largely

outnumber the number of observables, several strategies have been investigated in the litera-

ture, for instance: adaptive pixel grids (Dye & Warren, 2005), negentropy minimisation (Warren

& Dye, 2003; Wayth & Webster, 2006), Bayesian inference over the regularisation parameters of

the source (Suyu et al., 2006), perturbative theory (Alard, 2009) or model profile fitting (Bel-

lagamba et al., 2017). Although these methods have their own advantages and disadvantages,

only few of them are able to reconstruct complex sources without degrading the resolution

of the output. In Birrer et al. (2015), the authors used a family of functions to reconstruct

the source light profile with promising results. Here I propose to push this idea further by

exploiting a redundant family of functions that is very well suited to represent galaxies, and

that possesses properties of redundancy allowing for the use of sparse regularisation.

5.2.1 Source reconstruction in absence of light from the lens

I propose a new approach to solve Eq. 5.3. Given that galaxies are compact and smooth objects,

their decomposition over the starlet dictionary (Starck et al., 2007) will be sparse, meaning that

only a small number of non-zero starlet coefficients will contain all the information in a galaxy

image. This property allows to constrain the number of coefficients used in starlet space to

reconstruct galaxy profiles, therefore offering a powerful regularisation to this problem.

Sparse regularisation

Assuming a signal is sparse in a dictionary Φ, the solution to an inverse problem like in

equation. 5.3 is the solution that uses the least number of coefficients in the Φ dictionary

while minimising the square error between the observables and the reconstruction. In a more

formal way, sparsity is enforced by minimising the �1-norm of the decomposition over Φ of a

signal known to be sparse in this dictionary. In addition, because the mapping of an image

from lens plane to source plane does not conserve shapes, the edges of the image in lens plane

does not match the borders of the image in the source plane, leaving parts of the source image

unconstrained as they map into pixels outside the field of view of the lens plane. Let me call S
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the set of pixels in source plane that have an image in lens plane. I impose that the coefficients

of the solution outside set S be set to zero. This allows me to write the problem of finding S as

an optimisation problem of the form:

α̃S = ar g mi n
αS

||Y −HFκΦαS ||22 +λ||W �αS ||1 (5.6)

where Φ is the starlet dictionary, αS are the starlet coefficients of S such that αS =ΦT S. The

operator � is the term by term multiplication operator, and W is a vector of weights that serves

the purpose of setting to zero all coefficients outside S, while keeping the �1-norm constraint

from biasing the results (more on that in the following paragraphs). In practice, minimising

the �1-norm of a vector is done by soft-thresholding the vector. This consists in decreasing by

a positive factor λ the absolute value of all its coefficients and by setting to zero the coefficients

smaller than λ, as shown in the following equation:

STλ(x) =
⎧⎨
⎩si g n(x)× (|x|−λ) if |x| >λ

0 otherwise
(5.7)

The regularisation parameter λ controls the trade-off between fitting the observed data and

enforcing sparse solutions. From the definition of equation 5.7, it appears that solutions

derived with soft-thresholding will present a bias due to the subtraction by λ. In order to

mitigate this effect, I use the reweighting scheme from Candes et al. (2008). In order to prevent

the most significant coefficients from being truncated, I multiply the regularisation parameter

λ by:

W = 2

1+exp(−10(λ−α0))
, (5.8)

where α0 is the solution of equation 5.6 with W = 1. With this definition for W, the coefficients

that are much larger than λ are less affected by soft thresholding than others. Values of W

for coefficients outside S are set to infinity, hence naturally ensuring that the corresponding

wavelet coefficients are set to zero.

This approach can be used to recover the source light profile in systems involving a faint

foreground lens galaxy, a large Einstein radius, or when a reliable deblending of the lens and

source light profiles is available prior to the source reconstruction scheme presented here.
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5.2.2 Source reconstruction and deblending of the foreground lens light profile

In a more general case, one has to deal with the separation between the lens and source light

profiles. Although several techniques allow for their separation prior to the analysis of the

lens system (e.g. Joseph et al., 2014, 2016; Brault & Gavazzi, 2015), each of these methods have

limitations, in the sense that they require specific inputs (field of view, or multiband images) or

do not take into account the lensed source profile when fitting the lens, resulting in potential

biases. Another approach consists in fitting an analytic lens light profile while reconstructing

the lens mass density profile and the source (Birrer et al., 2015; Tessore et al., 2016). Here, I

propose a solution to reconstruct and separate the lens and source light profiles using the fully

linear framework provided by morphological component analysis (henceforth, MCA, Starck

et al., 2005b).

Very importantly, a galaxy is sparser in starlets in its own plane (source or image), meaning

that, given a mapping Fκ, with κ(θ) > 1 at several positions θ, between source and lens plane,

a galaxy in the source plane will be sparser than its projection to the lens plane. Likewise, a

lens galaxy in the lens plane will be sparser than its projection to the source plane. I justify

and illustrate this statement in Sect. 5.4 using simulated lenses.

Morphological component analysis allows for separation of two mixed components in a signal,

based on the fact that each component can be sparsely represented in its own dictionary

but not in others. Here, a dictionary is a collection of atoms (vectors) that, together, form a

generative set of RNps . In the context of lens source separation, the explicit dictionaries are the

starlet transform of a back-projection in source plane on one hand and the starlet transform

for the lens, in lens plane, on the other hand.

I can therefore iteratively project the mixed signals in their own respective dictionaries, im-

pose a sparsity constrain on each projection and therefore reconstruct the corresponding

components separately. As seen in Sect. 5.2.1, sparsity is imposed by minimising the �1-norm

of both decompositions.

5.2.3 Optimisation problem

In mathematical terms, the aforementioned MCA problem boils down to finding the model

{Ŝ,Ĝ} that provides the best approximation of the data set Y according to equation 5.4, while

minimising the �1-norms of the starlet coefficients αS , and αG , with αG =ΦT G . This writes:

α̂S , α̂G = ar g mi n
αS ,αG

||Y −H(FΦαS −ΦαG )||22 +λS ||WS �αS ||1 (5.9)

+λG ||WG �αG ||1,
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Figure 5.1 – Noise levels in source plane (λS)for three starlet scales (scale 1, 3 and 5) out the
five computed for 100×100 pixels images with noise standard deviation σ= 1.

Here, λS and λG account for the sparsity of αS and αG respectively. Similarly to equation 5.6,

WS and WG are weights that play the same role as in equation 5.8. I describe the calculation of

these values in section 5.3.1.

Since, my main interest is to fully reconstruct the source S, it is not necessary to compute the

fully deconvolved vector G . Instead, I only estimate the convolved vector GH = HG so that

I extract the convolved foreground lens galaxy GH and decrease the computational time by

avoiding several convolution steps of over G when solving equation 5.9, which becomes:

α̂S , α̂GH = ar g mi n
αS ,αGH

||Y −HFΦαS −ΦαGH ||22 +λS ||αS ||1 (5.10)

+λG H ||αGH ||1.

5.3 Method: the SLIT algorithms

In this section, I describe the two algorithms, SLIT and SLIT_MCA that I implemented to solve

equation 5.6 (no lens light) and 5.10 (full light reconstruction problem) respectively.

5.3.1 Source delensing: SLIT algorithm

Starting with the simpler case of solving equation 5.3, I made use of the fast iterative soft

thresholding (FISTA) algorithm (Beck & Teboulle, 2009). This iterative algorithm is similar

to a forward backward (Gabay, 1983) algorithm with an inertial step that accelerates the

convergence. I show the pseudo-algorithm for one iteration in algorithm 3. It consists in a step

of gradient descent (steps 2 and 3) followed by a soft-thresholding of the starlet coefficients of

the source (step 4), which acts as a sparse regularisation. Step 6 aims at pushing forward the
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solution in the direction of smaller error, which accelerates the convergence. The process is

repeated until convergence, as shown in algorithm 4

Algorithm 3 FISTA iteration

1: procedure FISTA(Y ,αi , H ,F,ξi , ti ,λ,W )
2: R ←μF T H T (Y −HFΦαi )
3: γ← ξi +ΦT R
4: αi+1 ← STλ�W (γ)

5: ti+1 ←
1+

√
1+4tS

2
i−1

2

6: ξi+1 ←αi + ti−1
ti+1

(αi+1 −αi )
7: return ξi+1,αi+1, ti+1

8: end procedure

In this algorithm, Y is the original image of a lensed galaxy, ξi and γ are local variables used

to carry local estimates from one iteration to another, αi is the starlet decomposition of the

estimated source at iteration i and ti gives the size of the inertial step. This sequence has been

chosen to ensure that the cost function convergence is bounded by the Euclidian distance

between the starting point for S and a minimiser of the cost function. This is explained in

more details in Chambolle & Dossal (2015) (thm. 1) and Beck & Teboulle (2009) (thm 4.1). The

gradient step μ is chosen to be μ= (||HFΦ||2s )−1, with ||.||s being the spectral norm of a matrix,

defined by:

||M ||s = max
x �=0

||M x||2
||x||2

. (5.11)

Function STλ is the soft-thresholding operator described by equation 5.7.

Algorithm 4 SLIT

1: procedure SLIT(Y , H ,F,λ, Ni ter,W )
2: ξ0,α0, t0 ← 0,0,1
3: for 0 < i ≤ Ni ter do
4: ξi+1,αi+1, ti+1 ← F I ST A(Y ,αi , H ,F,ξi , ti ,λ,W )
5: end for
6: S =ΦαNi ter

7: W = 2
1+exp(−10(λ−α0)) ,

8: return S,W
9: end procedure

Parameter λ has to be chosen with care as it accounts for the sparsity of the solution. In

practice, λ is a threshold that is applied to each starlet coefficient of the solution in order

to reduce its �1-norm in starlet space. In the present case, given the presence of noise in

the input data Y , it is important to chose a threshold above the noise levels. This is done by

propagating the noise levels in image Y to the starlet coefficients αi . The starlet transform

being an undecimated multi-scale transform, coefficients αi can be ordered as a set of images,

each image representing the variations in the data at different scales. Therefore, it is necessary
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to estimate how noise levels translate from the data to each scale of the starlet transform. In

the current implementation, the noise from image Y also has to be propagated through the

H T and F T operators as shown in step 2 of algorithm 3. Because the convolution H T correlates

the noise in the data and the back-projection to source plane induces varying multiplicity of

the delensed pixels across the field of view, it is necessary to estimate a different threshold

λ at each pixel location in each scale of the starlet transform of the source. In practice, for

measurements affected by noise with known covariance Σ, noise standard deviation in the

starlet domain of the source plane are given by the square root of the diagonal elements of

ΣS =ΦT F T
κ H T ΣHFκΦ (5.12)

In the case of the "a trou" (french for "with whole", Holschneider et al., 1989; Shensa, 1992)

algorithm, which relies on filter bank convolution to perform the starlet transform, the ele-

ments of Φ are never explicitly calculated. Instead, the noise standard deviation at scale s and

pixel p in the starlet domain of the source plane is given by:

Ξ2
s,p =Δ2

s ∗Γ2
i , j ,(i= j ), (5.13)

Where Δs is the starlet transform of a dirac function at scale s, ∗ is the convolution operator,

and Γi , j ,{i= j } is the vector containing the diagonal elements of F T
κ H T ΣHFκ.

The result is the noise level in source space at each location and each scale of the starlet

transform. By construction, the last scale contains the coarse details in the image and is left

untouched in the thresholding process. Figure 5.1 shows the noise levels in source plane

calculated from a simulation where the surface mass density is a singular isothermal ellipsoid

(SIE). The PSF is a simulated Tiny Tim PSF (Krist et al., 2011), for the F814W filter of the

ACS/WFC instrument on the HST and noise standard deviation is set to 1. The original image

is a 100×100 pixels image which is decomposed in 6 starlet scales, i.e. the maximum number

of scales that can possibly be computed, given the size of the image.

5.3.2 Deblending and source de-lensing: SLIT_MCA algorithm

In real data, the source and lens light profiles are blended, i.e. the light of the lens impacts the

quality of the source reconstruction. Handling the deblending and de-lensing simultaneously

can be done using MCA.

In classical source separation problems where two components are to be separated, solutions

are obtained through MCA, by performing a gradient step and by alternatively regularising

over each component in its own dictionary. In the present case, solving equation 5.4 requires

solving an inverse problem each time one aims at reconstructing the quantity HFκS. This

inverse problem corresponds to solving equation 5.3 for which I already presented a solution

in algorithm 4.

Our MCA algorithm is therefore an iterative process that consists in alternatively subtracting a

188



5.4. Numerical experiments with simulations

previous estimation of GH and S to the data:

DS = Y −GH (5.14)

and

DG = Y −HFκS, (5.15)

as detailed in algorithm 5. At each iteration, the previous subtractions DS and DG are used to

estimate S and GH respectively. Estimating S requires running the full SLIT algorithm on DS

until convergence. Estimating GH at a given iteration is simply done by running one single

iteration of the FISTA algorithm on DG with inputs Fκ and H being identity matrices. I found

empirically that using the projections of S and GH on the subsets of vectors with positive

values (meaning that all negative coefficients are set to zero), faster convergence towards more

realistic solutions could be achieved. Although this is not a formal positivity constraint since

I do not apply positivity on the solutions themselves, I found that in practice this leads to

galaxy profiles with less negative structures which is not a physical feature found in galaxy

light profiles.

Estimating λG is as crucial as estimating λS but is much simpler given that there is no inverse

problem to solve in this case. The threshold λG only depends on the noise level in the image.

Given that I impose sparsity in starlet space, noise levels still have to be evaluated at each

scale of the starlet transform. To do so, I simply compute how a unitary signal in direct space

translates into starlet space and multiply it by the noise standard deviation. In other words, I

take the starlet transform of a Dirac function and compute the 2-norm of each scale of the

starlet transform. This tells how energy is distributed into starlet space. For a decomposition

over 6 starlet scales, the values obtained for the first five scales in order of increasing scale

are: λG = [0.891, 0.200, 0.086, 0.041, 0.020]. As in the previous section, the last scale is left

untouched. The obtained values are then multiplied by a scalar that accounts for the desired

detection level in units of noise. The scalar is often chosen to be between 3 and 5σ as seen

previously. A detection at 3σ will produce very complete but noisy reconstruction of the signal,

when 5σ will lead to a more conservative reconstruction of the most high signal-to-noise ratio

features only. The obtained thresholds are applied uniformly across each scale.

5.4 Numerical experiments with simulations

In the following, I illustrate the performances of the algorithms with numerical experiments

that mimic different observational situations.
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Algorithm 5 SLIT MCA algorithm

1: procedure SLIT_MCA(Y , H ,Fκ, Ni ter , Nsubi ter ,λS ,λG )
2: S̃ ← 0
3: G̃H ← 0
4: [ξS 0,ξG 0] = [0,0]
5: [αS 0,αG 0] = [0,0]
6: [tS 0, tG 0] = [1,1]
7: for 0 < i ≤ Ni ter do
8: DS ← Y −GH

9: S ← SLI T (DS , H ,Fκ,λS , Nsubi ter )
10: DG ← Y −HFκS
11: ξG i ,αG i , tG i ← F I ST A(DG ,αG i−1, Id , Id ,ξG i−1, tG i−1,λG ,1)
12: GH ←ΦT αG i

13: end for
14: return S̃,G
15: end procedure

5.4.1 Creating realistic simulated lenses

In order to make the simulations as realistic as possible, I use galaxy light profiles extracted

from deep HST/ACS images taken in the F814W filter. The images are part of the Hubble

Frontier Fields program and the specific data1 were taken from the galaxy cluster Abell 2744

(Lotz et al., 2017). I selected various patches, each containing a galaxy that is used to represent

a lens or a source. The HFF images were cleaned using starlet filtering with a 5-sigma threshold.

Source galaxies have been chosen to display significant structures over a broad range of scales,

that I aim at recovering with the lens inversion methods. The lens light profile is smoother, as

expected for a typical massive early-type galaxy, e.g. like in the SLACS samples (Bolton et al.,

2008).

To generate the simulations I then lens the sources following the recipe in Sect. 5.1.2, using

various lens mass profiles. Then, the lens light is added and convolved with a PSF created with

the Tiny Tim software (Krist et al., 2011) for the ACS/WFC and the F814W filter.

The images shown in this section were created from images taken with the ACS/WFC instru-

ment on HST. Flux units are showed in e− and pixels in image plane are 0.05 arc-seconds

on-a-side.

5.4.2 Plane-wise sparsity of galaxy light profiles

The MCA-SLIT algorithm consists in projecting the mixture image of the lens galaxy and the

lensed galaxy, back and forth between the source and lens plane, and thresholding the starlet

coefficients of each projection. My hypothesis is that the starlet thresholding favours, in each

1the frames were recovered from the HFF site at http://www.stsci.edu/hst/campaigns/frontier-fields/FF-Data
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plane, the corresponding galaxy: source galaxy in source plane and lens galaxy in lens plane.

This assumes that a lens galaxy in lens plane is well reconstructed with only a few starlets

coefficients, while a source galaxy projected to lens plane is not. Conversely, it implies that

a source galaxy in source plane is sparser in starlet domain than a lens galaxy projected to

source plane.

To verify this hypothesis, I selected 167 images of galaxies from cluster MACS J0717 from the

HFF survey, in the F814W filter of the ACS/WFC camera of HST. I used the HFF-DeepSpace

catalogue by Shipley et al. (2018) to select galaxies with a semi-major axis of at least 5 pixels and

a flag at 0 in the F814W filter to insure that the galaxies are isolated in their stamp. I performed

the starlet decomposition of these images along with their projections to source and lens

plane using three different mass profiles (SIE, SIS and elliptical power law) with realistic draws

of the lens parameters. For each of these starlet decompositions the p% smallest coefficients

are set to zero and the image in pixel space in reconstructed. I then compute the error on

the reconstruction as a function of p. The resulting curve is the non-linear approximation

error (NLA; see Starck et al., 2015), shown in Fig. 5.2. The NLA can be used as a metric for the

sparsity of a galaxy profile, in the sense that a sparse galaxy will see its NLA decreasing rapidly

with p.

In Fig. 5.2, we see in particular that the NLA of galaxies (in red) decreases faster than the one

of the lensed source (in green). This means that when keeping only a small percentage of the

highest coefficients in starlets (say 10%) of the decomposition of an image Y , will reconstruct

well the lens galaxy but not the lensed source. When comparing the NLA of a galaxy (red curve

in Fig. 5.2) to that of its projection to source plane (cyan curve in Fig. 5.2), we see that the NLAs

of both profiles are very similar, making it difficult to disentangle between them. In practice,

the reconstructed source images can be contaminated with features belonging to projections

of the lens galaxy if not converged properly. On the bright side, since lens galaxy light profiles

are being reconstructed in lens plane very efficiently, the signal from lens galaxy in source

plane will decrease very rapidly with iterations.

5.4.3 Testing SLIT and SLIT_MCA with simulations

I apply my algorithms to a set of simulated images and show comparisons of reconstructions

with a state-of-the-art method: lenstronomy (Birrer & Amara, 2018). In the present chapter,

my goal is to show the potential of MCA-based algorithms as a simultaneous source recon-

struction and source-lens deblending technique. All the tests therefore assume that the mass

density profile of the lens is known, as well as the PSF. Unless stated otherwise, the following

images were simulated with white Gaussian noise with standard deviation σ. I define the
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Figure 5.2 – Normalised non-linear approximation (NLA; 5.4.2) of galaxies projected in source
and lens plane. The red curve stands for the average NLA of galaxy images that can be seen as
source or lens galaxies. The cyan curve stands for the average NLA of the same galaxies once
projected from lens to source plane. The green curve stands for the NLA of the same galaxies
projected to lens plane.

signal to noise ratio (SNR) of an image I with Npi x pixels as:

SN R = 1

Npi xσ2

∑
Npi x

I 2 (5.16)

Case 1: simulation with no lens light

I first reconstruct an image of a lensed galaxy with no foreground light. The simulation

contains Gaussian white noise with SN R = 50. I used 50 iterations of Algorithm 4. The results

are presented in Fig 5.3 illustrating the quality of the reconstruction, and leading to negligible

residuals.

In this simulation, there are 4 times more pixels in the source plane image than in the lens

plane, i.e. in image plane, the observable is an image of 100 by 100 pixels, while the source is

reconstructed on a 200 by 200 pixels.
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Figure 5.3 – Application of the SLIT algorithm to a simulated lensing system in the simple case
where there is no light from the lensing galaxy. Left: the simulated source is shown on the top
while its lensed and noisy version is shown on the bottom. Both include a PSF convolution.
Middle: source recovered with the SLIT algorithm and the lensed version of it. Note that
both are still convolved with the PSF. Right: the difference with the true source (top) and the
residuals in the lens plane (bottom). The original and reconstructed images are displayed with
the same colour cuts. The residuals in the bottom right panel are shown with ±5σ cuts.

Case 2: simulation with both lens and source light

I then applied Algorithm 5 to the simulated images of a full lens system. In this case both

the convolved lens light profile and the source light profile (Fig 5.4) are recovered. Sparsity is

enforced in each solution by using enough iterations of the algorithm to perform an efficient

separation. A difficulty here is to chose the numbers of iterations and sub-iterations such

that both components converge to a sparse solution. In these experiments, Ni ter = Nsubi ter

ensures similar quality in the reconstructions of both components.

The results show no structure in the residuals and visually good separation between the lens

and the source as well as a good reconstruction of the source without significant leakage

between the two. However, the residuals in the first three lines of the Figure show that the

source flux was slightly overestimated at larger scales, while the lens galaxy was slightly

underestimated. The amplitude of the phenomenon reaches no more than 10σ of the noise

level given the amplitudes displayed in the last column.
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Figure 5.4 – Illustration of the SLIT_MCA algorithm with simulated data. Left: simulated ground
truths. From top to bottom are shown the original un-lensed source, its lensed version also
convolved with the PSF, the lensing galaxy (convolved with the PSF) and the full simulated
system where noise had been added. Middle: the output of the SLIT_MCA algorithm. Right:
the differences between the two previous panels. The original and reconstructed images are
displayed with the same colour cuts. The residuals in bottom right panel are shown with cuts
set to ±5σ. White dots show the positions of pixels crossed by critical lines in lens plane and
by caustics in source plane.

5.4.4 Comparison with lenstronomy

I tested my source reconstruction technique on three other simulations with various source

morphologies and lens mass profiles, including one generated with the lenstronomy package.
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Image number Source Origin Source processing Factor PSF Noise Lens model
1 NASA, ESA jpeg Shapelets 5 Gaussian P+G SPEP
2 HFF fields �G− 4 Gaussian SNR = 10 SIE
3 HFF fields �G− 2 Gaussian SNR = 100 SIS

Table 5.1 – Description of the simulated images. Symbol �G− stands for convolution by
a Gaussian kernel and subtraction of the median (see text). Column factor stands for the
resolution factor between source and lens plane. For instance, in image 1, the source has 5
times more pixels on the side than the image. Gaussian PSFs were used in all three images with
a FWHM of 2 pixels, P+G stands for gaussian Poisson mixture. Gaussian noise with σ= 2 was
used. The Poisson noise value at pixel i is drawn from a Gaussian distribution with σ=√

fi ,
fi being the flux in pixel i . Details of the lens profiles are given in appendix G.1

I compared the reconstructions of three lensed sources with the ones computed by S. Birrer,

the author of lenstronomy. In order to avoid favouring one method over the other, we tried

as much as possible to chose representations for true sources that do not correspond to either

code’s decomposition for reconstructing sources. Sources generated with SLIT were extracted

from HFF images and convolved with a Gaussian kernel with a full width at half maximum of

five pixels. This produces a smooth version of the noisy HFF images to which I then subtract

the median value of the image in order to set the sky background to zero. All remaining

negative values in the image are set to zero. The image generated with lenstronomy uses a

source from a jpeg image of NGC 1300 from NASA, ESA. The image resolution is degraded

by a factor 25 and decomposed over the shapelet dictionary (Refregier, 2003) using enough

coefficients (11476) to accurately recover the morphology of the image. Despite lenstronomy

relying on shapelets to solve the source inversion problem, the number of coefficients that it is

possible to recover in the reconstruction is much smaller than the number of coefficients used

in generating the true source. Therefore, the basis set of the reconstruction is different from the

one used in generating the true source. The three systems tested here were made from sources

with different morphologies and different lens profiles table 5.1. In this exercise I test the

methods on simulated images that were generated with different procedures. This comparison

therefore allows to show how robust these techniques are to the underlying mapping between

source and lens plane.

In order to compare the results of both methods I show the resulting reconstructions of the

runs in Figs. 5.5 and 5.6 and use three metrics:

• Quality of the residuals ,R(S̃), given by the relative standard deviation of the residuals

for a model of the source , S̃:

R = std
(Y −HF (̃S)

σ

)
. (5.17)

In cases of Gaussian and Poisson mixture noise, σ=
√

σ2
G + f , where σG is the standard

deviation of the Gaussian component and f is a 2-D map of the flux in the true noiseless
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model for image Y . Given that definition, the closest R is from one, the better the

reconstruction.

• Quality of the source reconstruction relative to the true source , Str ue , estimated with

the Source Distortion Ratio (SDR, Vincent et al., 2006). The SDR is the logarithm of

the inverse of the error on the source light profile, weighted by true flux of the source.

As a result, the higher the SDR, the better the reconstruction of the source. The SDR is

computed as:

SDR(S̃) = 10log10
||Str ue ||

||Str ue − S̃|| . (5.18)

• Computation time

These two metrics of quality and source residuals, were chosen to provide a measure of the

quality of both reconstruction in both source and lens plane. While the SDR of the sources is

the most informative metric with regards to the quality of the reconstruction of the source,

it is also necessary to ensure that both methods are able to reconstruct similarly well the

observables, hence the role of metric R. The evaluation of these metrics for both methods are

given in Fig 5.7.

The residuals in Fig 5.5, as well as the results for R(S̃) in Fig 5.7 show that both codes achieve

similar quality of reconstruction. While lenstronomy leaves a little bit more signal in the

residuals, in particular in cases of smooth sources generated with SLIT, SLIT, on the contrary

tends to create false detections at noise level at locations where the actual signal is zero,

resulting in a slight over-fitting. In the case of lenstronomy, over-fitting of outer regions with

no signal is prevented by the fact the method relies on shapelets, which are localised around

the centre of the images provided that the number of coefficients used in the reconstruction

is kept small. The down-side of that strategy is that shapelets hardly represent companion

galaxies in the source such as the one on the right side of image 3 in Fig. 5.6. To circumvent

this problem, one needs to use a second set of shapelets positioned at a different location to

represent a second displaced light component. This has deliberately not been done in this

comparison. From looking at the reconstructions of image 1 and the corresponding SDRs, it

appears that lenstronomy performs slightly better at reconstructing truth images generated

with high resolution and detailed features. Despite both reconstructions show the same

levels of details, false detections in SLIT at locations where the truth signal is 0 contribute

diminishing artificially its SDR. Also, the large number of pixels in the source compared to

the number of pixels in the observations (25 times more pixels in the source than in the

image) makes the problem highly under-constrained. In lenstronomy, this is overcome by

computing a small number of shapelet coefficients and displaying them on an arbitrarily thin

grid. With SLIT, I optimise for each coefficient in the starlet dictionary, which means, more

pixels in source plane equals more unknowns.

Regarding computational time, while lenstronomy runs in less than a second, a typical SLIT
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Figure 5.5 – Reconstructions with Lenstronomy and SLIT in image plane. The middle panels
represent respectively from top to bottom, simulated images 1, 2 and 3. The left panels show
the corresponding residuals after reconstruction with lenstronomy, while the right panels
show the residuals obtained with SLIT.

run for examples such as the ones provided above will last between 250 and 500 seconds. For

a full run of SLIT_MCA, this number is multiplied by a factor 5 to 10. While this is a current

weakness of the algorithm, I am confident that optimised packages for starlet transforms and

linear optimisation as well as parallel computing will allow to lower these numbers by at least

a factor 10.

5.4.5 Lens parameter optimisation

In order to assess whether this technique holds the potential to be used in a full lens modelling

context, I test its sensitivity to the density slope γ. In Koopmans et al. (2006, 2009), the authors

showed real lens galaxies have, on average, a total mass density profile with a density slope

γ∼ 2, i.e. isothermal. In Fig. 1 of Koopmans et al. (2009), the authors show that the posterior

probability distributions of a sample of 58 strong lenses are maximised for a density slope

between 1.5 and 2.5, which sets the limits for the values of γ investigated here.
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Figure 5.6 – Reconstructions with Lenstronomy and SLIT in source plane. Panels from the
middle row show the true sources used to generate respectively simulated images 1,2 and 3.
The first row show the source reconstruction from lenstronomy. The second row show the
difference between the true sources and the sources reconstructed by lenstronomy. The last
row shows the source reconstruction from SLIT. The penultimate row shows the difference
between true sources and sources reconstructed with SLIT. Panels between reconstructed
and true images, show the difference between the two for the corresponding technique.

In this analysis, I generate a lens system (shown in Fig 5.9) with a power law mass density

profile with γ= 2. The light profiles for the lens and source galaxies were drawn from HFF

images. The PSF is a gaussian profile with a FWHM of 2 pixels. I create 100 realisations of

additive Gaussian at SNR 100 for this system and try to reconstruct, with SLIT MCA, each of
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Figure 5.7 – Quantitative comparison of Lenstronomy and SLIT reconstructions. Left panel:
quality of the residuals according to equation 5.17. right panel: SDR of the reconstructions
according to equation 5.18.

these realisations with several density slopes γ̃ ranging from 1.5 to 2.5. The results are shown

in Fig 5.8. The true and the reconstructed profiles are shown in appendix G.2.

Fig 5.8 shows that the actual morphologies of S and GH are recovered very accurately (SDR ∼
20) for γ = 2. In a real case study, the truth for S and GH light distributions are not known,
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Figure 5.8 – Metrics of the reconstructions of system in Fig 5.9 as a function of mass density
slope. The Top left panel shows the cumulative SDR of the source and galaxy light profile
reconstruction. The top right panel shows the average of the residuals as exp(−||YH Fκ(γ̃)ΦαS+
ΦαGH ||22) over 100 noise realisations. The bottom panels displays the cumulative �1-norm of
αS and αGH as exp(−(λS ||αS ||1 +λG ||αGH ||1)). The error bars show the standard deviation of
these metrics over 100 noise realisations. The blue line shows the truth value γ.

therefore, it is impossible to use the SDR to discriminate between lens mass model parameters.

Instead, I have to rely on quantities derived from the observations or on properties of the
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Figure 5.9 – Light profile of a simulated lens system (lens and lensed source light profiles)
generated with a power law mass profile with γ= 2.

reconstructed profiles. The top right panel of Fig. 5.8 shows the likelihood defined as:

exp(−L (γ) = ||YH Fκ(γ̃)ΦαS +ΦαGH ||22), (5.19)

of a lens model with slope γ̃ to be the right model. Because of the strategy I chose for SLIT_MCA,

which consists in optimising alternatively over the source and lens light profiles, the algorithm

is very likely to estimate light profile models that will minimise the residuals in the image, even

in cases where the mass model does not correspond to the truth. Hence the relative flatness,

compared to the error bars, of the likelihood profile from Fig 5.8. In particular, we observe that,

for γ̃> 2.2, a likelihood as high or higher than the likelihood at γ= 2 is achieved, despite the

lens model being wrong. This is caused by the extreme steepness of the mass density profile,

which causes SLIT_MCA to model the source as its lensed version back in source plane. With

these results, one would think SLIT_MCA unfit to be used in a full lens modelling framework.

The strength of the algorithm lies in its potential to find the sparsest solution to a problem of

lens light modelling. Since wrong mass models introduce artefacts in the reconstructions of

light models, their �1-norm is significantly higher than in the case of a reconstruction with a

true model where light profiles are smooth. The bottom panel of Fig 5.8 shows the cumulative

�1-norms of αS and αGH as an argument of the likelihood. In this case, the metric is maximised

around the true value for γ̃. Despite the sparsest solution being found for γ̃= 2.01, while the

truth value for γ sits at 2.00, this result is still in the error bars estimated in Koopmans et al.

(2009) over a sample of 58 lenses.
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5.5 Outline

In this chapter, I built a fully linear framework to separate the lens and source light profiles

in strong lensing systems, while reconstructing the source light profile as it was prior to the

lensing effect at fixed lens mass model.

The first algorithm, SLIT (Sparse Lens Inversion Technique), decomposes the source plane

on a basis of starlets. This allows us to represent the source in a non-analytical way, hence

providing a sufficiently large number of degrees of freedom to capture any small structure in

the data. SLIT applies to lensed systems where the lens light has been removed and for a fixed

mass profile.

The second algorithm, SLIT_MCA (SLIT Morphological Component Analysis), also applies in

the case of a fixed mass model but is able to deblend the lens light from the source as it recon-

structs it in the source plane and deconvolves it from the instrumental PSF. The separation of

lens and source light profiles in SLIT_MCA relies on the principle of morphological component

analysis, but uses the distortion introduced by lensing itself as a way of discriminating between

lens and source features. As is the case for SLIT, SLIT_MCA does not use any analytical form

for either the source or the lens representation. Both algorithms account for the instrumental

PSF.

I tested the algorithms with simulated images, showing that very accurate source reconstruc-

tions and separations can be obtained, within the observational noise. I identify several

advantages of this approach:

• the lens and source light profiles are pixelated numerical profiles, allowing a large

number of degrees of freedom in their reconstruction;

• the code implementing the algorithms is fully automated due to a careful automated

computation of the regularisation parameter. It does not require any prior or assumption

about the light profiles, either for the source or the lens;

• the performances of the algorithms are robust against pixel size in the sense that arbi-

trarily small pixel sizes can be used without leading to noise amplification or artefacts.

The pixel size of both the source and lens can be an order of magnitude smaller than the

PSF without negative impact on the results. On the contrary, adopting very small pixel

sizes allows for detailed reconstruction of the source;

• the python code is public and easy to use.

• the linear framework of the algorithms presented here opens the possibilities for the

developement of a full lens modelling technique based on non-negative matrix factori-

sation (NMF, Lee & Seung, 1999; Paatero & Tapper, 1994). This technique could allow to

solve equation 5.4 in Fκ, G , S simultaneously. The knowledge of Fκ would in turn allow

us to recover free form solutions for the density mass profile κ. We showed in Fig 5.8
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5.5. Outline

how our strategy favoured the reconstruction of the sparsest solution, hinting at the

possibility to be able to find a model for Fκ that will favour the sparsest set of lens and

source profiles. Because this problem introduces another degree of complexity due to

the number of unknowns and the increasing degeneracies of the solutions, we delay this

study to a later publication.

The main limitations of the algorithm, at this time, is its very high computational time which

scale to dozens minutes if not an hour when estimating very large source light profiles with

SLIT_MCA. Although this makes the method unefficient as a possible minimiser in a Monte-

Carlo Markov Chain sampling strategy, I am confident that upcoming optimised packages

for linear optimisation will increase the speed of the algorithm. Also, the motivation behind

the development of this technique is to be able to estimate free form lens mass models

from methods such as non negative matrix factorisation, which requires less evaluations of

SLIT_MCA.
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6 Conclusion

The study of strong gravitational lens systems requires robust algorithmics at several levels,

from the detection of gravitational lenses to the extraction of lensing parameters, through

the preprocessing and deblending of lens images. In this thesis I have tried to express these

problems as linear inverse problems when possible and to solve them as such. On the side of

strong lens finding, principal component analysis has proven to be a strong asset allowing bet-

ter detection by subtracting the light of potential foreground lens galaxies. Since the creation

of this technique, much efforts have been done that rely on machine learning techniques that

are not limited to learning the shape of lens galaxies, but that also learn the morphologies of

background lensed sources.

In the last two chapters, I have described two methods for deblending strong gravitational

lenses. While the first method relies on colour differences between lenses and sources in

multi-band images, the second one uses the fact that a lensed source is the distorted version of

an otherwise sparse galaxy light profile in source plane to perform deblending in single-band

images. I hope the reader will have noticed that these two techniques provide independent

discrimination criteria between lensed and unlensed objects can be combined in adequate

data sets. Indeed, the morphological argument about the sparsity of galaxy profiles in their

own referential still holds in multi-band images. It is therefore possible to express the light

profile of a strong gravitational lens system as a combination of equations 3 in section 4.2 and

equation 5.2 to form:

Y = H
(

A1G + A2FκS
)
+Z . (6.1)

In equation 6.1, A1 is the first column the mixing matrix from MuSCADeT’s formulation and

A2 is the second column. Vectors A1 and A2 therefore contain respectively the SEDs of the

red foreground lens galaxy and the blue background lensed galaxy. Matrix H accounts for the

convolution of each band by their corresponding PSF.
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Chapter 6. Conclusion

Developing an automated method for strong gravitational lens modelling requires being able

to solve equation 6.1 in A1, A2, G , S and Fκ. While this appears as a complex problem to solve,

we have established in chapters 4 and 5 that both lensing (matrix Fκ) and colour (A1 and A2)

allowed to separate between lens and source. Combining these two independent separation

criteria should lead to an improved joint separation and reconstruction of lens and source

galaxies, at least at fixed mass distribution.

With regard to the estimation of lens mass models, while it is not possible to solve equation 6.1

as a linear problem in κ, it is possible to solve it for Fκ. Because Fκ is the matrix that gives the

mapping between lens and source pixels, it is possible to assume the sparsity of each column

of this matrix, which gives us constraints to factorise the matrix product FκS even with Fκ and

S unknown. Due to the global problem being widely underconstrained, I consider using a

starting point for the matrix Fκ, derived from an initial guess of an analytical SIS profile, for

instance. Deriving Fκ does not give us the surface mass density distribution, but by recording

the pixel matching established in this matrix, one can derive the deflection angleααα at positions

θθθ where lensed images of a background source appeared. From this point, computing the

surface mass distribution κ is a deconvolution problem given by equation 1.10, which can be

solved as a linear inverse problem. Such method could allow the computation of numerical,

free-form source and mass profiles. One of the advantages of free-form mass profiles is their

sensitivity to massive substructures that would be extracted without having to account for

them explicitly in the formulation of the problem.

While there are still active efforts to be made to improve the robustness and automation of

strong lensing analysis algorithms, the recent discoveries of a lensed supernovae and a magni-

fied individual star have opened the door to new science with gravitational lensing. Lensed

supernova allow to multiply the occurrence of the rare event that constitutes a supernova

explosion and allows repeated observations of the explosion with the possibility to record

the beginning of the explosion, provided that our algorithms for predicting the reappearance

of an object are precise enough. Magnification of individual stars, allows to probe the first

population of stars, but also has the potential to probe the distribution of matter at small

scales through possible microlensing event. Coming data-sets provided by large surveys and

long term monitoring of lensed quasars also have the potential to revolutionise our field by

providing better statistics and constraints on our models for dark matter and cosmology in

general.
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A Filtering of MUSE spectra

The following paper is a simple application of wavelet filtering, developed for the needs of

filtering MUSE spectra. The goal is to differentiate between features in MUSE spectra that

belong to noise and features that represent emission lines.
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ABSTRACT
We present IFS-RedEx, a spectrum and redshift extraction pipeline for integral-field
spectrographs. A key feature of the tool is a wavelet-based spectrum cleaner. It iden-
tifies reliable spectral features, reconstructs their shapes, and suppresses the spectrum
noise. This gives the technique an advantage over conventional methods like Gaussian
filtering, which only smears out the signal. As a result, the wavelet-based cleaning
allows the quick identification of true spectral features. We test the cleaning technique
with degraded MUSE spectra and find that it can detect spectrum peaks down to
S/N ≈ 8 while reporting no fake detections. We apply IFS-RedEx to MUSE data of
the strong lensing cluster MACSJ1931.8-2635 and extract 54 spectroscopic redshifts.
We identify 29 cluster members and 22 background galaxies with z ≥ 0.4. IFS-RedEx
is open source and publicly available.

Key words: Techniques: Imaging spectroscopy – Techniques: Image processing –
Galaxies: clusters: individual: MACSJ1931.8-2635 – Galaxies: high-redshift

1 INTRODUCTION

Astrophysical research has benefited greatly from publicly
available open source software and programs like SExtractor
(Bertin & Arnouts 1996) and Astropy (Astropy Collabo-
ration et al. 2013) have become standard tools for many
astronomers. Their public availability allows researchers
to focus on the science and to reduce the programming
overhead, while the open source nature facilitates the code’s
further development and adaptation. In this spirit, we
developed the Integral-Field Spectrograph Redshift Extrac-
tor (IFS-RedEx), an open source software for the efficient
extraction of spectra and redshifts from integral-field spec-
trographs1. The software can also be used as a complement
to other tools such as the Multi Unit Spectroscopic Ex-
plorer (MUSE) Python Data Analysis Framework (mpdaf)2.

Our redshift extraction tool includes a key feature, a
wavelet-based spectrum cleaning tool which removes spu-
rious peaks and reconstructs a cleaned spectrum. Wavelet

1 The software can be downloaded at http://lastro.epfl.ch/

software
2 Available at https://git-cral.univ-lyon1.fr/MUSE/mpdaf

transformations are well suited for astrophysical image and
data processing (see e.g. Starck & Murtagh 2006 for an
overview) and have been successfully applied to a variety of
astronomical research projects. To name only a few recent
examples, wavelets have been used for source deblending
(Joseph et al. 2016), gravitational lens modeling (Lanusse
et al. 2016) and the removal of contaminants to facilitate
the detection of high redshift objects (Livermore et al. 2016).

The paper is designed as follows: Sections 2 and 3
present the spectrum and redshift extraction routines of
IFS-RedEx. In section 4, we describe and test the wavelet-
based spectrum cleaning tool. In section 5, we illustrate
the use of our software by applying it to MUSE data of
the strong lensing cluster MACSJ1931.8-2635 (henceforth
called MACSJ1931). We summarize our results in section 6.

2 SPECTRUM EXTRACTION & CATALOG
CLEANING

It is advantageous to combine Integral-Field Unit (IFU)
data cubes with high resolution imaging, as this allows us to
detect small, faint sources which might remain undetected
if we used the image obtained by collapsing the data cube

c© 2017 The Authors
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2 Rexroth et al.

along the wavelength axis (henceforth called white-light
image) for source detection. For example, Bacon et al.
(2015) used this combination in their analysis of MUSE
observations of the Hubble Deep Field South. Therefore
we exploit this case in the following, but in principle
the software can be used without high resolution data.
IFS-RedEx uses the center positions of stars provided by
the user to align the IFU and high resolution images. It
utilizes a SExtractor (Bertin & Arnouts 1996) catalog
of the high-resolution data to extract the spectra and
the associated standard deviation noise estimate for each
source from the data cube. It extracts the signal in an
area with a radius of 3 to 5 data cube pixels, depending
on the SExtractor full width at half maximum (FWHM)
estimate. Sources with FWHM < 2 high resolution pixels
are discarded as these are typically spurious detections, e.g.
due to cosmic rays.

IFS-RedEx shows the user each source and extraction
radius overplotted on the high resolution image and the
IFU data cube. The user can now quickly examine each
detection and decide to either keep it in the database or to
remove it, for example because it is too close to the data
cube boundary and suffers from edge effects.

The tool also supports line emission and continuum
emission catalogs. These are for example created by the
MUSELET3 software, which uses narrow-band images to
perform a blind search for the respective signal. IFS-RedEx
displays the detected sources and their extraction radius
of 3 pixels on the IFU data cube. The user labels sources
which cannot be used, e.g. because the signal is only a
spurious detection in one pixel or it is too close to the
image boundary. The spectra and noise of the good sources
are automatically extracted.

Finally, the cleaned SExtractor, line emission, and
continuum emission catalogs are merged into a master
catalog. In this step, the sources are displayed on the
high-resolution image so that the user can decide if the
MUSELET and SExtractor detections are part of the
same source. This visual inspection is more reliable than an
automatic association and the number of sources is typically
small enough for a manual inspection in reasonable time.

3 REDSHIFT EXTRACTION

Each 1D spectrum is displayed in an interactive plot and
a second window shows the corresponding high resolution
image, see figure 1. The position of sky lines with a flux
≥ 50 × 10−20 erg s−1 cm−2 arcsec−2 are labeled in green.
The sky line fluxes are taken from Cosby et al. (2006).
IFS-RedEx also lists the emission line identifications from
MUSELET if available.

The user can now adjust the position of the emission
and absorption line template by changing the source

3 MUSELET is part of the mpdaf package. A tutorial and the
documentation are available at http://mpdaf.readthedocs.io/

en/latest/muselet.html

redshift. Once the template matches the source spectrum,
the right redshift is found. IFS-RedEx has several features
to facilitate the correct identification of spectral features.
The user can zoom in and out, overplot the noise on the
spectrum, smooth the signal with a Gaussian filter and
perform a wavelet-based spectrum cleaning, see figure 1.
When IFS-RedEx plots the noise, it shows the standard
deviation around an offset. The offset is calculated by
smoothing the spectrum signal with a Gaussian with
σ = 100 pixels. Thus the noise is centered on the smoothed
signal and it follows signal drifts. The wavelet cleaning is
described in detail in the next section. As can be seen in
figure 1, it reconstructs the shape of the reliable spectrum
features and suppresses the noise. The Gaussian filter
only smears out the signal. Thus the wavelet-based recon-
struction makes it easier to distinguish true from false peaks.

Finally, the user can fit a Gaussian to the most prominent
spectral line. IFS-RedEx combines the error of the fitted
center position with the wavelength calibration error from
the IFU data reduction pipeline into the final statistical
redshift error. The software creates a final catalog with
all source redshifts and errors. In addition, it produces a
document with all spectral feature identifications and high
resolution images for later use, e.g. for verification by a
colleague.

4 WAVELET-BASED SPECTRUM
RECONSTRUCTION

4.1 Wavelet transform algorithms

The wavelet-based cleaning algorithm reconstructs only
spectral features above a given significance threshold. For
this purpose, we use the “à trous” wavelet transform with a
B3-spline scaling function of the coordinate x ∈ R,

φ(x) =
1

12
(|x−2|3−4|x−1|3+6|x|3−4|x+1|3+|x+2|3), (1)

which is well suited for isotropic signals such as emission
lines (Starck et al. 2007; Starck & Murtagh 2006; Holschnei-
der et al. 1989). In contrast to a Fourier transform, wavelets
possess both frequency and location information. We note
that the measured spectrum signal is discrete and not con-
tinuous and we denote the unprocessed, noisy spectrum data
c0, where the subscript indicates the scale s, and its value
at pixel position l with c0,l. We assume that c0,l is the scalar
product of the continuous spectrum function f(x) and φ(x)
at pixel l. Now we can filter this data, where each filtering
step increases s by one and leads to cs+1, which no longer
includes the highest frequency information from cs. The fil-
tered data for each scale is calculated by using a convolution.
The coefficients of the convolution mask h derive from the
scaling function,

1

2
φ
(x

2

)
=

∑
l

h(l)φ(x− l), (2)

and they are (1/16, 1/4, 3/8, 1/4, 1/16) (Starck & Murtagh
2006). By noting that h(k) is symmetric (Starck et al. 2007),
we have

cs,l =
∑
k

h(k)cs−1,l+2s−1k (3)
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Figure 1. Top: Interactive spectrum plot. The user can apply Gaussian filtering (green), wavelet cleaning (red) and plot the noise
(yellow) to distinguish real from spurious features of the data (blue). The offsets of the plots can be adjusted. The noise shows the upper
and lower standard deviation around the smoothed signal (see text). Bottom left: IFS-RedEx displays the high resolution color image
for each source to facilitate the redshift extraction. The respective source is always at the image center and labeled with the number of
the source’s spectrum file, here 1230. Bottom right: MUSE data cube slice at 6799.97 Angstrom corresponding to the high resolution
image on the left. In the spectrum fitting step the data cube is typically not needed and thus it is not displayed by default, but it can
be quickly loaded via the DS9 interface if required.

and we define the double-convolved data on the same scale
by

cds,l =
∑
k

h(k)cs,l+2s−1k. (4)

The wavelet coefficients are now given by

ws,l = cs−1,l − cds,l, (5)

and they include the information between these two scales
(Starck et al. 2016). A low scale s implies high frequencies
and vice versa. The final wavelet transform is the set
{w1, . . . ,wL, cL}, where L is the highest scale level we use,
and it includes the full spectrum information. We impose
an upper limit for L depending on the spectrum wavelength

range and resolution: L ≤ log2((P − 1)/(H − 1)), where
P is the number of pixels of the spectrum signal and H
the length of h, which is in our case H = 5. Otherwise s
could become so large that the filtering equation 3 would
require data outside of the wavelength range. We compute
the wavelet transform according to algorithm 1 and we
transform back into real space by using algorithm 2 (Starck
et al. 2016).

The cleaning in wavelet space is performed following Starck
& Murtagh (2006): We transform a discretized Dirac
δ-distribution to obtain the wavelet set {wδ

1, . . . ,w
δ
L}.

Subsequently, we convolve each squared wδ
s with the

squared standard deviation spectrum noise extracted from
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4 Rexroth et al.

Algorithm 1 Transform the spectrum into wavelet space

Require: Spectrum c0 (= set of discrete spectrum pix-
els {c0,l}), highest scale level L, convolution mask h
Output: Wavelet transform of spectrum
{w1, . . . ,wL, cL}

1: Procedure wavelet transform(c0, L):
2: s ← 0
3: while s < L do
4: s ← s + 1
5: cs,l ←

∑
k h(k)cs−1,l+2s−1k ∀ l

6: cds,l ←
∑

k h(k)cs,l+2s−1k ∀ l
7: ws,l ← cs−1,l − cds,l ∀ l
8: end while
9: return {w1, . . . ,wL, cL}

the IFU data cube and take the square root of the result.
This gives us the noise coefficients in wavelet space.

In the next step, we build the multiresolution support
M, which is a (L+ 1)×P matrix. We compare the absolute
value of the signal and noise wavelet coefficients at each
pixel, ws,l and wN

s,l. We take a threshold T set by the user,
for example 5 for a 5σ cleaning in wavelet space, and set
the corresponding matrix entry in M to 1 if |ws,l| ≥ T |wN

s,l|,
and 0 otherwise. Note that for s = 1, we use a higher
threshold of T + 1, as this wavelet scale corresponds to
high frequencies, where we expect the noise to dominate.
The matrix coefficients for the smoothed signal cL are
automatically set to 1.

Now we perform the cleaning: We set all ws,l associ-
ated with a vanishing M value to zero and transform
back into real space to obtain a first clean spectrum.
However, there is still some signal to be harnessed in the
residuals. Therefore we subtract the clean spectrum from
the full spectrum to obtain the residual spectrum, and we
compare its standard deviation, σres, with the standard
deviation of the full spectrum (in the first iteration) or of
the residual used in the previous iteration (all subsequent
iterations), which we indicate in both cases with σprev. If
|(σprev−σres)/σres| > ε, we transform the residual spectrum
into wavelet space, set wavelets with vanishing M values to
zero, transform back into real space, and add the resulting
signal to obtain our new clean signal. Note that the same
multiresolution support as before is used. Subsequently,
we calculate again the residual and continue until the ε
criterion is no longer fulfilled and all the signal has been
extracted. The value of ε is set by the user and must satisfy
the condition 0 < ε < 1. Algorithm 3 summarizes this
cleaning procedure.

4.2 Testing the wavelet-based reconstruction

To test our software, we use the spectrum of the brightest
cluster galaxy (BCG) from our MUSE data set described
in the next section. MUSE provides both the spectrum
signal and a noise estimate over the full wavelength range.
The original spectrum can be considered clean due to its

Algorithm 2 Transformation from wavelet to real space

Require: Wavelet transform of spectrum
{w1, . . . ,wL, cL}, highest scale level L, number of
spectrum pixels P , convolution mask h
Output: Spectrum in real space c0 (= set of discrete
spectrum pixels {c0,l})

1: Procedure:wavelet backtransform({w1, . . . , cL}):
2: S ← cL
3: for all s ∈ {1, . . . , L} do
4: for all l ∈ {1, . . . , P} do
5: Cl ←

∑
k h(k) Sl+2L−sk

6: end for
7: S ← C + wL+1−s

8: end for
9: c0 ← S

10: return c0

Algorithm 3 Signal cleaning in wavelet space

Require: Spectrum c0 (= set of discrete spectrum pix-
els {c0,l}), σspec ( = vector with standard deviation
noise estimate for each spectrum pixel), highest scale
level L, number of spectrum pixels P , cleaning thresh-
old T , cleaning parameter ε (0 < ε < 1)
Output: Cleaned spectrum Sclean

1: Procedure clean signal(c0, σspec, L, T , ε):
2: {wδ

1, . . . ,w
δ
L, c

δ
L} ← wavelet transform(δ-dist., L)

3: for all wδ
s ∈ {wδ

1, . . . ,w
δ
L} do

4: wN
s ←

√
wδ

s
2 ∗ σ2

spec

5: end for
6: {w1, . . . ,wL, cL} ← wavelet transform(c0, L)
7: M ← 0L+1,P // Multiresolution support matrix
8: for all s ∈ {1, . . . , L + 1}, l ∈ {1, . . . , P} do
9: if s == 1 and |ws,l| ≥ (T + 1)|wN

s,l| then
10: Msl ← 1
11: else if 1 < s ≤ L and |ws,l| ≥ T |wN

s,l| then
12: Msl ← 1
13: else if s == L + 1 then
14: Msl ← 1
15: end if
16: end for
17: Sclean ← 0P , σprev ← 0, res ← c0
18: σres ← std(res)
19: while |(σprev − σres)/σres| > ε do
20: {wres

1 , . . . , cresL } ← wavelet transform(res, L)
21: for all s ∈ {1, . . . , L}, l ∈ {1, . . . , P} do
22: if Msl == 0 then
23: wres

s,l ← 0
24: end if
25: end for
26: resclean ←wavelet backtransform({wres

1 , . . . , cresL })
27: Sclean ← Sclean + resclean

28: res ← c0 − Sclean

29: σprev ← σres

30: σres ← std(res)
31: end while
32: return Sclean
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very high signal-to-noise. We rescale it to simulate fainter
sources at low signal-to-noise. We calculate the rescaling
factor R by looking at the highest spectrum signal peak and
dividing the associated MUSE noise estimate by this signal.
This results in R ≈ 0.0015. We investigate three cases,
namely a good, an intermediate, and a low signal-to-noise
case, where we rescale the full signal spectrum by 10R,
5R, and 2R respectively. Subsequently we add Gaussian
noise simulating the real noise estimate of the MUSE data
cube. For each spectral wavelength pixel l we obtain the
realized noise by drawing from a Gaussian probability
distribution with a standard deviation equal to the MUSE
standard deviation noise estimate at this pixel. We repeat
this process 10 times to obtain spectra with different noise
realizations.

We calculate the signal-to-noise of six emission lines
by summing over their respective wavelength ranges,

S

N
=

∑
l signall√∑

l′ std2
l′

, (6)

where stdl is the MUSE standard deviation noise estimate
at pixel l. We will refer to the lines according to their
wavelength order, i.e. the first line is situated at the lowest
wavelength and the last line at the highest. We apply our
wavelet cleaning software to the spectra using the MUSE
noise estimate and different wavelet parameters as input.
We investigate 5σ and 3σ cleaning and ε parameters of 0.1,
0.01, and 0.001. The cleaning procedure is fast and takes
about 1 second per spectrum on a laptop. Figure 2 shows
reconstructed spectra for the three different signal-to-noise
cases. Note that the last two emission lines in the true
spectrum are actually comprised of merged individual lines.
As can be seen in figure 2, the wavelet tool can detect if
a line consists of two merged lines and reconstruct them
correctly if their signal-to-noise is high enough. If it is too
low, it will reconstruct them as a single line.

For all 90 spectra which we analyzed with a 5σ wavelet
reconstruction, we find no fake detections of emission lines.
For signal-to-noise larger than 20, all 6 test emission lines
are detected. For S/N between 10 and 20, all emission
lines but the third are found. The third peak is no longer
recovered due to its proximity to the fourth peak, which
has typically a twice larger S/N value. In general, the
wavelet software might reconstruct two close-by peaks as a
single peak unless they have each a sufficiently large signal.
When the signal-to-noise of both peaks was similar, both
the third and the fourth emission line were detected and
reconstructed. For emission lines with low signal-to-noise
values between 5 and 10, we can reconstruct the stronger
lines with S/N � 8, while the weaker peaks remain typi-
cally undetected. However, as the bottom plot in figure 2
shows, even weaker peaks can occasionally be reconstructed.

Emission lines modeled with a wavelet reconstruction
do sometimes not reach the full peak height of the signal, in
particular for high ε values, and their tails can suffer from
ringing effects which might be due to the wavelet shape,
see for example the first emission line of the intermediate
S/N case in figure 2. For low signal-to-noise emission lines

Figure 2. Reconstructed spectra for three different signal-to-
noise scenarios using 5σ cleaning and ε = 0.01. The true spectrum
is offset and shown in green, the noisy spectrum is displayed in
gray and the reconstructed signal in blue. Red dots indicate the
signal-to-noise of the respective emission lines. The wavelet tool
detects peaks with S/N � 8. However, if a low S/N emission line
is located very close to a high S/N line, it is possible that it will
not be recovered (middle plot, 3rd emission line from the left).
The wavelet reconstruction can occasionally even find lines with
S/N < 8 (bottom plot, 1st and 6th emission line), but typically
they will not be detected (bottom plot, 2nd - 4th emission line).
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6 Rexroth et al.

Figure 3. In low signal-to-noise (S/N ≤ 10) cases, ringing effects
can occasionally lead to signal dips with similar amplitude as the
signal peaks of the reconstructed emission line. Therefore care has
to be taken not to mistake these effects for absorption lines. This
might be ameliorated by re-running the wavelet reconstruction
with a different setup. The colors have the same meaning as in
figure 2 and the reconstruction was performed with a 5σ cutoff
and ε = 0.01.

(S/N ≤ 10), care has therefore to be taken not to mistake
the signal dip due to ringing effects as an absorption
signal, as the ringing effect might occasionally have a
similar (negative) amplitude as the signal peak of the
reconstructed emission line, see figure 3. When this effect
occurs in practice, it might be improved by changing the
wavelet setup, e.g. by lowering the ε value. A lower ε is
designed to detect a larger fraction of the signal peak and
should thus increase its height. However, care has to be
taken as a lower ε might also lead to stronger ringing effects.

The 3σ wavelet reconstruction recovered more emission lines
than the 5σ cleaning, but it also produced false detections.
We therefore adopted a conservative approach and used
the 5σ wavelet cleaning when applying the code to real data.

Finally, we compared the noise free emission line shapes
with the reconstructed ones. We find that the shape recon-
struction is generally good, but the reconstructed line shape
and height recovered from the noisy data can differ from
the original, clean ones, in particular in low signal-to-noise
scenarios. Therefore we use the wavelet cleaning only to
distinguish true from false spectrum peaks, and we perform
all data operations such as fitting a Gaussian to obtain the
centering error on the real, noisy data.

5 APPLICATION TO MUSE DATA:
MACSJ1931

We apply IFS-RedEx to our data set of the strong lensing
cluster MACSJ1931 obtained with MUSE (Bacon et al.
2010) on the Very Large Telescope (VLT). We combine our
data with the publicly available Hubble Space Telescope
(HST) imaging from the Cluster Lensing And Supernova
survey with Hubble (CLASH, Postman et al. 2012). The

cluster is part of the MAssive Cluster Survey (MACS),
which comprises more than one hundred highly X-ray
luminous clusters (Ebeling et al. 2010, 2001).

The core of MACSJ1931 (z = 0.35) was observed
with MUSE on June 12 and July 17 2015 (ESO program
095.A-0525(A), PI: Jean-Paul Kneib). The 1 x 1 arcmin2

field of view was pointed at α = 19:31:49.66 and δ =
-26:34:34.0 (J2000) and we observed for a total exposure
time of 2.44 hours, divided into 6 exposures of 1462 seconds
each. We rotated the second exposure of each exposure pair
by 90 degrees to allow for cosmic ray rejection and improve
the overall image quality. The data were taken using the
WFM-NOAO-N mode of MUSE in good seeing conditions
with FWHM ≈ 0.7 arcseconds.

We reduced the data using the MUSE pipeline version
1.2.1 (Weilbacher et al. 2014, 2012), which includes bias
and flat-field corrections, sky subtraction, and wavelength
and flux calibrations. The six individual exposures were
finally combined into a single data cube and we subtracted
the remaining sky residuals with ZAP (Soto et al. 2016).
The wavelength range of the data cube stretches from 4750
to 9351 Å in steps of 1.25 Å. The spatial pixel size is 0.2
arcseconds.

We used the HST data for MACSJ1931 obtained as
part of the CLASH program (Zitrin et al. 2015) in the
bands F105W, F475W, F625W, and F814W with a spatial
sampling of 0.03 arcsec/pixel. The HST data products are
publicly available on the CLASH website4.

We use only redshift identifications which we consider
secure because we see e.g. several lines or a clear Lyα
emission line shape. We extract 54 sources with redshifts
ranging from 0.21 to 5.8. Among them, 29 are cluster
members with 0.3419 ≤ z ≤ 0.3672 and 22 are background
sources with 0.4 ≤ z ≤ 5.8. A table of all sources with
spectroscopic redshifts is presented in the companion paper
Rexroth et al. 2017 (in preparation), in which we use the
data to improve the cluster lens model. Figure 4 shows a
histogram of the source distribution in redshift space.

6 SUMMARY

We describe IFS-RedEx, a public spectrum and redshift ex-
traction pipeline for integral-field spectrographs. The soft-
ware supports SExtractor catalogs as well as MUSELET
narrow-band detection catalogs as input. The pipeline has
several features which allow a quick identification of reliable
spectrum features, most notably a wavelet-based spectrum
cleaning tool. The tool only reconstructs spectral features
above a given significance threshold. We test it with de-
graded MUSE spectra and find that it can detect spectral
features with S/N � 8. We find no fake detections in our
test. Finally, we apply IFS-RedEx to a MUSE data cube of
the strong lensing cluster MACSJ1931 and extract 54 spec-
troscopic redshifts.

4 https://archive.stsci.edu/prepds/clash/
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Figure 4. Source distribution in redshift space. Background
sources are colored in red, cluster members in green and the re-
maining objects in blue.
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B Granular feature extraction for sur-
face brightness fluctuations

Surface brightness fluctuation (SBF) is a technique for measuring distances to galaxies based

on the mottling observed on high signal to noise images of galaxies light profile (Tonry &

Schneider, 1988; Tonry & Schechter, 1990). The mottling is due to the variation of the number

of stars from pixel-to-pixel. This results in a signal at the scale of the PSF in the Fourier domain.

This signal can be measured by taking the power spectrum of the image after removing the

possible contamination from the low frequency signal coming from the smooth profile of the

galaxy. To this end, I developed a code called Granulet that can remove the smooth compo-

nent of galaxies. To do this I developed a simple MCA algorithm based on the discrimination

between low and high frequencies in the starlet domain.

B.1 Filtering low and high frequencies

The algorithm is an adaptation from algorithm 1, where we aim at extracting two components

that are both sparsely represented in the starlet domain, but at different scales. To use this

criteria as a discrimination between low and high frequency signal, I designed two dictionaries,

Φ1 and Φ2 defined as: Φ1 = DLΦS and Φ2 = DHΦS , where ΦS is the starlet dictionary and DL

and DH are respectively low and high-pass filters. A possible choice for the high-pass filter is

to set to one all coefficients at a starlet scale below scale s and to 0 all coefficients in scales

above s. In practice, we found that using a sigmoid profile for the discrimination between

low and high frequencies prevented the contamination of the low frequencies by borderline

low frequencies belonging to small compact objects such as small background galaxies. The

low-pass filter is simply, at each starlet scale: DL(s) = 1−DH (s). At this early stage of the

method, the scale limit s is still an arbitrary parameter chosen by the user to optimise the

separation. In figure B.1, I show an example of the low and high-pass filter gains as a function

of starlet scales.

In the following figures, B.2 and B.3, I show the result of the application of Granulet on two

galaxies (top left panels) where we see the clear separation between high frequencies (lower

left panels), high frequencies (lower right panels) and the residual noise (top right panels).
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Figure B.1 – SBF low and high-pass filters.

B.2 Removing dust features

In another application, we applied our method to a galaxy that shows dust features in ab-

sorption in the image of galaxy vcc1615. Absorption by dust can be seen as an negative

component, due to the absorption, added to the light profile of an otherwise smooth galaxy. In

figure B.4, I show the result of applying Granulet directly to the image of vcc1615. The result

shows negative features in the residuals, but we also notice absorption features in the smooth

component.

In order to circumvent this issue, I add a third component to the modelling of the data for

which I impose a negativity criteria, meaning that all the pixels above zero in this component

are set to zero. One of the disadvantages of this approach is that the negative component might

try to compensate for the positive components, especially around extremely bright structures,

leading to overestimated positive components and unnecessary negative components around

positive structures. While this has to be accounted for before being able to produce any

consistent result with such approach, I applied this naive modification to the algorithm, which

led to the results in figure B.5. In this figure, the bottom panel shows the dust in absorption,

meaning that the intensity in a pixel is a measure of how much light is absorbed due to dust.

While we see ring-like structures form around bright objects in the field of view, we also see

that the morphology of the dust structures are well reproduced, the low frequency component

is smoother and the residuals present less structures that can be imputed to dust.
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B.2. Removing dust features

(a) Original image (b) Residuals

(c) High frequencies (d) Low frequencies

Figure B.2 – Low-high frequency separation in galaxy vcc1025
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(a) Original image (b) Residuals

(c) High frequencies (d) Low frequencies

Figure B.3 – Low-high frequency separation in galaxy n0495
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B.2. Removing dust features

(a) Original image (b) Residuals

(c) High frequencies (d) Low frequencies

Figure B.4 – Low-high frequency separation in galaxy vcc1615
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(a) Original image (b) Residuals

(c) High frequencies (d) Low frequencies

(e) Dust absorption

Figure B.5 – Low-high frequency and negative component separation in galaxy vcc1615
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ABSTRACT
Simulations of self-interacting dark matter (SIDM) predict that dark matter should
lag behind galaxies during a collision. If the interaction is mediated by a high-mass
force carrier, the distribution of dark matter can also develop asymmetric dark matter
tails. To search for this asymmetry, we compute the gravitational lensing properties
of a mass distribution with a free skewness parameter. We apply this to the dark
matter around the four central galaxies in cluster Abell 3827. In the galaxy whose
dark matter peak has previously been found to be offset, we tentatively measure a
skewness s = 0.23+0.05

−0.22 in the same direction as the peak offset. Our method may be
useful in future gravitational lensing analyses of colliding galaxy clusters and merging
galaxies.

Key words: dark matter — astroparticle physics — galaxies: clusters: individual:
Abell 3827 — gravitational lensing: strong

1 INTRODUCTION

Most of the mass in the Universe is dark matter (e.g. Planck
Collaboration 2016). Dark matter appears invisible, because
it does not interact (or interacts very weakly) with Standard
Model particles including photons.

As the nature of dark matter remains unknown, there
is no reason to a priori assume a particular theory of its ori-
gin. The wide range of proposed dark matter models predict
different spatial distributions, particularly on small scales.
Dark matter particles that interact with each other (SIDM)
were proposed in (Spergel & Steinhardt 2000) to explain
small scale discrepancies between observations and simula-
tions of collisionless dark matter. In the SIDM paradigm,
energy transfer between particles makes the centre of galax-
ies (Vogelsberger et al. 2012) and galaxy clusters (Rocha
et al. 2013) more circular and less dense, potentially resolv-
ing the core/cusp problem. Small substructures can also be
erased – leading to the observed underabundance of galaxies
in the Local Group, relative to simulations. During merg-
ers between galaxies or galaxy clusters, dark matter in-
teractions transfer momentum between the colliding dark
matter haloes (Randall et al. 2008; Kahlhoefer et al. 2014;

� e-mail: peterllewelyntaylor@gmail.com

Robertson et al. 2017; Kim et al. 2016; Robertson et al.
2016). These scatterings can temporarily separate dark mat-
ter from its associated galaxies. Such dark matter lags be-
hind the galaxies, toward the position of diffuse gas that
is slowed by ram pressure (Clowe et al. 2004; Lage & Far-
rar 2014; Harvey et al. 2015). Scattering processes during
collisions can be seperated into two types: frequent low mo-
mentum transfer and infrequent high momentum transfer.
These will have different qualitative behaviours.

Frequent low momentum transfer scattering will cause
an effective drag force, which if greater than the gravita-
tional restoring force, will seperate the entire DM halo from
the galaxy during collisions. Crucially there will be no tail of
scattered DM particles escaping the potential well (Kahlhoe-
fer et al. 2014). Numerous studies have placed constraints on
the cross-section of DM in this regime. Measuring dark mat-
ter galaxy offsets on a sample of 72 merging clusters, (Harvey
et al. 2015) found σ̃/mDM < 0.5 cm2g−1. Constraints from
the Bullet Cluster place σ̃/mDM � 1.2 cm2g−1 (Kahlhoefer
et al. 2014), while constraints from an offset galaxy in Abell
3827 yields σ̃/mDM � 2.0 cm2g−1 (Kahlhoefer et al. 2015).

In contrast infrequent high momentum transfer scatter-
ing (mediated by a high-mass force carrier, for example) will
cause a small fraction of scattered particle to leave the po-
tential well on the trailing side. Shortly after collision, this
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2 P. Taylor et al.

will appear as a tail of scattered DM particles (see Figure
5 in Kahlhoefer et al. 2014). Although the peak of the DM
distribution will remain conincident with the galaxy, the tail
of DM particles will lead to an apparant shift in the centre
(Kahlhoefer et al. 2014).

Gravitational lensing offers the most direct way to map
the spatial distribution of dark matter, and hence to infer
its particle properties. Gravitational lensing refers to the de-
flection of light rays passing near any mass, including dark
matter. Thanks to this deflection, (unrelated) objects behind
dark matter appear characteristically distorted, or even vis-
ible along more than one (curved) line-of-sight. Even though
dark matter is invisible, it is possible to invert this process
and infer where it must be, by undistorting the observed im-
ages, or ray-tracing multiple images back onto each other.

Galaxy cluster Abell 3827 (22h 01′ 49.′′1 −59◦ 57′ 15′′,
redshift z=0.099) is particularly well suited for this kind of
study. It gravitationally lenses a z=1.24 galaxy with spi-
ral arms and several knots of star formation that can be
treated as independent background sources (Massey et al.
2015, hereafer M15). While most clusters contain only one
brightest central galaxy, Abell 3827 contains four equally-
bright galaxies within its central 10 kpc (Carrasco et al.
2010; Williams & Saha 2011). This highly unusual config-
uration means that some of the galaxies appear close to
gravitationally lensed images. Thus, under parametric model
assumptions, the distribution of the dark matter can be mea-
sured. Because of the cluster’s relative proximity (in terms
of gravitational lensing), it is possible to resolve small spa-
tial offsets between the distribution of dark matter and stars
in the foreground galaxies.

In this paper we present a new parametric lensing ap-
proach to search for the predicted asymmetry in the dis-
tribution of dark matter during mergers. A previous search
looked for residuals after subtracting the symmetric com-
ponent (Harvey et al. 2017), but that may be less sensitive
because a tail of scattered particles shifts the best-fit posi-
tion of the symmetric component backwards, thus remov-
ing some of the residual. We instead construct a single halo
model with a free skewness parameter that qualitatively cap-
tures the asymmetry found in high momentum transfer scat-
tering simulations. We implement and distribute this model
in the publicly available Lenstool software1 (Jullo et al.
2007). We test it on both mock data, where the skewness
of the lens is known a priori, and on Abell 3827. Section 2
describes existing observations of Abell 3827. Section 3 in-
troduces our new parametric lens model. Section 4 contains
an analysis of Abell 3827. To be consistent with M15 we
assume throughout this paper a flat ΛCDM cosmology with
ΩM=0.3, ΩΛ=0.7 and H0=70 km s−1 Mpc −1. At the redshift
of Abell 3827, 1′′ corresponds to 1.828 kpc.

2 DATA

Broad-band imaging of Abell 3827 has been obtained from
the Gemini telescope at optical wavelengths (Carrasco et al.
2010) and from the Hubble Space Telescope (HST) in the
UV, optical and near-infrared (M15). This revealed four

1 http://projets.lam.fr/projects/lenstool/wiki
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Figure 1. Hubble Space Telescope image of galaxy cluster
Abell 3827 in F160W (red), F814W (green) and F330W (blue)
bands, after using MuSCADeT (Joseph et al. 2016) to fit and
subtract foreground emission. Residual emission from two Milky
Way stars has been masked out, and remains visible at low level
around the four bright central galaxies N1–N4. Circles show mul-
tiple image identifications, with the radius of the circle reflecting
uncertainty on their positions (Ao8 has only been detected from
the ground).

similarly-bright elliptical galaxies within 10 kpc of each
other, plus a background spiral galaxy, whose multiply-
lensed images are threaded throughout the cluster core (fig-
ure 1).

Integral Field Unit spectroscopy has been obtained from
the VLT. An initial 1 hour exposure with the Multi-Unit
Spectroscopic Explorer (MUSE) identified four main groups
of lensed images, and suggested two low S/N peaks as can-
didates for a demagnified central image (M15). A subse-
quent additional 4 hour exposure (programme 295.A-5018;
Massey et al. in prep.) confirms both candidates (Ao7 at
RA: 330.47047, Dec: −59.945183, Ao8 at RA: 330.47079,
Dec: −59.946112). Indeed, Ao7 is also visible in HST imag-
ing, after using the MuSCADeT multiwavelength method
(Joseph et al. 2016) to estimate and subtract bright fore-
ground emission (Figure 1). We therefore use all the images
identified by M15, plus the two new ones.

c© 2014 RAS, MNRAS 000, 1–11
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3 LENS MODELLING METHOD

We shall model the distribution of mass in the galaxy clus-
ter as a sum of cluster-scale plus galaxy-scale halos (follow-
ing e.g. Limousin et al. 2007a; Jauzac et al. 2014), each a
perturbation around the Pseudo Isothermal Elliptical Mass
Distribution (PIEMD; Kassiola & Kovner 1993).

3.1 Pseudo-Isothermal Skewed Potential

The 2D surface mass density Σ of a circularly symmetric
pseudo-isothermal mass distribution, projected along a line
of sight, is:

Σ(r) ≡ σ2
0 rcut

2G (rcut − rcore)

(
1√

r2core + r2
− 1√

r2cut + r2

)
, (1)

where σ0 is the 1D velocity dispersion, and where rcore (rcut)
is an inner (outer) radius. To convert this into a PIEMD with
ellipticity ε = a−b

a+b
� 0, where a and b are the semi-major

and semi-minor axes respectively, Kassiola & Kovner (1993)
apply their coordinate transformation (2.3.6):

x → xem =
x

1 + ε
, y → yem =

y

1 − ε
. (2)

This maps a circle onto an ellipse centered at the origin,
with its major axis along the x axis. In general, including
a rotation to set the major axis at angle φε, this can be
expressed in polar coordinates as:

r2 → r2em =
r2

(1 − ε2)2
[
1 + ε2 − 2ε cos

(
2(θ − φε)

)]
. (3)

The angle α by which a light ray is deflected as it passes
near the lens, and the equivalent 2D gravitational potential
ψ can be computed by integrating the density distribution:

α (r) =
4G

c2
DlDls

Ds

∫
Σ
(
r′
) r− r′

|r− r′|2 d2r′

ψ (r) =
4G

c2
DlDls

Ds

∫
Σ
(
r′
)

log
∣∣r− r′

∣∣ d2r′ ,

(4)

where Dl, Ds and Dls are the angular diameter distance
from the observer to the lens, observer to the source, and lens
to the source respectively. For general mass distributions,
these integrals are difficult to solve – but closed forms have
been found for the PIEMD, using techniques from complex
analysis that exploit its elliptical symmetry (Bourassa &
Kantowski 1975).

A related halo model is the Pseudo Isothermal Ellipti-
cal Potential (PIEP; Kassiola & Kovner 1993). In this, the
coordinate transformation is applied to a circular potential
ψ (rather than the density). It is then mathematically easier
to obtain the deflection angle and density via differentiation:

α (r) =∇ψ (r)

Σ (r) =
c2

8πG

Ds

DlDls
∇2ψ (r) .

(5)

In detail, the PIEP potential ψ is transformed so that:

ψ (x, y) → ψ′ (x, y) ≡ ψ
(
x′, y′) . (6)

The first and second derivatives can then be computed with

applications of the chain rule. For example, the first x-
derivative of the potential is:

ψ′
x =

(
ψx′

(
x′, y′)x′

x + ψy′
(
x′, y′) y′

x

) ∣∣
(x,y)

, (7)

where the subscript denotes partial differentiation. The re-
sulting mass distribution is not the same as a PIEMD, be-
cause of the way the coordinate transformation propagates
through the chain rule (or back up the integrals in equa-
tion 4). For large ε, the mass distribution corresponding to
a PIEP has undesirable features including concave (peanut-
shaped) isodensity contours (Kassiola & Kovner 1993).

3.2 Pseudo-Isothermal Skewed Mass Distribution

To perturb the mass distribution in a way that resembles
the behaviour of SIDM in numerical simulations (see figure
5 of Kahlhoefer et al. 2014), we apply a further coordinate
transformation that maps a circle onto an ellipse with its
focus (rather than centre) at the origin:

r2 → r′2 =
r2

(
1 − s2

)3/2
(1 + s cos [θ − φs])2

(8)

with s being the third eccentricity such that s =√
1 − b2/a2, and the power 3/2 being introduced to pre-

serve area. Note the asymmetric cos (θ) terms rather than
the cos (2θ) terms in the mapping described by equation (3).

We apply this transformation to the 2D gravitational
potential corresponding to the PIEMD.2 Analytic (albeit
cumbersome) expressions for deflection angle and density
can be readily calculated via differentiation (equation 5). We
denote this the Pseudo Isothermal Skewed Potential (PISP);
its isodensity contours are shown for various values of ε and
s in Figure 2.

For any skew, the peak of the mass distribution always
lies at the same position, so it will be possible to use the
same metric as M15 to measure any offset between the most
gravitationally bound stars and dark matter. The total mass
changes slightly with increasing skew, but this can be recal-
culated after a fit.

Like the PIEP, the density distribution of the PISP ex-
hibits undesired behaviour with large skews, because the co-
ordinate transformation was applied to ψ, not Σ. Isophotes
of the density distribution become concave, and the skew el-
lipticity can overwhelm the underlying ellipticity. We avoid
these effects by restricting |s| < 0.3.3 Since the PISP is in-
variant under transformations s → −s and φs → φs + π, we
fit parameters within the domain s ∈ [−0.3, 0.3] and φs in
some interval of length π. This ensures that the parameter
space can be explored symmetrically about s = 0, allowing
the case of zero skew to be recovered without bias. We set
the edge of the domain of φs well away from any preferred

2 We would ideally apply this transformation to the PIEMD mass
distribution, but the relevant integrals (equation 4) do not con-
tract to a simple form. A skewed mass distribution could also be
derived from the potential corresponding to a PIEP. We choose
to perturb the PIEMD so that we recover this widely-used mass
distribution in the s → 0 limit, and to minimise undesired convex
curvature in density isophotes.
3 See the Appendix for an alternative model that does not suffer
from this effect, but has other disadvantages.
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4 P. Taylor et al.

Figure 2. Isodensity contours of a PISP mass distributions. The
core radius is about the same as the innermost density contour.
Thick, black lines show an ordinary PIEMD; the bottom-left is
circular, and the others have ellipticity ε=0.15, with the major
axis at various angles. Thinner, grey lines show the same density
profiles with skew s=0.1, 0.2, 0.3 to the right.

direction (in practice, having explored parameter space via
a quick search), to make sure an MCMC sampler operates
efficiently near regions of interest.

3.3 Testing an implementation in Lenstool

We have implemented the PISP as potential 813 in the
publicly-available software Lenstool (Jullo et al. 2007).
Given a parameterised mass distribution, and the location
of background sources, Lenstool can compute the position
of observed multiple images. Given the position of observed
images, it can also use Markov-Chain Monte Carlo (MCMC)
optimisation to fit parameters of the lensing mass distribu-
tion.

To test whether Lenstool can accurately recover a
known input skew, we run two sets of tests. We first con-
sider an isolated lens, with three background sources at
different redshifts: the example with images configuration
that is packaged with Lenstool. As a null test, we adopt
the input mass distribution with skew strue = 0. From
the observed positions of multiple images, Lenstool suc-
cessfully recovered a best fit (maximum likelihood) value
s = −0.0008+0.02

−0.02.
We then set skew strue = 0.2 and φstrue = 1.6. We set

source positions by projecting one image of each source back
to its source plane, then create a mock set of multiply lensed
images by re-projecting this source forward through the lens.
When fitting this mock data, Lenstool successfully recov-
ers best-fit values s = 0.2+0.001

−0.001 and φs = 1.6+0.04
−0.05.

Second, we test the recovery of input skews in a com-
plex cluster lens with a mass distribution based on the

Abell 3827. Choosing one of the quadruply lensed back-
ground galaxy images, we repeat the procedure outlined
above: projecting the light backwards and then forwards
through a cluster lens with known mass distribution. The
cluster is given the same parameters as our fiducial model for
Abell 3827 (see §4.1), with the exception of the skew param-
eters. In this test, the dark matter associated with galaxy
N1 is given skewness strue = 0.25 and φstrue = 1.6. As a null
test, galaxies N2–N4 are set to have no skew, strue = 0.

We run Lenstool with the same free parameters and
priors as in §4.1). Within such a highly dimensional pa-
rameter space, we find that the best-fit values are some-
times noisy, for parameters that make only a small difference
to the overall goodness of fit. However, the full posterior
probability distribution function (PDF) is smooth and well-
sampled. Hence, for the rest of this paper, we shall quote
the modal peak and 68% width of the posterior PDF, which
Lenstool also returns. This makes no difference for the sim-
ple model above, and successfully recovers s = 0.24+0.04

−0.31 and
φs = 1.60.92

−0.99 for galaxy N1, and s = 0.01+0.14
−0.13, 0.07+0.10

−0.15,
0.11+0.11

−0.16 for galaxies N2, N3, N4 (with very weakly con-
strained φs).

3.4 Prior bias for polar parameters

A skew is a two-component vector, and can be expressed in
polar form as a magnitude |s| and direction φs, or in Carte-
sian form as an amount in orthogonal directions {sx, sy}. We
implemented the polar option, so that Lenstool’s MCMC
optimiser can explore a circularly symmetric region, with
no preferred direction that could bias the inferred skew.
Lenstool also defines ellipticities in this way, for the same
reason.

Nonetheless, it may often be desirable to know the pos-
terior probability distribution of skewness along e.g. a direc-
tion of motion, and perpendicular to that (i.e. the Cartesian
form). The posterior probability distributions of skew and
skew angle are returned by Lenstool (in runmode=3) by
the sampling density of the MCMC chain. This can be con-
verted to the posterior of the skew in some direction φ by
projecting and then weighting each sample by:

w =
|s|√

0.32 − s2cos2(φs − φ)
. (9)

The numerator is the Jacobian to convert the area of pa-
rameter space from polar to Cartesian coordinates. The de-
nominator corrects for prior bias, because the restriction
|s| ∈ [−0.3, 0.3] leads to a (semi-)circular prior on the pro-
jected skew.

4 STRONG LENS ANALYSIS OF ABELL 3827

We use the observed positions of lensed multiple images to
fit a mass model of the cluster. Our choice of model param-
eters and their priors is based on those of M15, with some
additional degrees of freedom. We assume 0.8′′ uncertainty
on the position of lensed image Ao8, which has only been
detected from the ground. We assume 0.2′′ uncertainty on
the position of all other lensed images, which are identified
by HST.
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Table 1. Parameters of the fiducial mass model fitted by Lenstool. Quantities in square brackets are fixed. Errors on other quantities
show 68% statistical confidence limits, marginalising over uncertainty in all other parameters. Stellar mass components are modelled as
Hernquist profiles, with a mass (computed from flux in the F606W band), scale radius and ellipticity (fitted using Galfit; galaxy N4
is contaminated by a nearby star). Dark matter components are modelled as PISPs, with a 1D velocity dispersion, core and cut radii,
ellipticity and skewness. Positions are given in arcseconds relative to (R.A.: 4330.47515, Dec.: −59.945996), except galaxies’ dark matter
components, which are relative to the position of their stars. Angles are anticlockwise from East.

x [′′] y [′′] Mass [M�] rsc [′′]
ε φε [◦] s φs [◦]Δx [′′] Δy [′′] σv [km/s] rcore [′′] rcut [′′]

N1 stars [−0.06] [0.04] [1.00× 1011] [0.53] [0.12] [61]

dark matter −0.29+0.25
−0.14 −0.71+0.30

−0.16 149+8
−12 [0.1] [40] 0.02+0.33

−0.01 151+19
−116 0.21+0.06

−0.22 86+44
−44

N2 stars [5.07] [2.05] [2.46× 1011] [0.79] [0.17] [39]

dark matter −0.23+0.30
−0.16 0.00+0.30

−0.30 182+29
−22 [0.1] [40] 0.42+0.05

−0.22 23+32
−12 0.03+0.11

−0.14 117+41
−80

N3 stars [9.69] [3.98] [2.77× 1011] [0.33] [0.05] [31]

dark matter −0.05+0.25
−0.25 −0.06+0.18

−0.29 213+8
−10 [0.1] [40] 0.49+0.01

−0.16 15+14
−8 −0.02+0.08

−0.11 169+7
−109

N4 stars [9.26] [−1.08] [2.08× 1011] [1.37] [0.39] [127]

dark matter −1.35+0.39
−0.34 0.51+0.35

−0.27 255+8
−10 [0.1] [40] 0.02+0.25

−0.01 136+17
−28 0.08+0.08

−0.09 147+21
−80

N6 stars [18.54] [2.47] [0]

dark matter [0] [0] 38+26
−25 [0.1] [40] [0] [0] [0] [0]

Cluster dm 5.53+1.46
−1.61 2.33+1.97

−1.59 683+139
−75 30.12+9.23

−6.43 [1000] 0.56+0.13
−0.10 63+2

−3 [0] [0]

4.1 Fiducial mass model

The cluster’s large-scale mass distribution is modelled as a
single PIEMD. Based on a comprehensive (but slow) initial
exploration of parameter space, its position is given by a
broad Gaussian prior with σ = 2′′ = 3.66 kpc, centred on
the position of galaxy N2. Flat priors are imposed on its
ellipticity (ε < 0.75), core size (rcore < 40′′) and velocity
dispersion (300 <σv< 1000 km/s). Its cut radius is fixed at
rcut = 1000′′, well outside the strong lensing region, i.e. away
from any multiple image constraints.

Central galaxies N1–N4 are each modelled as a stellar
component (which was not included in the fiducial model
of M15), plus a dark matter one. Following Giocoli et al.
(2012), the stellar components are modelled with Hernquist
(1990) profiles:

ρstar(r) =
ρs

(r/rs) (1 + r/rs)3
, (10)

where the scale radius rs is related to the half mass radius
Re, such that Re = rs/0.551, and the scale density ρs =
Mtotal/

(
2πr3s

)
. We fix the mass of the stellar component,

and its half-mass radius, using the optical magnitudes and
profiles measured by M15. These parameters are listed in
Table 1.

The four central galaxies’ dark matter components are
now modelled as PISPs. We impose flat priors on their po-
sitions, in 4′′ × 4′′ boxes centred on their luminosity peaks,
plus flat priors on their ellipticity (ε < 0.5) and velocity
dispersion (vdisp < 600 km/s). We fix rcut = 40′′ = 73 kpc
(Limousin et al. 2007a).

Galaxy N6 is much fainter than the others, so we ap-
proximate its total mass distribution as a single PIEMD.
This has a fixed position and ellipticity to match the light
distribution, and only its velocity dispersion is optimised
(with a flat prior vdisp < 500 km/s).

We optimise the free parameters using Lenstool, with
runmode=3. This runmode is used to fully explore the

N2

N3

N4

N1

Contours: total mass (white), dark matter belonging to galaxies (black)
Colours: mass in stars

Figure 3. The best fitting mass distribution in the gravitational
lens Abell 3827, integrated along our line of sight. For reference,
the background colour scale shows the modelled stellar mass den-
sity. Red spots indicate the position of the luminosity peak in
galaxies N1–N4. White isodensity contours show the total lensing
mass of the cluster. The outermost contour corresponds to a pro-
jected density of 2 × 109 M�/kpc2, and values increase towards
the centre by a factor of 21/3=1.26. Black isodensity contours iso-
late each galaxy’s dark matter component. The outermost con-
tour corresponds to a projected density of 1.26 × 109 M�/kpc2

and values increase by a factor of 22/3. The visible offset between
stars and dark matter in galaxies N1 and N4 are both statistically
significant; the asymmetry in the distribution of N1’s dark matter
is also significant.
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posterior (Jullo et al. 2007). (Modal) maximum likelihood
parameters are shown in Table 1, and the corresponding
mass distribution is shown in Figure 3. The best fit model
achieves a RMS offset between the observed and predicted
positions of multiple images of 〈rms〉i=0.26′′. There are 54
constraints and 35 free parameters in our model. The modal
χ2/dof=67.1/19 with a log likelihood of 8.18. The full poste-
rior probability distribution for the dark matter associated
with galaxies N1–N4 is shown in Figures 4 and 5.

4.2 Sensitivity to model choices

4.2.1 Stellar mass components

Galaxies definitely contain stars, and those stars have mass.
Not accounting for this mass could bias the skew measure-
ment. In an offset DM halo, the stellar mass will lead the
DM peak, while any tail of DM particles will trail behind in
the opposite direction. Not accounting for this stellar mass
could weaken the skew measurement, or in the worst case
scenario, if the stellar mass is greater than that of scattered
particles, reverse the direction of the measured skew. We
have explicitly modelled the stellar mass seperately to avoid
any bias in the inferred skew. In practice, as in M15, we find
that including the stellar mass component (or even multi-
plying/dividing its mass by a factor 2) does not change any
other results, within their statistical errors.

4.2.2 Identification of new lensed images

Adding constraints from the two new lensed images Ao7
and Ao8 tightens constraints on nearby galaxies N3 and N4.
These (demagnified) images are unresolved, and any of the
features in the background spiral could be assigned to them.
We have tried relabelling one or both of the demagnified
images as either the bulge, Aon, or one of the two bright-
est knots of star formation, Aan or Abn. Lenstool’s out-
puts are statistically indistinguishable. In all cases, the en-
tire background spiral galaxy is predicted to be lensed onto
both the northern and the southern demagnified images.

4.2.3 Mass in other cluster member galaxies

We also tested the impact of adding more cluster mem-
ber galaxies to the mass model. These galaxies were identi-
fied using a colour-magnitude selection using the F814W
and F606W2 HST/ACS band imaging. Source detection
was done using sextractor (Bertin & Arnouts 1996) in
dual mode, with reference taken in the F814W-band. We
then identified as cluster members all galaxies brighter than
magF814W < 23 and within 1σ of the red sequence best-fit:

(magF814W −magF606W) = 0.022 ×magF606W − 1.129.

Our final cluster member catalogue contains 147 galaxies.
These galaxies are added to the mass model as small

scale perturbers. We assume fixed cut radius and veloc-
ity dispersion, scaled by their luminosities in the F814W-
band. This methodology has been successfully validated by
Harvey et al. (2016), and adopted widely in previous work
(e.g. Jauzac et al. 2014; Richard et al. 2014; Limousin et al.
2007b). To derive L∗, we use the K∗ magnitudes obtained by
Lin et al. (2006) as a funciton of cluster redshift. lenstool

is then scaling the cut radius and velocity dispersion of each
galaxies in our catalogue relative to a K∗ = 16.6 galaxy with
velocity dispersion σ∗ = 108.4 ± 27.5 km/s, and cut radius
r∗cut = 48.5 ± 16.0 kpc.

Including all cluster memeber galaxies in a re-optimised
mass model significantly affects neither offset nor skewness
measurements of dark matter associated with central galax-
ies N1–N4. By far the most affected measurement is the
skewness of galaxy N1, which increases to s = 0.28+0.01

−0.31. All
other quantities remain consistent within random noise.

5 DISCUSSION

5.1 Galaxy N1

The previously-detected offset between galaxy N1’s stars
and dark matter persists at > 3σ in our new analysis.
Adding two free parameters for the asymmetry of its dark
matter slightly increases uncertainty in its position. The
modal offset is (Δx,Δy) =

(−0.22+0.25
−0.14,−0.81+0.16

−0.17

)
for an

unskewed model, and (Δx,Δy) =
(−0.29+0.25

−0.14,−0.71+0.30
−0.16

)
if skewness is allowed. The consistency between these sug-
gests that the measured position of the density peak is ro-
bust against the skew parameter probed here.

If the offset is entirely due to an effective drag force
through frequent dark matter self-interactions, it implies
a momentum-transfer interaction cross-section σ̃/mDM �
1 cm2g−1, assuming galaxy N1 is falling into the cluster for
the first time (Kahlhoefer et al. 2015). In general, We agree
with this interpretation4, but note that the cross-section can
be lower if the galaxy has completed multiple orbits; its cur-
rent direction of motion is unknown.

We also find (at much lower statistical significance) that
galaxy N1’s dark matter is skewed in a direction consistent
with the SIDM interpretation of its offset. This could be
signs of a tail of scattered DM particles and would favour
high momentum transfer scattering. However, the weak sta-
tistical significance of our result makes it impossible to rule
out the low momentum transfer case. Figure 6 shows the
posterior PDF of the skew onto the vector pointing from
the DM peak to the stellar luminosity in the fiducial model,
such that a positive skew corresponds to the direction pre-
dicted by SIDM. The peak of the posterior and 1σ errors
are s = 0.23+0.05

−0.22. If we individually project the skewness
onto the offset direction individually in all MCMC samples,
we find s = 0.26+0.03

−0.22. Finally in our model that contained
the additional 147 cluster galaxies we find s = 0.28+0.01

−0.31. In
all cases ∼ 70% of the posterior PDF lies at s > 0. As the
posterior peak is near the edge of the prior, which is chosen
coservatively (see §3.2), a parametric halo model that does
not break down for large skew parameters could result in a
stronger detection.

4 We have also repeated Kahlhoefer et al. (2015)’s calculation of
σ̃/mDM but integrating the effect of the restoring force on the
entire distribution rather than just the peak. The difference is
not significant.
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Figure 4. Posterior probability distribution of the distribution of dark matter associated with galaxies N1 (top left), N2 (top right),
N3 (bottom left) and N4 (bottom right). Contours show the 68%, 95% and 99.7% contour levels. Blue lines indicate the best fit model,
but note that this can be noisy, and we instead use the peak of the smoothed posterior distribution. Positions have been recentered such
that (x, y) = (0, 0) is the peak of the stellar luminosity. Offsets between stars and dark matter are measured at >3σ for galaxies N1 and
N4. A skew is detected at >1σ for galaxy N1, in a direction consistent with the spatial offset.

5.2 Galaxies N2 and N3

The dark matter associated with galaxies N2 and N3 appears
symmetric, and coincident with the stars. This result does
not preclude offsets from existing along the line of sight.
Furthermore, even if the galaxies are moving in the plane of
the sky, they could be behind or in front of the most dense
regions of the cluster core, and therefore passing through a
less dense medium, experiencing less drag.

5.3 Galaxy N4

The measured position of N4’s dark matter is intriguing. Ac-
counting purely for statistical error bars, thanks to the con-
firmed positions of demagnified images, we find that galaxy
N4 is offset from the galaxy’s stars at the 3σ level. However,
the offset position is mildly degenerate with the position of
the cluster-scale dark matter (Figure 5), thus a flat prior on
the cluster scale halo could lead to a different offset measure-
ment. Furthermore, the measured ellipticity of the galaxy
light is contaminated by light from an adjacent Milky Way
star, and its position may also be.
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8 P. Taylor et al.

Figure 5. Posterior probability distribution showing (minimal) correlations between the position and asymmetry of the dark matter
associated with key galaxies, and between those galaxies and the cluster-scale dark matter(denoted C). Contours show the 68%, 95%
and 99.7% contour levels. Positions have been recentered as in Figure 4.

Despite the measured offset of dark matter from galaxy
N4, it shows no sign of skewness. If the offset is spurious,
as discussed above, then a tail is not expected. If the off-
set is real, the lack of skew favours low momentum transfer
scattering and (at very low S/N) is in mild tension with the
skew detected in galaxy N1. Unknown systematics in the
modelling of DM around either galaxy could be responsible.
Nonetheless, there is also a possible physical explanation for
this discrepancy. Galaxy N4 is in a higher density environ-
ment than galaxy N1, closer to the cluster core. It is possible
that any tail of scatttered N4 particles has been tidally de-
stroyed by the steeper gradient in gravitational potential.

6 CONCLUSION

We have developed a parametric lens models for asymmetri-
cally skewed mass distributions. This can be used to search
for scattered (self-interacting) dark matter in colliding sys-
tems. More generally, it will also be useful to investigate
claims of dynamically-induced asymmetry (Prasad & Jog
2016; Chemin et al. 2016), or tidal tails (which are asym-
metric if the size of a body is large compared to its distance
from the centre of potential).

We have also presented a new model for the distribu-
tion of mass in galaxy cluster Abell 3827. Our choice of
flat priors for the position of all galaxies’ dark matter leads
to a detected offset between a second galaxy’s stars and
its dark matter. New VLT/MUSE observations tighten the
constraints on that offset. Neither measured offset changes

c© 2014 RAS, MNRAS 000, 1–11

229



Dark matter in galaxy cluster Abell 3827 9

In direction of offset

Orthogonal to
direction of offset

P
os

te
rio

r 
pr

ob
ab

ili
ty

 d
en

si
ty

Projected skewness of galaxy N1
-0.3 -0.2 -0.1 0 0.1 0.2 0.3

Figure 6. The posterior of the skew vectors in galaxy N1 pro-
jected onto the offset vector (black) and orthogonal to this (grey).
The Jacobian has been accounted for and the priors have been
adjusted as described in section 3.4. Dashed lines indicate the
posterior peak and 1σ confidence intervals. The blue line indi-
cates the (noisy) best fit value. There is a preference for a skew
that is consistent with SIDM. No such preference is shown for a
skew component in the orthogonal direction.

significantly if the models are allowed extra freedom to be-
come skewed.

We find tantalising, but low significance evidence that
the galaxy closest to multiply lensed images (and there-
fore the best constrained) has an asymmetric distribution of
dark matter, skewed in the same direction as its offset from
stars. We emphasise that our skew model, which captures
the qualitative behaviour of scattered DM particles, is pri-
marily motivated by mathematical convenience and that all
skew measurements here are model dependent. More work
will be needed to determine the significance of this result:
whether it is physical, or an artefact of systematics in para-
metric lens modelling. Even in mock data where the true
skew is known, skewness cannot be measured to high preci-
sion in a system as complex as Abell 3827. This is probably
because the effect of skewness on lensed image positions is
smaller than the effects of other free parameters.

A promising direction for future investigation may be
provided by pairs of field galaxy in the SLACS survey, one
of which has already been found to have an offset between
dark and luminous matter (Shu et al. 2016). Whilst the
SIDM model predicts a largest (most easily observable) off-
set in galaxies moving through a dense intracluster medium,
it may be possible to more tightly constrain any asymmetry
of dark matter in these simpler systems. If the directions of
their dark matter tails correlate with the directions of their
offsets, this evidence would support the hypothesis of SIDM
with a high-mass mediator particle.
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APPENDIX A: ALTERNATIVE METHOD TO
GENERALISE LENS MASS DISTRIBUTIONS

Another way to introduce asymmetry is to apply a weighting
function w (r; {ai}) to an elliptical lensing potential

ψ(r) → ψ′(r) ≡ w(r; {ai})ψ(r), (A1)

where {ai} are a set of parameters. The deflection and sur-
face mass density are readily computed by differentiating.

We consider weighting functions of the form

w(r; {ai}) = 1 + sf(r, θ) (A2)

where s is a skew parameter and f(r, θ) is written in polar
coordinates. The second term acts as a perturbation away
from elliptical symmetry of O(s), with s = 0 corresponding
to the elliptically symmetric case. We chose f(r, θ) to meet
the following criteria:

• To ensure that the space about s = 0 is explored sym-
metrically in Lenstool, so that a non-zero skew is not artifi-
cially recovered, we require that sf(r, θ) = −sf(r, θ + π).

• To avoid difficulties near the origin, we require f(r, θ)
to be an increasing function of r. This is also physically mo-
tivated, as it is difficult to scatter particles from the centre
of the potential well at r = 0.

• To ensure that the surface mass density remains posi-
tive (or becomes negative only for large r well outside any
region of interest), we require f (r, θ) to be bounded.

Figure A1. Isodensity contours of wPISP mass distributions,
inside (top) and outside (bottom) the scale radius rs/β. Thick,
black lines show an ordinary PIEMD; the bottom-left is circular,
and the others have ellipticity ε=0.15, at angles θε=0◦, 45◦ and
90◦ in the same order as in Figure 2. Thinner, grey lines show the
same density profiles with skew s=0.1, 0.2, 0.3, 0.4 to the right.

A1 The Weighting Function Pseudo-Isothermal
Skewed Potential

Meeting the above conditions we form the weighted Pseudo-
Isothermal Skewed Potential (wPISP) by applying the
weighting function

w(r; s, rs, β, φs) = 1 + s tan−1

(
β
r

rs

)
cos(θ − φs), (A3)

c© 2014 RAS, MNRAS 000, 1–11
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to the PIEMD potential, where rs is a new scale radius, β
sets the radial dependence of the skew, and φs is the skew
angle.5 This is now available as potential 812 in Lenstool.

The resulting surface mass densities are shown in Fig-
ure A1. The qualitative shape of the isodensity contours
changes inside or outside the scale radius (owing to the sign
change in second derivative of the inverse tangent). This fea-
ture could be used to isolate a behaviour that best matches
numerical simulations, by fixing very large or very small rs,
or to capture more complex behaviour.

The total mass of a wPISP is identical to that of of
a PIEMD. Since the weighting function is normalised by
construction, the integrated mass density of a PIEMD and
wPISP over a circular region are the same:

c2

8πG

Ds

DlDls

∫
|r|<R

∇2ψ dA =
c2

8πG

Ds

DlDls

∫
|r|<R

∇2 (wψ) dA,

(A4)

where θ-dependence cancels. Taking the limit as | r |→ ∞,
the left hand side will converge to the total mass of a PIEMD
with ellipticity ε, and the right to the mass of an equiva-
lent wPISP. However, the position of the density peak varies
slightly as a function of s. Care would need to be taken if
using a wPISP to measure offsets of dark matter.

As with the PISP, this model breaks down for large
values of s, since the weighting function has been applied
to the potential and not the density. We have found that
the value of s where this occurs is sensitive to β and the
cut and core radii. For this reason, we recommend testing
the boundaries of the parameter space for a breakdown of
the desired skewed behaviour before substantial future work.
Nonetheless, we tested the wPISP against the null hypothe-
sis of the unskewed example with images system distributed
with Lenstool (see §3.3). Fixing β = 0.01 and starting
with a flat prior s ∈ [0.3, 0.3], Lenstool successfully recov-
ers skewness s = 0.002+0.002

−0.002.

A2 Pseudo Isothermal Varying Ellipticity Mass
Distribution

Despali et al. (2016) predict that, even with standard cold
dark matter, the ellipticity of a cluster scale halo should
change as a function of radius, becoming more elongated fur-
ther from the centre. This prediction can be tested by using
the weighting function formalism to add an extra parameter
to halo models that mimics this behaviour. To achieve this,
we combine a weighted sum of two different mass densities
with different ellipticities into a Pseudo Isothermal Varying
Ellipticity Mass Distribution (PIVEMD)

We suggest a mass density of the following form:

Σ (r) = Σε1 (r)w1 (r) + Σε2 (r)w2 (r) (A5)

where Σε1 (r) and Σε2 (r) are two elliptical profiles with el-
lipticity ε1 and ε2. All the other parameters for these two

5 The inverse tangent form of the radial dependence is not physi-
cally motivated, and other functional forms may also work. While
it is mathematically unnecessary to have two degenerate param-
eters rs and β, to avoid computational divisions by zero, the dis-
tributed Lenstool implementation uses hardcoded rs = 0.1′′ and
allows β to vary.

Figure A2. Isodensity contours for a radially varying weighted
sum of two PIEMDs with different ellipticities.

densities should be shared. In this case, we find it most effec-
tive (and possible) to apply the weighting function directly
to the mass density. To be computationally efficient within
an MCMC loop, deflection angles must be computed once,
using numerical integration, and stored in a look-up table.

The weighting functions wi should meet the following
criteria:

• To normalise the total mass, w1 (r) + w2 (r) ≡ 1, ∀r.
• So that one ellipticity dominates at small r and the

other at large r, let w1 (r) → 1 as r → ∞, w1 (r) →
0 as r → 0, w2 (r) → 0 as r → ∞ and w2 (r) → 1 as r → 0.

Although this is quite a general set of conditions, we
can take, for example

w1 (r) =1 − e−βr

w2 (r) =e−βr,
(A6)

where β controls the radial dependence. The resulting mass
distribution for this weighted sum is illustrated in Figure A2.

c© 2014 RAS, MNRAS 000, 1–11

Appendix C. Colour deblending of Abell 3827
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D HFF deblending residuals

This appendix shows the residuals of the deblending of the HFF clusters by MuSCADeT. A

perfect separation by MuSCADeT would produce residuals with noise only. In this application,

several features appear above the noise. First, milky way stars in the FoV create artefacts due

to their extended features and due to the saturation of the CCD. Objects with extremely red

and extremely blue SEDs are also poorly extracted by MuSCADeT due to their SEDs being to far

from the ones MuSCADeT was given to extract.

233



Appendix D. HFF deblending residuals

(a) MACS J0416 cluster (b) MACS J0416 parallel

(c) MACS J0416 parallel (d) MACS J0416 parallel

(e) MACS J0416 parallel (f) MACS J0416 parallel

Figure D.1 – Residuals of the MuSCADeT decompositions of the HFF images.
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(a) Abell 2744

(b) Abell 1063 cluster

(c) Abell 370 cluster

Figure D.2 – Idem as figure D.1.
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E Simulation deblending

In this appendix, I show the result of the separation of colour components in the HFF-like

simulation of galaxy cluster Ares (Meneghetti et al., 2017) with MuSCADeT. The results of the

separation are used to validate the accuracy of photometric measurements on background

multiply imaged lensed sources. Accurate photometric measurements on these objects could

allow to compute magnification ratios in a cluster, which could, in turn, be used to constrain

mass models.
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Appendix E. Simulation deblending

Figure E.1 – Composite RGB image of the Ares cluster
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Figure E.2 – Composite RGB image of the Ares cluster’s blue sources, Rb .
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Figure E.3 – Composite RGB image of the Ares cluster’s red sources Rr .
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F Galaxy populations from colour in the
HFF

In this study of the MuSCADeT deblended HFF, I take interest in the contribution of light

profiles of individual galaxies to the colour components as extracted by MuSCADeT. This is the

preliminary stage of a study that intends to determine whether the components extracted

using my method could bring new information about the understanding of galaxy population

in massive galaxy clusters. The goal here is to understand what new information can be gained

by using the colour separated components from MuSCADeT by making a comparison between

the red and blue components of cluster and non-cluster-member galaxies. Given the early

stage of the project, I show in this appendix the starting point of this investigation.

First, let us take a look at some of the star-forming galaxies in the parallel fields of HFF

cluster 0416 after applying MuSCADeT to the whole image, as shown on figure F.1. In this

figure, we see in each column, from top to bottom: the image of a galaxy in band F814w; the

composite RGB image Rr , resulting in the subtraction of the blue component from Y ; the

original composite RGB image Y ; the composite RGB image Rb , resulting from he subtraction

of the red component from Y ; and finally, the image in band F435w. We notice that the

profile of the red component resulting from MuSCADeT’s extraction, is much smoother than

the F814w or F435w bands. The features in band F435w are very similar to the ones found

in the blue component of MuSCADeT with the difference that, visually, the SNR in F435w

seems much higher than in the blue component. This is easily explained by the fact that the

blue component image is the superimposition of three images representing the full surface

brightness of blue stars, while F435w is only one image in a filter with a narrow band-pass (see

figure 4.2). These images indicate that the result of MuSCADeT’s separation contains different

information than the band images.

The properties of galaxies can be studied by looking at their distribution in a colour magnitude

diagram. The colour of a galaxy can be expressed as the difference between its magnitude1

in two different filters of interest and is usually represented as a function of the magnitude

in one of these filters. It is common to represent colour-magnitude diagrams B −R versus

1Magnitudes are defined as M ag = −2.5l og10(F )+25. Due to the logarithm, differences in magnitudes are
equivalent to a ratio of fluxes.
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R diagrams, where B is a galaxy’s magnitude in a blue filter and R is its magnitude in a filter

centred around a longer wavelength (red). In order to illustrate the difference of information

between MuSCADeT and HST filters, with show HST the colour-magnitude diagram and the

MuSCADeT colour-magnitude diagram. In the HST diagram, B is the magnitude in band F435w,

M agF 435w and R is the magnitude in band F814w, M agF 814w . In the MuSCADeT diagram, B

is the magnitude computed from the blue component, M agBl ue and R is the magnitude in

the red component M agRed . I show in figures F.2, F.3 and F.4 the HST diagrams (top panel)

and the MuSCADeT diagrams (bottom panel) for the cluster fields of clusters MACS J0717,

0416 and 1149 respectively. The photometric redshifts of the galaxies were recovered from

Shipley et al. (2018)’s catalogues and are shown in colours on the diagram. The redshift

of the clusters are given in the captions. We limited our selection of galaxies to redshifts

z < 1. In these diagrams, we clearly see the cluster galaxy members distributed as a line at

M agF 435w −M agF 814w > 2 in the HST diagrams. In the MuSCADeT diagrams, we see the cluster

members at M agBl ue −M agRed > 2 and M agRed < 31, but a sub-population of the cluster

members seems to extend to M agBl ue −M agRed > 5, which is indicative of galaxies redder

than the others.

These galaxies only appear redder thanks to MuSCADeT. If this trend is confirmed and correlates

with other properties of the galaxies, such as their position in 3d, relative to the cluster, it could

give more information about the evolution of galaxies inside the cluster, in particular with

regard to their star formation history.
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Figure F.1 – Examples of colour separation of colour components in individual galaxies of the
HFF .
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Appendix F. Galaxy populations from colour in the HFF

Figure F.2 – Colour-magnitude diagrams of cluster 0717, zclus = 0.548.
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Figure F.3 – Colour-magnitude diagrams of cluster 0416, zclus = 0.39.
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Figure F.4 – Colour-magnitude diagrams of cluster 1149, zclus = 0.544.
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G Supplementary material for SLIT

G.1 Lens mass density profiles

This section describes the profiles used to generate mass density distributions all throughout

this publication. The following mathematical expressions give the computation of the mass

density at location (x, y). In these formulas, κ0 stands for the amplitude normalisation, γ is

the slope of the profile, (x0, y0) is the center of the profile, q is the ellipticity, Rc is the core

radius, and theta is the angle the semimajor axis of the profile forms with the horizontal axis

of the image.

• Elliptical power law:

κPL(x, y) = κ0(2− γ

2
)

q (γ− 3
2 )

2(X 2q2 +Y 2)( γ−1
2 )

); (G.1)

• Singular Isothermal Ellipsoid, SIE, which is another parametrisation of the Elliptical

power law profile which we preferred in some examples:

κSI E (x, y) = κ
γ−1
0

2(1− 1−q2

1+q2 )
γ−1

2 ( R2
c

1− 1−q2

1+q2

+X 2 + Y 2

q2 )
γ−1

2

(G.2)

• Sigular Isothermal Ellipsoid, SIS:

κSI S(x, y) = κ0

2
�

(x −x0)2 + (y − y0)2
(G.3)
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• softened power-law elliptical potential, SPEP (Barkana, 1998):

κSPEP (x, y) = κ
γ−2
0
γ (x2 + y2

cos2θ
+R2

c )
γ−2

2 (G.4)(
(γ−2)

x2+ y2

cos4θ

x2+ y2

cos2θ
+R2

c

+1+ 1
cos2θ

)
(G.5)

With:

X = (x −x0)cos(θ)− (y − y0)si n(θ), (G.6)

Y = (x −x0)si n(θ)− (y − y0)cos(θ). (G.7)

G.2 Reconstructions for lens mass model optimisation

In this appendix, we show the average reconstructed lens and source light profiles as well as

the corresponding truth profiles for reconstructions of a lens system with different slopes for a

power law mass density profile. The profiles are shown in Fig G.1 & Fig G.2.
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G.2. Reconstructions for lens mass model optimisation

Figure G.1 – Reconstructions of lens and source light profiles for various values of mass density
slope of a lens generated with a mass density slope of 2. The first two panels show the true
source (left hand-side) and lens (right hand side) light profiles used to generate the simulated
images. The other couples of panels from left to right and from top to bottom show the source
and lens reconstructions for increasing values of γ̃.
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Figure G.2 – Continuation of Fig G.1.
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